1
|
Zhang H, Dong X, Ding X, Liu G, Yang F, Song Q, Sun H, Chen G, Li S, Li Y, Wang M, Guo T, Zhang Z, Li B, Yang L. Bufalin targeting CAMKK2 inhibits the occurrence and development of intrahepatic cholangiocarcinoma through Wnt/β-catenin signal pathway. J Transl Med 2023; 21:900. [PMID: 38082327 PMCID: PMC10714474 DOI: 10.1186/s12967-023-04613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) accounts for about 15% of primary liver cancer, and the incidence rate has been rising in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to find its signature genes and therapeutic drug. Here, we studied that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the occurrence and metastasis of intrahepatic cholangiocarcinoma through Wnt/β-catenin signal pathway. METHODS IC50 of bufalin in ICC cells was determined by CCK8 and invasive and migratory abilities were verified by wound healing, cell cloning, transwell and Western blot. IF and IHC verified the expression of CAMKK2 between ICC patients and normal subjects. BLI and pull-down demonstrated the binding ability of bufalin and CAMKK2. Bioinformatics predicted whether CAMKK2 was related to the Wnt/β-catenin pathway. SKL2001, an activator of β-catenin, verified whether bufalin acted through this pathway. In vitro and in vivo experiments verified whether overexpression of CAMKK2 affects the proliferative and migratory effects of ICC. Transmission electron microscopy verified mitochondrial integrity. Associated Ca2+ levels verified the biological effects of ANXA2 on ICC. RESULTS It was found that bufalin inhibited the proliferation and migration of ICC, and CAMKK2 was highly expressed in ICC, and its high expression was positively correlated with poor prognosis.CAMKK2 is a direct target of bufalin, and is associated with the Wnt/β-catenin signaling pathway, which was dose-dependently decreased after bufalin treatment. In vitro and in vivo experiments verified that CAMKK2 overexpression promoted ICC proliferation and migration, and bufalin reversed this effect. CAMKK2 was associated with Ca2+, and changes in Ca2+ content induced changes in the protein content of ANXA2, which was dose-dependently decreasing in cytoplasmic ANXA2 and dose-dependently increasing in mitochondrial ANXA2 after bufalin treatment. In CAMKK2 overexpressing cells, ANXA2 was knocked down, and we found that reversal of CAMKK2 overexpression-induced enhancement of ICC proliferation and migration after siANXA2. CONCLUSIONS Our results suggest that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the proliferation and migration of intrahepatic cholangiocarcinoma through Wnt/β-catenin signal pathway. Thus, bufalin, as a drug, may also be used for cancer therapy in ICC in the future.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Xiaoyan Ding
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Street, Weifang, 261041, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Qinghang Song
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Hongxiao Sun
- Heart Center, Women and Children's Hospital, Qingdao University, 6, Tongfu Road, Qingdao, 266034, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Tingting Guo
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China.
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Zhou M, Na R, Lai S, Guo Y, Shi J, Nie J, Zhang S, Wang Y, Zheng T. The present roles and future perspectives of Interleukin-6 in biliary tract cancer. Cytokine 2023; 169:156271. [PMID: 37331095 DOI: 10.1016/j.cyto.2023.156271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Biliary tract cancer (BTC) is a highly malignant tumor that originates from bile duct epithelium and is categorized into intrahepatic cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma (pCCA), distal cholangiocarcinoma (dCCA) and gallbladder cancer (GBC) according to the anatomic location. Inflammatory cytokines generated by chronic infection led to an inflammatory microenvironment which influences the carcinogenesis of BTC. Interleukin-6 (IL-6), a multifunctional cytokine secreted by kupffer cells, tumor-associated macrophages, cancer-associated fibroblasts (CAFs) and cancer cells, plays a central role in tumorigenesis, angiogenesis, proliferation, and metastasis in BTC. Besides, IL-6 serves as a clinical biomarker for diagnosis, prognosis, and monitoring for BTC. Moreover, preclinical evidence indicates that IL-6 antibodies could sensitize tumor immune checkpoint inhibitors (ICIs) by altering the number of infiltrating immune cells and regulating the expression of immune checkpoints in the tumor microenvironment (TME). Recently, IL-6 has been shown to induce programmed death ligand 1 (PD-L1) expression through the mTOR pathway in iCCA. However, the evidence is insufficient to conclude that IL-6 antibodies could boost the immune responses and potentially overcome the resistance to ICIs for BTC. Here, we systematically review the central role of IL-6 in BTC and summarize the potential mechanisms underlying the improved efficacy of treatments combining IL-6 antibodies with ICIs in tumors. Given this, a future direction is proposed for BTC to increase ICIs sensitivity by blocking IL-6 pathways.
Collapse
Affiliation(s)
- Meng Zhou
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Ruisi Na
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Shihui Lai
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Ying Guo
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Jiaqi Shi
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Jianhua Nie
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Shuyuan Zhang
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Yuan Wang
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Tongsen Zheng
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China.
| |
Collapse
|
3
|
MicroRNA-370 as a negative regulator of signaling pathways in tumor cells. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
Kim M, Delgado E, Ko S. DNA methylation in cell plasticity and malignant transformation in liver diseases. Pharmacol Ther 2023; 241:108334. [PMID: 36535346 PMCID: PMC9841769 DOI: 10.1016/j.pharmthera.2022.108334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The liver possesses extraordinary regenerative capacity mainly attributable to the ability of hepatocytes (HCs) and biliary epithelial cells (BECs) to self-replicate. This ability is left over from their bipotent parent cell, the hepatoblast, during development. When this innate regeneration is compromised due to the absence of proliferative parenchymal cells, such as during cirrhosis, HCs and BEC can transdifferentiate; thus, adding another layer of complexity to the process of liver repair. In addition, dysregulated lineage maintenance in these two cell populations has been shown to promote malignant growth in experimental conditions. Here, malignant transformation, driven in part by insufficient maintenance of lineage reprogramming, contributes to end-stage liver disease. Epigenetic changes are key drivers for cell fate decisions as well as transformation by finetuning overall transcription and gene expression. In this review, we address how altered DNA methylation contributes to the initiation and progression of hepatic cell fate conversion and cancer formation. We also discussed the diagnostic and therapeutic potential of targeting DNA methylation in liver cancer, its current limitations, and what future research is necessary to facilitate its contribution to clinical translation.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Evan Delgado
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
5
|
Peng S, Chen Y, Li T, Mao J, Yang P, Zou B, Luo L, Zhang W, Wang W, Xie R, Li J, Zeng L. Hsa-microRNA-370-3p targeting Snail and Twist1 suppresses IL-8/STAT3-driven hepatocellular carcinoma metastasis. Cancer Sci 2022; 113:4120-4134. [PMID: 36083239 DOI: 10.1111/cas.15571] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
The pro-inflammatory factor interleukin-8 (IL-8) is related to poor prognosis in hepatocellular carcinoma (HCC) patients. Interleukin-8 enhanced HCC invasion by upregulating Snail and Twist1, whether this modulation relies on microRNAs (miR) is unclear. In this study, hsa-miR-370-3p was screened as candidate miRNA targeting Snail and Twist1, and its expression was downregulated by IL-8. Luciferase assays and RNA electrophoretic mobility shift assays were used to evaluate the interaction between miR-370-3p and targeted mRNAs. Coimmunoprecipitation, luciferase, and ChIP assays were undertaken to investigate the mechanisms underlying IL-8-mediated modification of miR-370-3p. Gain- and loss-of-function studies, Transwell assays, and a xenograft nude mouse model were used to investigate pro- and antitumor activities. Interleukin-8 and miR-370-3p levels were analyzed for clinical relevance in HCC patients. Our results showed that HCC patients with high levels of IL-8 experienced more metastasis and shorter survival. Interleukin-8 induced epithelial-mesenchymal transition and promoted liver cancer cell migration, invasion, and metastasis both in vitro and in vivo. MicroRNA-370-3p interacted with its cognate mRNA within the 3'-UTR regions of Twist1 and Snail mRNA directly and specifically and attenuated IL-8 protumoral effects on liver cancer cells. Interleukin-8 negatively modulated miR-370-3p through signal transducer and activator of transcription 3 (STAT3) activation by recruiting histone deacetylase 1 (HDAC1) to miR-370-3p promoter. The STAT3 and HDAC antagonists inhibited liver cancer cell migration and invasion. Patients with high miR-370-3p and low IL-8 levels had longer overall survival. In conclusion, our study elucidated a novel axis IL-8/STAT3/miR-370-3p/Twist1 and Snail relying on HDAC1 recruitment, which showed both diagnostic and therapeutic potentials of miR-370-3p in HCC metastasis.
Collapse
Affiliation(s)
- Siqi Peng
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yutong Chen
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ting Li
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Junjie Mao
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Pengfei Yang
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lisi Luo
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Weiyu Zhang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wen Wang
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Rongzhi Xie
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Linjuan Zeng
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
6
|
Ahmad S, Manzoor S, Siddiqui S, Mariappan N, Zafar I, Ahmad A, Ahmad A. Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. Semin Cancer Biol 2022; 83:384-398. [PMID: 33484868 PMCID: PMC8046427 DOI: 10.1016/j.semcancer.2021.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is an essential component of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and acute respiratory distress syndrome (ARDS). It is central to lung cancer, the leading cancer in terms of associated mortality that has affected millions of individuals worldwide. Inflammation and pulmonary manifestations are also the major causes of COVID-19 related deaths. Acute hyperinflammation plays an important role in the COVID-19 disease progression and severity, and development of protective immunity against the virus is greatly sought. Further, the severity of COVID-19 is greatly enhanced in lung cancer patients, probably due to the genes such as ACE2, TMPRSS2, PAI-1 and furin that are commonly involved in cancer progression as well as SAR-CoV-2 infection. The importance of inflammation in pulmonary manifestations, cancer and COVID-19 calls for a closer look at the underlying processes, particularly the associated increase in IL-6 and other cytokines, the dysregulation of immune cells and the coagulation pathway. Towards this end, several reports have identified epigenetic regulation of inflammation at different levels. Expression of several key inflammation-related cytokines, chemokines and other genes is affected by methylation and acetylation while non-coding RNAs, including microRNAs as well as long non-coding RNAs, also affect the overall inflammatory responses. Select miRNAs can regulate inflammation in COVID-19 infection, lung cancer as well as other inflammatory lung diseases, and can serve as epigenetic links that can be therapeutically targeted. Furthermore, epigenetic changes also mediate the environmental factors-induced inflammation. Therefore, a better understanding of epigenetic regulation of inflammation can potentially help develop novel strategies to prevent, diagnose and treat chronic pulmonary diseases, lung cancer and COVID-19.
Collapse
Affiliation(s)
- Shama Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shajer Manzoor
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simmone Siddiqui
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nithya Mariappan
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Iram Zafar
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aamir Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aftab Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Chulkova SV, Loginov VI, Podluzhnyi DV, Egorova AV, Syskova AY, Semichev DG, Gladilina IA, Kudashkin NE. [The role of molecular genetic factors in the development of cholangiocellular carcinoma]. Arkh Patol 2022; 84:76-83. [PMID: 35639847 DOI: 10.17116/patol20228403176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article lists the main inducers of cholangiocarcinogenesis. The main inflammatory mediators (IL-6, nitric oxide, COX2) have been considered. Data on the study of gene mutations in cholangiocarcinomas are presented. The spectrum of genetic mutations depends on the biliary cancer origin (FGFR2 with intrahepatic cholangiocarcinoma, PRKACA, PRKACB with extrahepatic cholangiocarcinoma). Mutations in the KRAS, TP53, ARIAD1A genes are common in extrahepatic bile duct cancer. The role of epigenetic changes such as DNA hypermethylation, histone modifications, chromatin remodeling, as well as disturbances in miRNA expression is presented. A number of epigenetic features, such as the presence of a TP53 mutations with hypermethylation of p14ARF, DAPK, and/or ASC, correlate with a more aggressive course of the disease. The role of the SOX17 gene in the development of drug resistance is highlighted. The study of the molecular genetic features of extrahepatic bile duct cancer can help to better understand the pathogenesis of this type of tumor, to establish new prognostic and diagnostic markers of the disease.
Collapse
Affiliation(s)
- S V Chulkova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia.,N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - V I Loginov
- Scientific Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - D V Podluzhnyi
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - A V Egorova
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - A Yu Syskova
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - D G Semichev
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - I A Gladilina
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia.,N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - N E Kudashkin
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia.,N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
8
|
Micro-RNA in Cholangiocarcinoma: Implications for Diagnosis, Prognosis, and Therapy. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bile-duct cancers (BDC) are a group of solid tumors arising from the biliary tree. Despite their classification as rare cancers, the incidence of BDC is increasing worldwide. Poor prognosis is a common feature of this type of cancer and is mainly determined by the following factors: late diagnosis, lack of effective therapeutic approaches, and resistance to conventional treatments. In the past few years, next-generation sequencing technologies has allowed us to study the genome, exome, and transcriptome of BDC deeper, revealing a previously underestimated class of RNA: the noncoding RNA (ncRNA). MicroRNAs (miRNAs) are small ncRNAs that play an important regulatory role in gene expression. The aberrant expression of miRNAs and their pivotal role as oncogenes or tumor suppressors in biliary carcinogenesis has been widely described in BDC. Due to their ability to regulate multiple gene networks, miRNAs are involved in all cancer hallmarks, including sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing/accessing vasculature, activating invasion and metastasis, reprogramming cellular metabolism, and avoiding immune destruction. Their use as diagnostic, prognostic, and predictive biomarkers has been widely explored in several human cancers, including BDC. Furthermore, miRNA-based therapeutic strategies are currently the subject of numerous clinical trials that are providing evidence of their efficacy as potent anticancer agents. In this review, we will provide a detailed update of miRNAs affecting BDC, discussing their regulatory function in processes underlying the molecular pathology of BDC. Finally, an overview of their potential use as biomarkers or therapeutic tools in BDC will be further addressed.
Collapse
|
9
|
Azlan A, Rajasegaran Y, Kang Zi K, Rosli AA, Yik MY, Yusoff NM, Heidenreich O, Moses EJ. Elucidating miRNA Function in Cancer Biology via the Molecular Genetics' Toolbox. Biomedicines 2022; 10:915. [PMID: 35453665 PMCID: PMC9029477 DOI: 10.3390/biomedicines10040915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Micro-RNA (miRNAs) are short non-coding RNAs of about 18-20 nucleotides in length and are implicated in many cellular processes including proliferation, development, differentiation, apoptosis and cell signaling. Furthermore, it is well known that miRNA expression is frequently dysregulated in many cancers. Therefore, this review will highlight the various mechanisms by which microRNAs are dysregulated in cancer. Further highlights include the abundance of molecular genetics tools that are currently available to study miRNA function as well as their advantages and disadvantages with a special focus on various CRISPR/Cas systems This review provides general workflows and some practical considerations when studying miRNA function thus enabling researchers to make informed decisions in regards to the appropriate molecular genetics tool to be utilized for their experiments.
Collapse
Affiliation(s)
- Adam Azlan
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Khor Kang Zi
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Aliaa Arina Rosli
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Mot Yee Yik
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Narazah Mohd Yusoff
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Prinses Máxima Centrum Voor Kinderoncologie Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Emmanuel Jairaj Moses
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| |
Collapse
|
10
|
Wei K, Jiang P, Zhao J, Jin Y, Zhang R, Chang C, Xu L, Xu L, Shi Y, Guo S, He D. Biomarkers to Predict DMARDs Efficacy and Adverse Effect in Rheumatoid Arthritis. Front Immunol 2022; 13:865267. [PMID: 35418971 PMCID: PMC8995470 DOI: 10.3389/fimmu.2022.865267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA), one of the most common immune system diseases, mainly affects middle-aged and elderly individuals and has a serious impact on the quality of life of patients. Pain and disability caused by RA are significant symptoms negatively affecting patients, and they are especially seen when inappropriate treatment is administered. Effective therapeutic strategies have evolved over the past few decades, with many new disease-modifying antirheumatic drugs (DMARDs) being used in the clinic. Owing to the breakthrough in the treatment of RA, the symptoms of patients who could not be treated effectively in the past few years have been relieved. However, some patients complain about symptoms that have not been reported, implying that there are still some limitations in the RA treatment and evaluation system. In recent years, biomarkers, an effective means of diagnosing and evaluating the condition of patients with RA, have gradually been used in clinical practice to evaluate the therapeutic effect of RA, which is constantly being improved for accurate application of treatment in patients with RA. In this article, we summarize a series of biomarkers that may be helpful in evaluating the therapeutic effect and improving the efficiency of clinical treatment for RA. These efforts may also encourage researchers to devote more time and resources to the study and application of biomarkers, resulting in a new evaluation system that will reduce the inappropriate use of DMARDs, as well as patients' physical pain and financial burden.
Collapse
Affiliation(s)
- Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Yehua Jin
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Runrun Zhang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- The Second Affiliated Hospital of the Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
11
|
Chen W, Lv X, Zhang W, Hu T, Cao X, Ren Z, Getachew T, Mwacharo JM, Haile A, Sun W. Non-Coding Transcriptome Provides Novel Insights into the Escherichia coli F17 Susceptibility of Sheep Lamb. BIOLOGY 2022; 11:348. [PMID: 35336723 PMCID: PMC8945857 DOI: 10.3390/biology11030348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
It has long been recognized that enterotoxigenic Escherichia coli (ETEC) is the major pathogen responsible for vomiting and diarrhea. E. coli F17, a main subtype of ETEC, is characterized by high morbidity and mortality in young livestock. However, the transcriptomic basis underlying E. coli F17 infection has not been fully understood. In this study, RNA sequencing was performed to explore the expression profiles of circRNAs and miRNAs in the jejunum of E. coli F17-antagonism (AN) and -sensitive (SE) lambs. A total of 16,534 circRNAs and 271 miRNAs (125 novel miRNAs and 146 annotated miRNAs) were screened, and 214 differentially expressed (DE) circRNAs and 53 DE miRNAs were detected between the AN and SE lambs (i.e., novel_circ_0025840, novel_circ_0022779, novel_miR_107, miR-10b). Functional enrichment analyses showed that source genes of DE circRNAs were mainly involved in metabolic-related pathways, while target genes of DE miRNAs were mainly enriched in the immune response pathways. Then, a two-step machine learning approach combining Random Forest (RF) and XGBoost (candidates were first selected by RF and further assessed by XGBoost) was performed, which identified 44 circRNAs and 39 miRNAs as potential biomarkers (i.e., novel_circ_0000180, novel_circ_0000365, novel_miR_192, oar-miR-496-3p) for E. coli infection. Furthermore, circRNA-related and lncRNA-related ceRNA networks were constructed, containing 46 circRNA-miRNA-mRNA competing triplets and 630 lncRNA-miRNA-mRNA competing triplets, respectively. By conducting a serious of bioinformatic analyses, our results revealed important circRNAs and miRNAs that could be potentially developed as candidate biomarkers for intestinal inflammatory response against E. coli F17 infection; our study can provide novel insights into the underlying mechanisms of intestinal immunity.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.)
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.)
| | - Ziming Ren
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.)
| |
Collapse
|
12
|
Kim YJ, Kim BK, Park SJ, Kim JH. Impact of Fusobacterium nucleatum in the gastrointestinal tract on natural killer cells. World J Gastroenterol 2021; 27:4879-4889. [PMID: 34447232 PMCID: PMC8371507 DOI: 10.3748/wjg.v27.i29.4879] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/17/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut microbial dysbiosis contributes to the development and progression of colorectal cancer (CRC). Natural killer (NK) cells are involved in early defense mechanisms to kill infective pathogens and tumor cells by releasing chemokines and cytokines. To better understand the relationship between the gut microbiome and CRC, it was hypothesized here that a high abundance of Fusobacterium nucleatum (F. nucleatum) in the gastrointestinal tract could cause reduced NK cell activity. AIM To identify associations between gastrointestinal tract F. nucleatum levels and NK cell activity. METHODS In vitro experiments were performed on NK cells treated with F. nucleatum, Peptostreptococcus anaerobius, and Parvimonas micra to identify the effects of gut microbiome species on NK cells. Following 24 and 48 h of treatment, NK cell counts were measured. In parallel studies, C57BL/6 mice were given broad-spectrum antibiotics in their drinking water to reduce resident gut flora. After 3 wk, the mice received the various bacterial species or phosphate-buffered saline (PBS) via oral gavage every 2 d for 6 wk. At the study end, blood samples were acquired to perform NK cell activity assessment and cytokine analysis. Intestinal tissues were collected and analyzed via immunohistochemistry (IHC). RESULTS The data show that after 3 wk of broad-spectrum antibiotic treatment, levels of total bacteria and F. nucleatum were markedly decreased in mice. Gavage of F. nucleatum significantly decreased NK cell activity relative to the activities of cells from mice treated with antibiotics only and PBS. The administration of F. nucleatum decreased the proportion of NK46+ cells based on IHC staining and increased the production of interleukin-1β and tumor necrosis factor-α. CONCLUSION High levels of F. nucleatum in the gastrointestinal tract reduced NK cell activity in mice, and the decrease in NK cell activity might be affected by increased pro-inflammatory cytokines after F. nucleatum treatment.
Collapse
Affiliation(s)
- Yeon Ji Kim
- Institute of Gastroenterology, Kosin University College of Medicine, Busan 49267, Spain
| | - Bu Kyung Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan 49267, South Korea
| | - Seun Ja Park
- Department of Internal Medicine, Kosin University College of Medicine, Busan 49267, South Korea
| | - Jae Hyun Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan 49267, South Korea
| |
Collapse
|
13
|
Kamp EJCA, Dinjens WNM, Doukas M, Bruno MJ, de Jonge PJF, Peppelenbosch MP, de Vries AC. Optimal tissue sampling during ERCP and emerging molecular techniques for the differentiation of benign and malignant biliary strictures. Therap Adv Gastroenterol 2021; 14:17562848211002023. [PMID: 33948111 PMCID: PMC8053835 DOI: 10.1177/17562848211002023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 02/04/2023] Open
Abstract
Patients with cholangiocarcinoma have poor survival since the majority of patients are diagnosed at a stage precluding surgical resection, due to locally irresectable tumors and/or metastases. Optimization of diagnostic strategies, with a principal role for tissue diagnosis, is essential to detect cancers at an earlier stage amenable to curative treatment. Current barriers for a tissue diagnosis include both insufficient tissue sampling and a difficult cyto- or histopathological assessment. During endoscopic retrograde cholangiopancreatography, optimal brush sampling includes obtaining more than one brush within an individual patient to increase its diagnostic value. Currently, no significant increase of the diagnostic accuracy for the new cytology brush devices aiming to enhance the cellularity of brushings versus standard biliary brush devices has been demonstrated. Peroral cholangioscopy with bile duct biopsies appears to be a valuable tool in the diagnostic work-up of indeterminate biliary strictures, and may overcome current technical difficulties of fluoroscopic-guided biopsies. Over the past years, molecular techniques to detect chromosomal instability, mutations and methylation profiling of tumors have revolutionized, and implementation of these techniques on biliary tissue during diagnostic work-up of biliary strictures may be awaited in the near future. Fluorescence in situ hybridization has already been implemented in routine diagnostic evaluation of biliary strictures in several centers. Next-generation sequencing is promising for standard diagnostic care in biliary strictures, and recent studies have shown adequate detection of prevalent genomic alterations in KRAS, TP53, CDKN2A, SMAD4, PIK3CA, and GNAS on biliary brush material. Detection of DNA methylation of tumor suppressor genes and microRNAs may evolve over the coming years to a valuable diagnostic tool for cholangiocarcinoma. This review summarizes optimal strategies for biliary tissue sampling during endoscopic retrograde cholangiopancreatography and focuses on the evolving molecular techniques on biliary tissue to improve the differentiation of benign and malignant biliary strictures.
Collapse
Affiliation(s)
- Eline J. C. A. Kamp
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Winand N. M. Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Marco J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Pieter Jan F. de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Annemarie C. de Vries
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, Room Na-609, Rotterdam, 3015 GD, The Netherlands
| |
Collapse
|
14
|
Ofoeyeno N, Ekpenyong E, Braconi C. Pathogenetic Role and Clinical Implications of Regulatory RNAs in Biliary Tract Cancer. Cancers (Basel) 2020; 13:E12. [PMID: 33375055 PMCID: PMC7792779 DOI: 10.3390/cancers13010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Biliary tract cancer (BTC) is characterised by poor prognosis and low overall survival in patients. This is generally due to minimal understanding of its pathogenesis, late diagnosis and limited therapeutics in preventing or treating BTC patients. Non-coding RNA (ncRNA) are small RNAs (mRNA) that are not translated to proteins. ncRNAs were considered to be of no importance in the genome, but recent studies have shown they play essential roles in biology and oncology such as transcriptional repression and degradation, thus regulating mRNA transcriptomes. This has led to investigations into the role of ncRNAs in the pathogenesis of BTC, and their clinical implications. In this review, the mechanisms of action of ncRNA are discussed and the role of microRNAs in BTC is summarised. The scope of this review will be limited to miRNA as they have been shown to play the most significant roles in BTC progression. There is huge potential in miRNA-based biomarkers and therapeutics in BTC, but more studies, research and technological advancements are required before it can be translated into clinical practice for patients.
Collapse
Affiliation(s)
- Nduka Ofoeyeno
- The Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | | | - Chiara Braconi
- The Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK;
- Beatson West of Scotland Cancer Centre, Glasgow G12 Y0N, UK
| |
Collapse
|
15
|
Sirica AE, Strazzabosco M, Cadamuro M. Intrahepatic cholangiocarcinoma: Morpho-molecular pathology, tumor reactive microenvironment, and malignant progression. Adv Cancer Res 2020; 149:321-387. [PMID: 33579427 PMCID: PMC8800451 DOI: 10.1016/bs.acr.2020.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a relatively rare, but highly lethal and biologically complex primary biliary epithelial cancer arising within liver. After hepatocellular carcinoma, iCCA is the second most common primary liver cancer, accounting for approximately 10-20% of all primary hepatic malignancies. Over the last 10-20 years, iCCA has become the focus of increasing concern largely due to its rising incidence and high mortality rates in various parts of the world, including the United States. The challenges posed by iCCA are daunting and despite recent progress in the standard of care and management options for iCCA, the prognosis for this cancer continues to be dismal. In an effort to provide a framework for advancing our understanding of iCCA malignant aggressiveness and therapy resistance, this review will highlight key etiological, biological, molecular, and microenvironmental factors hindering more effective management of this hepatobiliary cancer. Particular focus will be on critically reviewing the cell origins and morpho-molecular heterogeneity of iCCAs, providing mechanistic insights into high risk fibroinflammatory cholangiopathies associated with iCCA development, and notably discussing the deleterious role played by the tumor reactive desmoplastic stroma in regulating iCCA malignant progression, lymphangiogenesis, and tumor immunobiology.
Collapse
Affiliation(s)
- Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
16
|
Laschos K, Lampropoulou DI, Aravantinos G, Piperis M, Filippou D, Theodoropoulos G, Gazouli M. Exosomal noncoding RNAs in cholangiocarcinoma: Laboratory noise or hope? World J Gastrointest Surg 2020; 12:407-424. [PMID: 33194090 PMCID: PMC7642347 DOI: 10.4240/wjgs.v12.i10.407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, extracellular vesicles and particularly exosomes have gained a lot of research interest due to their unique roles in several biological processes. Noncoding RNAs (microRNAs, long noncoding RNAs and circular RNAs) represent a class of functional RNA with distinct regulatory roles in tumorigenesis and cancer progression. Cholangiocarcinoma is a rare but highly aggressive type of malignancy that is very challenging to diagnose, especially in early stages; surgical resection still represents the sole potentially curative treatment option. Hence, there is an urgent need for the discovery of novel diagnostic and prognostic biomarkers. Hereby, we provide a comprehensive review of the most recent discoveries that focus on exosomal noncoding RNAs in cholangio-carcinoma with the aim to identify new molecular players that could be used as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Konstantinos Laschos
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, Athens 14564, Greece
| | - Dimitra Ioanna Lampropoulou
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, Athens 14564, Greece
| | - Gerasimos Aravantinos
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, Athens 14564, Greece
| | - Maria Piperis
- Radiation Therapy Department, Iatropolis, Athens 15231, Greece
| | - Dimitrios Filippou
- Department of Anatomy and Surgical Anatomy, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George Theodoropoulos
- 1st Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
17
|
Omics-Based Platforms: Current Status and Potential Use for Cholangiocarcinoma. Biomolecules 2020; 10:biom10101377. [PMID: 32998289 PMCID: PMC7600697 DOI: 10.3390/biom10101377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) has been identified as a highly malignant cancer that can be transformed from epithelial cells of the bile duct, including intrahepatic, perihilar and extrahepatic. High-resolution imaging tools (abdominal ultrasound, computed tomography and percutaneous transhepatic cholangial drainage) are recruited for diagnosis. However, the lack of early diagnostic biomarkers and treatment evaluation can lead to serious outcomes and poor prognosis (i.e., CA19-9, MUC5AC). In recent years, scientists have established a large number of omics profiles to reveal underlying mechanisms and networks (i.e., IL-6/STAT3, NOTCH). With these results, we achieved several genomic alteration events (i.e., TP53mut, KRASmut) and epigenetic modifications (i.e., DNA methylation, histone modification) in CCA cells and clinical patients. Moreover, we reviewed candidate gene (such as NF-kB, YAP1) that drive gene transcription factors and canonical pathways through transcriptomics profiles (including microarrays and next-generation sequencing). In addition, the proteomics database also indicates which molecules and their directly binding status could trigger dysfunction signatures in tumorigenesis (carbohydrate antigen 19-9, mucins). Most importantly, we collected metabolomics datasets and pivotal metabolites. These results reflect the pharmacotherapeutic options and evaluate pharmacokinetic/pharmacodynamics in vitro and in vivo. We reversed the panels and selected many potentially small compounds from the connectivity map and L1000CDS2 system. In this paper, we summarize the prognostic value of each candidate gene and correlate this information with clinical events in CCA. This review can serve as a reference for further research to clearly investigate the complex characteristics of CCA, which may lead to better prognosis, drug repurposing and treatment strategies.
Collapse
|
18
|
Lin L, Wang D, Qu S, Zhao H, Lin Y. miR-370-3p Alleviates Ulcerative Colitis-Related Colorectal Cancer in Mice Through Inhibiting the Inflammatory Response and Epithelial-Mesenchymal Transition. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1127-1141. [PMID: 32214798 PMCID: PMC7078899 DOI: 10.2147/dddt.s238124] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Introduction Ulcerative colitis (UC) is a chronic and inflammatory bowel disease. UC-associated colorectal cancer (UC-CRC) is one of the most severe complications of long-standing UC. In the present study, we explored the effects of miR-370-3p on UC-CRC in vivo and investigated its underlying mechanisms in vivo and in vitro. Methods Azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to induce UC-CRC in C57BL/6 mice. AOM/DSS-induced mice were treated with 5×108 pfu miR-370-3p overexpressing-adenovirus via tail-vein injection every two weeks. Results We found that miR-370-3p significantly improved the body weights and survival rates and inhibited the tumorigenesis of UC-CRC in AOM/DSS mice. Mechanically, miR-370-3p inhibited AOM/DSS-induced inflammatory response by decreasing tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) through targeting toll-like receptor 4 (TLR4), as demonstrated by down-regulation of TLR4, cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and phosphorylated epidermal growth factor receptor (pEGFR). miR-370-3p decreased the expression of tumor-associated proteins, including p53, β-catenin, and ki67 in AOM/DSS-treated mice. Additionally, miR-370-3p remarkably inhibited epithelial-mesenchymal transition (EMT) via increasing E-cadherin expression and reducing N-cadherin and Vimentin expression in vivo. Further studies showed that miR-370-3p repressed proliferation and EMT of colon cancer cells in vitro. Moreover, we proved that miR-370-3p decreased the expression of tumor-associated proteins and reversed EMT by regulating β-catenin in colon cancer cells. Conclusion Taken together, miR-370-3p alleviated UC-CRC by inhibiting the inflammatory response and EMT in mice, which suggested miR-370-3p as a novel potential target for UC-CRC therapy.
Collapse
Affiliation(s)
- Lianjie Lin
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Dongxu Wang
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Suxuan Qu
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Hong Zhao
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Gastroenterology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang 110035, People's Republic of China
| | - Yan Lin
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
19
|
Pulati N, Zhang Z, Gulimilamu A, Qi X, Yang J. HPV16+‐miRNAs in cervical cancer and the anti‐tumor role played by miR‐5701. J Gene Med 2019; 21:e3126. [PMID: 31498525 DOI: 10.1002/jgm.3126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Nuerbieke Pulati
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Zegao Zhang
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Aireti Gulimilamu
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Xiaoli Qi
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Jie Yang
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| |
Collapse
|
20
|
O'Rourke CJ, Lafuente-Barquero J, Andersen JB. Epigenome Remodeling in Cholangiocarcinoma. Trends Cancer 2019; 5:335-350. [PMID: 31208696 DOI: 10.1016/j.trecan.2019.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022]
Abstract
Cholangiocarcinoma (CCA) comprises a heterogeneous collection of malignancies arising within the biliary tract, characterized by late diagnosis, innate chemoresistance, and abysmal prognosis. Sequencing data have uncovered recurrent mutations in diverse epigenetic regulators, implicating epigenetic destabilization at the root of these tumors. However, few studies have characterized biliary tumor epigenomes. In this Opinion article, we argue that an epigenome-oriented approach to CCA could establish diverse interconnections between many key aspects of research on this disease, including molecular heterogeneity, diverse cells of origin, and prominent tumor microenvironments. Moreover, we discuss plausible causes of epigenome dysregulation in biliary tumors, including genetic, epigenetic, metabolic, microenvironmental, and physiological factors. Lastly, we assess the translational potential of epigenomics in CCA to uncover robust biomarkers and therapeutic opportunities for this growing group of patients with limited treatment options.
Collapse
Affiliation(s)
- Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Juan Lafuente-Barquero
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
21
|
Gurmikov BN, Kovalenko YA, Vishnevsky VA, Chzhao AV. Molecular genetic aspects of intrahepatic cholangiocarcinoma: literature review. ADVANCES IN MOLECULAR ONCOLOGY 2019. [DOI: 10.17650/2313-805x-2019-6-1-37-43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- B. N. Gurmikov
- A.V. Vishnevsky National Medical Research Center of Surgery, Ministry of Health of Russia
| | - Yu. A. Kovalenko
- A.V. Vishnevsky National Medical Research Center of Surgery, Ministry of Health of Russia
| | - V. A. Vishnevsky
- A.V. Vishnevsky National Medical Research Center of Surgery, Ministry of Health of Russia
| | - A. V. Chzhao
- A.V. Vishnevsky National Medical Research Center of Surgery, Ministry of Health of Russia
| |
Collapse
|
22
|
Labib PL, Goodchild G, Pereira SP. Molecular Pathogenesis of Cholangiocarcinoma. BMC Cancer 2019; 19:185. [PMID: 30819129 PMCID: PMC6394015 DOI: 10.1186/s12885-019-5391-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cholangiocarcinomas are a heterogeneous group of malignancies arising from a number of cells of origin along the biliary tree. Although most cases in Western countries are sporadic, large population-based studies have identified a number of risk factors. This review summarises the evidence behind reported risk factors and current understanding of the molecular pathogenesis of cholangiocarcinoma, with a focus on inflammation and cholestasis as the driving forces in cholangiocarcinoma development. RISK FACTORS FOR CHOLANGIOCARCINOGENESIS Cholestatic liver diseases (e.g. primary sclerosing cholangitis and fibropolycystic liver diseases), liver cirrhosis, and biliary stone disease all increase the risk of cholangiocarcinoma. Certain bacterial, viral or parasitic infections such as hepatitis B and C and liver flukes also increase cholangiocarcinoma risk. Other risk factors include inflammatory disorders (such as inflammatory bowel disease and chronic pancreatitis), toxins (e.g. alcohol and tobacco), metabolic conditions (diabetes, obesity and non-alcoholic fatty liver disease) and a number of genetic disorders. MOLECULAR PATHOGENESIS OF CHOLANGIOCARCINOMA Regardless of aetiology, most risk factors cause chronic inflammation or cholestasis. Chronic inflammation leads to increased exposure of cholangiocytes to the inflammatory mediators interleukin-6, Tumour Necrosis Factor-ɑ, Cyclo-oxygenase-2 and Wnt, resulting in progressive mutations in tumour suppressor genes, proto-oncogenes and DNA mismatch-repair genes. Accumulating bile acids from cholestasis lead to reduced pH, increased apoptosis and activation of ERK1/2, Akt and NF-κB pathways that encourage cell proliferation, migration and survival. Other mediators upregulated in cholangiocarcinoma include Transforming Growth Factor-β, Vascular Endothelial Growth Factor, Hepatocyte Growth Factor and several microRNAs. Increased expression of the cell surface receptor c-Met, the glucose transporter GLUT-1 and the sodium iodide symporter lead to tumour growth, angiogenesis and cell migration. Stromal changes are also observed, resulting in alterations to the extracellular matrix composition and recruitment of fibroblasts and macrophages that create a microenvironment promoting cell survival, invasion and metastasis. CONCLUSION Regardless of aetiology, most risk factors for cholangiocarcinoma cause chronic inflammation and/or cholestasis, leading to the activation of common intracellular pathways that result in reactive cell proliferation, genetic/epigenetic mutations and cholangiocarcinogenesis. An understanding of the molecular pathogenesis of cholangiocarcinoma is vital when developing new diagnostic biomarkers and targeted therapies for this disease.
Collapse
Affiliation(s)
- Peter L. Labib
- UCL Institute for Liver and Digestive Health, University College London (Royal Free Hospital Campus), Royal Free Hospital, Pond Street, London, NW3 2QG UK
| | - George Goodchild
- UCL Institute for Liver and Digestive Health, University College London (Royal Free Hospital Campus), Royal Free Hospital, Pond Street, London, NW3 2QG UK
| | - Stephen P. Pereira
- UCL Institute for Liver and Digestive Health, University College London (Royal Free Hospital Campus), Royal Free Hospital, Pond Street, London, NW3 2QG UK
| |
Collapse
|
23
|
Liu Z, Ma M, Yan L, Chen S, Li S, Yang D, Wang X, Xiao H, Deng H, Zhu H, Zuo C, Xia M. miR-370 regulates ISG15 expression and influences IFN-α sensitivity in hepatocellular carcinoma cells. Cancer Biomark 2018; 22:453-466. [PMID: 29758929 PMCID: PMC6027951 DOI: 10.3233/cbm-171075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND: Interferon-α (IFN-α) is an adjuvant to chemotherapy and radiotherapy for hepatocellular carcinoma (HCC), but some HCC patients do not respond to treatment with IFN-α. METHODS: We performed loss-of-function and gain-of-function experiments to examine the role of ISG15 in the IFN-α sensitivity of LH86, HLCZ01, SMMC7721, and Huh7 cell lines and tumor samples. RESULTS: The overexpression of ISG15 reduced apoptosis in Huh7 and LH86 cells in the presence of IFN-α, whereas the shRNA-mediated knock down of ISG15 expression increased apoptosis in both Huh7 and LH86 cells. We identified a putative miR-370 target site in the 3’-UTR in the ISG15 mRNA, and the level of miR-370 expression in HCC cell lines reflected the level of IFN-α-induced apoptosis exhibited by each. Both HCC cell lines and tumor samples had significantly lower levels of miR-370 than the control cells and tissues (P< 0.05). The overexpression of miR-370 in IFN-α-treated LH86 and Huh7 cells increased apoptosis and reduced the volume of LH86- and Huh7-derived xenograft tumors in mice treated with IFN-α compared with the control tumors. CONCLUSIONS: Our findings suggest that miR-370 functions as an HCC tumor suppressor and regulator of IFN-α sensitivity and that miR-370 might be a useful prognostic marker for HCC patients.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Min Ma
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Lei Yan
- Department of Gynaecological Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Shilin Chen
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Sha Li
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Darong Yang
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Xiaohong Wang
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Hua Xiao
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Hongyu Deng
- Department of Laboratory Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Haizhen Zhu
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Man Xia
- Department of Gynaecological Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
24
|
Olaizola P, Lee-Law PY, Arbelaiz A, Lapitz A, Perugorria MJ, Bujanda L, Banales JM. MicroRNAs and extracellular vesicles in cholangiopathies. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1293-1307. [PMID: 28711597 DOI: 10.1016/j.bbadis.2017.06.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022]
Abstract
UNLABELLED Cholangiopathies encompass a heterogeneous group of disorders affecting biliary epithelial cells (i.e. cholangiocytes). Early diagnosis, prognosis and treatment still remain clinically challenging for most of these diseases and are critical for adequate patient care. In the past decade, extensive research has emphasized microRNAs (miRs) as potential non-invasive biomarkers and tools to accurately identify, predict and treat cholangiopathies. MiRs can be released extracellularly conjugated with lipoproteins or encapsulated in extracellular vesicles (EVs). Research on EVs is also gaining attention since they are present in multiple biological fluids and may represent a relevant source of novel non-invasive biomarkers and be vehicles for new therapeutic approaches. This review highlights the most promising candidate miRs and EV-related biomarkers in cholangiopathies, as well as their relevant roles in biliary pathophysiology. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen. RESEARCH STRATEGY PubMed search (April 2017) was done with the following terms: "microRNA", "miRNA", "miR", "extracellular vesicles", "EV", "exosomes", "primary biliary cholangitis", "primary biliary cholangitis", "PBC", "primary sclerosing cholangitis", "PSC", "cholangiocarcinoma", "CCA", "biliary atresia", "BA", "polycystic liver diseases", "PLD", "cholangiopathies", "cholestatic liver disease". Most significant articles in full-text English were selected. The reference lists of selected papers were also considered.
Collapse
Affiliation(s)
- P Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - P Y Lee-Law
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Department of Gastroenterology and Hepatology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - A Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - A Lapitz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - M J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - L Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - J M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
25
|
O'Rourke CJ, Munoz-Garrido P, Aguayo EL, Andersen JB. Epigenome dysregulation in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2018. [DOI: 10.1016/j.bbadis.2017.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Xiao W, Hu Y, Tong Y, Cai M, He H, Liu B, Shi Y, Wang J, Qin Y, Lai S. Landscape of long non-coding RNAs in Trichophyton mentagrophytes-induced rabbit dermatophytosis lesional skin and normal skin. Funct Integr Genomics 2018; 18:401-410. [PMID: 29560532 DOI: 10.1007/s10142-018-0601-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/12/2018] [Accepted: 03/09/2018] [Indexed: 11/30/2022]
Abstract
Emerging evidences suggest that long non-coding RNAs (lncRNAs) play important role in disease development. However, the role of rabbit lncRNAs in the pathogenesis of dermatophytosis remains elusive. The present study aimed to study and characterize lncRNA transcriptome in 8 T. mentagrophytes-induced female rabbit dermatophytosis lesional (TM) and 4 normal saline-infected (NS) skin biopsies using RNAseq. We identified 5883 lncRNAs in 12 strand-specific RNA-seq libraries and found 64 differentially expressed lncRNAs (q < 0.05) in TM relative to NS. As in other mammalian counterparts, rabbit lncRNAs were distributed in all chromosomes except the Y chromosome and were generally smaller in size and fewer in exon numbers compared to protein coding genes. Next, co-expression analysis revealed that 107 pairs between 32 DE lncRNAs and 96 protein coding genes showed a highly correlated expression (|r| > 0.8). Moreover, miRPara analysis of the lncRNAs revealed 173 lncRNAs with precursor sequences for 9561 probable novel miRNAs. Finally, q-PCR results validated the RNA-seq results with eight randomly selected lncRNAs. To the best of our knowledge, this is the first report on rabbit lncRNAs, and our results highlighted the potential role of lncRNAs in the pathogenesis of dermatophytosis.
Collapse
Affiliation(s)
- Wudian Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongsong Hu
- Chengdu Agricultural College, Chengdu, 611130, China
| | - Yan Tong
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingcheng Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongbing He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Buwei Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yinghe Qin
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
27
|
Ma J, Weng L, Wang Z, Jia Y, Liu B, Wu S, Cao Y, Sun X, Yin X, Shang M, Mao A. MiR-124 induces autophagy-related cell death in cholangiocarcinoma cells through direct targeting of the EZH2-STAT3 signaling axis. Exp Cell Res 2018. [PMID: 29530475 DOI: 10.1016/j.yexcr.2018.02.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CCA) is a lethal cancer associated with chronic inflammation that has increased in prevalence in recent decades. The dysregulated expression of microRNAs (miRNAs) has been detected in various types of malignancies, and depending on the target genes this can result in miRNAs functioning as tumor suppressors or oncogenes. In this study, we investigated the role of miR-124 in cholangiocarcinoma (CCA) and found that its expression was significantly downregulated in the tumor tissue of patients and in CCA cell lines. Our results provided evidence that miR-124 induces apoptotic cell death and triggers the autophagic flux in CCA cells. EZH2 and STAT3 were identified as direct targets of miR-124. The effect of miR-124 on EZH2 expression in CCA cells was evaluated using cell transfection, xenotransplantation into nude mice and a luciferase reporter assay. Silencing of EZH2 restored the effects of miR-124, whereas overexpression of EZH2 abrogated the effects of miR-124. Silencing of Beclin1 or ATG5 abrogated the effects of miR-124 or siEZH2. In vivo, overexpression of miR-124 dramatically induced autophagy-related cell death and suppressed tumorigenicity. Taken together, our findings indicated that downregulation of miR-124 expression was associated with disease progression in human CCA and we revealed that miR-124 exerts a tumor suppressive function in CCA by inducing autophagy-related cell death via direct targeting of the EZH2-STAT3 signaling axis.
Collapse
Affiliation(s)
- Jun Ma
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai 200336, China
| | - Li Weng
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai 200336, China.
| | - Zhongmin Wang
- Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China.
| | - Yiping Jia
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai 200336, China
| | - Bingyan Liu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai 200336, China
| | - Shaoqiu Wu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai 200336, China
| | - Yan Cao
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai 200336, China
| | - Xianjun Sun
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai 200336, China
| | - Xiang Yin
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai 200336, China
| | - Mingyi Shang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai 200336, China.
| | - Aiwu Mao
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai 200336, China.
| |
Collapse
|
28
|
Chen HY, Lin LT, Wang ML, Lee SH, Tsai ML, Tsai CC, Liu WH, Chen TC, Yang YP, Lee YY, Chang YL, Huang PI, Chen YW, Lo WL, Chiou SH, Chen MT. Musashi-1 regulates AKT-derived IL-6 autocrinal/paracrinal malignancy and chemoresistance in glioblastoma. Oncotarget 2018; 7:42485-42501. [PMID: 27285760 PMCID: PMC5173150 DOI: 10.18632/oncotarget.9890] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/11/2016] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiform (GBM) is one of the most lethal human malignant brain tumors with high risks of recurrence and poor treatment outcomes. The RNA-binding protein Musashi-1 (MSI1) is a marker of neural stem/progenitor cells. Recent study showed that high expression level of MSI1 positively correlates with advanced grade of GBM, where MSI1 increases the growth of GBM. Herein, we explore the roles of MSI1 as well as the underlying mechanisms in the regulation of drug resistance and tumorigenesis of GBM cells. Our results demonstrated that overexpression of MSI1 effectively protected GBM cells from drug-induced apoptosis through down-regulating pro-apoptotic genes; whereas inhibition of AKT withdrew the MSI1-induced anti-apoptosis and cell survival. We further showed that MSI1 robustly promoted the secretion of the pro-inflammatory cytokine IL-6, which was governed by AKT activity. Autonomously, the secreted IL-6 enhanced AKT activity in an autocrine/paracrine manner, forming a positive feedback regulatory loop with the MSI1-AKT pathway. Our results conclusively demonstrated a novel drug resistance mechanism in GBM cells that MSI1 inhibits drug-induced apoptosis through AKT/IL6 regulatory circuit. MSI1 regulates both cellular signaling and tumor-microenvironmental cytokine secretion to create an intra- and intercellular niche for GBM to survive from chemo-drug attack.
Collapse
Affiliation(s)
- Hsiao-Yun Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Liang-Ting Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Hsien Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Long Tsai
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Chang Tsai
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Hsiu Liu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Department of Neurological Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Chien Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ping Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Department of Neurological Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Yen Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pin-I Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wei Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Liang Lo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Teh Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
29
|
Wangyang Z, Daolin J, Yi X, Zhenglong L, Lining H, Yunfu C, Xingming J. NcRNAs and Cholangiocarcinoma. J Cancer 2018; 9:100-107. [PMID: 29290774 PMCID: PMC5743716 DOI: 10.7150/jca.21785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the most common primary biliary malignancy with poor prognosis. Less understanding of its etiology and pathogenesis makes the diagnosis and therapy difficult. Recently, accumulating evidences have demonstrated that deregulated expression of non-coding RNAs (ncRNAs) is closely associated with the etiopathogenesis of CCA. NcRNAs which lack open reading frame are a heterogeneous class of transcribed RNA molecules, including microRNAs, long non-coding RNAs and circular RNAs. Several studies have shown ncRNAs dysregulation is a common central event occurring in CCA and has the potential of being therapy targets. Moreover, ncRNAs can be easily detected in cancer tissues and biofluids, representing valuable tools for diagnosis. In this review, we illustrate the role of ncRNA in the CCA and discuss their potential clinical value.
Collapse
Affiliation(s)
- Zheng Wangyang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Ji Daolin
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Xu Yi
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Li Zhenglong
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Huang Lining
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Cui Yunfu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Jiang Xingming
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| |
Collapse
|
30
|
Shen X, Zuo X, Zhang W, Bai Y, Qin X, Hou N. MiR-370 promotes apoptosis in colon cancer by directly targeting MDM4. Oncol Lett 2017; 15:1673-1679. [PMID: 29434862 PMCID: PMC5776932 DOI: 10.3892/ol.2017.7524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miR)-370 functions as a tumor suppressor or promoter in several cancers. However, the expression and biological role of miR-370 in colon cancer remains undefined. In the present study, miR-370 expression in both normal and malignant colon tissues was quantified by quantitative polymerase chain reaction. An in vitro cell viability and apoptosis assay and an in vitro xenograft tumor model were employed to investigate the role of miR-370 on colon cancer growth. Furthermore, the potential direct target of miR-370 was identified using a luciferase assay. Our results demonstrate that down-regulation of miR-370 expression occurs in malignant tissues and miR-370 expression is inversely correlated with tumor grade. Moreover, we determined that miR-370 functions as a tumor suppressor in colon cancer by inhibiting cell proliferation and promoting cell apoptosis. In addition, overexpression of miR-370 impairs xenograft tumor growth in nude mice. Mechanistically, mouse double minute 4 (MDM4) was demonstrated to be a potential direct target of miR-370, inducing apoptosis in colon cancer. Collectively, these findings suggest that upregulation of miR-370 may impair colon tumor growth by directly targeting MDM4. These findings provide a new direction for the diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Xiaogang Shen
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Xiaofei Zuo
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Wenjin Zhang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan 610083, P.R. China
| | - Yifeng Bai
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Xianpeng Qin
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Nengyi Hou
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
31
|
Involvement of inflammation and its related microRNAs in hepatocellular carcinoma. Oncotarget 2017; 8:22145-22165. [PMID: 27888618 PMCID: PMC5400654 DOI: 10.18632/oncotarget.13530] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed type of cancer. The tumor inflammatory microenvironment regulates almost every step towards liver tumorigenesis and subsequent progression, and regulation of the inflammation-related signaling pathways, cytokines, chemokines and non-coding RNAs influences the proliferation, migration and metastasis of liver tumor cells. Inflammation fine-tunes the cancer microenvironment to favor epithelial-mesenchymal transition, in which cancer stem cells maintain tumorigenic potential. Emerging evidence points to inflammation-related microRNAs as crucial molecules to integrate the complex cellular and molecular crosstalk during HCC progression. Thus understanding the mechanisms by which inflammation regulates microRNAs might provide novel and admissible strategies for preventing, diagnosing and treating HCC. In this review, we will update three hypotheses of hepatocarcinogenesis and elaborate the most predominant inflammation signaling pathways, i.e. IL-6/STAT3 and NF-κB. We also try to summarize the crucial tumor-promoting and tumor-suppressing microRNAs and detail how they regulate HCC initiation and progression and collaborate with other critical modulators in this review.
Collapse
|
32
|
Nair N, Wilson AG, Barton A. DNA methylation as a marker of response in rheumatoid arthritis. Pharmacogenomics 2017; 18:1323-1332. [PMID: 28836487 DOI: 10.2217/pgs-2016-0195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a complex disease affecting approximately 0.5-1% of the population. While there are effective biologic therapies, in up to 40% of patients, disease activity remains inadequately controlled. Therefore, identifying factors that predict, prior to the initiation of therapy, which patients are likely to respond best to which treatment is a research priority and DNA methylation is increasingly being explored as a potential theranostic biomarker. DNA methylation is thought to play a role in RA disease pathogenesis and in mediating the relationship between genetic variants and patient outcomes. The role of DNA methylation has been most extensively explored in cancer medicine, where it has been shown to be predictive of treatment response. Studies in RA, however, are in their infancy and, while showing promise, further investigation in well-powered studies is warranted.
Collapse
Affiliation(s)
- Nisha Nair
- Arthritis Research UK Centre for Genetics & Genomics, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Anthony G Wilson
- University College Dublin School of Medicine & Medical Science & Conway Institute, Dublin, Ireland
| | - Anne Barton
- Arthritis Research UK Centre for Genetics & Genomics, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK.,NIHR Manchester Musculoskeletal BRU, Central Manchester Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
33
|
Hughes T, O’Connor T, Techasen A, Namwat N, Loilome W, Andrews RH, Khuntikeo N, Yongvanit P, Sithithaworn P, Taylor-Robinson SD. Opisthorchiasis and cholangiocarcinoma in Southeast Asia: an unresolved problem. Int J Gen Med 2017; 10:227-237. [PMID: 28848361 PMCID: PMC5557399 DOI: 10.2147/ijgm.s133292] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prevalence of cholangiocarcinoma (CCA) in Southeast Asia is much higher than other areas of the world. Eating raw, fermented, or undercooked cyprinid fish, infected with the liver fluke, Opisthorchis viverrini sensu lato (sl), results in chronic biliary inflammation, periductal fibrosis, and increased cancer risk. There may be associated glomerulonephritis. The process of infection is difficult to disrupt because eating practices have proven extremely difficult to change, and the life cycle of the fluke cannot be broken due to high prevalence in canine and feline reservoir hosts. Fecal analysis and enzyme-linked immunosorbent assay tests can be used to diagnose opisthorchiasis. Diagnosis of CCA is complex, partly due to the lack of definitive imaging characteristics but also due to the difficulty of obtaining samples for cytology or histology. This cancer has proven to be resistant to common chemotherapy treatments and so the two avenues of treatment available are surgical resection and liver transplantation, both requiring early detection of the tumor for the best chances of success. Late presentation of symptoms reduces the chances of successful surgical intervention. While liver fluke infections can be treated with praziquantel, individuals will often become reinfected, and multiple reinfections can be more harmful than a singular, long-term infection. A key research on the detection and characterization of novel biomarkers in all parts of the carcinogenic pathway for early diagnosis is needed.
Collapse
Affiliation(s)
- Thomas Hughes
- Division of Digestive Health, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Thomas O’Connor
- Division of Digestive Health, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Anchalee Techasen
- Department of Biochemistry, Faculty of Medicine, Liver Fluke and Cholangiocarcinoma Centre
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Liver Fluke and Cholangiocarcinoma Centre
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Liver Fluke and Cholangiocarcinoma Centre
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
| | - Ross H Andrews
- Department of Biochemistry, Faculty of Medicine, Liver Fluke and Cholangiocarcinoma Centre
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, St Mary’s Campus, Imperial College, London, UK
| | - Narong Khuntikeo
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery
| | - Puangrat Yongvanit
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry
| | - Paiboon Sithithaworn
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Liver Fluke and Cholangiocarcinoma Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Simon D Taylor-Robinson
- Division of Digestive Health, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
34
|
Kim J, Ryu JK, Lee SH, Kim YT. MicroRNA 141 Expression Is a Potential Prognostic Marker of Biliary Tract Cancers. Gut Liver 2017; 10:836-41. [PMID: 27172928 PMCID: PMC5003209 DOI: 10.5009/gnl15460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 12/19/2022] Open
Abstract
Background/Aims In recent years, a large number of micro-ribonucleic acids (miRNAs) have been identified as putative prognostic biomarkers for solid cancers because of their role in controlling the expression of oncogenes and tumor suppressor genes. The aim of this study was to verify the utility of miRNA 141 as a prognostic biomarker of biliary tract cancers. Methods From June 2010 to June 2012, common bile duct cancer tissue samples and matched noncancerous tissues from the ampulla of Vater were obtained from patients with biliary tract cancer undergoing endoscopic retrograde cholangiopancreatography. Using quantitative real-time polymerase chain reaction assays, we measured the mean relative expression levels of miRNA 141 in both groups of tissues. Overexpression of miRNA 141 was defined as a greater than 2-fold increase in expression levels as determined by the 2−ΔΔCt method. Results In a cohort of 38 patients with biliary tract cancers (seven gallbladder, 13 hilar, and 18 distal bile duct cancers), 26 patients (68.4%) were male, and the median age was 69.5 (52 to 85) years. Nineteen patients (50%) had undergone R0 resection procedures, including three Whipple operations, seven pylorus-preserving pancreaticoduodenectomies, six bile duct resections, and three extended lobectomies. Among the patients who had undergone R0 resection, the overexpression of miRNA 141 was significantly associated with shorter disease-free survival and a greater risk of angiolymphatic invasion. Among the patients who did not undergo R0 resection, miRNA 141 overexpression was significantly associated with reduced overall survival. Conclusions Overexpression of miRNA 141 is an indicator of a poor prognosis in patients with biliary tract cancer, suggesting that miRNA 141 may be a valuable prognostic biomarker of this disease.
Collapse
Affiliation(s)
- Jaihwan Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Kon Ryu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yong-Tae Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Kayhanian H, Smyth EC, Braconi C. Emerging molecular targets and therapy for cholangiocarcinoma. World J Gastrointest Oncol 2017; 9:268-280. [PMID: 28808500 PMCID: PMC5534395 DOI: 10.4251/wjgo.v9.i7.268] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/05/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare cancer arising from the biliary tree with a poor prognosis and limited therapeutic options. Recent large scale molecular characterisation studies have identified recurrent genetic alterations in CCA which may be amenable to therapeutic targeting. In this review we explore the genomic landscape of CCA and examine results from trials of molecularly targeted agents and immunotherapy in this disease. Challenges in CCA diagnosis, treatment and trial design are discussed and we reflect on future directions which may lead to improved outcomes for CCA patients.
Collapse
|
36
|
Ning T, Zhang H, Wang X, Li S, Zhang L, Deng T, Zhou L, Liu R, Wang X, Bai M, Ge S, Li H, Huang D, Ying G, Ba Y. miR-370 regulates cell proliferation and migration by targeting EGFR in gastric cancer. Oncol Rep 2017; 38:384-392. [DOI: 10.3892/or.2017.5660] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/30/2016] [Indexed: 11/06/2022] Open
|
37
|
Aberrant DNA Methylation as a Biomarker and a Therapeutic Target of Cholangiocarcinoma. Int J Mol Sci 2017; 18:ijms18061111. [PMID: 28545228 PMCID: PMC5485935 DOI: 10.3390/ijms18061111] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
Cholangiocarcinoma is an epithelial malignancy arising in the region between the intrahepatic bile ducts and the ampulla of Vater at the distal end of the common bile duct. The effect of current chemotherapy regimens against cholangiocarcinoma is limited, and the prognosis of patients with cholangiocarcinoma is poor. Aberrant DNA methylation and histone modification induce silencing of tumor suppressor genes and chromosomal instability during carcinogenesis. Studies have shown that the tumor suppressor genes and microRNAs (miRNAs) including MLH1, p14, p16, death-associated protein kinase (DAPK), miR-370 and miR-376c are frequently methylated in cholangiocarcinoma. Silencing of these tumor suppressor genes and miRNAs plays critical roles in the initiation and progression of cholangiocarcinoma. In addition, recent studies have demonstrated that DNA methylation inhibitors induce expression of endogenous retroviruses and exert the anti-tumor effect of via an anti-viral immune response. Aberrant DNA methylation of tumor suppressor genes and miRNAs could be a powerful biomarker for the diagnosis and treatment of cholangiocarcinoma. Epigenetic therapy with DNA methylation inhibitors holds considerable promise for the treatment of cholangiocarcinoma through the reactivation of tumor suppressor genes and miRNAs as well as the induction of an anti-viral immune response.
Collapse
|
38
|
Hu MH, Chen LJ, Chen YL, Tsai MS, Shiau CW, Chao TI, Liu CY, Kao JH, Chen KF. Targeting SHP-1-STAT3 signaling: A promising therapeutic approach for the treatment of cholangiocarcinoma. Oncotarget 2017; 8:65077-65089. [PMID: 29029413 PMCID: PMC5630313 DOI: 10.18632/oncotarget.17779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 04/26/2017] [Indexed: 01/04/2023] Open
Abstract
Sorafenib is a multiple kinase inhibitor which targets Raf kinases, VEGFR, and PDGFR and is approved for the treatment of hepatocellular carcinoma (HCC). Previously, we found that p-STAT3 is a major target of SC-43, a sorafenib derivative. In this study, we report that SC-43-induced apoptosis in cholangiocarcinoma (CCA) via a novel mechanism. Three CCA cell lines (HuCCT-1, KKU-100 and CGCCA) were treated with SC-43 to determine their sensitivity to SC-43-induced cell death and apoptosis. We found that SC-43 activated SH2 domain-containing phosphatase 1 (SHP-1) activity, leading to p-STAT3 and downstream cyclin B1 and Cdc2 downregulation, which induced G2-M arrest and apoptotic cell death. Importantly, SC-43 augmented SHP-1 activity by direct binding to N-SH2 and relief of its autoinhibition. Deletion of the N-SH2 domain (dN1) or point mutation (D61A) of SHP-1 counteracted the effect of SC-43-induced SHP-1 phosphatase activation and antiproliferation ability in CCA cells. In vivo assay revealed that SC-43 exhibited xenograft tumor growth inhibition, p-STAT3 reduction and SHP-1 activity elevation. In conclusion, SC-43 induced apoptosis in CCA cells through the SHP-1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ming-Hung Hu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Ming-Shen Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-I Chao
- Transplant Medicine and Surgery Research Centre, Changhua Christian Hospital, Changhua, Taiwan
| | - Chun-Yu Liu
- Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
39
|
Zhang W, Duan N, Zhang Q, Song T, Li Z, Zhang C, Chen X, Wang K. DNA Methylation Mediated Down-Regulation of miR-370 Regulates Cell Growth through Activation of the Wnt/β-Catenin Signaling Pathway in Human Osteosarcoma Cells. Int J Biol Sci 2017; 13:561-573. [PMID: 28539830 PMCID: PMC5441174 DOI: 10.7150/ijbs.19032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
MicroRNA-370 (miR-370) has been observed to act as a tumor suppressor through the targeting of different proteins in a variety of tumors. Our previous study indicated that miR-370 was able to target forkhead box protein M1 (FOXM1) to inhibit cell growth and metastasis in human osteosarcoma cells. In this study, we reported that FOXM1 interacted with β-catenin in vitro and in vivo. Similar to FOXM1, critical components of the Wnt signaling pathway, including β-catenin, c-Myc, and Cyclin D1, were also highly expressed in different human osteosarcoma cells lines. Pharmacological inhibition of FOXM1 or β-catenin but not of c-Myc was associated with the increased expression of miR-370. Ectopic expression of miR-370 inhibited the downstream signaling of β-catenin. Moreover, osteosarcoma cells treated with 5-AZA-2'-deoxycytidine (AZA), a DNA methylation inhibitor, exhibited increased levels of miR-370 and decreased levels of β-catenin downstream targets, which resulted in inhibition of cell proliferation and colony formation ability. In conclusion, our results supported a model in which the DNA methylation-mediated down-regulation of miR-370 reduced its inhibitory effect on FOXM1, thereby promoting FOXM1-β-catenin interaction and activating the Wnt/β-Catenin signaling pathway in human osteosarcoma cells.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710005, Shaanxi, China.,Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Ning Duan
- Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Qian Zhang
- The second department of surgery room, Shaanxi Provincial Tumor Hospital, Xi'an 710061, Shaanxi, China
| | - Tao Song
- Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Zhong Li
- Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Caiguo Zhang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Xun Chen
- Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Kunzheng Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710005, Shaanxi, China
| |
Collapse
|
40
|
Oliveira DVNP, Zhang S, Chen X, Calvisi DF, Andersen JB. Molecular profiling of intrahepatic cholangiocarcinoma: the search for new therapeutic targets. Expert Rev Gastroenterol Hepatol 2017; 11:349-356. [PMID: 28162004 DOI: 10.1080/17474124.2017.1292127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most frequent primary tumor of the liver and a highly lethal disease. Therapeutic options for advanced iCCA are limited and ineffective due to the largely incomplete understanding of the molecular pathogenesis of this deadly tumor. Areas covered: The present review article outlines the main studies and resulting discoveries on the molecular profiling of iCCA, with a special emphasis on the different techniques used for this purpose, the diagnostic and prognostic markers identified, as well as the genes and pathways that could be potentially targeted with innovative therapies. Expert commentary: Molecular profiling has led to the identification of distinct iCCA subtypes, characterized by peculiar genetic alterations and transcriptomic features. Targeted therapies against some of the identified genes are ongoing and hold great promise to improve the prognosis of iCCA patients.
Collapse
Affiliation(s)
- Douglas V N P Oliveira
- a Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences , University of Copenhagen , Copenhagen N , Denmark
| | - Shanshan Zhang
- b Department of Bioengineering and Therapeutic Sciences and Liver Center , University of California , San Francisco , CA , USA
| | - Xin Chen
- b Department of Bioengineering and Therapeutic Sciences and Liver Center , University of California , San Francisco , CA , USA
| | - Diego F Calvisi
- c Institute of Pathology, University Medicine of Greifswald , Greifswald , Germany
| | - Jesper B Andersen
- a Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences , University of Copenhagen , Copenhagen N , Denmark
| |
Collapse
|
41
|
Cigliano A, Wang J, Chen X, Calvisi DF. Role of the Notch signaling in cholangiocarcinoma. Expert Opin Ther Targets 2017; 21:471-483. [PMID: 28326864 DOI: 10.1080/14728222.2017.1310842] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an emerging cancer entity of the liver, associated with poor outcome and characterized by resistance to conventional chemotherapeutic treatments. In the last decade, many signaling pathways associated with CCA development and progression have been identified and are currently under intense investigation. Cumulating evidence indicates that the Notch cascade, a highly-conserved pathway in most multicellular organisms, is a critical player both in liver malignant transformation and tumor aggressiveness, thus representing a potential therapeutic target in this pernicious disease. Areas covered: In the present review article, we comprehensively summarize and critically discuss the current knowledge on the Notch pathway, its specific and key roles in cholangiocarcinogenesis, the treatment strategies aimed at suppressing this signaling cascade in cancer, and the encouraging results coming from preclinical trials. Expert opinion: The Notch pathway represents a major driver of carcinogenesis and a promising therapeutic target in human CCA. A better understanding of the molecular mechanisms triggered by the Notch pathway as well as its functional crosstalk with other signaling cascade will be highly helpful for the design of innovative therapies against human CCA.
Collapse
Affiliation(s)
- Antonio Cigliano
- a Institut für Pathologie , Universitätsmedizin Greifswald , Greifswald , Germany
| | - Jingxiao Wang
- b Second Clinical Medical School , Beijing University of Chinese Medicine , Beijing , China.,c Department of Bioengineering and Therapeutic Sciences and Liver Center , University of California , San Francisco , CA , USA
| | - Xin Chen
- c Department of Bioengineering and Therapeutic Sciences and Liver Center , University of California , San Francisco , CA , USA
| | - Diego F Calvisi
- a Institut für Pathologie , Universitätsmedizin Greifswald , Greifswald , Germany
| |
Collapse
|
42
|
Gong W, Zheng J, Liu X, Liu Y, Guo J, Gao Y, Tao W, Chen J, Li Z, Ma J, Xue Y. Knockdown of Long Non-Coding RNA KCNQ1OT1 Restrained Glioma Cells' Malignancy by Activating miR-370/CCNE2 Axis. Front Cell Neurosci 2017; 11:84. [PMID: 28381990 PMCID: PMC5360732 DOI: 10.3389/fncel.2017.00084] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/10/2017] [Indexed: 02/02/2023] Open
Abstract
Accumulating evidence has highlighted the potential role of long non-coding RNAs (lncRNAs) as biomarkers and therapeutic targets in solid tumors. Here, we elucidated the function and possible molecular mechanisms of lncRNA KCNQ1OT1 in human glioma U87 and U251 cells. Quantitative Real-Time polymerase chain reaction (qRT-PCR) demonstrated that KCNQ1OT1 expression was up-regulated in glioma tissues and cells. Knockdown of KCNQ1OT1 exerted tumor-suppressive function in glioma cells. Moreover, a binding region was confirmed between KCNQ1OT1 and miR-370 by dual-luciferase assays. qRT-PCR showed that miR-370 was down-regulated in human glioma tissue and cells. In addition, restoration of miR-370 exerted tumor-suppressive function via inhibiting cell proliferation, migration and invasion, while promoting the apoptosis of human glioma cells. Knockdown of KCNQ1OT1 decreased the expression level of Cyclin E2 (CCNE2) by binding to miR-370. Further, miR-370 bound to CCNE2 3′UTR region and decreased the expression of CCNE2. These results provided a comprehensive analysis of KCNQ1OT1-miR-370-CCNE2 axis in human glioma cells and might provide a novel strategy for glioma treatment.
Collapse
Affiliation(s)
- Wei Gong
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Junqing Guo
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Yana Gao
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Wei Tao
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Jiajia Chen
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| |
Collapse
|
43
|
The Emerging Role of miRNAs and Their Clinical Implication in Biliary Tract Cancer. Gastroenterol Res Pract 2016; 2016:9797410. [PMID: 28115929 PMCID: PMC5223017 DOI: 10.1155/2016/9797410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 12/04/2016] [Indexed: 01/17/2023] Open
Abstract
Biliary tract cancers are aggressive malignancies that include gallbladder cancer and tumors of intra- and extrahepatic ducts and have a poor prognosis. Surgical resection remains the main curative therapy. Nevertheless, numerous patients experience recurrence even after radical surgery. This scenario drives the research to identify biliary tract cancer biomarkers despite the limited progress that has been made. Recently, a large number of studies have demonstrated that deregulated expression of microRNAs is closely associated with cancer development and progression. In this review, we highlight the role and importance of microRNAs in biliary tract cancers with an emphasis on utilizing circulating microRNAs as potential biomarkers. Additionally, we report several single-nucleotide polymorphisms in microRNA genes that are associated with the susceptibility of biliary tract tumors.
Collapse
|
44
|
Deregulated MicroRNAs in Biliary Tract Cancer: Functional Targets and Potential Biomarkers. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4805270. [PMID: 27957497 PMCID: PMC5120202 DOI: 10.1155/2016/4805270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
Biliary tract cancer (BTC) is still a fatal disease with very poor prognosis. The lack of reliable biomarkers for early diagnosis and of effective therapeutic targets is a major demanding problem in diagnosis and management of BTC. Due to the clinically silent and asymptomatic characteristics of the tumor, most patients are diagnosed at an already advanced stage allowing only for a palliative therapeutic approach. MicroRNAs are small noncoding RNAs well known to regulate various cellular functions and pathologic events including the formation and progression of cancer. Over the last years, several studies have shed light on the role of microRNAs in BTC, making them potentially attractive therapeutic targets and candidates as biomarkers. In this review, we will focus on the role of oncogenic and tumor suppressor microRNAs and their direct targets in BTC. Furthermore, we summarize and discuss data that evaluate the diagnostic power of deregulated microRNAs as possible future biomarkers for BTC.
Collapse
|
45
|
Wang WT, Ye H, Wei PP, Han BW, He B, Chen ZH, Chen YQ. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol 2016; 9:117. [PMID: 27809873 PMCID: PMC5093965 DOI: 10.1186/s13045-016-0348-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/18/2016] [Indexed: 02/08/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are known to play important roles in different cell contexts, including cancers. However, little is known about lncRNAs in cholangiocarcinoma (CCA), a cholangiocyte malignancy with poor prognosis, associated with chronic inflammation and damage to the biliary epithelium. The aim of the study is to identify if any lncRNA might associate with inflammation or oxidative stress in CCA and regulate the disease progression. Methods In this study, RNA-seqs datasets were used to identify aberrantly expressed lncRNAs. Small interfering RNA and overexpressed plasmids were used to modulate the expression of lncRNAs, and luciferase target assay RNA immunoprecipitation (RIP) was performed to explore the mechanism of miRNA-lncRNA sponging. Results We firstly analyzed five available RNA-seqs datasets to investigate aberrantly expressed lncRNAs which might associate with inflammation or oxidative stress. We identified that two lncRNAs, H19 and HULC, were differentially expressed among all the samples under the treatment of hypoxic or inflammatory factors, and they were shown to be stimulated by short-term oxidative stress responses to H2O2 and glucose oxidase in CCA cell lines. Further studies revealed that these two lncRNAs promoted cholangiocyte migration and invasion via the inflammation pathway. H19 and HULC functioned as competing endogenous RNAs (ceRNAs) by sponging let-7a/let-7b and miR-372/miR-373, respectively, which activate pivotal inflammation cytokine IL-6 and chemokine receptor CXCR4. Conclusions Our study revealed that H19 and HULC, up-regulated by oxidative stress, regulate CCA cell migration and invasion by targeting IL-6 and CXCR4 via ceRNA patterns of sponging let-7a/let-7b and miR-372/miR-373, respectively. The results suggest that these lncRNAs might be the chief culprits of CCA pathogenesis and progression. The study provides new insight into the mechanism linking lncRNA function with CCA and may serve as novel targets for the development of new countermeasures of CCA. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0348-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Tao Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hua Ye
- Department of Hepatobiliary, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Pan-Pan Wei
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Bo-Wei Han
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Bo He
- Department of Hepatobiliary, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Zhen- Hua Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yue-Qin Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
46
|
Abstract
OBJECTIVES Biliary atresia (BA) is an idiopathic neonatal liver disease, characterized by inflammatory and fibrotic obliteration of extrahepatic bile ducts. Therefore, reliable methods for noninvasive diagnosis are needed. The present study aimed to analyze circulating microRNAs (miRNAs) in patients with BA using next-generation sequencing for identifying novel diagnostic biomarkers. METHODS An initial screening of miRNAs in plasma from patients with BA and healthy controls (HCs) was performed on an Illumina next-generation sequencing platform. Differential miRNAs were validated by quantitative real-time polymerase chain reaction (qPCR). Target genes and related signal transduction pathways of differential miRNAs were predicted by online software. RESULTS In total, 146 differential miRNAs were identified by deep sequencing. Fifteen miRNAs with read counts >1000, that included 7 upregulated and 8 downregulated miRNAs, were predicted to be associated with liver fibrosis, biliary differentiation, and bile duct development. Of these, 6 miRNAs with read counts >5000 were analyzed by qPCR on an independent sample set comprising 44 patients with BA, 20 cholestatic disease controls, and 20 HCs. Two upregulated miRNAs (miR-122-5p, miR-100-5p) and 2 downregulated miRNAs (miR-140-3p, miR-126-3p) were confirmed by individual qPCR. Only miR-140-3p was significantly different from controls (P < 0.05), yielding an area under receiver operating characteristic curve of 0.75 with sensitivity of 66.7% and specificity of 79.1% at optimal threshold. CONCLUSIONS Our findings indicate that patients with BA exhibit a distinct profile of circulating miRNAs and that plasma miR-140-3p may be a promising diagnostic biomarker for this disease.
Collapse
|
47
|
Goeppert B, Ernst C, Baer C, Roessler S, Renner M, Mehrabi A, Hafezi M, Pathil A, Warth A, Stenzinger A, Weichert W, Bähr M, Will R, Schirmacher P, Plass C, Weichenhan D. Cadherin-6 is a putative tumor suppressor and target of epigenetically dysregulated miR-429 in cholangiocarcinoma. Epigenetics 2016; 11:780-790. [PMID: 27593557 DOI: 10.1080/15592294.2016.1227899] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CC) is a rare malignancy of the extrahepatic or intrahepatic biliary tract with an outstanding poor prognosis. Non-surgical therapeutic regimens result in minimally improved survival of CC patients. Global genomic analyses identified a few recurrently mutated genes, some of them in genes involved in epigenetic patterning. In a previous study, we demonstrated global DNA methylation changes in CC, indicating major contribution of epigenetic alterations to cholangiocarcinogenesis. Here, we aimed at the identification and characterization of CC-related, differentially methylated regions (DMRs) in potential microRNA promoters and of genes targeted by identified microRNAs. Twenty-seven hypermethylated and 13 hypomethylated potential promoter regions of microRNAs, known to be associated with cancer-related pathways like Wnt, ErbB, and PI3K-Akt signaling, were identified. Selected DMRs were confirmed in 2 independent patient cohorts. Inverse correlation between promoter methylation and expression suggested miR-129-2 and members of the miR-200 family (miR-200a, miR-200b, and miR-429) as novel tumor suppressors and oncomiRs, respectively, in CC. Tumor suppressor genes deleted in liver cancer 1 (DLC1), F-box/WD-repeat-containing protein 7 (FBXW7), and cadherin-6 (CDH6) were identified as presumed targets in CC. Tissue microarrays of a representative and well-characterized cohort of biliary tract cancers (n=212) displayed stepwise downregulation of CDH6 and association with poor patient outcome. Ectopic expression of CDH6 on the other hand, delayed growth in the CC cell lines EGI-1 and TFK-1, together suggesting a tumor suppressive function of CDH6. Our work represents a valuable repository for the study of epigenetically altered miRNAs in cholangiocarcinogenesis and novel putative, CC-related tumor suppressive miRNAs and oncomiRs.
Collapse
Affiliation(s)
| | - Christina Ernst
- b Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Constance Baer
- b Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | | | - Marcus Renner
- a Institute of Pathology, University Hospital Heidelberg , Germany
| | - Arianeb Mehrabi
- c Department of General , Visceral, and Transplantation Surgery, University Hospital Heidelberg , Germany
| | - Mohammadreza Hafezi
- c Department of General , Visceral, and Transplantation Surgery, University Hospital Heidelberg , Germany
| | - Anita Pathil
- d Department of Internal Medicine IV, Gastroenterology and Hepatology , University Hospital Heidelberg , Germany
| | - Arne Warth
- a Institute of Pathology, University Hospital Heidelberg , Germany
| | | | - Wilko Weichert
- e Technical University of Munich, University Hospital, Institute for General Pathology and Pathological Anatomy , Germany
| | - Marion Bähr
- b Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Rainer Will
- f Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | | | - Christoph Plass
- b Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Dieter Weichenhan
- b Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
48
|
Zhu J, Zhang B, Song W, Zhang X, Wang L, Yin B, Zhu F, Yu C, Li H. A literature review on the role of miR-370 in disease. GENE REPORTS 2016; 4:37-44. [DOI: 10.1016/j.genrep.2016.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Yamane K, Naito H, Wakabayashi T, Yoshida H, Muramatsu F, Iba T, Kidoya H, Takakura N. Regulation of SLD5 gene expression by miR-370 during acute growth of cancer cells. Sci Rep 2016; 6:30941. [PMID: 27499248 PMCID: PMC4976388 DOI: 10.1038/srep30941] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/11/2016] [Indexed: 01/26/2023] Open
Abstract
SLD5 is a member of the GINS complex, essential for DNA replication in eukaryotes. It has been reported that SLD5 is involved in early embryogenesis in the mouse, and cell cycle progression and genome integrity in Drosophila. SLD5 may be involved in malignant tumor progression, but its relevance in human cancer has not been determined. Here, we found strong SLD5 expression in both human bladder cancer tissues from patients and cell lines. Knockdown of SLD5 using small interfering RNA resulted in reduction of cell growth both in vitro and an in vivo xenograft model. Moreover, we found that high levels of SLD5 in bladder cancer cells result from downregulation of microRNA (miR)-370 that otherwise suppresses its expression. High level expression of DNA-methyltransferase (DNMT) 1 and IL-6 were also observed in bladder cancer cells. Knockdown of IL-6 led to downregulation of DNMT1 and SLD5 expression, suggesting that IL-6-induced overexpression of DNMT1 suppresses miR-370, resulting in high SLD5 expression. Our findings could contribute to understanding tumorigenic processes and progression of human bladder cancer, whereby inhibition of SLD5 could represent a novel strategy to prevent tumor growth.
Collapse
Affiliation(s)
- Keitaro Yamane
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hisamichi Naito
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Taku Wakabayashi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hironori Yoshida
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tomohiro Iba
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
50
|
Transcription Profile in Sporadic Multiple Symmetric Lipomatosis Reveals Differential Expression at the Level of Adipose Tissue-Derived Stem Cells. Plast Reconstr Surg 2016; 137:1181-1190. [PMID: 27018673 DOI: 10.1097/prs.0000000000002013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The cause of the rare fat distribution disorder multiple symmetric lipomatosis is unknown. Independent reports suggest a higher proliferative activity, hormone resistance, and involvement of mitochondrial function in the disease. METHODS The authors performed morphologic comparison of affected and unaffected tissues in five unrelated patients and generated adipose-derived stem cell cultures from the tissue samples and characterized them as a possible cellular model of multiple symmetric lipomatosis evolution. The authors investigated proliferative activity and the expression of genes relevant to disease processes. RESULTS There was no difference in the morphologic appearance and the surface marker profile. Stem cells from lipomatous tissue showed significantly higher proliferative activity. Polymerase chain reaction arrays showed marked changes in genes associated with proliferation, hormonal regulation, and mitochondria. The authors show that multiple symmetric lipomatosis tissue is morphologically and histologically different from regular subcutaneous fat. CONCLUSIONS This study indicates an involvement of mesenchymal stem cells in the pathogenesis of multiple symmetric lipomatosis and that the evolution of multiple symmetric lipomatosis tissue is a process driven by an inherent defect of the respective cell clone(s). Further molecular genetics and functional analysis will be required to unravel the pathogenetic mechanism underlying the derailment in fat cell metabolism and proliferation. Here, the authors show for the first time that adipose-derived stem cells exhibit many characteristics previously described for native multiple symmetric lipomatosis fat tissue and propose that they are therefore an excellent tool for further functional investigations in multiple symmetric lipomatosis and other disorders of the fat tissue. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, V.
Collapse
|