1
|
Tamizh Selvan G, Venkatachalam P. Ataxia Telengectesia Protein Influences Bleomycin-Induced DNA Damage in Human Fibroblast Cells. Cell Biochem Biophys 2024; 82:1235-1242. [PMID: 38696104 DOI: 10.1007/s12013-024-01275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 08/25/2024]
Abstract
Human cancer is caused mainly by exposure to genotoxic chemicals; therefore, cellular defence mechanisms against genotoxic stress are crucial. Genetic factors are essential to maintaining genome stability and play a vital role in overcoming this by repairing the genome damage caused by any agent in order to prevent chromosomal instability. To examine the influence of the genetic makeup in specific ataxia-telangiectasia (ATM), we have examined non-cancerous fibroblast cell lines (HLF, AG1522 and L6) and cells with ATM mutated deficiency (GM4405). Cell lines were exposed in vitro to bleomycin (0, 40 and 80 µg/mL). The induced DNA damages were measured using endpoints including the micronucleus assay (MN) to measure chromosome damage and gamma-H2AX (γ-H2AX) assay to measure DNA damage/repair foci formation. An increase in DNA damage were observed in bleomycin-treated cells compared to unexposed controls (p < 0.05). A concentration-dependent increase of MN and γ-H2AX foci was observed and the sensitivity differed among the cell lines as follows: GM4405 > HLF > AG1522 > L6 for MN frequency and HLF > AG1522 > GM4405 > L6 for γ-H2AX foci. These findings suggest that the genetic makeup of the cellular genome would play an essential role in repairing bleomycin-induced DNA damage. Signalling of DNA damage, and the genes responsible for the repair process, could contribute to the differential susceptibility of different tissues to carcinomas induced by environmental mutagens.
Collapse
Affiliation(s)
- G Tamizh Selvan
- Central Research Laboratory, K S Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India.
| | - P Venkatachalam
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, Tamilnadu, India
| |
Collapse
|
2
|
Xu X, Zhang C, Xu X, Cai R, Guan Q, Chen X, Chen Y, Zhang Z, XuHan X, Lin Y, Lai Z. Riboflavin mediates m6A modification targeted by miR408, promoting early somatic embryogenesis in longan. PLANT PHYSIOLOGY 2023; 192:1799-1820. [PMID: 36930572 PMCID: PMC10315286 DOI: 10.1093/plphys/kiad139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Plant somatic embryogenesis (SE) is an in vitro biological process wherein bipolar structures are induced to form somatic cells and regenerate into whole plants. MicroRNA (miRNA) is an essential player in plant SE. However, the mechanism of microRNA408 (miR408) in SE remains elusive. Here, we used stable transgenic technology in longan (Dimocarpus longan) embryogenic calli to verify the mechanism by which miR408 promotes cell division and differentiation of longan early SE. dlo-miR408-3p regulated riboflavin biosynthesis by targeting nudix hydrolase 23 (DlNUDT23), a previously unidentified gene mediating N6-methyladenosine (m6A) modification and influencing RNA homeostasis and cell cycle gene expression during longan early SE. We showed that DlMIR408 overexpression (DlMIR408-OE) promoted 21-nt miRNA biosynthesis. In DlMIR408-OE cell lines, dlo-miR408-3p targeted and downregulated DlNUDT23, promoted riboflavin biosynthesis, decreased flavin mononucleotide (FMN) accumulation, promoted m6A level, and influenced miRNA homeostasis. DNA replication, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, the pentose phosphate pathway, and taurine and hypotaurine metabolism were also closely associated with riboflavin metabolism. In a riboflavin feeding assay, dlo-miR408-3p and pre-miR408 were upregulated and DlNUDT23 was downregulated, increasing the m6A level and cell division and differentiation in longan globular embryos. When riboflavin biosynthesis was inhibited, dlo-miR408-3p was downregulated and DlNUDT23 was upregulated, which decreased m6A modification and inhibited cell division but did not inhibit cell differentiation. FMN artificial demethylated m6A modification affected the homeostasis of precursor miRNA and miRNA. Our results revealed a mechanism underlying dlo-miR408-3p-activated riboflavin biosynthesis in which DlNUDT23 is targeted, m6A modification is dynamically mediated, and cell division is affected, promoting early SE in plants.
Collapse
Affiliation(s)
- Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Roudi Cai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qingxu Guan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu XuHan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
3
|
Tian Q, Wang G, Ma X, Shen Q, Ding M, Yang X, Luo X, Li R, Wang Z, Wang X, Fu Z, Yang Q, Tang J, Wang G. Riboflavin integrates cellular energetics and cell cycle to regulate maize seed development. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1487-1501. [PMID: 35426230 PMCID: PMC9342611 DOI: 10.1111/pbi.13826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/10/2022] [Indexed: 05/23/2023]
Abstract
Riboflavin is the precursor of essential cofactors for diverse metabolic processes. Unlike animals, plants can de novo produce riboflavin through an ancestrally conserved pathway, like bacteria and fungi. However, the mechanism by which riboflavin regulates seed development is poorly understood. Here, we report a novel maize (Zea mays L.) opaque mutant o18, which displays an increase in lysine accumulation, but impaired endosperm filling and embryo development. O18 encodes a rate-limiting bifunctional enzyme ZmRIBA1, targeted to plastid where to initiate riboflavin biosynthesis. Loss of function of O18 specifically disrupts respiratory complexes I and II, but also decreases SDH1 flavinylation, and in turn shifts the mitochondrial tricarboxylic acid (TCA) cycle to glycolysis. The deprivation of cellular energy leads to cell-cycle arrest at G1 and S phases in both mitosis and endoreduplication during endosperm development. The unexpected up-regulation of cell-cycle genes in o18 correlates with the increase of H3K4me3 levels, revealing a possible H3K4me-mediated epigenetic back-up mechanism for cell-cycle progression under unfavourable circumstances. Overexpression of O18 increases riboflavin production and confers osmotic tolerance. Altogether, our results substantiate a key role of riboflavin in coordinating cellular energy and cell cycle to modulate maize endosperm development.
Collapse
Affiliation(s)
- Qiuzhen Tian
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Gang Wang
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xuexia Ma
- Shanghai Key Laboratory of Bio‐Energy CropsSchool of Life SciencesShanghai UniversityShanghaiChina
| | - Qingwen Shen
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Mengli Ding
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xueyi Yang
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xiaoli Luo
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Rongrong Li
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhenghui Wang
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xiangyang Wang
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Qinghua Yang
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Guifeng Wang
- National Key Laboratory of Wheat and Maize Crops ScienceCIMMYT‐Henan Joint Center for Wheat and Maize ImprovementCollaborative Innovation Center of Henan Grain CropsCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
4
|
Schulz C, Jung F, Küpper JH. Inhibition of phase-1 biotransformation and cytostatic effects of diphenyleneiodonium on hepatoblastoma cell line HepG2 and a CYP3A4-overexpressing HepG2 cell clone. Clin Hemorheol Microcirc 2021; 79:231-243. [PMID: 34487034 PMCID: PMC8609703 DOI: 10.3233/ch-219117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell-based in vitro liver models are an important tool in the development and evaluation of new drugs in pharmacological and toxicological drug assessment. Hepatic microsomal enzyme complexes, consisting of cytochrome P450 oxidoreductase (CPR) and cytochrome P450 monooxygenases (CYPs), play a decisive role in catalysing phase-1 biotransformation of pharmaceuticals and xenobiotics. For a comprehensive understanding of the phase-1 biotransformation of drugs, the availability of well-characterized substances for the targeted modulation of in vitro liver models is essential. In this study, we investigated diphenyleneiodonium (DPI) for its ability to inhibit phase-1 enzyme activity and further its toxicological profile in an in vitro HepG2 cell model with and without recombinant expression of the most important drug metabolization enzyme CYP3A4. Aim of the study was to identify effective DPI concentrations for CPR/CYP activity modulation and potentially associated dose and time dependent hepatotoxic effects. The cells were treated with DPI doses up to 5,000nM (versus vehicle control) for a maximum of 48 h and subsequently examined for CYP3A4 activity as well as various toxicological relevant parameters such as cell morphology, integrity and viability, intracellular ATP level, and proliferation. Concluding, the experiments revealed a time- and concentration-dependent DPI mediated partial and complete inhibition of CYP3A4 activity in CYP3A4 overexpressing HepG2-cells (HepG2-CYP3A4). Other cell functions, including ATP synthesis and consequently the proliferation were negatively affected in both in vitro cell models. Since neither cell integrity nor cell viability were reduced, the effect of DPI in HepG2 can be assessed as cytostatic rather than cytotoxic.
Collapse
Affiliation(s)
- Christian Schulz
- Fraunhofer Project Group PZ-Syn, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany, located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jan-Heiner Küpper
- Fraunhofer Project Group PZ-Syn, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany, located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Germany
| |
Collapse
|
5
|
Liu X, Xu Z, Chang X, Fang JKH, Song J, He J, Tai Z, Zhu Q, Hu M. Enhanced immunity and hemocytes proliferation by three immunostimulants in tri-spine horseshoe crab Tachypleus tridentatus. FISH & SHELLFISH IMMUNOLOGY 2021; 115:112-123. [PMID: 34098068 DOI: 10.1016/j.fsi.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/26/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Tachypleus amebocyte lysate (TAL) is crucial in medical testing, but its industry in China has been restricted due to the decline of horseshoe crab population in recent years. Exploring methods of enhancing immunity and rapid hemocytes proliferation is urgent for the industrial horseshoe crab culture. In this study, β-glucan (G), peptidoglycan (P), and squalene (S) were injected to horseshoe crabs at two concentrations (5 and 10 mg/kg), in order to compare their effects on total hemocyte count (THC), reactive oxygen species (ROS), and non-specific immune enzyme activities. Results showed that the THC, superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC) were significantly increased by three immunostimulants at different points of time; ROS was significantly increased except at two squalene groups; lysozyme (LZM) and alkaline phosphatase (AKP) activity were increased except at low dose (5 mg/kg) squalene group; malondialdehyde (MDA) activity was decreased in all treatments; and hemocyanin concentration (HC) changed little during the experiment. At the 48th hour, THC, ROS, SOD, CAT, T-AOC, LZM, and AKP activities were significantly higher in the two peptidoglycan groups than those in the control group; the low dose β-glucan and squalene groups showed significantly higher SOD and CAT, but their THC and AKP were not significantly different from those of the control group. In general, all three immunostimulants stimulated the hemolymph parameters of horseshoe crabs, notably, peptidoglycan could significantly increase the THC and enzyme activities, suggesting that peptidoglycan can be developed as an efficient immunostimulant for horseshoe crabs.
Collapse
Affiliation(s)
- Ximei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xueqing Chang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - James K H Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jie Song
- Tianjin Era Biology Technology Co., Ltd., China
| | - Jinfeng He
- Beihai Product Quality Testing Institute, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, China
| | - Menghong Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Inhibition of NADPH Oxidases Activity by Diphenyleneiodonium Chloride as a Mechanism of Senescence Induction in Human Cancer Cells. Antioxidants (Basel) 2020; 9:antiox9121248. [PMID: 33302580 PMCID: PMC7764543 DOI: 10.3390/antiox9121248] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
NADPH oxidases (NOX) are commonly expressed ROS-producing enzymes that participate in the regulation of many signaling pathways, which influence cell metabolism, survival, and proliferation. Due to their high expression in several different types of cancer it was postulated that NOX promote tumor progression, growth, and survival. Thus, the inhibition of NOX activity was considered to have therapeutic potential. One of the possible outcomes of anticancer therapy, which has recently gained much interest, is cancer cell senescence. The induction of senescence leads to prolonged inhibition of proliferation and contributes to tumor growth restriction. The aim of our studies was to investigate the influence of low, non-toxic doses of diphenyleneiodonium chloride (DPI), a potent inhibitor of flavoenzymes including NADPH oxidases, on p53-proficient and p53-deficient HCT116 human colon cancer cells and MCF-7 breast cancer cells. We demonstrated that the temporal treatment of HCT116 and MCF-7 cancer cells (both p53 wild-type) with DPI caused induction of senescence, that was correlated with decreased level of ROS and upregulation of p53/p21 proteins. On the contrary, in the case of p53-/- HCT116 cells, apoptosis was shown to be the prevailing effect of DPI treatment. Thus, our studies provided a proof that inhibiting ROS production, and by this means influencing ROS sensitive pathways, remains an alternative strategy to facilitate so called therapy-induced senescence in cancers.
Collapse
|
7
|
Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, Wu X, Antony S, Wu Y, Melillo G, Meitzler JL, Haines DC, Butcher D, Roy K, Doroshow JH. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem 2017; 292:7866-7887. [PMID: 28330872 PMCID: PMC5427267 DOI: 10.1074/jbc.m116.768283] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) play a critical role in cell signaling and proliferation. NADPH oxidase 1 (NOX1), a membrane-bound flavin dehydrogenase that generates O2˙̄, is highly expressed in colon cancer. To investigate the role that NOX1 plays in colon cancer growth, we used shRNA to decrease NOX1 expression stably in HT-29 human colon cancer cells. The 80–90% decrease in NOX1 expression achieved by RNAi produced a significant decline in ROS production and a G1/S block that translated into a 2–3-fold increase in tumor cell doubling time without increased apoptosis. The block at the G1/S checkpoint was associated with a significant decrease in cyclin D1 expression and profound inhibition of mitogen-activated protein kinase (MAPK) signaling. Decreased steady-state MAPK phosphorylation occurred concomitant with a significant increase in protein phosphatase activity for two colon cancer cell lines in which NOX1 expression was knocked down by RNAi. Diminished NOX1 expression also contributed to decreased growth, blood vessel density, and VEGF and hypoxia-inducible factor 1α (HIF-1α) expression in HT-29 xenografts initiated from NOX1 knockdown cells. Microarray analysis, supplemented by real-time PCR and Western blotting, revealed that the expression of critical regulators of cell proliferation and angiogenesis, including c-MYC, c-MYB, and VEGF, were down-regulated in association with a decline in hypoxic HIF-1α protein expression downstream of silenced NOX1 in both colon cancer cell lines and xenografts. These studies suggest a role for NOX1 in maintaining the proliferative phenotype of some colon cancers and the potential of NOX1 as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Agnes Juhasz
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Susan Markel
- the Department of Medical Oncology and Therapeutics Research and
| | - Shikha Gaur
- the Department of Medical Oncology and Therapeutics Research and
| | - Han Liu
- the Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jiamo Lu
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Guojian Jiang
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Xiwei Wu
- the Bioinformatics Group, City of Hope Comprehensive Cancer Center, Duarte, California 91010
| | - Smitha Antony
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Yongzhong Wu
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Giovanni Melillo
- the Developmental Therapeutics Program, SAIC-Frederick, Inc., NCI at Frederick, Frederick, Maryland 21702, and
| | - Jennifer L Meitzler
- From the Developmental Therapeutics Branch of the Center for Cancer Research
| | - Diana C Haines
- the Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland 21702
| | - Donna Butcher
- the Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland 21702
| | - Krishnendu Roy
- the Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - James H Doroshow
- From the Developmental Therapeutics Branch of the Center for Cancer Research, .,the Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
8
|
Szilagyi JT, Mishin V, Heck DE, Jan YH, Aleksunes LM, Richardson JR, Heindel ND, Laskin DL, Laskin JD. Selective Targeting of Heme Protein in Cytochrome P450 and Nitric Oxide Synthase by Diphenyleneiodonium. Toxicol Sci 2016; 151:150-9. [PMID: 26880746 PMCID: PMC4914801 DOI: 10.1093/toxsci/kfw031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes mediate mixed-function oxidation reactions important in drug metabolism. The aromatic heterocyclic cation, diphenyleneiodonium (DPI), binds flavin in cytochrome P450 reductase and inhibits CYP-mediated activity. DPI also inhibits CYP by directly interacting with heme. Herein, we report that DPI effectively inhibits a number of CYP-related monooxygenase reactions including NADPH oxidase, a microsomal enzyme activity that generates hydrogen peroxide in the absence of metabolizing substrates. Inhibition of monooxygenase by DPI was time and concentration dependent with IC50's ranging from 0.06 to 1.9 μM. Higher (4.6-23.9 μM), but not lower (0.06-1.9 μM), concentrations of DPI inhibited electron flow via cytochrome P450 reductase, as measured by its ability to reduce cytochrome c and mediate quinone redox cycling. Similar results were observed with inducible nitric oxide synthase (iNOS), an enzyme containing a C-terminal reductase domain homologous to cytochrome P450 reductase that mediates reduction of cytochrome c, and an N-terminal heme-thiolate oxygenase domain mediating nitric oxide production. Significantly greater concentrations of DPI were required to inhibit cytochrome c reduction by iNOS (IC50 = 3.5 µM) than nitric oxide production (IC50 = 0.16 µM). Difference spectra of liver microsomes, recombinant CYPs, and iNOS demonstrated that DPI altered heme-carbon monoxide interactions. In the presence of NADPH, DPI treatment of microsomes and iNOS yielded a type II spectral shift. These data indicate that DPI interacts with both flavin and heme in CYPs and iNOS. Increased sensitivity for inhibition of CYP-mediated metabolism and nitric oxide production by iNOS indicates that DPI targets heme moieties within the enzymes.
Collapse
Affiliation(s)
- John T Szilagyi
- *Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854
| | - Vladimir Mishin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY 10595
| | - Yi-Hua Jan
- *Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854
| | - Jason R Richardson
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854
| | - Jeffrey D Laskin
- *Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854
| |
Collapse
|
9
|
Buonanno M, De Toledo SM, Howell RW, Azzam EI. Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions. JOURNAL OF RADIATION RESEARCH 2015; 56:502-8. [PMID: 25805407 PMCID: PMC4426929 DOI: 10.1093/jrr/rrv005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/23/2015] [Indexed: 05/23/2023]
Abstract
During interplanetary missions, astronauts are exposed to mixed types of ionizing radiation. The low 'flux' of the high atomic number and high energy (HZE) radiations relative to the higher 'flux' of low linear energy transfer (LET) protons makes it highly probable that for any given cell in the body, proton events will precede any HZE event. Whereas progress has been made in our understanding of the biological effects of low-LET protons and high-LET HZE particles, the interplay between the biochemical processes modulated by these radiations is unclear. Here we show that exposure of normal human fibroblasts to a low mean absorbed dose of 20 cGy of 0.05 or 1-GeV protons (LET ∼ 1.25 or 0.2 keV/μm, respectively) protects the irradiated cells (P < 0.0001) against chromosomal damage induced by a subsequent exposure to a mean absorbed dose of 50 cGy from 1 GeV/u iron ions (LET ∼ 151 keV/μm). Surprisingly, unirradiated (i.e. bystander) cells with which the proton-irradiated cells were co-cultured were also significantly protected from the DNA-damaging effects of the challenge dose. The mitigating effect persisted for at least 24 h. These results highlight the interactions of biological effects due to direct cellular traversal by radiation with those due to bystander effects in cell populations exposed to mixed radiation fields. They show that protective adaptive responses can spread from cells targeted by low-LET space radiation to bystander cells in their vicinity. The findings are relevant to understanding the health hazards of space travel.
Collapse
Affiliation(s)
- Manuela Buonanno
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA Present address: Center for Radiological Research, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Sonia M De Toledo
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Roger W Howell
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Edouard I Azzam
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
10
|
Cheray M, Nadaradjane A, Bonnet P, Routier S, Vallette FM, Cartron PF. Specific inhibition of DNMT1/CFP1 reduces cancer phenotypes and enhances chemotherapy effectiveness. Epigenomics 2015; 6:267-75. [PMID: 25111481 DOI: 10.2217/epi.14.18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AIM DNA methylation is a fundamental biologic process of genomes and is a candidate for pharmacological manipulation that might have important therapeutic advantages. Thus, DNA methyltransferases (DNMTs) appear to be ideal targets for drug intervention. MATERIALS & METHODS To develop a new generation of DNMT inhibitor, we analyzed the ability of peptides to selectively inhibit certain DNMT1-incuding complexes. RESULTS Our study demonstrates that the disruption of DNMT1/CFP1-including complexes increases the efficiency of chemotherapeutic treatment on established tumors in mice. CONCLUSION Our data opens a promising and innovative alternative to the development of DNMT inhibitors.
Collapse
|
11
|
Fan LM, Li JM. Evaluation of methods of detecting cell reactive oxygen species production for drug screening and cell cycle studies. J Pharmacol Toxicol Methods 2014; 70:40-7. [PMID: 24721421 DOI: 10.1016/j.vascn.2014.03.173] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 01/22/2023]
Abstract
Intracellular reactive oxygen species (ROS) production is essential to normal cell function. However, excessive ROS production causes oxidative damage and cell death. Many pharmacological compounds exert their effects on cell cycle progression by changing intracellular redox state and in many cases cause oxidative damage leading to drug cytotoxicity. Appropriate measurement of intracellular ROS levels during cell cycle progression is therefore crucial in understanding redox-regulation of cell function and drug toxicity and for the development of new drugs. However, due to the extremely short half-life of ROS, measuring the changes in intracellular ROS levels during a particular phase of cell cycle for drug intervention can be challenging. In this article, we have provided updated information on the rationale, the applications, the advantages and limitations of common methods for screening drug effects on intracellular ROS production linked to cell cycle study. Our aim is to facilitate biomedical scientists and researchers in the pharmaceutical industry in choosing or developing specific experimental regimens to suit their research needs.
Collapse
Affiliation(s)
- Lampson M Fan
- John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Jian-Mei Li
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
12
|
Alexandrou AT, Li JJ. Cell cycle regulators guide mitochondrial activity in radiation-induced adaptive response. Antioxid Redox Signal 2014; 20:1463-80. [PMID: 24180340 PMCID: PMC3936506 DOI: 10.1089/ars.2013.5684] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE There are accruing concerns on potential genotoxic agents present in the environment including low-dose ionizing radiation (LDIR) that naturally exists on earth's surface and atmosphere and is frequently used in medical diagnosis and nuclear industry. Although its long-term health risk is being evaluated and remains controversial, LDIR is shown to induce temporary but significant adaptive responses in mammalian cells and animals. The mechanisms guiding the mitochondrial function in LDIR-induced adaptive response represent a unique communication between DNA damage and cellular metabolism. Elucidation of the LDIR-regulated mitochondrial activity may reveal new mechanisms adjusting cellular function to cope with hazardous environmental stress. RECENT ADVANCES Key cell cycle regulators, including Cyclin D1/CDK4 and Cyclin B1/cyclin-dependent kinase 1 (CDK1) complexes, are actively involved in the regulation of mitochondrial functions via phosphorylation of their mitochondrial targets. Accumulating new evidence supports a concept that the Cyclin B1/CDK1 complex acts as a mediator in the cross talk between radiation-induced DNA damage and mitochondrial functions to coordinate cellular responses to low-level genotoxic stresses. CRITICAL ISSUES The LDIR-mediated mitochondrial activity via Cyclin B1/CDK1 regulation is an irreplaceable network that is able to harmonize vital cellular functions with adjusted mitochondrial metabolism to enhance cellular homeostasis. FUTURE DIRECTIONS Further investigation of the coordinative mechanism that regulates mitochondrial activities in sublethal stress conditions, including LDIR, will reveal new insights of how cells cope with genotoxic injury and will be vital for future targeted therapeutic interventions that reduce environmental injury and cancer risk.
Collapse
Affiliation(s)
- Aris T Alexandrou
- Department of Radiation Oncology, NCI-Designated Comprehensive Cancer Center, University of California at Davis , Sacramento, California
| | | |
Collapse
|
13
|
Tormos AM, Taléns-Visconti R, Nebreda AR, Sastre J. p38 MAPK: a dual role in hepatocyte proliferation through reactive oxygen species. Free Radic Res 2013; 47:905-16. [PMID: 23906070 DOI: 10.3109/10715762.2013.821200] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
p38 MAPKs are important mediators of signal transduction that respond to a wide range of extracellular stressors such as UV radiation, osmotic shock, hypoxia, pro-inflammatory cytokines, and oxidative stress. The most abundant family member is p38α, which helps to couple cell proliferation and growth in response to certain damaging stimuli. In fact, increased proliferation and impaired differentiation are hallmarks of p38α-deficient cells. It has been reported that reactive oxygen species (ROS) play a critical role in cytokine-induced p38α activation. Under physiological conditions, p38α can function as a mediator of ROS signaling and either activate or suppress cell cycle progression depending on the activation stimulus. The interplay between cell proliferation, p38 MAPK activation, and ROS production plays an important role in hepatocytes. In fact, low levels of ROS seem to be needed to activate several signaling pathways in response to hepatectomy and to orchestrate liver regeneration. p38 MAPK works as a sensor of oxidative stress and cells that have developed mechanisms to uncouple p38 MAPK activation from oxidative stress are more likely to become tumorigenic. So far, p38α influences the redox balance, determining cell survival, terminal differentiation, proliferation, and senescence. Further studies would be necessary in order to clarify the precise role of p38 MAPK signaling as a redox therapeutical target.
Collapse
Affiliation(s)
- A M Tormos
- Department of Physiology, Faculty of Pharmacy, University of Valencia , Valencia , Spain
| | | | | | | |
Collapse
|
14
|
He C, Ryan AJ, Murthy S, Carter AB. Accelerated development of pulmonary fibrosis via Cu,Zn-superoxide dismutase-induced alternative activation of macrophages. J Biol Chem 2013; 288:20745-57. [PMID: 23720777 DOI: 10.1074/jbc.m112.410720] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages not only initiate and accentuate inflammation after tissue injury, but they are also involved in resolution and repair. This difference in macrophage activity is the result of a differentiation process to either M1 or M2 phenotypes. M1 macrophages are pro-inflammatory and have microbicidal and tumoricidal activity, whereas the M2 macrophages are involved in tumor progression and tissue remodeling and can be profibrotic in certain conditions. Because mitochondrial Cu,Zn-superoxide dismutase (Cu,Zn-SOD)-mediated H2O2 is crucial for development of pulmonary fibrosis, we hypothesized that Cu,Zn-SOD modulated the macrophage phenotype. In this study, we demonstrate that Cu,Zn-SOD polarized macrophages to an M2 phenotype, and Cu,Zn-SOD-mediated H2O2 levels modulated M2 gene expression at the transcriptional level by redox regulation of a critical cysteine in STAT6. Furthermore, overexpression of Cu,Zn-SOD in mice resulted in a profibrotic environment and accelerated the development of pulmonary fibrosis, whereas polarization of macrophages to the M1 phenotype attenuated pulmonary fibrosis. Taken together, these observations provide a novel mechanism of Cu,Zn-SOD-mediated and Th2-independent M2 polarization and provide a potential therapeutic target for attenuating the accelerated development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chao He
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
15
|
Doroshow JH, Gaur S, Markel S, Lu J, van Balgooy J, Synold TW, Xi B, Wu X, Juhasz A. Effects of iodonium-class flavin dehydrogenase inhibitors on growth, reactive oxygen production, cell cycle progression, NADPH oxidase 1 levels, and gene expression in human colon cancer cells and xenografts. Free Radic Biol Med 2013; 57:162-75. [PMID: 23314043 PMCID: PMC3594408 DOI: 10.1016/j.freeradbiomed.2013.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/24/2012] [Accepted: 01/04/2013] [Indexed: 12/31/2022]
Abstract
Iodonium-class flavoprotein dehydrogenase inhibitors have been demonstrated to possess antiproliferative potential and to inhibit reactive oxygen production in human tumor cells, although the mechanism(s) that explains the relationship between altered cell growth and the generation of reactive oxygen species (ROS) remains an area of active investigation. Because of the ability of these compounds to inhibit the activity of flavoprotein-containing epithelial NADPH oxidases, we chose to examine the effects of several iodonium-class flavoprotein inhibitors on human colon cancer cell lines that express high, functional levels of a single such oxidase (NADPH oxidase 1, or Nox1). We found that diphenyleneiodonium (DPI), di-2-thienyliodonium (DTI), and iodonium diphenyl inhibited the growth of Caco2, HT-29, and LS-174T colon cancer cells at concentrations (10-250nM for DPI, 0.5-2.5μM for DTI, and 155nM to 10μM for iodonium diphenyl) substantially lower than needed for DU145 human prostate cancer cells, which do not possess functional NADPH oxidase activity. Drug treatment was associated with decreased H2O2 production and diminished intracellular ROS levels, lasting up to 24h, after short-term (1-h) exposure to the iodonium analogs. Decreased tumor cell proliferation was caused, in part, by a profound block in cell cycle progression at the G1/S interface in both LS-174T and HT-29 cells exposed to either DPI or DTI; and the G1 block was produced, for LS-174T cells, by upregulation of p27 and a drug concentration-related decrease in the expression of cyclins D1, A, and E that was partially prevented by exogenous H2O2. Not only did DPI and DTI decrease intracellular ROS, they both also significantly decreased the mRNA expression levels of Nox1, potentially contributing to the prolonged reduction in tumor cell reactive oxygen levels. We also found that DPI and DTI significantly decreased the growth of both HT-29 and LS-174T human tumor xenografts, at dose levels that produced peak plasma concentrations similar to those utilized for our in vitro experiments. These findings suggest that iodonium analogs have therapeutic potential for NADPH oxidase-containing human colon cancers in vivo and that at least part of their antineoplastic mechanism of action may be related to targeting Nox1.
Collapse
Affiliation(s)
- James H. Doroshow
- Center for Cancer Research, National Cancer Institute, NIH, Building 37, 37 Convent Drive, Bethesda, MD 20892, USA
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Building 31, Room 3A-44, Bethesda, MD 20892, USA
- Corresponding author at: Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Building 31, Room 3A-44, 31 Center Drive, Bethesda, MD 20892, USA, Tel.: +1 301-496-4291; fax: +1 301-496-0826
| | - Shikha Gaur
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Susan Markel
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jiamo Lu
- Center for Cancer Research, National Cancer Institute, NIH, Building 37, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Josephus van Balgooy
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Timothy W. Synold
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Bixin Xi
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Xiwei Wu
- Bioinformatics Group, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, NIH, Building 37, 37 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2011; 327:48-60. [PMID: 22182453 DOI: 10.1016/j.canlet.2011.12.012] [Citation(s) in RCA: 934] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 12/18/2022]
Abstract
Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes.
Collapse
|
17
|
Velasco-Velázquez MA, Li Z, Casimiro M, Loro E, Homsi N, Pestell RG. Examining the role of cyclin D1 in breast cancer. Future Oncol 2011; 7:753-65. [PMID: 21675838 DOI: 10.2217/fon.11.56] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclin D1 overexpression is found in more than 50% of human breast cancers and causes mammary cancer in transgenic mice. Dysregulation of cyclin D1 gene expression or function contributes to the loss of normal cell cycle control during tumorigenesis. Recent studies have demonstrated that cyclin D1 conducts additional specific functions to regulate gene expression in the context of local chromatin, promote cellular migration and inhibit mitochondrial metabolism. It is anticipated that these additional functions contribute to the pathology associated with dysregulated cyclin D1 abundance. This article discusses evidence that examines the significance of cyclin D1 in breast cancer with emphasis on its role in breast cancer stem cell expansion.
Collapse
Affiliation(s)
- Marco A Velasco-Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo Postal 70-297, México DF, México
| | | | | | | | | | | |
Collapse
|
18
|
KRASIEVA TATIANAB, GIEDZINSKI ERICH, TRAN KATHERINE, LAN MARY, LIMOLI CHARLESL, TROMBERG BRUCEJ. PROBING THE IMPACT OF GAMMA-IRRADIATION ON THE METABOLIC STATE OF NEURAL STEM AND PRECURSOR CELLS USING DUAL-WAVELENGTH INTRINSIC SIGNAL TWO-PHOTON EXCITED FLUORESCENCE. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2011; 4:289-300. [PMID: 23869199 PMCID: PMC3712535 DOI: 10.1142/s1793545811001629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Two-photon excited fluorescence (TPEF) spectroscopy and imaging were used to investigate the effects of gamma-irradiation on neural stem and precursor cells (NSPCs). While the observed signal from reduced nicotinamide adenine dinucleotide (NADH) was localized to the mitochondria, the signal typically associated with oxidized flavoproteins (Fp) was distributed diffusely throughout the cell. The measured TPEF emission and excitation spectra were similar to the established spectra of NAD(P)H and Fp. Fp fluorescence intensity was markedly increased by addition of the electron transport chain (ETC) modulator menadione to the medium, along with a concomitant decrease in the NAD(P)H signal. Three-dimensional (3D) neurospheres were imaged to obtain the cellular metabolic index (CMI), calculated as the ratio of Fp to NAD(P)H fluorescence intensity. Radiation effects were found to differ between low-dose (≤ 50 cGy) and high-dose (≥ 50 cGy) exposures. Low-dose irradiation caused a marked drop in CMI values accompanied by increased cellular proliferation. At higher doses, both NAD(P)H and Fp signals increased, leading to an overall elevation in CMI values. These findings underscore the complex relationship between radiation dose, metabolic state, and proliferation status in NSPCs and highlight the ability of TPEF spectroscopy and imaging to characterize metabolism in 3D spheroids.
Collapse
Affiliation(s)
- TATIANA B. KRASIEVA
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
| | - ERICH GIEDZINSKI
- Department of Radiation Oncology, University of California, Irvine, California 92697, USA
| | - KATHERINE TRAN
- Department of Radiation Oncology, University of California, Irvine, California 92697, USA
| | - MARY LAN
- Department of Radiation Oncology, University of California, Irvine, California 92697, USA
| | - CHARLES L. LIMOLI
- Department of Radiation Oncology, University of California, Irvine, California 92697, USA
| | - BRUCE J. TROMBERG
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
| |
Collapse
|
19
|
Joyce-Brady MF, Tuder RM. Just in the "Bik" of time. Am J Respir Crit Care Med 2011; 183:1447-8. [PMID: 21642254 DOI: 10.1164/rccm.201103-0566ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
He C, Murthy S, McCormick ML, Spitz DR, Ryan AJ, Carter AB. Mitochondrial Cu,Zn-superoxide dismutase mediates pulmonary fibrosis by augmenting H2O2 generation. J Biol Chem 2011; 286:15597-607. [PMID: 21393238 PMCID: PMC3083152 DOI: 10.1074/jbc.m110.187377] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/04/2011] [Indexed: 12/15/2022] Open
Abstract
The release of H(2)O(2) from alveolar macrophages has been linked to the development of pulmonary fibrosis, but little is known about its source or mechanism of production. We found that alveolar macrophages from asbestosis patients spontaneously produce high levels of H(2)O(2) and have high expression of Cu,Zn-superoxide dismutase (SOD). Because Cu,Zn-SOD is found in the mitochondrial intermembrane space (IMS), we hypothesized that mitochondrial Cu,Zn-SOD-mediated H(2)O(2) generation contributed to pulmonary fibrosis. Asbestos-induced translocation of Cu,Zn-SOD to the IMS was unique to macrophages and dependent on functional mitochondrial respiration and the presence of at least one of the conserved cysteines required for disulfide bond formation. These conserved cysteine residues were also necessary for enzyme activation and H(2)O(2) generation. Cu,Zn-SOD-mediated H(2)O(2) generation was inhibited by knockdown of the iron-sulfur protein, Rieske, in complex III. The role of Cu,Zn-SOD was biologically relevant in that Cu,Zn-SOD(-/-) mice generated significantly less H(2)O(2) and had less oxidant stress in bronchoalveolar lavage fluid and lung parenchyma. Furthermore, Cu,Zn-SOD(-/-) mice did not develop pulmonary fibrosis, and knockdown of Cu,Zn-SOD in monocytes attenuated collagen I deposition by lung fibroblasts. Our findings demonstrate a novel mechanism for the pathogenesis of pulmonary fibrosis where the antioxidant enzyme Cu,Zn-SOD translocates to the mitochondrial IMS to increase H(2)O(2) generation in alveolar macrophages.
Collapse
Affiliation(s)
- Chao He
- Radiation Oncology and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, and
| | | | - Michael L. McCormick
- Radiation Oncology and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, and
| | - Douglas R. Spitz
- Radiation Oncology and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, and
| | | | - A. Brent Carter
- From the Departments of Internal Medicine and
- Radiation Oncology and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, and
- Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
21
|
de Toledo SM, Buonanno M, Li M, Asaad N, Qin Y, Zhang J, Azzam EI. The impact of adaptive and non-targeted effects in the biological responses to low dose/low fluence ionizing radiation: the modulating effect of linear energy transfer. HEALTH PHYSICS 2011; 100:290-292. [PMID: 21512606 PMCID: PMC3078715 DOI: 10.1097/hp.0b013e31820832d8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A large volume of laboratory and human epidemiological studies have shown that high doses of ionizing radiation engender significant health risks. In contrast, the health risks of low level radiation remain ambiguous and have been the subject of intense debate. To reduce the uncertainty in evaluating these risks, research advances in cellular and molecular biology are being used to characterize the biological effects of low dose radiation exposures and their underlying mechanisms. Radiation type, dose rate, genetic susceptibility, cellular redox environment, stage of cell growth, level of biological organization and environmental parameters are among the factors that modulate interactions among signaling processes that determine short- and long-term outcomes of low dose exposures. Whereas, recommended radiation protection guidelines assume a linear dose-response relationship in estimating radiation cancer risk, in vitro and in vivo investigations of phenomena such as adaptive responses and non-targeted effects, namely bystander effects and genomic instability, suggest that low dose/low fluence-induced signaling events act to alter linearity of the dose-response relation as supported by the biophysical argument. The latter predicts that increases in dose simply increase the probability that a given cell in a tissue will be intersected by an electron track, and by corollary, each unit of radiation, no matter how small would increases risk. These predictions assume that similar molecular events mediate both low and high dose radiobiological effects, and the cumulative risk from two sequential radiation exposures can never be less than one alone.
Collapse
Affiliation(s)
- Sonia M. de Toledo
- Department of Radiology, UMDNJ-New Jersey Medical School Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Manuela Buonanno
- Department of Radiology, UMDNJ-New Jersey Medical School Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Min Li
- Department of Radiology, UMDNJ-New Jersey Medical School Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Nesrin Asaad
- Department of Radiology, UMDNJ-New Jersey Medical School Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Yong Qin
- Department of Radiology, UMDNJ-New Jersey Medical School Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Jie Zhang
- Department of Radiology, UMDNJ-New Jersey Medical School Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Edouard I. Azzam
- Department of Radiology, UMDNJ-New Jersey Medical School Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
22
|
Kovalenko OA, Kaplunov J, Herbig U, deToledo S, Azzam EI, Santos JH. Expression of (NES-)hTERT in cancer cells delays cell cycle progression and increases sensitivity to genotoxic stress. PLoS One 2010; 5:e10812. [PMID: 20520826 PMCID: PMC2876026 DOI: 10.1371/journal.pone.0010812] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 05/03/2010] [Indexed: 01/26/2023] Open
Abstract
Telomerase is a reverse transcriptase associated with cellular immortality through telomere maintenance. This enzyme is activated in 90% of human cancers, and inhibitors of telomerase are currently in clinical trials to counteract tumor growth. Many aspects of telomerase biology have been investigated for therapy, particularly inhibition of the enzyme, but little was done regarding its subcellular shuttling. We have recently shown that mutations in the nuclear export signal of hTERT, the catalytic component of telomerase, led to a mutant ((NES-)hTERT) that failed to immortalize cells despite nuclear localization and catalytic activity. Expression of (NES-)hTERT in primary fibroblast resulted in telomere-based premature senescence and mitochondrial dysfunction. Here we show that expression of (NES-)hTERT in LNCaP, SQ20B and HeLa cells rapidly and significantly decreases their proliferation rate and ability to form colonies in soft agar while not interfering with endogenous telomerase activity. The cancer cells showed increased DNA damage at telomeric and extra-telomeric sites, and became sensitive to ionizing radiation and hydrogen peroxide exposures. Our data show that expression of (NES-)hTERT efficiently counteracts cancer cell growth in vitro in at least two different ways, and suggest manipulation with the NES of hTERT or its subcellular shuttling as a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Olga A. Kovalenko
- Department of Pharmacology and Physiology, New Jersey Medical School, Newark, New Jersey, United States of America
- Department of Pathology, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Jessica Kaplunov
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Utz Herbig
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Sonia deToledo
- Department of Radiology, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Edouard I. Azzam
- Department of Radiology, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Janine H. Santos
- Department of Pharmacology and Physiology, New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
23
|
Muller M. Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations. Antioxid Redox Signal 2009; 11:59-98. [PMID: 18976161 DOI: 10.1089/ars.2008.2104] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cellular senescence is recognized as a critical cellular response to prolonged rounds of replication and environmental stresses. Its defining characteristics are arrested cell-cycle progression and the development of aberrant gene expression with proinflammatory behavior. Whereas the mechanistic events associated with senescence are generally well understood at the molecular level, the impact of senescence in vivo remains to be fully determined. In addition to the role of senescence as an antitumor mechanism, this review examines cellular senescence as a factor in organismal aging and age-related diseases, with particular emphasis on aberrant gene expression and abnormal paracrine signaling. Senescence as an emerging factor in tissue remodeling, wound repair, and infection is considered. In addition, the role of oxidative stress as a major mediator of senescence and the role of NAD(P)H oxidases and changes to intracellular GSH/GSSG status are reviewed. Recent findings indicate that senescence and the behavior of senescent cells are amenable to therapeutic intervention. As the in vivo significance of senescence becomes clearer, the challenge will be to modulate the adverse effects of senescence without increasing the risks of other diseases, such as cancer. The uncoupled relation between cell-cycle arrest and the senescent phenotype suggests that this is an achievable outcome.
Collapse
Affiliation(s)
- Michael Muller
- Centre for Education and Research on Ageing, ANZAC Research Institute, University of Sydney, Concord RG Hospital, Concord, Sydney, Australia.
| |
Collapse
|
24
|
Rollo CD. Dopamine and Aging: Intersecting Facets. Neurochem Res 2008; 34:601-29. [DOI: 10.1007/s11064-008-9858-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
|
25
|
Shoemaker RH, Monks A, Alley MC, Scudiero DA, Fine DL, McLemore TL, Abbott BJ, Paull KD, Mayo JG, Boyd MR. Development of human tumor cell line panels for use in disease-oriented drug screening. Biochem Pharmacol 1988; 83:1195-207. [PMID: 3051021 DOI: 10.1016/j.bcp.2012.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/14/2012] [Accepted: 01/17/2012] [Indexed: 12/12/2022]
Affiliation(s)
- R H Shoemaker
- Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|