1
|
Cheng YC, Acedera JD, Li YJ, Shieh SY. A keratinocyte-adipocyte signaling loop is reprogrammed by loss of BTG3 to augment skin carcinogenesis. Cell Death Differ 2024; 31:970-982. [PMID: 38714880 PMCID: PMC11303697 DOI: 10.1038/s41418-024-01304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 08/09/2024] Open
Abstract
Obesity is endemic to many developed countries. Overweight or obesity is associated with an increased risk of developing cancer. Dysfunctional adipose tissue alters cancer cell proliferation and migration; however, whether and how neoplastic epithelial cells communicate with adipose tissue and the underlying mechanism are less clear. BTG3 is a member of the anti-proliferative BTG/Tob family and functions as a tumor suppressor. Here, we demonstrated that BTG3 levels are downregulated in basal cell carcinoma and squamous cell carcinoma compared to normal skin tissue, and Btg3 knockout in mice augmented the development of papilloma in a mouse model of DMBA/TPA-induced skin carcinogenesis. Mechanistically, BTG3-knockout keratinocytes promoted adipocyte differentiation mainly through the release of IL1α, IL10, and CCL4, as a result of elevated NF-κB activity. These adipocytes produced CCL20 and FGF7 in a feedback loop to promote keratinocyte migration. Thus, our findings showcased the role of BTG3 in guarding the interplay between keratinocytes and adjacent adipocytes, and identified the underlying neoplastic molecular mediators that may serve as possible targets in the treatment of skin cancer.
Collapse
Affiliation(s)
- Yu-Che Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jack Dalit Acedera
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yi-Ju Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheau-Yann Shieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Thiruvengadam R, Kim JH. Therapeutic strategy for oncovirus-mediated oral cancer: A comprehensive review. Biomed Pharmacother 2023; 165:115035. [PMID: 37364477 DOI: 10.1016/j.biopha.2023.115035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Oral cancer is a neoplastic disorder of the oral cavities, including the lips, tongue, buccal mucosa, and lower and upper gums. Oral cancer assessment entails a multistep process that requires deep knowledge of the molecular networks involved in its progression and development. Preventive measures including public awareness of risk factors and improving public behaviors are necessary, and screening techniques should be encouraged to enable early detection of malignant lesions. Herpes simplex virus (HSV), human papillomavirus (HPV), Epstein-Barr virus (EBV), and Kaposi sarcoma-associated herpesvirus (KSHV) are associated with other premalignant and carcinogenic conditions leading to oral cancer. Oncogenic viruses induce chromosomal rearrangements; activate signal transduction pathways via growth factor receptors, cytoplasmic protein kinases, and DNA binding transcription factors; modulate cell cycle proteins, and inhibit apoptotic pathways. In this review, we present an up-to-date overview on the use of nanomaterials for regulating viral proteins and oral cancer as well as the role of phytocompounds on oral cancer. The targets linking oncoviral proteins and oral carcinogenesis were also discussed.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
3
|
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2022; 289:7631-7669. [PMID: 34536980 PMCID: PMC9019786 DOI: 10.1111/febs.16206] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets of diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder, and gastric carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman disease, and KSHV-positive diffuse large B-cell lymphoma. Pathogenesis by these two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the pathogenesis and clinicopathology of their related neoplastic entities.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Linlin Wang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94158
| | - Joshua R. Menke
- Department of Pathology, Stanford University, Palo Alto, CA 94304
| | - Blossom Damania
- Department of Microbiology & Immunology & Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
4
|
Jary A, Veyri M, Gothland A, Leducq V, Calvez V, Marcelin AG. Kaposi's Sarcoma-Associated Herpesvirus, the Etiological Agent of All Epidemiological Forms of Kaposi's Sarcoma. Cancers (Basel) 2021; 13:cancers13246208. [PMID: 34944828 PMCID: PMC8699694 DOI: 10.3390/cancers13246208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Kaposi’s sarcoma-associated herpesvirus (KSHV) is one of the seven oncogenic viruses currently recognized by the International Agency for Research on Cancer. Its presence for Kaposi’s sarcoma development is essential and knowledge on the oncogenic process has increased since its discovery in 1994. However, some uncertainties remain to be clarified, in particular on the exact routes of transmission and disparities in KSHV seroprevalence and the prevalence of Kaposi’s sarcoma worldwide. Here, we summarized the current data on the KSHV viral particle’s structure, its genome, the replication, its seroprevalence, the viral diversity and the lytic and latent oncogenesis proteins involved in Kaposi’s sarcoma. Lastly, we reported the environmental, immunological and viral factors possibly associated with KSHV transmission that could also play a role in the development of Kaposi’s sarcoma. Abstract Kaposi’s sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8), is an oncogenic virus belonging to the Herpesviridae family. The viral particle is composed of a double-stranded DNA harboring 90 open reading frames, incorporated in an icosahedral capsid and enveloped. The viral cycle is divided in the following two states: a short lytic phase, and a latency phase that leads to a persistent infection in target cells and the expression of a small number of genes, including LANA-1, v-FLIP and v-cyclin. The seroprevalence and risk factors of infection differ around the world, and saliva seems to play a major role in viral transmission. KSHV is found in all epidemiological forms of Kaposi’s sarcoma including classic, endemic, iatrogenic, epidemic and non-epidemic forms. In a Kaposi’s sarcoma lesion, KSHV is mainly in a latent state; however, a small proportion of viral particles (<5%) are in a replicative state and are reported to be potentially involved in the proliferation of neighboring cells, suggesting they have crucial roles in the process of tumorigenesis. KSHV encodes oncogenic proteins (LANA-1, v-FLIP, v-cyclin, v-GPCR, v-IL6, v-CCL, v-MIP, v-IRF, etc.) that can modulate cellular pathways in order to induce the characteristics found in all cancer, including the inhibition of apoptosis, cells’ proliferation stimulation, angiogenesis, inflammation and immune escape, and, therefore, are involved in the development of Kaposi’s sarcoma.
Collapse
Affiliation(s)
- Aude Jary
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
- Correspondence: ; Tel.: +33-1-4217-7401
| | - Marianne Veyri
- Service d’Oncologie Médicale, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France;
| | - Adélie Gothland
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Valentin Leducq
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Vincent Calvez
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Anne-Geneviève Marcelin
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| |
Collapse
|
5
|
Liaño-Pons J, Lafita-Navarro MC, García-Gaipo L, Colomer C, Rodríguez J, von Kriegsheim A, Hurlin PJ, Ourique F, Delgado MD, Bigas A, Espinosa L, León J. A novel role of MNT as a negative regulator of REL and the NF-κB pathway. Oncogenesis 2021; 10:5. [PMID: 33419981 PMCID: PMC7794610 DOI: 10.1038/s41389-020-00298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
MNT, a transcription factor of the MXD family, is an important modulator of the oncoprotein MYC. Both MNT and MYC are basic-helix-loop-helix proteins that heterodimerize with MAX in a mutually exclusive manner, and bind to E-boxes within regulatory regions of their target genes. While MYC generally activates transcription, MNT represses it. However, the molecular interactions involving MNT as a transcriptional regulator beyond the binding to MAX remain unexplored. Here we demonstrate a novel MAX-independent protein interaction between MNT and REL, the oncogenic member of the NF-κB family. REL participates in important biological processes and it is altered in a variety of tumors. REL is a transcription factor that remains inactive in the cytoplasm in an inhibitory complex with IκB and translocates to the nucleus when the NF-κB pathway is activated. In the present manuscript, we show that MNT knockdown triggers REL translocation into the nucleus and thus the activation of the NF-κB pathway. Meanwhile, MNT overexpression results in the repression of IκBα, a bona fide REL target. Both MNT and REL bind to the IκBα gene on the first exon, suggesting its regulation as an MNT-REL complex. Altogether our data indicate that MNT acts as a repressor of the NF-κB pathway by two mechanisms: (1) retention of REL in the cytoplasm by MNT interaction, and (2) MNT-driven repression of REL-target genes through an MNT-REL complex. These results widen our knowledge about MNT biological roles and reveal a novel connection between the MYC/MXD and NF-κB pathways, two of the most prominent pathways in cancer.
Collapse
Affiliation(s)
- Judit Liaño-Pons
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm, Sweden
| | - M Carmen Lafita-Navarro
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
- Department of Cell Biology UT Southwestern Medical Center, Dallas, TX, USA
| | - Lorena García-Gaipo
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Carlota Colomer
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Javier Rodríguez
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Alex von Kriegsheim
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Edinburgh Cancer Research Center, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter J Hurlin
- Shriners Hospitals for Children Research Center, Department of Cell, Developmental and Cancer Biology and Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, USA
| | - Fabiana Ourique
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
- Dept. of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - M Dolores Delgado
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Anna Bigas
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Lluis Espinosa
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Javier León
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
6
|
Smart E, Semina SE, Frasor J. Update on the Role of NFκB in Promoting Aggressive Phenotypes of Estrogen Receptor-Positive Breast Cancer. Endocrinology 2020; 161:bqaa152. [PMID: 32887995 PMCID: PMC7521126 DOI: 10.1210/endocr/bqaa152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
The majority of breast cancers are diagnosed as estrogen receptor-positive (ER+) and respond well to ER-targeted endocrine therapy. Despite the initial treatability of ER+ breast cancer, this subtype still accounts for the majority of deaths. This is partly due to the changing molecular characteristics of tumors as they progress to aggressive, metastatic, and frequently therapy resistant disease. In these advanced tumors, targeting ER alone is often less effective, as other signaling pathways become active, and ER takes on a redundant or divergent role. One signaling pathway whose crosstalk with ER has been widely studied is the nuclear factor kappa B (NFκB) signaling pathway. NFκB is frequently implicated in ER+ tumor progression to an aggressive disease state. Although ER and NFκB frequently co-repress each other, it has emerged that the 2 pathways can positively converge to play a role in promoting endocrine resistance, metastasis, and disease relapse. This will be reviewed here, paying particular attention to new developments in the field. Ultimately, finding targeted therapies that remain effective as tumors progress remains one of the biggest challenges for the successful treatment of ER+ breast cancer. Although early attempts to therapeutically block NFκB activity frequently resulted in systemic toxicity, there are some effective options. The drugs parthenolide and dimethyl fumarate have both been shown to effectively inhibit NFκB, reducing tumor aggressiveness and reversing endocrine therapy resistance. This highlights the need to revisit targeting NFκB in the clinic to potentially improve outcome for patients with ER+ breast cancer.
Collapse
Affiliation(s)
- Emily Smart
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Svetlana E Semina
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
7
|
van Senten JR, Fan TS, Siderius M, Smit MJ. Viral G protein-coupled receptors as modulators of cancer hallmarks. Pharmacol Res 2020; 156:104804. [PMID: 32278040 DOI: 10.1016/j.phrs.2020.104804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Herpesviruses encode transmembrane G protein-coupled receptors (GPCRs), which share structural homology to human chemokine receptors. These viral GPCRs include KSHV-encoded ORF74, EBV-encoded BILF1, and HCMV-encoded US28, UL33, UL78 and US27. Viral GPCRs hijack various signaling pathways and cellular networks, including pathways involved in the so-called cancer hallmarks as defined by Hanahan and Weinberg. These hallmarks describe cellular characteristics crucial for transformation and tumor progression. The cancer hallmarks involve growth factor-independent proliferation, angiogenesis, avoidance of apoptosis, invasion and metastasis, metabolic reprogramming, genetic instability and immune evasion amongst others. The role of beta herpesviruses modulating these cancer hallmarks is clearly highlighted by the proliferative and pro-angiogenic phenotype associated with KSHV infection which is largely ascribed to the ORF74-mediated modulation of signaling networks in host cells. For HCMV and Epstein-Bar encoded GPCRs, oncomodulatory effects have been described which contribute to the cancer hallmarks, thereby enhancing oncogenic development. In this review, we describe the main signaling pathways controlling the hallmarks of cancer which are affected by the betaherpesvirus encoded GPCRs. Most prominent among these involve the JAK-STAT, PI(3)K-AKT, NFkB and MAPK signaling nodes. These insights are important to effectively target these viral GPCRs and their signaling networks in betaherpesvirus-associated malignancies.
Collapse
Affiliation(s)
- Jeffrey R van Senten
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Tian Shu Fan
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Marco Siderius
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
In Vivo Models of Oncoproteins Encoded by Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2019; 93:JVI.01053-18. [PMID: 30867309 DOI: 10.1128/jvi.01053-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncogenic virus. KSHV utilizes its proteins to modify the cellular environment to promote viral replication and persistence. Some of these proteins are oncogenic, modulating cell proliferation, apoptosis, angiogenesis, genome stability, and immune responses, among other cancer hallmarks. These changes can lead to the development of KSHV-associated malignancies. In this Gem, we focus on animal models of oncogenic KSHV proteins that were developed to enable better understanding of KSHV tumorigenesis.
Collapse
|
9
|
Metabolic reprogramming of Kaposi's sarcoma associated herpes virus infected B-cells in hypoxia. PLoS Pathog 2018; 14:e1007062. [PMID: 29746587 PMCID: PMC5963815 DOI: 10.1371/journal.ppat.1007062] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/22/2018] [Accepted: 04/27/2018] [Indexed: 12/26/2022] Open
Abstract
Kaposi’s sarcoma associated herpesvirus (KSHV) infection stabilizes hypoxia inducible factors (HIFs). The interaction between KSHV encoded factors and HIFs plays a critical role in KSHV latency, reactivation and associated disease phenotypes. Besides modulation of large-scale signaling, KSHV infection also reprograms the metabolic activity of infected cells. However, the mechanism and cellular pathways modulated during these changes are poorly understood. We performed comparative RNA sequencing analysis on cells with stabilized hypoxia inducible factor 1 alpha (HIF1α) of KSHV negative or positive background to identify changes in global and metabolic gene expression. Our results show that hypoxia induces glucose dependency of KSHV positive cells with high glucose uptake and high lactate release. We identified the KSHV-encoded vGPCR, as a novel target of HIF1α and one of the main viral antigens of this metabolic reprogramming. Bioinformatics analysis of vGPCR promoter identified 9 distinct hypoxia responsive elements which were activated by HIF1α in-vitro. Expression of vGPCR alone was sufficient for induction of changes in the metabolic phenotype similar to those induced by KSHV under hypoxic conditions. Silencing of HIF1α rescued the hypoxia associated phenotype of KSHV positive cells. Analysis of the host transcriptome identified several common targets of hypoxia as well as KSHV encoded factors and other synergistically activated genes belonging to cellular pathways. These include those involved in carbohydrate, lipid and amino acids metabolism. Further DNA methyltranferases, DNMT3A and DNMT3B were found to be regulated by either KSHV, hypoxia, or both synergistically at the transcript and protein levels. This study showed distinct and common, as well as synergistic effects of HIF1α and KSHV-encoded proteins on metabolic reprogramming of KSHV-infected cells in the hypoxia. Hypoxia inducible factors (HIFs) play a critical role in survival and growth of cancerous cells, in addition to modulating cellular metabolism. Kaposi’s sarcoma associated herpesvirus (KSHV) infection stabilizes HIFs. Several factors encoded by KSHV are known to interact with up or downstream targets of HIFs. However, the process by which KSHV infection leads to stabilized HIF1α and modulation of the cellular metabolism is not understood. Comparative RNA sequencing analysis on cells with stabilized hypoxia inducible factor 1 alpha (HIF1α), of KSHV negative or positive cells led to identification of changes in global and metabolic gene expression. Our results show that hypoxia induces glucose dependency of KSHV positive cells with high glucose uptake and high lactate release. KSHV-encoded vGPCR was identified as a novel target of HIF1α regulation and a major viral antigen involved in metabolic reprogramming. Silencing of HIF1α rescued the hypoxia associated phenotype of KSHV positive cells. Analysis of the host transcriptome identified several common targets of hypoxia and KSHV-encoded factors, as well as other synergistically activated genes belonging to cellular metabolic pathways. This study showed unique, common and the synergistic effects of both HIF1α and KSHV-encoded proteins on metabolic reprogramming of KSHV-infected cells in hypoxia.
Collapse
|
10
|
Hunte R, Alonso P, Thomas R, Bazile CA, Ramos JC, van der Weyden L, Dominguez-Bendala J, Khan WN, Shembade N. CADM1 is essential for KSHV-encoded vGPCR-and vFLIP-mediated chronic NF-κB activation. PLoS Pathog 2018; 14:e1006968. [PMID: 29698475 PMCID: PMC5919438 DOI: 10.1371/journal.ppat.1006968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Approximately 12% of all human cancers worldwide are caused by infections with oncogenic viruses. Kaposi's sarcoma herpesvirus/human herpesvirus 8 (KSHV/HHV8) is one of the oncogenic viruses responsible for human cancers, including Kaposi's sarcoma (KS), Primary Effusion Lymphoma (PEL), and the lymphoproliferative disorder multicentric Castleman's disease (MCD). Chronic inflammation mediated by KSHV infection plays a decisive role in the development and survival of these cancers. NF-κB, a family of transcription factors regulating inflammation, cell survival, and proliferation, is persistently activated in KSHV-infected cells. The KSHV latent and lytic expressing oncogenes involved in NF-κB activation are vFLIP/K13 and vGPCR, respectively. However, the mechanisms by which NF-κB is activated by vFLIP and vGPCR are poorly understood. In this study, we have found that a host molecule, Cell Adhesion Molecule 1 (CADM1), is robustly upregulated in KSHV-infected PBMCs and KSHV-associated PEL cells. Further investigation determined that both vFLIP and vGPCR interacted with CADM1. The PDZ binding motif localized at the carboxyl terminus of CADM1 is essential for both vGPCR and vFLIP to maintain chronic NF-κB activation. Membrane lipid raft associated CADM1 interaction with vFLIP is critical for the initiation of IKK kinase complex and NF-κB activation in the PEL cells. In addition, CADM1 played essential roles in the survival of KSHV-associated PEL cells. These data indicate that CADM1 plays key roles in the activation of NF-κB pathways during latent and lytic phases of the KSHV life cycle and the survival of KSHV-infected cells.
Collapse
MESH Headings
- Cell Adhesion Molecule-1/genetics
- Cell Adhesion Molecule-1/metabolism
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/virology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Richard Hunte
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Patricia Alonso
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Remy Thomas
- Qatar Biomedical Research Institute, Doha, Qatar
| | - Cassandra Alexandria Bazile
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Juan Carlos Ramos
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, and Center for AIDS Research and Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Wasif Noor Khan
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Noula Shembade
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| |
Collapse
|
11
|
Wang F, Guo Y, Li W, Lu C, Yan Q. Generation of a KSHV K13 deletion mutant for vFLIP function study. J Med Virol 2018; 90:753-760. [PMID: 29244209 DOI: 10.1002/jmv.25009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/27/2017] [Indexed: 01/11/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded viral Fas-associated death domain-like IL-1-converting enzyme inhibitory protein (vFLIP) is one of the latently expressed genes and plays a key role in cell survival and maintenance of latent infection by activating the NF-κB pathway. To obtain a genetic system for studying KSHV vFLIP mutation in the context of the viral genome, we generated recombinant viruses lacking the coding sequence (CDS) of vFLIP gene (K13/ORF71) by bacterial artificial chromosome (BAC) technology and the Escherichia coli Red recombination system. After a series of verification with PCR, restriction digestion and sequencing, the K13 deletion bacmids was transfected into a stable viral producer cell line based on iSLK cells to create vFLIP-knockout mutant. Importantly, human umbilical vein endothelial cells (HUVECs) could be de novo infected by vFLIP mutant virus, which are now available for studying the roles of vFLIP in regulation of other KSHV genes and viral pathogenesis.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Yuanyuan Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wan Li
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Chun Lu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Qin Yan
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| |
Collapse
|
12
|
Aneja KK, Yuan Y. Reactivation and Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus: An Update. Front Microbiol 2017; 8:613. [PMID: 28473805 PMCID: PMC5397509 DOI: 10.3389/fmicb.2017.00613] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/27/2017] [Indexed: 12/30/2022] Open
Abstract
The life cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) consists of two phases, latent and lytic. The virus establishes latency as a strategy for avoiding host immune surveillance and fusing symbiotically with the host for lifetime persistent infection. However, latency can be disrupted and KSHV is reactivated for entry into the lytic replication. Viral lytic replication is crucial for efficient dissemination from its long-term reservoir to the sites of disease and for the spread of the virus to new hosts. The balance of these two phases in the KSHV life cycle is important for both the virus and the host and control of the switch between these two phases is extremely complex. Various environmental factors such as oxidative stress, hypoxia, and certain chemicals have been shown to switch KSHV from latency to lytic reactivation. Immunosuppression, unbalanced inflammatory cytokines, and other viral co-infections also lead to the reactivation of KSHV. This review article summarizes the current understanding of the initiation and regulation of KSHV reactivation and the mechanisms underlying the process of viral lytic replication. In particular, the central role of an immediate-early gene product RTA in KSHV reactivation has been extensively investigated. These studies revealed multiple layers of regulation in activation of RTA as well as the multifunctional roles of RTA in the lytic replication cascade. Epigenetic regulation is known as a critical layer of control for the switch of KSHV between latency and lytic replication. The viral non-coding RNA, PAN, was demonstrated to play a central role in the epigenetic regulation by serving as a guide RNA that brought chromatin remodeling enzymes to the promoters of RTA and other lytic genes. In addition, a novel dimension of regulation by microPeptides emerged and has been shown to regulate RTA expression at the protein level. Overall, extensive investigation of KSHV reactivation and lytic replication has revealed a sophisticated regulation network that controls the important events in KSHV life cycle.
Collapse
Affiliation(s)
- Kawalpreet K Aneja
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, PhiladelphiaPA, USA
| | - Yan Yuan
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, PhiladelphiaPA, USA
| |
Collapse
|
13
|
Suares A, Mori Sequeiros Garcia M, Paz C, González-Pardo V. Antiproliferative effects of Bortezomib in endothelial cells transformed by viral G protein-coupled receptor associated to Kaposi's sarcoma. Cell Signal 2017; 32:124-132. [DOI: 10.1016/j.cellsig.2017.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
|
14
|
Krause CJ, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget 2016; 7:10414-32. [PMID: 26871287 PMCID: PMC4891129 DOI: 10.18632/oncotarget.7248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/17/2016] [Indexed: 12/18/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded chemokine receptor vGPCR acts as an oncogene in Kaposi's sarcomagenesis. Until now, the molecular mechanisms by which the vGPCR contributes to tumor development remain incompletely understood. Here, we show that the KSHV-vGPCR contributes to tumor progression through microRNA (miR)-34a-mediated induction of genomic instability. Large-scale analyses on the DNA, gene and protein level of cell lines derived from a mouse model of vGPCR-driven tumorigenesis revealed that a vGPCR–induced upregulation of miR-34a resulted in a broad suppression of genome maintenance genes. A knockdown of either the vGPCR or miR-34a largely restored the expression of these genes and confirmed miR-34a as a downstream effector of the KSHV-vGPCR that compromises genome maintenance mechanisms. This novel, protumorigenic role of miR-34a questions the use of miR-34a mimetics in cancer therapy as they could impair genome stability.
Collapse
Affiliation(s)
- Claudia J Krause
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Oliver Popp
- Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nanthakumar Thirunarayanan
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gunnar Dittmar
- Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Martin Lipp
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gerd Müller
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
15
|
Matteoli B, Broccolo F, Oggioni M, Scaccino A, Formica F, Ciccarese G, Drago F, Fusetti L, Esposito S, Ceccherini-Nelli L. Modulation of gene expression in Kaposi’s sarcoma-associated herpesvirus-infected lymphoid and epithelial cells. Future Virol 2016. [DOI: 10.2217/fvl-2016-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To evaluate the gene expression changes that occur soon after the active infection of two susceptible cell types with human herpesvirus 8 (HHV-8). Materials & methods: The expression profile of 282 human genes involved in the inflammatory process was investigated in HHV-8 A1 or C3 subtype-infected and mock-infected human epithelial cells and lymphoid cells. Results: The HHV-8-induced transcriptional profiles in the epithelial and lymphoid cells were very different. A robust increase in the expression was found in genes belonging to different categories, especially the categories of inflammation response and signal transduction. Conclusion: These results indicate that during early infection, HHV-8 induces a variety of cell type-specific processes, thus providing infection signatures useful as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Barbara Matteoli
- Department of Experimental Pathology, Retrovirus Centre of the Virology Section, B.M.I.E, University of Pisa, Pisa, Italy
| | - Francesco Broccolo
- Laboratory of Molecular Microbiology and Virology, Department of Health Sciences, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Massimo Oggioni
- Laboratory of Molecular Microbiology and Virology, Department of Health Sciences, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Antonio Scaccino
- Department of Experimental Pathology, Retrovirus Centre of the Virology Section, B.M.I.E, University of Pisa, Pisa, Italy
| | - Francesco Formica
- Cardiac Surgery Unit, San Gerardo Hospital, Department of Medicine and Surgery, School of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Giulia Ciccarese
- DISSAL, Department of Dermatology, IRCCS A.O.U. San Martino-IST, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Francesco Drago
- DISSAL, Department of Dermatology, IRCCS A.O.U. San Martino-IST, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Lisa Fusetti
- Department of Experimental Pathology, Retrovirus Centre of the Virology Section, B.M.I.E, University of Pisa, Pisa, Italy
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiologyand Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Ceccherini-Nelli
- Department of Experimental Pathology, Retrovirus Centre of the Virology Section, B.M.I.E, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Cieniewicz B, Santana AL, Minkah N, Krug LT. Interplay of Murine Gammaherpesvirus 68 with NF-kappaB Signaling of the Host. Front Microbiol 2016; 7:1202. [PMID: 27582728 PMCID: PMC4987367 DOI: 10.3389/fmicb.2016.01202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses establish a chronic infection in the host characterized by intervals of lytic replication, quiescent latency, and reactivation from latency. Murine gammaherpesvirus 68 (MHV68) naturally infects small rodents and has genetic and biologic parallels with the human gammaherpesviruses (gHVs), Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. The murine gammaherpesvirus model pathogen system provides a platform to apply cutting-edge approaches to dissect the interplay of gammaherpesvirus and host determinants that enable colonization of the host, and that shape the latent or lytic fate of an infected cell. This knowledge is critical for the development of novel therapeutic interventions against the oncogenic gHVs. The nuclear factor kappa B (NF-κB) signaling pathway is well-known for its role in the promotion of inflammation and many aspects of B cell biology. Here, we review key aspects of the virus lifecycle in the host, with an emphasis on the route that the virus takes to gain access to the B cell latency reservoir. We highlight how the murine gammaherpesvirus requires components of the NF-κB signaling pathway to promote replication, latency establishment, and maintenance of latency. These studies emphasize the complexity of gammaherpesvirus interactions with NF-κB signaling components that direct innate and adaptive immune responses of the host. Importantly, multiple facets of NF-κB signaling have been identified that might be targeted to reduce the burden of gammaherpesvirus-associated diseases.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Alexis L Santana
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
17
|
Zhang J, Feng H, Xu S, Feng P. Hijacking GPCRs by viral pathogens and tumor. Biochem Pharmacol 2016; 114:69-81. [PMID: 27060663 DOI: 10.1016/j.bcp.2016.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/25/2016] [Indexed: 01/11/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of molecules that transduce signals across the plasma membrane. Herpesviruses are successful pathogens that evolved diverse mechanisms to benefit their infection. Several human herpesviruses express GPCRs to exploit cellular signaling cascades during infection. These viral GPCRs demonstrate distinct biochemical and biophysical properties that result in the activation of a broad spectrum of signaling pathways. In immune-deficient individuals, human herpesvirus infection and the expression of their GPCRs are implicated in virus-associated diseases and pathologies. Emerging studies also uncover diverse mutations in components, particularly GPCRs and small G proteins, of GPCR signaling pathways that render the constitutive activation of proliferative and survival signal, which contributes to the oncogenesis of various human cancers. Hijacking GPCR-mediated signaling is a signature shared by diseases associated with constitutively active viral GPCRs and cellular mutations activating GPCR signaling, exposing key molecules that can be targeted for anti-viral and anti-tumor therapy.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States.
| | - Hao Feng
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Simin Xu
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States.
| |
Collapse
|
18
|
Endolysosomal trafficking of viral G protein-coupled receptor functions in innate immunity and control of viral oncogenesis. Proc Natl Acad Sci U S A 2016; 113:2994-9. [PMID: 26929373 DOI: 10.1073/pnas.1601860113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin-proteasome system degrades viral oncoproteins and other microbial virulence factors; however, the role of endolysosomal degradation pathways in these processes is unclear. Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma, and a constitutively active viral G protein-coupled receptor (vGPCR) contributes to the pathogenesis of KSHV-induced tumors. We report that a recently discovered autophagy-related protein, Beclin 2, interacts with KSHV GPCR, facilitates its endolysosomal degradation, and inhibits vGPCR-driven oncogenic signaling. Furthermore, monoallelic loss of Becn2 in mice accelerates the progression of vGPCR-induced lesions that resemble human Kaposi's sarcoma. Taken together, these findings indicate that Beclin 2 is a host antiviral molecule that protects against the pathogenic effects of KSHV GPCR by facilitating its endolysosomal degradation. More broadly, our data suggest a role for host endolysosomal trafficking pathways in regulating viral pathogenesis and oncogenic signaling.
Collapse
|
19
|
El-Araby AM, Fouad AA, Hanbal AM, Abdelwahab SM, Qassem OM, El-Araby ME. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises. Arch Pharm (Weinheim) 2016; 349:73-90. [PMID: 26754591 DOI: 10.1002/ardp.201500375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 01/19/2023]
Abstract
Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed.
Collapse
Affiliation(s)
- Amr M El-Araby
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Amr M Hanbal
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Omar M Qassem
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | - Moustafa E El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanya, Jeddah, Saudi Arabia.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
20
|
Suares A, Russo de Boland A, Verstuyf A, Boland R, González-Pardo V. The proapoptotic protein Bim is up regulated by 1α,25-dihydroxyvitamin D3 and its receptor agonist in endothelial cells and transformed by viral GPCR associated to Kaposi sarcoma. Steroids 2015; 102:85-91. [PMID: 26254608 DOI: 10.1016/j.steroids.2015.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/13/2015] [Accepted: 08/01/2015] [Indexed: 12/12/2022]
Abstract
We have previously shown that 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] and its less calcemic analog TX 527 induce apoptosis via caspase-3 activation in endothelial cells (SVEC) and endothelial cells transformed by the viral G protein-coupled receptor associated to Kaposi sarcoma (vGPCR). In this work, we studied whether intrinsic apoptotic pathway could be activated by changing the balance between anti and pro-apoptotic proteins. Time response qRT-PCR analysis demonstrated that the mRNA level of anti-apoptotic gene Bcl-2 decreased after 12h and increased after 48h treatment with 1α,25(OH)2D3 or TX 527 in SVEC and vGPCR cells, whereas its protein level remained unchanged through time. mRNA levels of pro-apoptotic gene Bax significantly increased only in SVEC after 24 and 48h treatment with 1α,25(OH)2D3 and TX 527 although its protein levels remained unchanged in both cell lines. Bim mRNA and protein levels increased in SVEC and vGPCR cells. Bim protein increase by 1α,25(OH)2D3 and TX 527 was abolished when the expression of vitamin D receptor (VDR) was suppressed. On the other hand, Bortezomib (0.25-1nM), an inhibitor of NF-κB pathway highly activated in vGPCR cells, increased Bim protein levels and induced caspase-3 cleavage. Altogether, these results indicate that 1α,25(OH)2D3 and TX 527 trigger apoptosis by Bim protein increase which turns into the activation of caspase-3 in SVEC and vGPCR cells. Moreover, this effect is mediated by VDR and involves NF-κB pathway inhibition in vGPCR.
Collapse
Affiliation(s)
| | | | - Annemieke Verstuyf
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
21
|
Zhang J, Zhu L, Lu X, Feldman ER, Keyes LR, Wang Y, Fan H, Feng H, Xia Z, Sun J, Jiang T, Gao SJ, Tibbetts SA, Feng P. Recombinant Murine Gamma Herpesvirus 68 Carrying KSHV G Protein-Coupled Receptor Induces Angiogenic Lesions in Mice. PLoS Pathog 2015; 11:e1005001. [PMID: 26107716 PMCID: PMC4479558 DOI: 10.1371/journal.ppat.1005001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/03/2015] [Indexed: 12/22/2022] Open
Abstract
Human gamma herpesviruses, including Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), are capable of inducing tumors, particularly in in immune-compromised individuals. Due to the stringent host tropism, rodents are resistant to infection by human gamma herpesviruses, creating a significant barrier for the in vivo study of viral genes that contribute to tumorigenesis. The closely-related murine gamma herpesvirus 68 (γHV68) efficiently infects laboratory mouse strains and establishes robust persistent infection without causing apparent disease. Here, we report that a recombinant γHV68 carrying the KSHV G protein-coupled receptor (kGPCR) in place of its murine counterpart induces angiogenic tumors in infected mice. Although viral GPCRs are conserved in all gamma herpesviruses, kGPCR potently activated downstream signaling and induced tumor formation in nude mouse, whereas γHV68 GPCR failed to do so. Recombinant γHV68 carrying kGPCR demonstrated more robust lytic replication ex vivo than wild-type γHV68, although both viruses underwent similar acute and latent infection in vivo. Infection of immunosuppressed mice with γHV68 carrying kGPCR, but not wild-type γHV68, induced tumors in mice that exhibited angiogenic and inflammatory features shared with human Kaposi’s sarcoma. Immunohistochemistry staining identified abundant latently-infected cells and a small number of cells supporting lytic replication in tumor tissue. Thus, mouse infection with a recombinant γHV68 carrying kGPCR provides a useful small animal model for tumorigenesis induced by a human gamma herpesvirus gene in the setting of a natural course of infection. Human gamma herpesviruses, including Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), are causatively linked to a spectrum of human oncogenic malignancies. Due to the stringent host restriction, rodents are generally not amenable to infection by EBV and KSHV. Murine gamma herpesvirus 68 (γHV68) is closely related to KSHV and EBV, although infection in mouse does not manifest apparent diseases. Here we developed a recombinant γHV68 that carries the KSHV G protein-coupled receptor, an important signaling molecule implicated in KSHV pathogenesis. Intriguingly, laboratory mice infected with this recombinant γHV68 developed angiogenic lesions that resembled human Kaposi’s sarcoma. This mouse infection with recombinant γHV68 carrying KSHV GPCR represents a useful model to investigate viral oncogenesis induced by human gamma herpesvirus in the context of viral infection.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Lining Zhu
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Xiaolu Lu
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Emily R. Feldman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainsville, Florida, United States of America
| | - Lisa R. Keyes
- Department of Molecular Genetics and Microbiology, University of Florida, Gainsville, Florida, United States of America
| | - Yi Wang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Hui Fan
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Hao Feng
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zanxian Xia
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jiya Sun
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Suzhou Institute of Systems Medicine, Suzhou, China
| | - Taijiao Jiang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Suzhou Institute of Systems Medicine, Suzhou, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shou-jiang Gao
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Scott A. Tibbetts
- Department of Molecular Genetics and Microbiology, University of Florida, Gainsville, Florida, United States of America
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Iglesias-Bartolome R, Torres D, Marone R, Feng X, Martin D, Simaan M, Chen M, Weinstein LS, Taylor SS, Molinolo AA, Gutkind JS. Inactivation of a Gα(s)-PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis. Nat Cell Biol 2015; 17:793-803. [PMID: 25961504 PMCID: PMC4449815 DOI: 10.1038/ncb3164] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 03/18/2015] [Indexed: 02/07/2023]
Abstract
Genomic alterations in GNAS, the gene coding for the Gαs heterotrimeric G-protein, are associated with a large number human of diseases. Here, we explored the role of Gαs on stem cell fate decisions by using the mouse epidermis as a model system. Conditional epidermal deletion of Gnas or repression of PKA signaling caused a remarkable expansion of the stem cell compartment, resulting in rapid basal cell carcinoma formation. In contrast, inducible expression of active Gαs in the epidermis caused hair follicle stem cell exhaustion and hair loss. Mechanistically, we found that Gαs-PKA disruption promotes the cell autonomous Sonic Hedgehog pathway stimulation and Hippo signaling inhibition, resulting in the non-canonical activation of GLI and YAP1. Our study highlights an important tumor suppressive function of Gαs-PKA, limiting the proliferation of epithelial stem cells and maintaining proper hair follicle homeostasis. These findings can have broad implications in multiple pathophysiological conditions, including cancer.
Collapse
Affiliation(s)
- Ramiro Iglesias-Bartolome
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniela Torres
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Romina Marone
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiaodong Feng
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel Martin
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - May Simaan
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Min Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lee S Weinstein
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Susan S Taylor
- 1] Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA [2] Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - J Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
23
|
Wu H, Liu L, Xiao J, Chi M, Qu Y, Feng H. Glycosylation of KSHV encoded vGPCR functions in its signaling and tumorigenicity. Viruses 2015; 7:1627-41. [PMID: 25835533 PMCID: PMC4411669 DOI: 10.3390/v7041627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/06/2015] [Accepted: 03/20/2015] [Indexed: 12/16/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a tumor virus and the etiologic agent of Kaposi’s Sarcoma (KS). KSHV G protein-coupled receptor (vGPCR) is an oncogene that is implicated in malignancies associated with KHSV infection. In this study, we show that vGPCR undergoes extensive N-linked glycosylation within the extracellular domains, specifically asparagines 18, 22, 31 and 202. An immunofluorescence assay demonstrates that N-linked glycosylation are necessary for vGPCR trafficking to the cellular membrane. Employing vGPCR mutants whose glycosylation sites were ablated, we show that these vGPCR mutants failed to activate downstream signaling in cultured cells and were severely impaired to induce tumor formation in the xenograph nude mouse model. These findings support the conclusion that glycosylation is critical for vGPCR tumorigenesis and imply that chemokine regulation at the plasma membrane is crucial for vGPCR mediated signaling.
Collapse
Affiliation(s)
- Hui Wu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Liqun Liu
- Division of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Jun Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Mengdie Chi
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Yixiao Qu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Hao Feng
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
24
|
Dwyer J, Azzi S, Leclair HM, Georges S, Carlotti A, Treps L, Galan-Moya EM, Alexia C, Dupin N, Bidère N, Gavard J. The guanine exchange factor SWAP70 mediates vGPCR-induced endothelial plasticity. Cell Commun Signal 2015; 13:11. [PMID: 25889342 PMCID: PMC4336709 DOI: 10.1186/s12964-015-0090-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/04/2015] [Indexed: 12/21/2022] Open
Abstract
Background The viral G protein-coupled receptor (vGPCR) is proposed to act as one of the predominant mediators of Kaposi’s sarcoma (KS), a human herpes virus 8 (HHV8)-elicited disease. The actions of vGPCR manifest pathogenesis, in part, through increased permeability of endothelial cells. Endothelial cell-cell junctions have indeed emerged as an instrumental target involved in the vasculature defects observed within the tumor microenvironment. The pathway leading to adherens junction destabilization has been shown to involve the activation of the small GTPase Rac, in the context of either latent infection or the sole expression of vGPCR. However, the precise molecular mechanisms governed by vGPCR in vascular leakage require further elucidation. Findings Guanine exchange factors (GEFs) function as critical molecular switches that control the activation of small GTPases. We therefore screened the effects of 80 siRNAs targeting GEFs on vGPCR-driven endothelial permeability and identified switch-associated protein 70 (SWAP70) as necessary for its elevating effects. Pull-down experiments further showed that Rac activation by vGPCR was dependent on SWAP70. Examination of tissues and cells from HHV8-positive patients revealed that SWAP70 was ubiquitously expressed. Furthermore, SWAP70 was found to be crucial for vGPCR-driven endothelial tube formation and endothelial sprouting in vitro. Conclusions SWAP70 appears to act as a molecular intermediate between vGPCR and endothelial activation. Because of the important role of vGPCR-mediated endothelial plasticity in KS pathogenesis, inhibition of SWAP70 function could be of interest for blocking vGPCR-driven activities in HHV8-defined diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12964-015-0090-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julie Dwyer
- CNRS, UMR8104, 22 rue Mechain, 75014, Paris, France. .,INSERM, U1016, 22 rue Mechain, 75014, Paris, France. .,Universite Paris Descartes, Sorbonne Paris Cite, 6 rue de l'Ecole de Medecine, 75006, Paris, France.
| | - Sandy Azzi
- CNRS, UMR8104, 22 rue Mechain, 75014, Paris, France. .,INSERM, U1016, 22 rue Mechain, 75014, Paris, France. .,Universite Paris Descartes, Sorbonne Paris Cite, 6 rue de l'Ecole de Medecine, 75006, Paris, France.
| | - Héloïse M Leclair
- CNRS, UMR8104, 22 rue Mechain, 75014, Paris, France. .,INSERM, U1016, 22 rue Mechain, 75014, Paris, France. .,Universite Paris Descartes, Sorbonne Paris Cite, 6 rue de l'Ecole de Medecine, 75006, Paris, France.
| | - Steven Georges
- CNRS, UMR8104, 22 rue Mechain, 75014, Paris, France. .,INSERM, U1016, 22 rue Mechain, 75014, Paris, France. .,Universite Paris Descartes, Sorbonne Paris Cite, 6 rue de l'Ecole de Medecine, 75006, Paris, France.
| | - Agnès Carlotti
- Service de Pathologie, Hopital Cochin-Tarnier, AP-HP, Paris, France.
| | - Lucas Treps
- CNRS, UMR8104, 22 rue Mechain, 75014, Paris, France. .,INSERM, U1016, 22 rue Mechain, 75014, Paris, France. .,Universite Paris Descartes, Sorbonne Paris Cite, 6 rue de l'Ecole de Medecine, 75006, Paris, France.
| | - Eva M Galan-Moya
- CNRS, UMR8104, 22 rue Mechain, 75014, Paris, France. .,INSERM, U1016, 22 rue Mechain, 75014, Paris, France. .,Universite Paris Descartes, Sorbonne Paris Cite, 6 rue de l'Ecole de Medecine, 75006, Paris, France.
| | - Catherine Alexia
- Inserm UMR_753, Institut Gustave Roussy, Villejuif, 94800, France.
| | - Nicolas Dupin
- CNRS, UMR8104, 22 rue Mechain, 75014, Paris, France. .,INSERM, U1016, 22 rue Mechain, 75014, Paris, France. .,Universite Paris Descartes, Sorbonne Paris Cite, 6 rue de l'Ecole de Medecine, 75006, Paris, France. .,Service de Dermatologie, Hopital Cochin-Tarnier, Assistance Publique-Hôpitaux de Paris AP-HP, Paris, France.
| | - Nicolas Bidère
- CNRS, UMR8104, 22 rue Mechain, 75014, Paris, France. .,INSERM, U1016, 22 rue Mechain, 75014, Paris, France. .,Universite Paris Descartes, Sorbonne Paris Cite, 6 rue de l'Ecole de Medecine, 75006, Paris, France.
| | - Julie Gavard
- CNRS, UMR8104, 22 rue Mechain, 75014, Paris, France. .,INSERM, U1016, 22 rue Mechain, 75014, Paris, France. .,Universite Paris Descartes, Sorbonne Paris Cite, 6 rue de l'Ecole de Medecine, 75006, Paris, France.
| |
Collapse
|
25
|
Sun F, Xiao Y, Qu Z. Oncovirus Kaposi sarcoma herpesvirus (KSHV) represses tumor suppressor PDLIM2 to persistently activate nuclear factor κB (NF-κB) and STAT3 transcription factors for tumorigenesis and tumor maintenance. J Biol Chem 2015; 290:7362-8. [PMID: 25681443 DOI: 10.1074/jbc.c115.637918] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV) is the most common cause of malignancies among AIDS patients. However, how KSHV induces tumorigenesis remains largely unknown. Here, we demonstrate that one important mechanism underlying the tumorigenesis of KSHV is through transcriptional repression of the tumor suppressor gene PDZ-LIM domain-containing protein 2 (PDLIM2). PDLIM2 expression is repressed in KSHV-transformed human umbilical vascular endothelial cells as well as in KSHV-associated cancer cell lines and primary tumors. Importantly, PDLIM2 repression is essential for KSHV-induced persistent activation of nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) and subsequent tumorigenesis and tumor maintenance. Our mechanistic studies indicate that PDLIM2 repression by KSHV involves DNA methylation. Notably, the epigenetic repression of PDLIM2 can be reversed by 5-aza-2-deoxycytidine and vitamin D to suppress KSHV-associated cancer cell growth. These studies not only improve our understanding of KSHV pathogenesis but also provide immediate therapeutic strategies for KSHV-mediated cancers, particularly those associated with AIDS.
Collapse
Affiliation(s)
- Fan Sun
- From the University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232, and the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Yadong Xiao
- From the University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232, and
| | - Zhaoxia Qu
- From the University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232, and the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
26
|
González-Pardo V, Verstuyf A, Boland R, Russo de Boland A. Vitamin D analogue TX 527 down-regulates the NF-κB pathway and controls the proliferation of endothelial cells transformed by Kaposi sarcoma herpesvirus. Br J Pharmacol 2014; 169:1635-45. [PMID: 23647513 DOI: 10.1111/bph.12219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/14/2013] [Accepted: 04/25/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The Kaposi sarcoma (KS)-associated herpesvirus GPCR (vGPCR) is a key molecule in the pathogenesis of KS, where it increases NF-κB gene expression and activates the NF-κB pathway. We investigated whether the less calcemic vitamin D analogue TX 527 inhibited the proliferation of endothelial cells transformed by vGPCR by modulation of the NF-κB pathway. EXPERIMENTAL APPROACH Endothelial cells transformed by vGPCR (SVEC-vGPCR) were treated with TX 527. Proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) and cell cycle by flow cytometry. mRNA and protein levels were measured by real-time quantitative reverse transcriptase-PCR (qRT-PCR) and immunoblot analysis respectively. KEY RESULTS TX 527, similar to bortezomib (0.5 nM), a proteasome inhibitor that inhibits the activation of NF-κB, reduced proliferation and induced G0/G1 cell cycle arrest in SVEC-vGPCR. TX 527 like 1α,25(OH)2 D3 , biological active form of vitamin D, decreased the activity of NF-κB comparable with the effect of bortezomib. Time-response studies showed that TX 527 significantly decreased NF-κB and increased IκBα mRNA and protein levels. The increase of IκBα was accompanied by a reduction in p65/NF-κB translocation to the nucleus. These responses were abolished when vitamin D receptor (VDR) expression was suppressed by stable transfection of shRNA against VDR. In parallel with NF-κB inhibition, there was a down-regulation of inflammatory genes such as IL-6, CCL2/MCP and CCL20/MIP3α. CONCLUSIONS AND IMPLICATIONS These results suggest that the anti-proliferative effects of the vitamin D analogue TX 527 in SVEC-vGPCR occur by modulation of the NF-κB pathway and are VDR dependent.
Collapse
Affiliation(s)
- V González-Pardo
- Departamento de Biología, Bioquímica & Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas & Técnicas (CONICET), Bahía Blanca, Argentina.
| | | | | | | |
Collapse
|
27
|
González-Pardo V, Suares A, Verstuyf A, De Clercq P, Boland R, de Boland AR. Cell cycle arrest and apoptosis induced by 1α,25(OH)2D3 and TX 527 in Kaposi sarcoma is VDR dependent. J Steroid Biochem Mol Biol 2014; 144 Pt A:197-200. [PMID: 24316429 DOI: 10.1016/j.jsbmb.2013.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 11/15/2013] [Accepted: 11/23/2013] [Indexed: 01/06/2023]
Abstract
We have previously shown that 1α,25(OH)2-Vitamin D3 [1α,25(OH)2D3] and its less calcemic analog TX 527 inhibit the proliferation of endothelial cells transformed by the viral G protein-coupled receptor associated to Kaposi sarcoma (vGPCR) and this could be partially explained by the inhibition of the NF-κB pathway. In this work, we further explored the mechanism of action of both vitamin D compounds in Kaposi sarcoma. We investigated whether the cell cycle arrest and subsequent apoptosis of endothelial cells (SVEC) and SVEC transformed by vGPCR (SVEC-vGPCR) elicited by 1α,25(OH)2D3 and TX 527 were mediated by the vitamin D receptor (VDR). Cell cycle analysis of SVEC and SVEC-vGPCR treated with 1α,25(OH)2D3 (10nM, 48h) revealed that 1α,25(OH)2D3 increased the percentage of cells in the G0/G1 phase and diminished the percentage of cells in the S phase of the cell cycle. Moreover, the number of cells in the S phase was higher in SVEC-vGPCR than in SVEC due to vGPCR expression. TX 527 exerted similar effects on growth arrest in SVEC-vGPCR cells. The cell cycle changes were suppressed when the expression of the VDR was blocked by a stable transfection of shRNA against VDR. Annexin V-PI staining demonstrated apoptosis in both SVEC and SVEC-vGPCR after 1α,25(OH)2D3 and TX 527 treatment (10nM, 24h). Cleavage of caspase-3 detected by Western blot analysis was increased to a greater extent in SVEC than in SVEC-vGPCR cells, and this effect was also blocked in VDR knockdown cells. Altogether, these results suggest that 1α,25(OH)2D3 and TX 527 inhibit the proliferation of SVEC and SVEC-vGPCR and induce apoptosis by a mechanism that involves the VDR.
Collapse
Affiliation(s)
- Verónica González-Pardo
- Departamento de Biología, Bioquímica & Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Argentina.
| | - Alejandra Suares
- Departamento de Biología, Bioquímica & Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Argentina
| | - Annemieke Verstuyf
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, B-3000 Leuven, Belgium
| | - Pierre De Clercq
- Vakgroep Organische Chemie, Universiteit Gent, Krijgslaan 281 S4, B-9000 Gent, Belgium
| | - Ricardo Boland
- Departamento de Biología, Bioquímica & Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Argentina
| | - Ana Russo de Boland
- Departamento de Biología, Bioquímica & Farmacia, Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Argentina
| |
Collapse
|
28
|
Liu G, Yu FX, Kim YC, Meng Z, Naipauer J, Looney DJ, Liu X, Gutkind JS, Mesri EA, Guan KL. Kaposi sarcoma-associated herpesvirus promotes tumorigenesis by modulating the Hippo pathway. Oncogene 2014; 34:3536-46. [PMID: 25195862 DOI: 10.1038/onc.2014.281] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 12/23/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic virus and the culprit behind the human disease Kaposi sarcoma (KS), an AIDS-defining malignancy. KSHV encodes a viral G-protein-coupled receptor (vGPCR) critical for the initiation and progression of KS. In this study, we identified that YAP/TAZ, two homologous oncoproteins inhibited by the Hippo tumor suppressor pathway, are activated in KSHV-infected cells in vitro, KS-like mouse tumors and clinical human KS specimens. The KSHV-encoded vGPCR acts through Gq/11 and G12/13 to inhibit the Hippo pathway kinases Lats1/2, promoting the activation of YAP/TAZ. Furthermore, depletion of YAP/TAZ blocks vGPCR-induced cell proliferation and tumorigenesis in a xenograft mouse model. The vGPCR-transformed cells are sensitive to pharmacologic inhibition of YAP. Our study establishes a pivotal role of the Hippo pathway in mediating the oncogenic activity of KSHV and development of KS, and also suggests a potential of using YAP inhibitors for KS intervention.
Collapse
Affiliation(s)
- G Liu
- 1] School of Life Sciences, Shandong University, Jinan, China [2] Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - F-X Yu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Y C Kim
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Z Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Naipauer
- Department of Microbiology and Immunology and Viral Oncology Program, Miami Center for AIDS Research, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D J Looney
- Department of Medicine, VA San Diego Healthcare System, The University of California, San Diego, La Jolla, CA, USA
| | - X Liu
- School of Life Sciences, Shandong University, Jinan, China
| | - J S Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - E A Mesri
- Department of Microbiology and Immunology and Viral Oncology Program, Miami Center for AIDS Research, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - K-L Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
Vischer HF, Siderius M, Leurs R, Smit MJ. Herpesvirus-encoded GPCRs: neglected players in inflammatory and proliferative diseases? Nat Rev Drug Discov 2014; 13:123-39. [DOI: 10.1038/nrd4189] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Azzi S, Smith SS, Dwyer J, Leclair HM, Alexia C, Hebda JK, Dupin N, Bidère N, Gavard J. YGLF motif in the Kaposi sarcoma herpes virus G-protein-coupled receptor adjusts NF-κB activation and paracrine actions. Oncogene 2013; 33:5609-18. [PMID: 24292677 DOI: 10.1038/onc.2013.503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/25/2013] [Accepted: 10/18/2013] [Indexed: 12/17/2022]
Abstract
Kaposi sarcoma (KS) and primary effusion lymphoma (PEL) are two pathologies associated with KS herpes virus (KSHV/HHV-8) infection. KSHV genome contains several oncogenes, among which, the viral G-protein-coupled receptor (vGPCR open reading frame 74) has emerged as a major factor in KS pathogenicity. Indeed, vGPCR is a constitutively active receptor, whose expression is sufficient to drive cell transformation in vitro and tumour development in mice. However, neither the role of vGPCR in KSHV-infected B-lymphocytes nor the molecular basis for its constitutive activation is well understood. Here, we show that vGPCR expression contributes to nuclear factor-κB (NF-κB)-dependent cellular survival in both PEL cells and primary B cells from HIV-negative KS patients. We further identified within vGPCR an AP2 consensus binding motif, Y326GLF, that directs its localization between the plasma membrane and clathrin-coated vesicles. The introduction of a mutation in this site (Y326A) increased NF-κB activity and proinflammatory cytokines production. This correlated with exacerbated morphological rearrangement, migration and proliferation of non-infected monocytes. Collectively, our work raises the possibility that KSHV-infected B-lymphocytes use vGPCR to impact ultimately the immune response and communication within the tumour microenvironment in KSHV-associated pathologies.
Collapse
Affiliation(s)
- S Azzi
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - S S Smith
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - J Dwyer
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - H M Leclair
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - C Alexia
- 1] INSERM, U1014, Hopital Paul Brousse, Villejuif, France [2] Universite Paris-Sud P11, Orsay, France [3] Equipe Labellisee Ligue contre le Cancer, Villejuif, France
| | - J K Hebda
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - N Dupin
- 1] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France [2] Service de dermatologie, Hopital Cochin-Tarnier, AP-HP, Paris, France
| | - N Bidère
- 1] INSERM, U1014, Hopital Paul Brousse, Villejuif, France [2] Universite Paris-Sud P11, Orsay, France [3] Equipe Labellisee Ligue contre le Cancer, Villejuif, France
| | - J Gavard
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| |
Collapse
|
31
|
Amin M, Pantanowitz L. Review of latent and lytic phase biomarkers in Kaposi's sarcoma. ACTA ACUST UNITED AC 2013; 7:531-42. [PMID: 24070121 DOI: 10.1517/17530059.2013.842227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Kaposi's sarcoma (KS) is a vascular neoplasm with distinct clinical-epidemiological subtypes and varied clinical presentations. While the association of KS with human herpesvirus-8 (HHV8, KSHV) infection is well known, additional factors are needed for tumorigenesis. The precise sequence of events involved in KS development, progression and regression continues to be investigated. The discovery of KSHV biomarkers is helpful for diagnostic purposes, for understanding KS pathogenesis and for identifying potential druggable targets. AREAS COVERED This article reviews a number of key biomarkers relevant for the diagnosis of KS and HHV8-related pathogenesis. New developments in KS, potential therapeutic targets and the challenges involved in their discovery are highlighted. EXPERT OPINION Although there is currently no cure for KS, continued research devoted to uncovering biomarkers and understanding their pathogenic roles remains encouraging. The hope is that sometime soon one of these candidate targets will provide a curative therapy for this enigmatic sarcoma.
Collapse
Affiliation(s)
- Milon Amin
- University of Pittsburgh Medical Center, Department of Pathology , Suite 201, 5150 Centre Street, Pittsburgh , USA +1 412 794 4195 ; +1 412 794 3195 ;
| | | |
Collapse
|
32
|
IKK epsilon kinase is crucial for viral G protein-coupled receptor tumorigenesis. Proc Natl Acad Sci U S A 2013; 110:11139-44. [PMID: 23771900 DOI: 10.1073/pnas.1219829110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that transmit diverse extracellular signals across a membrane. Herpesvirus genomes encode multiple GPCRs implicated in viral pathogenesis. Kaposi sarcoma-associated herpesvirus GPCR (kGPCR) activates proliferative pathways and, when expressed in endothelium in mice, sufficiently induces angiogenic tumor resembling human Kaposi's sarcoma. IKKε, an IκB kinase (IKK)-related kinase, is implicated in inflammation-driven tumorigenesis. We report here that IKKε is critically required for kGPCR tumorigenesis and links kGPCR to NF-κB activation. Using kGPCR-induced tumor models, we found that IKKε expression was drastically up-regulated in Kaposi sarcoma-like lesions and that loss of IKKε abolished tumor formation. Moreover, kGPCR interacted with and activated IKKε. Activated IKKε promoted NF-κB subunit RelA (also known as p65) phosphorylation, which correlated with NF-κB activation and inflammatory cytokine expression. The robust expression of IKKε and phosphorylated RelA was observed in human Kaposi sarcoma. Finally, a kinase-defective mutant of IKKε effectively abrogated NF-κB activation and tumorigenesis induced by kGPCR. Collectively, our findings uncover a critical IKKε in promoting NF-κB activation and tumorigenesis induced by a viral GPCR.
Collapse
|
33
|
Martin D, Nguyen Q, Molinolo A, Gutkind JS. Accumulation of dephosphorylated 4EBP after mTOR inhibition with rapamycin is sufficient to disrupt paracrine transformation by the KSHV vGPCR oncogene. Oncogene 2013; 33:2405-12. [PMID: 23708663 DOI: 10.1038/onc.2013.193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 12/14/2022]
Abstract
Dysregulation of the PI3K/Akt/mTOR pathway is one of the most frequent events in human cancer. However, the clinical benefits of PI3K/Akt/mTOR inhibitors have not yet achieved their predicted potential in many of the most prevalent human cancers. Of interest, treatment of Kaposi's sarcoma (KS) patients with rapamycin provided the first evidence of the antineoplastic activity of mTOR inhibitors in humans, becoming the standard of care for KS arising in renal transplant patients. Thus, the study of KS may provide a unique opportunity to dissect the contribution of specific mTOR downstream targets to cancer development. The KS-associated herpesvirus (KSHV) is the etiological agent for KS, and the KSHV-encoded oncogene viral-G protein-coupled receptor (vGPCR) promotes the potent activation of the PI3K-Akt-mTOR pathway by both direct and paracrine mechanisms. We focused on a direct target of mTOR, EIF4EBP1/2/3 (4EBP), which inhibits the translation of eukaryotic initiation factor 4E (eiF4E)-bound mRNAs. 4EBP phosphorylation by mTOR relieves its inhibitory activity, hence resulting in increased eiF4E-dependent mRNA translation. We developed a paracrine transformation model, recapitulating the cellular composition of KS lesions, in which vGPCR-expressing cells promote the rapid proliferation of endothelial cells, thus expressing KSHV-latent genes by the release of growth factors. Using this model, we show here that the accumulation of dephosphorylated 4EBP in response to rapamycin or by the expression of an mTOR-insensitive mutant of 4EBP1 is sufficient to disrupt the eiF4E function downstream of mTOR to a similar extent than the mTOR catalytic inhibitor Torin2 and to halt KS development. We also provide evidence that eiF4E contributes to paracrine neoplastic, signaling through the release of pro-angiogenic factors that are acting on endothelial cells, expressing KSHV-latent genes. These findings may provide a preclinical platform and the rationale for the development of novel mTOR, inhibiting agents that may selectively disrupt the mTOR-4EBP interaction for the treatment of KS and other tumor lesions, exhibiting hyperactive mTOR pathway function.
Collapse
Affiliation(s)
- D Martin
- Oral and Pharyngeal Cancer Branch; National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Q Nguyen
- Oral and Pharyngeal Cancer Branch; National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - A Molinolo
- Oral and Pharyngeal Cancer Branch; National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J S Gutkind
- Oral and Pharyngeal Cancer Branch; National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Wu H, Fu Y, Xiao J, Zhou M, Zhou W, Feng H. The unsulfated extracellular N-terminus of vGPCR reduces the tumorigenicity of hGRO-α in nude mice. SCIENCE CHINA-LIFE SCIENCES 2012; 56:26-31. [DOI: 10.1007/s11427-012-4405-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
|
35
|
Montaner S, Kufareva I, Abagyan R, Gutkind JS. Molecular mechanisms deployed by virally encoded G protein-coupled receptors in human diseases. Annu Rev Pharmacol Toxicol 2012; 53:331-54. [PMID: 23092247 DOI: 10.1146/annurev-pharmtox-010510-100608] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of cell surface molecules involved in signal transduction. Surprisingly, open reading frames for multiple GPCRs were hijacked in the process of coevolution between Herpesviridae family viruses and their human and mammalian hosts. Virally encoded GPCRs (vGPCRs) evolved as parts of viral genomes, and this evolution allowed the power of host GPCR signaling circuitries to be harnessed in order to ensure viral replicative success. Phylogenetically, vGPCRs are distantly related to human chemokine receptors, although they feature several unique characteristics. Here, we describe the molecular mechanisms underlying vGPCR-mediated viral pathogenesis. These mechanisms include constitutive activity, aberrant coupling to human G proteins and β-arrestins, binding and activation by human chemokines, and dimerization with other GPCRs expressed in infected cells. The likely structural basis for these molecular events is described for the two closest viral homologs of human GPCRs. This information may aid in the development of novel targeted therapeutic strategies against viral diseases.
Collapse
Affiliation(s)
- Silvia Montaner
- Department of Oncology and Diagnostic Sciences, Department of Pathology, and Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
36
|
Croci DO, Salatino M, Rubinstein N, Cerliani JP, Cavallin LE, Leung HJ, Ouyang J, Ilarregui JM, Toscano MA, Domaica CI, Croci MC, Shipp MA, Mesri EA, Albini A, Rabinovich GA. Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma. ACTA ACUST UNITED AC 2012; 209:1985-2000. [PMID: 23027923 PMCID: PMC3478924 DOI: 10.1084/jem.20111665] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Disrupting Gal-1 interactions with N-glycans prevents hypoxia-driven angiogenesis to suppress tumorigenesis of Kaposi’s sarcoma Kaposi’s sarcoma (KS), a multifocal vascular neoplasm linked to human herpesvirus-8 (HHV-8/KS-associated herpesvirus [KSHV]) infection, is the most common AIDS-associated malignancy. Clinical management of KS has proven to be challenging because of its prevalence in immunosuppressed patients and its unique vascular and inflammatory nature that is sustained by viral and host-derived paracrine-acting factors primarily released under hypoxic conditions. We show that interactions between the regulatory lectin galectin-1 (Gal-1) and specific target N-glycans link tumor hypoxia to neovascularization as part of the pathogenesis of KS. Expression of Gal-1 is found to be a hallmark of human KS but not other vascular pathologies and is directly induced by both KSHV and hypoxia. Interestingly, hypoxia induced Gal-1 through mechanisms that are independent of hypoxia-inducible factor (HIF) 1α and HIF-2α but involved reactive oxygen species–dependent activation of the transcription factor nuclear factor κB. Targeted disruption of Gal-1–N-glycan interactions eliminated hypoxia-driven angiogenesis and suppressed tumorigenesis in vivo. Therapeutic administration of a Gal-1–specific neutralizing mAb attenuated abnormal angiogenesis and promoted tumor regression in mice bearing established KS tumors. Given the active search for HIF-independent mechanisms that serve to couple tumor hypoxia to pathological angiogenesis, our findings provide novel opportunities not only for treating KS patients but also for understanding and managing a variety of solid tumors.
Collapse
Affiliation(s)
- Diego O Croci
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kumar S, Kunec D, Buza JJ, Chiang HI, Zhou H, Subramaniam S, Pendarvis K, Cheng HH, Burgess SC. Nuclear Factor kappa B is central to Marek's disease herpesvirus induced neoplastic transformation of CD30 expressing lymphocytes in-vivo. BMC SYSTEMS BIOLOGY 2012; 6:123. [PMID: 22979947 PMCID: PMC3472249 DOI: 10.1186/1752-0509-6-123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/04/2012] [Indexed: 12/15/2022]
Abstract
Background Marek’s Disease (MD) is a hyperproliferative, lymphomatous, neoplastic disease of chickens caused by the oncogenic Gallid herpesvirus type 2 (GaHV-2; MDV). Like several human lymphomas the neoplastic MD lymphoma cells overexpress the CD30 antigen (CD30hi) and are in minority, while the non-neoplastic cells (CD30lo) form the majority of population. MD is a unique natural in-vivo model of human CD30hi lymphomas with both natural CD30hi lymphomagenesis and spontaneous regression. The exact mechanism of neoplastic transformation from CD30lo expressing phenotype to CD30hi expressing neoplastic phenotype is unknown. Here, using microarray, proteomics and Systems Biology modeling; we compare the global gene expression of CD30lo and CD30hi cells to identify key pathways of neoplastic transformation. We propose and test a specific mechanism of neoplastic transformation, and genetic resistance, involving the MDV oncogene Meq, host gene products of the Nuclear Factor Kappa B (NF-κB) family and CD30; we also identify a novel Meq protein interactome. Results Our results show that a) CD30lo lymphocytes are pre-neoplastic precursors and not merely reactive lymphocytes; b) multiple transformation mechanisms exist and are potentially controlled by Meq; c) Meq can drive a feed-forward cycle that induces CD30 transcription, increases CD30 signaling which activates NF-κB, and, in turn, increases Meq transcription; d) Meq transcriptional repression or activation of the CD30 promoter generally correlates with polymorphisms in the CD30 promoter distinguishing MD-lymphoma resistant and susceptible chicken genotypes e) MDV oncoprotein Meq interacts with proteins involved in physiological processes central to lymphomagenesis. Conclusions In the context of the MD lymphoma microenvironment (and potentially in other CD30hi lymphomas as well), our results show that the neoplastic transformation is a continuum and the non-neoplastic cells are actually pre-neoplastic precursor cells and not merely immune bystanders. We also show that NF-κB is a central player in MDV induced neoplastic transformation of CD30-expressing lymphocytes in vivo. Our results provide insights into molecular mechanisms of neoplastic transformation in MD specifically and also herpesvirus induced lymphoma in general.
Collapse
Affiliation(s)
- Shyamesh Kumar
- Department of Pathobiology and Population Medicine, Mississippi State University, MS 39762, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gonzalez-Pardo V, D'Elia N, Verstuyf A, Boland R, Russo de Boland A. NFκB pathway is down-regulated by 1α,25(OH)(2)-vitamin D(3) in endothelial cells transformed by Kaposi sarcoma-associated herpes virus G protein coupled receptor. Steroids 2012; 77:1025-32. [PMID: 22683670 DOI: 10.1016/j.steroids.2012.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 11/13/2022]
Abstract
We have previously demonstrated that 1α,25 dihydroxy-vitamin D(3) (1α,25(OH)(2)D(3)) has antiproliferative effects on the growth of endothelial cells transformed by the viral G protein-coupled receptor associated to Kaposi sarcoma (vGPCR). In this work, we have investigated whether 1α,25(OH)(2)D(3) exerts its growth inhibitory effects by inhibiting the Nuclear Factor κ B (NFκB) pathway which is highly activated by vGPCR. Cell proliferation studies demonstrated that 1α,25(OH)(2)D(3), similarly to bortezomib, a proteosome inhibitor that suppresses the activation of NFκB, reduced the proliferation of endothelial cells transformed by vGPCR (SVEC-vGPCR). The activity of NFκB in these cells decreased by 70% upon 1α,25(OH)(2)D(3) treatment. Furthermore, time and dose response studies showed that the hormone significantly decreased NFκB and increased IκBα mRNA and protein levels in SVEC-vGPCR cells, whereas in SVEC only IκBα increased significantly. Moreover, NFκB translocation to the nucleus was inhibited and occurred by a mechanism independent of NFκB association with vitamin D(3) receptor (VDR). 1α,25(OH)(2)D(3)-induced increase in IκBα required de novo protein synthesis, and was independent of MAPK and PI3K/Akt pathways. Altogether, these results suggest that down-regulation of the NFκB pathway is part of the mechanism involved in the antiproliferative effects of 1α,25(OH)(2)D(3) on endothelial cells transformed by vGPCR.
Collapse
Affiliation(s)
- Verónica Gonzalez-Pardo
- Departamento de Biología, Bioquímica & Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina.
| | | | | | | | | |
Collapse
|
39
|
Modulation of autophagy-like processes by tumor viruses. Cells 2012; 1:204-47. [PMID: 24710474 PMCID: PMC3901111 DOI: 10.3390/cells1030204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular degradation pathway for long-lived proteins and organelles. This process is activated above basal levels upon cell intrinsic or environmental stress and dysregulation of autophagy has been linked to various human diseases, including those caused by viral infection. Many viruses have evolved strategies to directly interfere with autophagy, presumably to facilitate their replication or to escape immune detection. However, in some cases, modulation of autophagy appears to be a consequence of the virus disturbing the cell’s metabolic signaling networks. Here, we summarize recent advances in research at the interface of autophagy and viral infection, paying special attention to strategies that human tumor viruses have evolved.
Collapse
|
40
|
Do viral infections mimic bacterial sepsis? The role of microvascular permeability: A review of mechanisms and methods. Antiviral Res 2011; 93:2-15. [PMID: 22068147 DOI: 10.1016/j.antiviral.2011.10.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/12/2011] [Accepted: 10/22/2011] [Indexed: 12/13/2022]
Abstract
A dysregulated immune response and functional immunosuppression have been considered the major mechanisms of the bacterial sepsis syndrome. More recently, the loss of endothelial barrier function and resultant microvascular leak have been found to be a key determinant of the pathogenesis of bacterial sepsis. Whether a similar paradigm applies to systemic viral syndromes is not known. Answering this question has far-reaching implications for the development of future anti-viral therapeutic strategies. In this review, we provide an overview of the structure and function of the endothelium and how its barrier integrity is compromised in bacterial sepsis. The various in vitro and in vivo methodologies available to investigate vascular leak are reviewed. Emphasis is placed on the advantages and limitations of cell culture techniques, which represent the most commonly used methods. Within this context, we appraise recent studies of three viruses - hantavirus, human herpes virus 8 and dengue virus - that suggest microvascular leak may play a role in the pathogenesis of these viral infections. We conclude with a discussion of how endothelial barrier breakdown may occur in other viral infections such as H5N1 avian influenza virus.
Collapse
|
41
|
Dai L, Bratoeva M, Toole BP, Qin Z, Parsons C. KSHV activation of VEGF secretion and invasion for endothelial cells is mediated through viral upregulation of emmprin-induced signal transduction. Int J Cancer 2011; 131:834-43. [PMID: 21918972 DOI: 10.1002/ijc.26428] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/29/2011] [Indexed: 11/08/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS)-one of the most common tumors arising in the setting of immune suppression. Hallmarks of KS lesions include KSHV-infected cells of endothelial lineage and neoangiogenesis. Promigratory factors secreted in the tumor microenvironment by KSHV-infected cells promote endothelial cell (EC) migration and angiogenesis but existing therapies targeting these pathways are not widely utilized. This underscores the need for additional characterization of KSHV-host interactions relevant to EC pathogenesis to identify new therapeutic targets. We recently demonstrated that de novo infection by KSHV promotes EC invasion through upregulation of extracellular matrix metalloproteinase inducer (emmprin)-a multifunctional glycoprotein previously shown to induce tumor cell invasion and regional angiogenesis through upregulation of signal transduction and promotion of tumor-stroma interactions. This study was undertaken to determine whether EC invasion for KSHV-infected cells is induced through activation of specific signal transduction pathways and proangiogenic factors by emmprin. We found that KSHV activation of emmprin induces PI3K/Akt- and mitogen-activated protein kinase (MAPK)-dependent secretion of vascular endothelial growth factor (VEGF). Functionally, EC invasion following de novo infection is induced by emmprin-dependent PI3K/Akt and MAPK activation of VEGF. These findings support the potential utility of targeting emmprin for reducing VEGF secretion and EC migration in the KS microenvironment.
Collapse
Affiliation(s)
- Lu Dai
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | |
Collapse
|
42
|
Yang YH, Zhou H, Binmadi NO, Proia P, Basile JR. Plexin-B1 activates NF-κB and IL-8 to promote a pro-angiogenic response in endothelial cells. PLoS One 2011; 6:e25826. [PMID: 22028792 PMCID: PMC3196529 DOI: 10.1371/journal.pone.0025826] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/11/2011] [Indexed: 12/13/2022] Open
Abstract
Background The semaphorins and their receptors, the plexins, are proteins related to c-Met and the scatter factors that have been implicated in an expanding signal transduction network involving co-receptors, RhoA and Ras activation and deactivation, and phosphorylation events. Our previous work has demonstrated that Semaphorin 4D (Sema4D) acts through its receptor, Plexin-B1, on endothelial cells to promote angiogenesis in a RhoA and Akt-dependent manner. Since NF-κB has been linked to promotion of angiogenesis and can be activated by Akt in some contexts, we wanted to examine NF-κB in Sema4D treated cells to determine if there was biological significance for the pro-angiogenic phenotype observed in endothelium. Methods/Principal Findings Using RNA interference techniques, gel shifts and NF-κB reporter assays, we demonstrated NF-κB translocation to the nucleus in Sema4D treated endothelial cells occurring downstream of Plexin-B1. This response was necessary for endothelial cell migration and capillary tube formation and protected endothelial cells against apoptosis as well, but had no effect on cell proliferation. We dissected Plexin-B1 signaling with chimeric receptor constructs and discovered that the ability to activate NF-κB was dependent upon Plexin-B1 acting through Rho and Akt, but did not involve its role as a Ras inhibitor. Indeed, inhibition of Rho by C3 toxin and Akt by LY294002 blocked Sema4D-mediated endothelial cell migration and tubulogenesis. We also observed that Sema4D treatment of endothelial cells induced production of the NF-κB downstream target IL-8, a response necessary for angiogenesis. Finally, we could show through co-immunofluorescence for p65 and CD31 that Sema4D produced by tumor xenografts in nude mice activated NF-κB in vessels of the tumor stroma. Conclusion/Significance These findings provide evidence that Sema4D/Plexin-B1-mediated NF-κB activation and IL-8 production is critical in the generation a pro-angiogenic phenotype in endothelial cells and suggests a new therapeutic target for the anti-angiogenic treatment of some cancers.
Collapse
Affiliation(s)
- Ying-Hua Yang
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Hua Zhou
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Nada O. Binmadi
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Patrizia Proia
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland, United States of America
- Department of Sports Science (DISMOT), University of Palermo, Palermo, Italy
| | - John R. Basile
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland, United States of America
- Marlene and Stuart Greenebaum Cancer Center, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
43
|
Zhu X, Zhou F, Qin D, Zeng Y, Lv Z, Yao S, Lu C. Human immunodeficiency virus type 1 induces lytic cycle replication of Kaposi's-sarcoma-associated herpesvirus: role of Ras/c-Raf/MEK1/2, PI3K/AKT, and NF-κB signaling pathways. J Mol Biol 2011; 410:1035-51. [PMID: 21763505 DOI: 10.1016/j.jmb.2011.03.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 03/20/2011] [Accepted: 03/24/2011] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection significantly increases the risk and development of Kaposi's sarcoma (KS) in individuals infected with KS-associated herpesvirus (KSHV). Previously, we reported that HIV-1 Tat protein induced KSHV replication by modulating the Janus kinase/signal transducers and activators of transcription signaling pathway. Here, we further investigated the possible signaling pathways involved in HIV-1-induced reactivation of KSHV. We showed that HIV-1 infection of primary effusion lymphoma cell lines triggered the reactivation of KSHV, as demonstrated by the expression of KSHV replication and transcription activator, the early viral lytic protein vIL-6 and ORF59 and the production of progeny virions. By utilizing microarray gene expression analyses, transfecting a series of dominant negative mutants, and adding pharmacologic inhibitors, we identified a group of diverse cellular signaling proteins and found that HIV-1 infection of BCBL-1 cells activated phosphatidylinositol 3-kinase/AKT (also called protein kinase B, PKB) pathway and inactivated phosphatase and tensin homolog deleted on chromosome ten and glycogen synthase kinase-3β, which partially modulated HIV-1-induced KSHV reactivation. Furthermore, activation of Ras/c-Raf/MAPK/ERK kinase1/2 pathway contributed to HIV-1-induced KSHV replication. Finally, we discovered that HIV-1 infection activated nuclear factor κB signaling, which exhibits an inhibitory effect on KSHV reactivation in BCBL-1 cells. Collectively, our data demonstrated that HIV-1 infection stimulated these cell signaling pathways that, in turn, contributed to KSHV reactivation, which may be of therapeutic value in acquired immunodeficiency syndrome-related KS patients.
Collapse
Affiliation(s)
- Xiaolei Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Amplification of the angiogenic signal through the activation of the TSC/mTOR/HIF axis by the KSHV vGPCR in Kaposi's sarcoma. PLoS One 2011; 6:e19103. [PMID: 21559457 PMCID: PMC3084756 DOI: 10.1371/journal.pone.0019103] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/16/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Kaposi's sarcoma (KS) is a vascular neoplasm characterized by the dysregulated expression of angiogenic and inflammatory cytokines. The driving force of the KS lesion, the KSHV-infected spindle cell, secretes elevated levels of vascular endothelial growth factor (VEGF), essential for KS development. However, the origin of VEGF in this tumor remains unclear. METHODOLOGY/PRINCIPAL FINDINGS Here we report that the KSHV G protein-coupled receptor (vGPCR) upregulates VEGF in KS through an intricate paracrine mechanism. The cytokines secreted by the few vGPCR-expressing tumor cells activate in neighboring cells multiple pathways (including AKT, ERK, p38 and IKKβ) that, in turn, converge on TSC1/2, promoting mTOR activation, HIF upregulation, and VEGF secretion. Conditioned media from vGPCR-expressing cells lead to an mTOR-dependent increase in HIF-1α and HIF-2α protein levels and VEGF upregulation. In a mouse allograft model for KS, specific inhibition of the paracrine activation of mTOR in non-vGPCR-expressing cells was sufficient to inhibit HIF upregulation in these cells, and abolished the ability of the vGPCR-expressing cells to promote tumor formation in vivo. Similarly, pharmacologic inhibition of HIF in this model blocked VEGF secretion and also lead to tumor regression. CONCLUSIONS/SIGNIFICANCE Our findings provide a compelling explanation for how the few tumor cells expressing vGPCR can contribute to the dramatic amplification of VEGF secretion in KS, and further provide a molecular mechanism for how cytokine dysregulation in KS fuels angiogenesis and tumor development. These data further suggest that activation of HIF by vGPCR may be a vulnerable target for the treatment of patients with KS.
Collapse
|
45
|
Abstract
NF-κB is a pivotal transcription factor that controls cell survival and proliferation in diverse physiological processes. The activity of NF-κB is tightly controlled through its cytoplasmic sequestration by specific inhibitors, IκBs. Various cellular stimuli induce the activation of an IκB kinase, which phosphorylates IκBs and triggers their proteasomal degradation, causing nuclear translocation of activated NF-κB. Under normal conditions, the activation of NF-κB occurs transiently, thus ensuring rapid but temporary induction of target genes. Deregulated NF-κB activation contributes to the development of various diseases, including cancers and immunological disorders. Accumulated studies demonstrate that the NF-κB signaling pathway is a target of several human oncogenic viruses, including the human T cell leukemia virus type 1, the Kaposi sarcoma-associated herpesvirus, and the Epstein-Bar virus. These viruses encode specific oncoproteins that target different signaling components of the NF-κB pathway, leading to persistent activation of NF-κB. This chapter will discuss the molecular mechanisms by which NF-κB is activated by the viral oncoproteins.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065
| |
Collapse
|
46
|
Phosphorylation and polyubiquitination of transforming growth factor beta-activated kinase 1 are necessary for activation of NF-kappaB by the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. J Virol 2010; 85:1980-93. [PMID: 21159881 DOI: 10.1128/jvi.01911-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) G protein-coupled receptor (vGPCR) protein has been shown to induce several signaling pathways leading to the modulation of host gene expression. The hijacking of these pathways facilitates the viral life cycle and leads to tumorigenesis. In the present work, we show that transforming growth factor β (TGF-β)-activated kinase 1 (TAK1) is an important player in NF-κB activation induced by vGPCR. We observed that the expression of an inactive TAK1 kinase mutant (TAK1M) reduces vGPCR-induced NF-κB nuclear translocation and transcriptional activity. Consequently, the expression of several NF-κB target genes normally induced by vGPCR was blocked by TAK1M expression, including interleukin 8 (IL-8), Gro1, IκBα, COX-2, cIAP2, and Bcl2 genes. Similar results were obtained after downregulation of TAK1 by small interfering RNA (siRNA) technology. The expression of vGPCR recruited TAK1 to the plasma membrane, and vGPCR interacts with TAK1. vGPCR expression also induced TAK1 phosphorylation and lysine 63-linked polyubiquitination, the two markers of the kinase's activation. Finally, inhibition of TAK1 by celastrol inhibited vGPCR-induced NF-κB activation, indicating this natural compound could be used as a potential therapeutic drug against KSHV malignancies involving vGPCR.
Collapse
|
47
|
Remodeling of VE-cadherin junctions by the human herpes virus 8 G-protein coupled receptor. Oncogene 2010; 30:190-200. [DOI: 10.1038/onc.2010.411] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Jham BC, Montaner S. The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor: Lessons on dysregulated angiogenesis from a viral oncogene. J Cell Biochem 2010; 110:1-9. [PMID: 20213674 DOI: 10.1002/jcb.22524] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tumor viruses can induce cell transformation by overcoming cellular defense mechanisms and promoting the ungoverned proliferation of infected cells. To this end, functionally related viral oncogenes have evolved in disparate viruses to over-ride key proliferative and survival intracellular pathways, thus assuring efficient viral replication and contributing to tumor formation. Indeed, the study of viral oncogenes has been a powerful tool for disclosing fundamental insights into these basic cellular processes. In this regard, the Kaposi's sarcoma-associated herpesvirus (KSHV or HHV8), the etiological agent of Kaposi's sarcoma (KS), is an exemplary model of an oncogenic virus that includes within its genome several homologues of cellular genes implicated in the regulation of cell proliferation and apoptosis. However, emerging evidence now points to a single KSHV gene, ORF74, encoding for the viral G protein-coupled receptor (vGPCR), as essential for KS development. Expressed in only a fraction of cells within KS lesions, this viral receptor induces tumorigenesis through both autocrine and paracrine mechanisms. Indeed, work from several laboratories has demonstrated that vGPCR can promote cell proliferation, enhance cell survival, modulate cell migration, stimulate angiogenesis, and recruit inflammatory cells, both in expressing cells, as well as in neighboring (bystander) cells. Examination of this powerful viral oncogene may expose novel targets for the treatment of patients with KS and could ultimately provide a unique perspective into how GPCRs, and specifically chemokine receptors, contribute to angiogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Bruno C Jham
- Department of Oncology and Diagnostic Sciences, University of Maryland, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
49
|
NF-κB signaling modulation by EBV and KSHV. Trends Microbiol 2010; 18:248-57. [DOI: 10.1016/j.tim.2010.04.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 03/24/2010] [Accepted: 04/02/2010] [Indexed: 12/12/2022]
|
50
|
Choi YB, Nicholas J. Induction of angiogenic chemokine CCL2 by human herpesvirus 8 chemokine receptor. Virology 2010; 397:369-78. [PMID: 20004457 PMCID: PMC3024549 DOI: 10.1016/j.virol.2009.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/21/2009] [Accepted: 11/14/2009] [Indexed: 12/16/2022]
Abstract
Human herpesvirus 8 (HHV-8) is associated with Kaposi's sarcoma (KS), an endothelial cell lesion believed to be initiated and driven primarily by cytokine dysregulation. Among the viral proteins suspected as contributing to viral pathogenesis is the lytically expressed viral G protein-coupled receptor (vGPCR), which can induce various cellular cytokines. CC ligand-2 (CCL2/MCP-1) is a vGPCR-regulated angiogenic chemokine found at elevated levels in KS lesions and induced by HHV-8 infection of endothelial cells. Here we show that vGPCR induces CCL2 in endothelial cells via activation of C/EBPbeta and that vGPCR and C/EBPbeta are critical components of CCL2 induction by HHV-8 infection of endothelial cultures. To our knowledge, this is the first report of vGPCR-mediated cytokine induction, and its characterization, in the context of virus infection. Our results identify a mechanism by which vGPCR can contribute, in a host cell shutoff-independent manner, to viral pathogenesis.
Collapse
Affiliation(s)
| | - John Nicholas
- Corresponding author. Phone: 410 502 6801; Fax: 410 502 6802;
| |
Collapse
|