1
|
Zhu L, Gao N, Zhu Z, Zhang S, Li X, Zhu J. Bioinformatics analysis of differentially expressed genes related to ischemia and hypoxia in spinal cord injury and construction of miRNA-mRNA or mRNA-transcription factor interaction network. Toxicol Mech Methods 2024; 34:300-318. [PMID: 37990533 DOI: 10.1080/15376516.2023.2286363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Previous studies show that spinal cord ischemia and hypoxia is an important cause of spinal cord necrosis and neurological loss. Therefore, the study aimed to identify genes related to ischemia and hypoxia after spinal cord injury (SCI) and analyze their functions, regulatory mechanism, and potential in regulating immune infiltration. METHODS The expression profiles of GSE5296, GSE47681, and GSE217797 were downloaded from the Gene Expression Omnibus database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to determine the function and pathway enrichment of ischemia- and hypoxia-related differentially expressed genes (IAHRDEGs) in SCI. LASSO model was constructed, and support vector machine analysis was used to identify key genes. The diagnostic values of key genes were evaluated using decision curve analysis and receiver operating characteristic curve analysis. The interaction networks of miRNAs-IAHRDEGs and IAHRDEGs-transcription factors were predicted and constructed with the ENCORI database and Cytoscape software. CIBERSORT algorithm was utilized to analyze the correlation between key gene expression and immune cell infiltration. RESULTS There were 27 IAHRDEGs identified to be significantly expressed in SCI at first. These genes were mostly significantly enriched in wound healing function and the pathway associated with lipid and atherosclerosis. Next, five key IAHRDEGs (Abca1, Casp1, Lpl, Procr, Tnfrsf1a) were identified and predicted to have diagnostic value. Moreover, the five key genes are closely related to immune cell infiltration. CONCLUSION Abca1, Casp1, Lpl, Procr, and Tnfrsf1a may promote the pathogenesis of ischemic or hypoxic SCI by regulating vascular damage, inflammation, and immune infiltration.
Collapse
Affiliation(s)
- Lijuan Zhu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Na Gao
- Department of Pediatrics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhibo Zhu
- Medical Equipment Department, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Shiping Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xi Li
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jing Zhu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
2
|
Chaltel-Lima L, Domínguez F, Domínguez-Ramírez L, Cortes-Hernandez P. The Role of the Estrogen-Related Receptor Alpha (ERRa) in Hypoxia and Its Implications for Cancer Metabolism. Int J Mol Sci 2023; 24:ijms24097983. [PMID: 37175690 PMCID: PMC10178695 DOI: 10.3390/ijms24097983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Under low oxygen conditions (hypoxia), cells activate survival mechanisms including metabolic changes and angiogenesis, which are regulated by HIF-1. The estrogen-related receptor alpha (ERRα) is a transcription factor with important roles in the regulation of cellular metabolism that is overexpressed in hypoxia, suggesting that it plays a role in cell survival in this condition. This review enumerates and analyses the recent evidence that points to the role of ERRα as a regulator of hypoxic genes, both in cooperation with HIF-1 and through HIF-1- independent mechanisms, in invertebrate and vertebrate models and in physiological and pathological scenarios. ERRα's functions during hypoxia include two mechanisms: (1) direct ERRα/HIF-1 interaction, which enhances HIF-1's transcriptional activity; and (2) transcriptional activation by ERRα of genes that are classical HIF-1 targets, such as VEGF or glycolytic enzymes. ERRα is thus gaining recognition for its prominent role in the hypoxia response, both in the presence and absence of HIF-1. In some models, ERRα prepares cells for hypoxia, with important clinical/therapeutic implications.
Collapse
Affiliation(s)
- Leslie Chaltel-Lima
- Segal Cancer Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Fabiola Domínguez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco 74360, Mexico
| | - Lenin Domínguez-Ramírez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco 74360, Mexico
| | - Paulina Cortes-Hernandez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco 74360, Mexico
| |
Collapse
|
3
|
Li HX, Feng J, Liu Q, Ou BQ, Lu SY, Ma Y. PACAP-derived mutant peptide MPAPO protects trigeminal ganglion cell and the retina from hypoxic injury through anti-oxidative stress, anti-apoptosis, and promoting axon regeneration. Biochim Biophys Acta Gen Subj 2021; 1865:130018. [PMID: 34597723 DOI: 10.1016/j.bbagen.2021.130018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to determine whether the MPAPO, derived peptide of pituitary adenylate cyclase-activating polypeptide (PACAP), would protect trigeminal ganglion cells (TGCs) and the mice retinas from a hypoxic insult. The nerve endings of the ophthalmic nerve of the trigeminal nerve are widely distributed in eye tissues. In TGCs after hypoxia exposure, we discovered that reactive oxygen species level, the contents of cytosolic cytochrome c and cleaved-caspase-3 were significantly increased, in the meanwhile, m-Calpain was activated and cytoskeleton proteins (αII-spectrin and Synapsin) were degraded, neurites of TGCs disappeared, but these effects were reversed in TGCs treated with MPAPO. The structure of the mice retinas after hypoxic exposure was disordered. Increased lipid peroxidation (LPO), decreased glutathione (GSH) levels, and decreased superoxide dismutase (SOD) activity, positive cells of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), the disintegration of nerve fibers was examined in the retinas following a hypoxic insult. Disordered retina was attenuated with MPAPO eye drops, as well as hypoxia-induced apoptosis in the developing retina, increase in LPO, and decrease in GSH levels and SOD activity of the retina. Moreover, the disintegrated retinal nerve fibers were reassembled after MPAPO treatment. These results suggest that hypoxia induces oxidative stress, apoptosis, and neurites disruption, while MPAPO is remarkably protective against these adverse effects of hypoxia in TGCs and the developing retinas by specifically activating PAC1 receptor.
Collapse
Affiliation(s)
- Hui-Xian Li
- Institute of Biomedicine, Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The national Demonstration center for Experimental Education of Life Science and Technology, Jinan University, 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Jia Feng
- Institute of Biomedicine, Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The national Demonstration center for Experimental Education of Life Science and Technology, Jinan University, 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Qian Liu
- Institute of Biomedicine, Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The national Demonstration center for Experimental Education of Life Science and Technology, Jinan University, 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Bi-Qian Ou
- Institute of Biomedicine, Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The national Demonstration center for Experimental Education of Life Science and Technology, Jinan University, 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Shi-Yin Lu
- Institute of Biomedicine, Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The national Demonstration center for Experimental Education of Life Science and Technology, Jinan University, 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Yi Ma
- Institute of Biomedicine, Department of Cellular Biology, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The national Demonstration center for Experimental Education of Life Science and Technology, Jinan University, 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Sefiani A, Geoffroy CG. The Potential Role of Inflammation in Modulating Endogenous Hippocampal Neurogenesis After Spinal Cord Injury. Front Neurosci 2021; 15:682259. [PMID: 34220440 PMCID: PMC8249862 DOI: 10.3389/fnins.2021.682259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Currently there are approximately 291,000 people suffering from a spinal cord injury (SCI) in the United States. SCI is associated with traumatic changes in mobility and neuralgia, as well as many other long-term chronic health complications, including metabolic disorders, diabetes mellitus, non-alcoholic steatohepatitis, osteoporosis, and elevated inflammatory markers. Due to medical advances, patients with SCI survive much longer than previously. This increase in life expectancy exposes them to novel neurological complications such as memory loss, cognitive decline, depression, and Alzheimer's disease. In fact, these usually age-associated disorders are more prevalent in people living with SCI. A common factor of these disorders is the reduction in hippocampal neurogenesis. Inflammation, which is elevated after SCI, plays a major role in modulating hippocampal neurogenesis. While there is no clear consensus on the mechanism of the decline in hippocampal neurogenesis and cognition after SCI, we will examine in this review how SCI-induced inflammation could modulate hippocampal neurogenesis and provoke age-associated neurological disorders. Thereafter, we will discuss possible therapeutic options which may mitigate the influence of SCI associated complications on hippocampal neurogenesis.
Collapse
|
5
|
Sun X, Liu XZ, Wang J, Tao HR, Zhu T, Jin WJ, Shen KP. Changes in neurological and pathological outcomes in a modified rat spinal cord injury model with closed canal. Neural Regen Res 2020; 15:697-704. [PMID: 31638094 PMCID: PMC6975156 DOI: 10.4103/1673-5374.266919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most animal spinal cord injury models involve a laminectomy, such as the weight drop model or the transection model. However, in clinical practice, many patients undergo spinal cord injury while maintaining a relatively complete spinal canal. Thus, open spinal cord injury models often do not simulate real injuries, and few previous studies have investigated whether having a closed spinal canal after a primary spinal cord injury may influence secondary processes. Therefore, we aimed to assess the differences in neurological dysfunction and pathological changes between rat spinal cord injury models with closed and open spinal canals. Sprague-Dawley rats were randomly divided into three groups. In the sham group, the tunnel was expanded only, without inserting a screw into the spinal canal. In the spinal cord injury with open canal group, a screw was inserted into the spinal canal to cause spinal cord injury for 5 minutes, and then the screw was pulled out, leaving a hole in the vertebral plate. In the spinal cord injury with closed canal group, after inserting a screw into the spinal canal for 5 minutes, the screw was pulled out by approximately 1.5 mm and the flat end of the screw remained in the hole in the vertebral plate so that the spinal canal remained closed; this group was the modified model, which used a screw both to compress the spinal cord and to seal the spinal canal. At 7 days post-operation, the Basso-Beattie-Bresnahan scale was used to measure changes in neurological outcomes. Hematoxylin-eosin staining was used to assess histopathology. To evaluate the degree of local secondary hypoxia, immunohistochemical staining and western blot assays were applied to detect the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Compared with the spinal cord injury with open canal group, in the closed canal group the Basso-Beattie-Bresnahan scores were lower, cell morphology was more irregular, the percentage of morphologically normal neurons was lower, the percentages of HIF-1α- and VEGF-immunoreactive cells were higher, and HIF-1α and VEGF protein expression was also higher. In conclusion, we successfully established a rat spinal cord injury model with closed canal. This model could result in more serious neurological dysfunction and histopathological changes than in open canal models. All experimental procedures were approved by the Institutional Animal Care Committee of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, China (approval No. HKDL201810) on January 30, 2018.
Collapse
Affiliation(s)
- Xin Sun
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Zhen Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Wang
- Department of Pathology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Rong Tao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Zhu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Jie Jin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang-Ping Shen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Cheng X, Long H, Chen W, Xu J, Wang X, Li F. The correlation between hypoxia-inducible factor-1α, matrix metalloproteinase-9 and functional recovery following chronic spinal cord compression. Brain Res 2019; 1718:75-82. [PMID: 31054885 DOI: 10.1016/j.brainres.2019.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
The molecular mechanisms underlying cervical spondylotic myelopathy (CSM) are poorly understood. To assess the correlation between HIF-1α, MMP-9 and functional recovery following chronic cervical spinal cord compression (CSCI). Rats in the sham group underwent C5 semi-laminectomy, while a water-absorbable polyurethane polymer was implanted into the C6 epidural space in the chronic CSCI group. Basso, Beattie and Bresnahan score and somatosensory evoked potentials were used to evaluate neurological function. Hematoxylin and eosin staining was performed to assess pathological changes in the spinal cord, while immunohistochemical analysis was used to examine HIF-1α and MMP-9 expression on days 7, 28, 42 and 70 post-surgery. Normal rats were only used for HE staining. The BBB score was significantly reduced on day 28 following CSCI, while SEPs exhibited decreased amplitude and increased latency. In chronic CSCI group, the BBB score and SEPs significantly improved on day 70 compared with day 28. HE staining revealed different level of spinal cord edema after chronic CSCI. Compared with the sham group, immunohistochemical analyses revealed that HIF-1α- and MMP-9-positive cells were increased on day 7 and peaked on day 28. HIF-1α and MMP-9 expression were demonstrated to be significantly positively correlated, whereas HIF-1α expression and BBB score were significantly negatively correlated, as well MMP-9 expression and BBB score. HIF-1α and MMP-9 expression are increased following chronic spinal cord compression and are positively correlated with one another. Decreased expression of HIF-1α and MMP-9 may contribute to functional recovery following CSCI. This expression pattern of HIF-1α and MMP-9 may give a new perspective on the molecular mechanisms of CSM.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| | - Houqing Long
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| | - Wenli Chen
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Jinghui Xu
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xiaobo Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Fobao Li
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| |
Collapse
|
7
|
Zhang G, Zha J, Liu J, Di J. Minocycline impedes mitochondrial-dependent cell death and stabilizes expression of hypoxia inducible factor-1α in spinal cord injury. Arch Med Sci 2019; 15:475-483. [PMID: 30899301 PMCID: PMC6425201 DOI: 10.5114/aoms.2018.73520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 01/01/2018] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION One of the crucial mechanisms following spinal cord injury is mitochondria-associated cell death. Minocycline, an anti-inflammatory drug, is well known to impede mitochondrial cell death. However, there has been no study on the effect of minocycline linking Fas cell surface death receptor (FAS)-mediated cell death and hypoxia inducible factor (HIF-1α), the targets involved in mitochondrial cell death. MATERIAL AND METHODS Male Sprague Dawley rats (N = 15, divided into three groups) were subjected to traumatic spinal cord injury and were injected with minocycline (n = 5) (90 mg/kg and later a 45 mg/kg dose twice a day (every 12 h)). Injection with sterile PBS in injured animals served as the vehicle (n = 5) and another group comprised healthy animals (n = 5). TUNEL assay was used to quantify cell death. The release of Smac/Diablo, cytochrome-c (cyt-c), HIF-1α, FAS ligand (FASL) and tumour necrosis factor-α (TNF-α) was measured using ELISA. Expression of HIF-1α, FASL and other cell death associated factors was quantified at the mRNA and protein level and confirmed with immunohistochemistry. RESULTS There was a marked reduction in the HIF-1α and FASL expression levels in the minocycline-treated group compared to the vehicle. The reduction of HIF-1α and FASL was associated with other factors linked to cell death (Smac/Diablo, cyt-c, TNF-α, p53, caspase-8 and BH3 interacting domain death agonist (BID)) (p < 0.5; *p < 0.05 vs. vehicle group, **p < 0.01 vs. vehicle group). CONCLUSIONS The present study focuses on the investigation of minocycline in inhibiting mitochondria-associated cell death by modulating FASL and HIF-1α expression, which are seemingly interlinked mechanisms contributing to cell death.
Collapse
Affiliation(s)
- Guolei Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junpu Zha
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junchuan Liu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Di
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia- and plasticity-associated protein expression. PLoS One 2018; 13:e0197486. [PMID: 29775479 PMCID: PMC5959066 DOI: 10.1371/journal.pone.0197486] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/03/2018] [Indexed: 01/24/2023] Open
Abstract
One of the most promising approaches to improve recovery after spinal cord injury (SCI) is the augmentation of spontaneously occurring plasticity in uninjured neural pathways. Acute intermittent hypoxia (AIH, brief exposures to reduced O2 levels alternating with normal O2 levels) initiates plasticity in respiratory systems and has been shown to improve recovery in respiratory and non-respiratory spinal systems after SCI in experimental animals and humans. Although the mechanism by which AIH elicits its effects after SCI are not well understood, AIH is known to alter protein expression in spinal neurons in uninjured animals. Here, we examine hypoxia- and plasticity-related protein expression using immunofluorescence in spinal neurons in SCI rats that were treated with AIH combined with motor training, a protocol which has been demonstrated to improve recovery of forelimb function in this lesion model. Specifically, we assessed protein expression in spinal neurons from animals with incomplete cervical SCI which were exposed to AIH treatment + motor training either for 1 or 7 days. AIH treatment consisted of 10 episodes of AIH: (5 min 11% O2: 5 min 21% O2) for 7 days beginning at 4 weeks post-SCI. Both 1 or 7 days of AIH treatment + motor training resulted in significantly increased expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) relative to normoxia-treated controls, in neurons both proximal (cervical) and remote (lumbar) to the SCI. All other markers examined were significantly elevated in the 7 day AIH + motor training group only, at both cervical and lumbar levels. These markers included vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and phosphorylated and nonphosphorylated forms of the BDNF receptor tropomyosin-related kinase B (TrkB). In summary, AIH induces plasticity at the cellular level after SCI by altering the expression of major plasticity- and hypoxia-related proteins at spinal regions proximal and remote to the SCI. These changes occur under the same AIH protocol which resulted in recovery of limb function in this animal model. Thus AIH, which induces plasticity in spinal circuitry, could also be an effective therapy to restore motor function after nervous system injury.
Collapse
|
9
|
Zhang G, Zha J, Liu J, Di J. WITHDRAWN: Minocycline an antimicrobial agent attenuates the mitochondrial dependent cell death and stabilizes the expression of HIF-1α in spinal cord injury. Microb Pathog 2018:S0882-4010(18)30284-5. [PMID: 29530807 DOI: 10.1016/j.micpath.2018.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Guolei Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Junpu Zha
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Junchuan Liu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jun Di
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
10
|
Vibert L, Daulny A, Jarriault S. Wound healing, cellular regeneration and plasticity: the elegans way. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 62:491-505. [PMID: 29938761 PMCID: PMC6161810 DOI: 10.1387/ijdb.180123sj] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regeneration and wound healing are complex processes that allow organs and tissues to regain their integrity and functionality after injury. Wound healing, a key property of epithelia, involves tissue closure that in some cases leads to scar formation. Regeneration, a process rather limited in mammals, is the capacity to regrow (parts of) an organ or a tissue, after damage or amputation. What are the properties of organs and the features of tissue permitting functional regrowth and repair? What are the cellular and molecular mechanisms underlying these processes? These questions are crucial both in fundamental and applied contexts, with important medical implications. The mechanisms and cells underlying tissue repair have thus been the focus of intense investigation. The last decades have seen rapid progress in the domain and new models emerging. Here, we review the fundamental advances and the perspectives that the use of C. elegans as a model have brought to the mechanisms of wound healing and cellular plasticity, axon regeneration and transdifferentiation in vivo.
Collapse
Affiliation(s)
- Laura Vibert
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Anne Daulny
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Sophie Jarriault
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Hisamoto N, Matsumoto K. Signal transduction cascades in axon regeneration: insights from C. elegans. Curr Opin Genet Dev 2017; 44:54-60. [PMID: 28213159 DOI: 10.1016/j.gde.2017.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 02/07/2023]
Abstract
Axon regeneration after nerve injury is a conserved biological process in many animals, including humans. The nematode Caenorhabditis elegans (C. elegans) has recently emerged as a genetically tractable model for studying regenerative responses in neurons. Extensive studies over several years using this organism have revealed a number of intrinsic and extrinsic signal transduction cascades that regulate axon regeneration, and these are found to be conserved from worms to humans. Further studies have demonstrated that these cascades consist of several signaling networks that ultimately merge into the c-Jun N-terminal kinase (JNK) cascade. In this review, we describe some recent insights into the signaling cascades controlling axon regeneration in C. elegans and describe their conserved roles in other organisms including mammals.
Collapse
Affiliation(s)
- Naoki Hisamoto
- Department of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Kunihiro Matsumoto
- Department of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
12
|
Lin W, Wang S, Yang Z, Lin J, Ke Q, Lan W, Shi J, Wu S, Cai B. Heme Oxygenase-1 Inhibits Neuronal Apoptosis in Spinal Cord Injury through Down-Regulation of Cdc42-MLK3-MKK7-JNK3 Axis. J Neurotrauma 2017; 34:695-706. [PMID: 27526795 DOI: 10.1089/neu.2016.4608] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mechanism by which spinal cord injury (SCI) induces neuronal death has not been thoroughly understood. Investigation on the molecular signal pathways involved in SCI-mediated neuronal apoptosis is important for development of new therapeutics for SCI. In the current study, we explore the role of heme oxygenase-1 (HO-1) in the modulation of mixed lineage kinase 3/mitogen-activated protein kinase kinase/cJUN N-terminal kinase 3 (MLK3/MKK7/JNK3) signaling, which is a pro-apoptotic pathway, after SCI. We found that MLK3/MKK7/JNK3 signaling was activated by SCI in a time-dependent manner, demonstrated by increase in activating phosphorylation of MLK3, MKK7, and JNK3. SCI also induced HO-1 expression. Administration of HO-1-expressing adeno-associated virus before SCI introduced expression of exogenous HO-1 in injured spinal cords. Exogenous HO-1 reduced phosphorylation of MLK3, MKK7, and JNK3. Consistent with its inhibitory effect on MLK3/MKK7/JNK3 signaling, exogenous HO-1 decreased SCI-induced neuronal apoptosis and improved neurological score. Further, we found that exogenous HO-1 inhibited expression of cell division cycle 42 (Cdc42), which is crucial for MLK3 activation. In vitro experiments indicated that Cdc42 was essential for neuronal apoptosis, while transduction of neurons with HO-1-expressing adeno-associated virus significantly reduced neuronal apoptosis to enhance neuronal survival. Therefore, our study disclosed a novel mechanism by which HO-1 exerted its neuroprotective efficacy. Our discovery might be valuable for developing a new therapeutic approach for SCI.
Collapse
Affiliation(s)
- Wenping Lin
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Siyuan Wang
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Zhen Yang
- 2 Department of Orthopedic Surgery, the People's Hospital of Guizhou Province , Guiyang, China
| | - Jianhua Lin
- 3 Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University , Fuzhou, China
| | - Qingfeng Ke
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Wenbin Lan
- 3 Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University , Fuzhou, China
| | - Jinxing Shi
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Shiqiang Wu
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Bin Cai
- 4 Department of Neurology and Institute of Neurology, the First Affiliated Hospital, Fujian Medical University , Fuzhou, China
| |
Collapse
|
13
|
Spitzbarth I, Lempp C, Kegler K, Ulrich R, Kalkuhl A, Deschl U, Baumgärtner W, Seehusen F. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis. Brain Behav 2016; 6:e00472. [PMID: 27247850 PMCID: PMC4864272 DOI: 10.1002/brb3.472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/24/2016] [Accepted: 03/11/2016] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION CDV-DL (Canine distemper virus-induced demyelinating leukoencephalitis) represents a spontaneously occurring animal model for demyelinating disorders. Axonopathy represents a key pathomechanism in this disease; however, its underlying pathogenesis has not been addressed in detail so far. This study aimed at the characterization of axonal cytoskeletal, transport, and potential regenerative changes with a parallel focus upon Schwann cell remyelination. METHODS Immunohistochemistry of canine cerebellar tissue as well as a comparative analysis of genes from an independent microarray study were performed. RESULTS Increased axonal immunoreactivity for nonphosphorylated neurofilament was followed by loss of cytoskeletal and motor proteins. Interestingly, a subset of genes encoding for neurofilament subunits and motor proteins was up-regulated in the chronic stage compared to dogs with subacute CDV-DL. However, immunohistochemically, hints for axonal regeneration were restricted to up-regulated axonal positivity of hypoxia-inducible factor 1 alpha, while growth-associated protein 43, erythropoietin and its receptor were not or even down-regulated. Periaxin-positive structures, indicative of Schwann cell remyelination, were only detected within few advanced lesions. CONCLUSIONS The present findings demonstrate a complex sequence of axonal cytoskeletal breakdown mechanisms. Moreover, though sparse, this is the first report of Schwann cell remyelination in CDV-DL. Facilitation of these very limited endogenous regenerative responses represents an important topic for future research.
Collapse
Affiliation(s)
- Ingo Spitzbarth
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Charlotte Lempp
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany
| | - Kristel Kegler
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Reiner Ulrich
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Arno Kalkuhl
- Department of Non-Clinical Drug Safety Boehringer Ingelheim Pharma GmbH & Co KG Biberach (Riß) Germany
| | - Ulrich Deschl
- Department of Non-Clinical Drug Safety Boehringer Ingelheim Pharma GmbH & Co KG Biberach (Riß) Germany
| | - Wolfgang Baumgärtner
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Frauke Seehusen
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany
| |
Collapse
|
14
|
Yonan JM, Binder DK. Aquaporin-4 and spinal cord injury. World J Neurol 2016; 6:1-13. [DOI: 10.5316/wjn.v6.i1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/25/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
Edema formation is a major problem following traumatic spinal cord injury (SCI) that acts to exacerbate secondary damage. Severity of edema correlates with reduced neurological outcome in human patients. To date, there are no effective treatments to directly resolve edema within the spinal cord. The aquaporin-4 (AQP4) water channel is found on membranes of astrocytic endfeet in direct contact with blood vessels, the glia limitans in contact with the cerebrospinal fluid and ependyma around the central canal. Being so locally expressed at the interface between fluid and tissue allow AQP4 channels to play an important role in the bidirectional regulation of water homeostasis under normal conditions and following trauma. With the need to better understand the pathophysiology underlying the devastating cellular events in SCI, animal models have become an integral part of exploration. Inevitably, several injury models have been developed (contusion, compression, transection) resulting in difficult interpretation between studies with conflicting results. This is true in the case of understanding the role of AQP4 in the progression and resolution of edema following SCI, whose role is still not completely understood and is highly dependent on the type of edema present (vasogenic vs cytotoxic). Here, we discuss regulation of AQP4 in varying injury models and the effects of potential therapeutic interventions on expression, edema formation and functional recovery. Better understanding of the precise role of AQP4 following a wide range of injuries will help to understand optimal treatment timing following human SCI for prime therapeutic benefit and enhanced neurological outcome.
Collapse
|
15
|
Lin WP, Xiong GP, Lin Q, Chen XW, Zhang LQ, Shi JX, Ke QF, Lin JH. Heme oxygenase-1 promotes neuron survival through down-regulation of neuronal NLRP1 expression after spinal cord injury. J Neuroinflammation 2016; 13:52. [PMID: 26925775 PMCID: PMC4772494 DOI: 10.1186/s12974-016-0521-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
Background Understanding the mechanisms underlying neuronal death in spinal cord injury (SCI) and developing novel therapeutic approaches for SCI-induced damage are critical for functional recovery. Here we investigated the role of heme oxygenase-1 (HO-1) in neuroprotection after SCI. Methods Adeno-associated virus expressing HO-1 was prepared and injected into rat spinal cords before SCI model was performed. HO-1 expression, inflammasome activation, and the presence of inflammatory cytokines were determined by quantitative polymerase chain reaction, immunohistological staining, immunoblot, and immunoprecipitation. Neuronal apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling. The hindlimb locomotor function was evaluated for extent of neurologic damage. In an in vitro model, hydrogen peroxide was used to induce similar inflammasome activation in cultured primary spinal cord neurons, followed by evaluation of above parameters with or without transduction of HO-1-expressing adeno-associated virus. Results Endogenous HO-1 expression was found in spinal cord neurons after SCI in vivo, in association with the expression of Nod-like receptor protein 1 (NLRP1) and the formation of NLRP1 inflammasomes. Administration of HO-1-expressing adeno-associated virus effectively decreased expression of NLRP1, therefore alleviating NLRP1 inflammasome-induced neuronal death and improving functional recovery. In the in vitro model, exogenous HO-1 expression protected neurons from hydrogen peroxide-induced neuronal death by inhibiting NLRP1 expression. In addition, HO-1 inhibited expression of activating transcription factor 4 (ATF4), which is a transcription factor regulating NLRP1 expression. Conclusions HO-1 protects spinal cord neurons after SCI through inhibiting NLRP1 inflammasome formation. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0521-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Ping Lin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, China.
| | - Gong-Peng Xiong
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009, China.
| | - Qing Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China.
| | - Xuan-Wei Chen
- Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China.
| | - Li-Qun Zhang
- Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China.
| | - Jin-Xing Shi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, China.
| | - Qing-Feng Ke
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, China.
| | - Jian-Hua Lin
- Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
16
|
Analysis of the potential pathways and target genes in spinal cord injury using bioinformatics methods. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0385-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Alam T, Maruyama H, Li C, Pastuhov SI, Nix P, Bastiani M, Hisamoto N, Matsumoto K. Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans. Nat Commun 2016; 7:10388. [PMID: 26790951 PMCID: PMC4735912 DOI: 10.1038/ncomms10388] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 12/05/2015] [Indexed: 12/28/2022] Open
Abstract
The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7 5-HT receptor. Furthermore, we identify the rhgf-1 and rga-5 genes, encoding homologues of RhoGEF and RhoGAP, respectively, as regulators of axon regeneration. We demonstrate that one pathway initiated by SER-7 acts upstream of the C. elegans RhoA homolog RHO-1 in neuron regeneration, which functions via G12α and RHGF-1. In this pathway, RHO-1 inhibits diacylglycerol kinase, resulting in an increase in diacylglycerol. SER-7 also promotes axon regeneration by activating the cyclic AMP (cAMP) signalling pathway. Thus, HIF-1-mediated activation of 5-HT signalling promotes axon regeneration by activating both the RhoA and cAMP pathways.
Collapse
Affiliation(s)
- Tanimul Alam
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroki Maruyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Chun Li
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Strahil Iv. Pastuhov
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Paola Nix
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | - Michael Bastiani
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
18
|
Zhang HL, Wang J, Tang L. Sema4D knockdown in oligodendrocytes promotes functional recovery after spinal cord injury. Cell Biochem Biophys 2014; 68:489-96. [PMID: 23949850 DOI: 10.1007/s12013-013-9727-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Semaphorin4D (Sema4D) belongs to Semaphorins family and is secreted and membrane-bound protein. Its function on angiogenesis and axon regeneration makes it an ideal therapeutic target for spinal cord injury (SCI). Here we examined Sema4D expression profile by real-time PCR and western blot and found Sema4D was upregulated after SCI. In vitro study showed Sema4D was not only expressed in oligodendrocytes but also in endothelial cells (ECs). Hypoxia can mimic Sema4D upregulation in both cell lines. Moreover, overexpression of Sema4D through lentivirus in ECs promoted tube formation. However, Sema4D overexpression in oligodendrocytes precursor cells (OPCs) inhibited neuron myelination in neuron-oligodendrocyte co-culture system. Therefore, Sema4D knockdown in OPCs was applied in SCI rats. The results indicated that Sema4D knockdown significantly promoted functional recovery with blood-brain barrier score. Taken together, our data suggest that specific Sema4D knockdown in oligodendrocytes without disturbing its angiogenesis effect can be a beneficial strategy for SCI treatment.
Collapse
Affiliation(s)
- Hong-Lei Zhang
- Department of Spine Surgery, Liaocheng People's Hospital Affiliated to Taishan Medical University, Liaocheng, 252000, Shandong Province, China
| | | | | |
Collapse
|
19
|
Cui H, Han W, Yang L, Chang Y. Expression of hypoxia-inducible factor 1 alpha and oligodendrocyte lineage gene-1 in cultured brain slices after oxygen-glucose deprivation. Neural Regen Res 2014; 8:328-37. [PMID: 25206673 PMCID: PMC4107529 DOI: 10.3969/j.issn.1673-5374.2013.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/09/2013] [Indexed: 02/03/2023] Open
Abstract
Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor 1α, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage. There is little evidence of direct regulatory effects of hypoxia-inducible factor 1α on oligodendrocyte lineage gene-1. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxygen-glucose deprivation. Then, slices were transfected with hypoxia-inducible factor 1α or oligodendrocyte lineage gene-1. The expression levels of hypoxia-inducible factor 1α and oligodendrocyte lineage gene-1 were significantly up-regulated in rat brains prior to transfection, as detected by immunohistochemical staining. Eight hours after transfection of slices with hypoxia-inducible factor 1α, oligodendrocyte lineage gene-1 expression was upregulated, and reached a peak 24 hours after transfection. Oligodendrocyte lineage gene-1 transfection induced no significant differences in hypoxia-inducible factor 1α levels in rat brain tissues with oxygen-glucose deprivation. These experimental findings indicate that hypoxia-inducible factor 1α can regulate oligodendrocyte lineage gene-1 expression in hypoxic brain tissue, thus repairing the neural impairment.
Collapse
Affiliation(s)
- Hong Cui
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei Province, China ; Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Weijuan Han
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lijun Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yanzhong Chang
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei Province, China
| |
Collapse
|
20
|
Third trimester NG2-positive amniotic fluid cells are effective in improving repair in spinal cord injury. Exp Neurol 2014; 254:121-33. [DOI: 10.1016/j.expneurol.2014.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 12/17/2022]
|
21
|
Spatial and temporal expression levels of specific microRNAs in a spinal cord injury mouse model and their relationship to the duration of compression. Spine J 2014; 14:353-60. [PMID: 24269082 DOI: 10.1016/j.spinee.2013.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 07/16/2013] [Accepted: 08/21/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT MicroRNAs, a class of small nonprotein-coding RNAs, are thought to control gene translation into proteins. The latter are the ultimate effectors of the biochemical cascade occurring in any physiological and pathological process. MicroRNAs have been shown to change their expression levels during injury of spinal cord in contusion rodent models. Compression is the most frequent mode of damage of neural elements in spinal cord injury. The cellular and molecular changes occurring in the spinal cord during prolonged compression are not very well elucidated. Understanding the underlying molecular events that occur during sustained compression is paramount in building new therapeutic strategies. PURPOSE The purpose of our study was to probe the relationship between the expression level changes of different miRNAs and the timing of spinal cord decompression in a mouse model. STUDY DESIGN A compression spinal cord injury mouse model was used for the study. METHODS A laminectomy was performed in the thoracic spine of C57BL/6 mice. Then, the thecal sac was compressed to create the injury. Decompression was performed early for one group and it was delayed in the second group. The spinal cord at the epicenter of the injury and one level rostral to it were removed at 3, 6, and 24 hours after trauma, and RNA was extracted. Expression levels of six different microRNAs and the relationship to the duration of compression were analyzed. This work was supported in part by the University Research Council Grants Program at the University of Texas Health Science Center San Antonio (Grant 130267). There are no specific conflicts of interest to be disclosed for this work. RESULTS Expression levels of microRNAs in the prolonged compression of spinal cord model were significantly different compared with the expression levels in the short duration of compression spinal cord injury model. Furthermore, microRNAs show a different expression pattern in different regions of the injured spinal cord. CONCLUSIONS Our findings demonstrate that spinal cord compression causes alterations in the expression of different miRNAs in the acute phase of injury. Their expression is related to the duration of the compression of the spinal cord. These findings suggest that early decompression of the spinal cord may have an important modulating effect on the molecular cascade triggered during secondary injury through the changes in expression levels of specific microRNAs.
Collapse
|
22
|
Streijger F, Plunet WT, Lee JHT, Liu J, Lam CK, Park S, Hilton BJ, Fransen BL, Matheson KAJ, Assinck P, Kwon BK, Tetzlaff W. Ketogenic diet improves forelimb motor function after spinal cord injury in rodents. PLoS One 2013; 8:e78765. [PMID: 24223849 PMCID: PMC3817084 DOI: 10.1371/journal.pone.0078765] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/16/2013] [Indexed: 11/29/2022] Open
Abstract
High fat, low carbohydrate ketogenic diets (KD) are validated non-pharmacological treatments for some forms of drug-resistant epilepsy. Ketones reduce neuronal excitation and promote neuroprotection. Here, we investigated the efficacy of KD as a treatment for acute cervical spinal cord injury (SCI) in rats. Starting 4 hours following C5 hemi-contusion injury animals were fed either a standard carbohydrate based diet or a KD formulation with lipid to carbohydrate plus protein ratio of 3:1. The forelimb functional recovery was evaluated for 14 weeks, followed by quantitative histopathology. Post-injury 3:1 KD treatment resulted in increased usage and range of motion of the affected forepaw. Furthermore, KD improved pellet retrieval with recovery of wrist and digit movements. Importantly, after returning to a standard diet after 12 weeks of KD treatment, the improved forelimb function remained stable. Histologically, the spinal cords of KD treated animals displayed smaller lesion areas and more grey matter sparing. In addition, KD treatment increased the number of glucose transporter-1 positive blood vessels in the lesion penumbra and monocarboxylate transporter-1 (MCT1) expression. Pharmacological inhibition of MCTs with 4-CIN (α-cyano-4-hydroxycinnamate) prevented the KD-induced neuroprotection after SCI, In conclusion, post-injury KD effectively promotes functional recovery and is neuroprotective after cervical SCI. These beneficial effects require the function of monocarboxylate transporters responsible for ketone uptake and link the observed neuroprotection directly to the function of ketones, which are known to exert neuroprotection by multiple mechanisms. Our data suggest that current clinical nutritional guidelines, which include relatively high carbohydrate contents, should be revisited.
Collapse
Affiliation(s)
- Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Ward T. Plunet
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Jae H. T. Lee
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Clarrie K. Lam
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Soeyun Park
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Brett J. Hilton
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Bas L. Fransen
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Keely A. J. Matheson
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Peggy Assinck
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Combined Neurosurgical and Orthopaedic Spine Program, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
23
|
Kundi S, Bicknell R, Ahmed Z. The role of angiogenic and wound-healing factors after spinal cord injury in mammals. Neurosci Res 2013; 76:1-9. [PMID: 23562792 DOI: 10.1016/j.neures.2013.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/17/2022]
Abstract
Patients with spinal cord injury (SCI) are permanently paralysed and anaesthetic below the lesion. This morbidity is attributed to the deposition of a dense scar at the injury site, the cellular components of which secrete axon growth inhibitory ligands that prevent severed axons reconnecting with denervated targets. Another complication of SCI is wound cavitation where a fluid filled cyst forms in the peri-lesion neuropil, enlarging over the first few months after injury and causes secondary axonal damage. Wound healing after SCI is accompanied by angiogenesis, which is regulated by angiogenic proteins, produced in response to oxygen deprivation. Necrosis in and about the SCI lesion sites may be suppressed by promoting angiogenesis and the resulting neuropil protection will enhance recovery after SCI. This review addresses the use of angiogenic/wound-healing related proteins including vascular endothelial growth factor, fibroblast growth factor, angiopoietin-1, angiopoietin-2 and transforming growth factor-β to moderate necrosis and axon sparing after SCI, providing a conducive environment for growth essential to functional recovery.
Collapse
Affiliation(s)
- Sarina Kundi
- Neurotrauma and Neurodegeneration, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
24
|
Transient ischemia induces massive nuclear accumulation of SUMO2/3-conjugated proteins in spinal cord neurons. Spinal Cord 2012; 51:139-43. [PMID: 22945749 DOI: 10.1038/sc.2012.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVES The objective of this study is to determine whether transient spinal cord ischemia activates small ubiquitin-like modifier (SUMO1-3) conjugation, a post-translational protein modification that protects neurons from ischemia-like conditions. METHODS Mice were subjected to 8-12 min of spinal cord ischemia and 3-24 h of recovery using a newly developed experimental model. To characterize the model, activation of stress response pathways induced after spinal cord ischemia, previously observed in other experimental models, was verified by western blot analysis. Levels and subcellular localization of SUMO-conjugated proteins in spinal cords were evaluated by western blot analysis and immunohistochemistry, respectively. RESULTS Following transient spinal cord ischemia, stress responses were activated as indicated by increased phosphorylation of eukaryotic initiation factor 2 (eIF2α), extracellular signal-regulated kinases (ERK1/2) and Akt. SUMO1 conjugation was not altered, but a selective rise in levels of SUMO2/3-conjugated proteins occurred, peaking at 6 h reperfusion. The marked activation of SUMO2/3 conjugation was a neuronal response to ischemia, as indicated by co-localization with the neuronal marker NeuN, and was associated with nuclear accumulation of SUMO2/3-conjugated proteins. CONCLUSION Our study suggests that spinal cord neurons respond to ischemic stress by activation of SUMO2/3 conjugation. Many of the identified SUMO target proteins are transcription factors and other nuclear proteins involved in gene expression and genome stability. It is therefore concluded that the post-ischemic activation of SUMO2/3 conjugation may define the fate of neurons exposed to a transient interruption of blood supply, and that this pathway could be a therapeutic target to increase the resistance of spinal cord neurons to transient ischemia.
Collapse
|
25
|
Long HQ, Li GS, Hu Y, Wen CY, Xie WH. HIF-1α/VEGF signaling pathway may play a dual role in secondary pathogenesis of cervical myelopathy. Med Hypotheses 2012; 79:82-4. [PMID: 22546754 DOI: 10.1016/j.mehy.2012.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 04/01/2012] [Indexed: 10/28/2022]
Abstract
Cervical spondylotic myelopathy (CSM) is one of the most common spinal cord disorders affecting the elderly. Yet the exact pathophysiology of CSM remains unclear. Vascular response to initial mechanical compression and associated ischemia may involve in secondary pathophysiology. Chronic compressive lesions to cervical cord resulting in lack of perfusion have established considerable evidences to support ischemia as an important pathogenesis both in patients and animal models, a similarity as that of acute spinal cord injury (SCI). In hypoxic condition following SCI, the up-regulation of vascular endothelial growth factor (VEGF), is consistent with increasing hypoxia induced factor-1α (HIF-1α) in acute periods. HIF-1α/VEGF signaling pathway is thought to play a dual role following SCI. In one hand, VEGF was demonstrated to be correlated with angiogenesis (protecting vascular endothelial cells, increasing blood vessel density and improving regional blood flow), neurogenesis (antiapoptotic, neurotrophic, attenuate axonal degradation), and locomotor ability improvement. In other hand, some studies revealed that VEGF have limited therapeutic effect, even exacerbate the secondary damage following SCI. VEGF administrations in acute or subacute periods result in elevation of blood-spinal cord barrier (BSCB) permeability even last for chronic course. BSCB permeability elevation initiates a secondary cascade of events involving excitotoxicity, infiltration of leukocytes and tissue edema. With comprehensive understanding of temporal and spatial of HIF-1α/VEGF signaling pathway, development of therapeutic strategies to promote new vessel growth while minimize the deleterious effects of VEGF-induced microvascular permeability, and thereby improve neurologic function, seems to be feasible and promising.
Collapse
Affiliation(s)
- Hou-Qing Long
- Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | | | | | | | | |
Collapse
|
26
|
Zheng Y, Zhang YP, Shields LBE, Zhang Y, Siu MW, Burke DA, Zhu J, Hu X, Dimar JR, Shields CB. Effect of heparin following cervical spinal cord injuries in rats. Neurosurgery 2011; 69:930-41; discussion 941. [PMID: 21610554 DOI: 10.1227/neu.0b013e3182241f3b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Risks of neurological deterioration after heparin administration following cervical spinal cord injury (SCI) in humans are unknown. OBJECTIVE To elucidate the safety of heparin following cervical SCI and investigate its potential neuroprotectant role. METHODS Sixty-two Sprague Dawley adult rats were subjected to mild (0.6 mm), moderate (0.9 mm), or severe (1.2 mm) C7-SCI. At each injury severity, intravenous heparin or saline was administered for 72 hours following SCI. Behavioral tests (Basso, Beattie, Bresnahan scores, Hargreave's) were performed before killing the rats at week 7. Half of the rats were killed at day 3, and the remainder at week 7 after SCI. Immunohistochemistry, Western blot analysis, and axonal retrograde tracing were conducted at both times. RESULTS Subpial hemorrhage was greater in heparin-treated animals compared with controls at all severities of SCI day 3 after injury. Counterintuitively, intraparencyhmal hemorrhage was minimal in the lesion epicenter following mild SCI in the heparin-treated animals compared with controls. India ink perfusion revealed greater preservation of microcirculation in heparin-treated animals compared with a reduction in control animals. A decrease in spinal cord perfusion correlated directly with an increase in hypoxia-inducible factor-1α expression. There was significant gray matter sparing, but no change in white matter volume after heparin treatment at week 7 in the mild SCI group. Beneficial effects on hemorrhagic volume, axon sparing, and functional recovery following heparin treatment were not observed in the moderate or severe SCI group. CONCLUSION Heparin treatment following SCI is safe at all degrees of injury. Heparin decreases platelet aggregation and microvascular occlusion, providing a potential neuroprotective effect following mild SCI.
Collapse
Affiliation(s)
- Yiyan Zheng
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim HJ, Oh JS, An SS, Pennant WA, Gwak SJ, Kim AN, Han PK, Yoon DH, Kim KN, Ha Y. Hypoxia-specific GM-CSF-overexpressing neural stem cells improve graft survival and functional recovery in spinal cord injury. Gene Ther 2011; 19:513-21. [DOI: 10.1038/gt.2011.137] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Durham-Lee JC, Mokkapati VUL, Johnson KM, Nesic O. Amiloride improves locomotor recovery after spinal cord injury. J Neurotrauma 2011; 28:1319-26. [PMID: 21534729 PMCID: PMC3136742 DOI: 10.1089/neu.2011.1921] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Amiloride is a drug approved by the United States Food and Drug Administration, which has shown neuroprotective effects in different neuropathological conditions, including brain injury or brain ischemia, but has not been tested in spinal cord injury (SCI). We tested amiloride's therapeutic potential in a clinically relevant rat model of contusion SCI inflicted at the thoracic segment T10. Rats receiving daily administration of amiloride from 24 h to 35 days after SCI exhibited a significant improvement in hindlimb locomotor ability at 21, 28, and 35 days after injury, when compared to vehicle-treated SCI rats. Rats receiving amiloride treatment also exhibited a significant increase in myelin oligodendrocyte glycoprotein (MOG) levels 35 days after SCI at the site of injury (T10) when compared to vehicle-treated controls, which indicated a partial reverse in the decrease of MOG observed with injury. Our data indicate that higher levels of MOG correlate with improved locomotor recovery after SCI, and that this may explain the beneficial effects of amiloride after SCI. Given that amiloride treatment after SCI caused a significant preservation of myelin levels, and improved locomotor recovery, it should be considered as a possible therapeutic intervention after SCI.
Collapse
Affiliation(s)
- Julieann C. Durham-Lee
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Venkata Usha L. Mokkapati
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Kathia M. Johnson
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Olivera Nesic
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
29
|
Neural stem cells modified by a hypoxia-inducible VEGF gene expression system improve cell viability under hypoxic conditions and spinal cord injury. Spine (Phila Pa 1976) 2011; 36:857-64. [PMID: 21192293 DOI: 10.1097/brs.0b013e3181e7f34b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An in vitro neural hypoxia model and rat spinal cord injury (SCI) model were used to assess the regulation of therapeutic vascular endothelial growth factor (VEGF) gene expression in mouse neural stem cells (mNSCs) by the EPO (erythropoietin) enhancer or RTP801 promoter. OBJECTIVE To increase VEGF gene expression in mNSCs under hypoxic conditions in SCI lesions but avoid unwanted overexpression of VEGF in normal sites, we developed a hypoxia-inducible gene expression system consisting of the EPO enhancer and RTP801 promoter fused to VEGF or the luciferase gene, then transfected into mNSCs. SUMMARY OF BACKGROUND DATA On the basis of the ischemic response in the injured area, poor cell survival at the transplantation site is a consistent problem with NSC transplantation after SCI. Although VEGF directly protects neurons and enhances neurite outgrowth, uncontrolled overexpression of VEGF in uninjured tissue may cause serious adverse effects. To effectively improve NSC survival in ischemic sites after transplantation, we evaluated mNSCs modified by a hypoxia-inducible VEGF gene expression system in an SCI model. METHODS Hypoxia-inducible luciferase or VEGF plasmids were constructed using the EPO enhancer or RTP801 promoter. The effect of these systems on targeted gene expression and cell viability was evaluated in mNSCs in both hypoxic in vitro injury and a rat SCI model in vivo. RESULTS The gene expression system containing the EPO enhancer or RTP801 promoter significantly increased the expression of the luciferase reporter gene and therapeutic VEGF gene under hypoxic conditions. The Epo-SV-VEGF plasmid transfection group had significantly fewer apoptotic cells in vitro. This system also augmented cell viability in the in vivo SCI model. CONCLUSION These results strongly suggest the potential utility of mNSCs modified by a hypoxia-inducible VEGF gene expression system in the development of effective stem cell transplantation protocols in SCI.
Collapse
|
30
|
Liu ML, Oh JS, An SS, Pennant WA, Kim HJ, Gwak SJ, Yoon DH, Kim KN, Lee M, Ha Y. Controlled nonviral gene delivery and expression using stable neural stem cell line transfected with a hypoxia-inducible gene expression system. J Gene Med 2010; 12:990-1001. [DOI: 10.1002/jgm.1527] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
31
|
Patel CB, Cohen DM, Ahobila-Vajjula P, Sundberg LM, Chacko T, Narayana PA. Effect of VEGF treatment on the blood-spinal cord barrier permeability in experimental spinal cord injury: dynamic contrast-enhanced magnetic resonance imaging. J Neurotrauma 2010; 26:1005-16. [PMID: 19226205 DOI: 10.1089/neu.2008.0860] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Compromised blood-spinal cord barrier (BSCB) is a factor in the outcome following traumatic spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis and vascular permeability. The role of VEGF in SCI is controversial. Relatively little is known about the spatial and temporal changes in the BSCB permeability following administration of VEGF in experimental SCI. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies were performed to noninvasively follow spatial and temporal changes in the BSCB permeability following acute administration of VEGF in experimental SCI over a post-injury period of 56 days. The DCE-MRI data was analyzed using a two-compartment pharmacokinetic model. Animals were assessed for open field locomotion using the Basso-Beattie-Bresnahan score. These studies demonstrate that the BSCB permeability was greater at all time points in the VEGF-treated animals compared to saline controls, most significantly in the epicenter region of injury. Although a significant temporal reduction in the BSCB permeability was observed in the VEGF-treated animals, BSCB permeability remained elevated even during the chronic phase. VEGF treatment resulted in earlier improvement in locomotor ability during the chronic phase of SCI. This study suggests a beneficial role of acutely administered VEGF in hastening neurobehavioral recovery after SCI.
Collapse
Affiliation(s)
- Chirag B Patel
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
32
|
Nesic O, Guest JD, Zivadinovic D, Narayana PA, Herrera JJ, Grill RJ, Mokkapati VUL, Gelman BB, Lee J. Aquaporins in spinal cord injury: the janus face of aquaporin 4. Neuroscience 2010; 168:1019-35. [PMID: 20109536 PMCID: PMC2885549 DOI: 10.1016/j.neuroscience.2010.01.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/16/2010] [Accepted: 01/19/2010] [Indexed: 02/07/2023]
Abstract
Although malfunction of spinal cord water channels (aquaporins, AQP) likely contributes to severe disturbances in ion/water homeostasis after spinal cord injury (SCI), their roles are still poorly understood. Here we report and discuss the potential significance of changes in the AQP4 expression in human SCI that generates glial fibrillary acidic protein (GFAP)-labeled astrocytes devoid of AQP4, and GFAP-labeled astroglia that overexpress AQP4. We used a rat model of contusion SCI to study observed changes in human SCI. AQP4-negative astrocytes are likely generated during the process of SCI-induced replacement of lost astrocytes, but their origin and role in SCI remains to be investigated. We found that AQP4-overexpression is likely triggered by hypoxia. Our transcriptional profiling of injured rat cords suggests that elevated AQP4-mediated water influx accompanies increased uptake of chloride and potassium ions which represents a protective astrocytic reaction to hypoxia. However, unbalanced water intake also results in astrocytic swelling that can contribute to motor impairment, but likely only in milder injuries. In severe rat SCI, a low abundance of AQP4-overexpressing astrocytes was found during the motor recovery phase. Our results suggest that severe rat contusion SCI is a better model to analyze AQP4 functions after SCI. We found that AQP4 increases in the chronic post-injury phase are associated with the development of pain-like behavior in SCI rats, while possible mechanisms underlying pain development may involve astrocytic swelling-induced glutamate release. In contrast, the formation and size of fluid-filled cavities occurring later after SCI does not appear to be affected by the extent of increased AQP4 levels. Therefore, the effect of therapeutic interventions targeting AQP4 will depend not only on the time interval after SCI or animal models, but also on the balance between protective role of increased AQP4 in hypoxia and deleterious effects of ongoing astrocytic swelling.
Collapse
Affiliation(s)
- O Nesic
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Anderson J, Sandhir R, Hamilton ES, Berman NEJ. Impaired expression of neuroprotective molecules in the HIF-1alpha pathway following traumatic brain injury in aged mice. J Neurotrauma 2009; 26:1557-66. [PMID: 19203226 DOI: 10.1089/neu.2008.0765] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Elderly traumatic brain injury (TBI) patients have higher rates of mortality and worse functional outcome than non-elderly TBI patients. The mechanisms involved in poor outcomes in the elderly are not well understood. Hypoxia-inducible factor-1 alpha (HIF-1alpha) is a basic helix-loop-helix transcription factor that modulates expression of key genes involved in neuroprotection. In this study, we studied the expression of HIF-1alpha and its target survival genes, heme oxygenase-1 (HO-1), vascular endothelial growth factor (VEGF), and erythropoietin (EPO) in the brains of adult versus aged mice following controlled cortical impact (CCI) injury. Adult (5-6 months) and aged (23-24 months) C57Bl/6 mice were injured using a CCI device. At 72 h post-injury, mice were sacrificed and the injured cortex was used for mRNA and protein analysis using real-time reverse transcription--polymerase chain reaction (RT-PCR) and Western blotting protocols. Following injury, HIF-1alpha, HO-1, and VEGF showed upregulation in both the young and aged mice, but in the aged animals the increase in HIF-1alpha and VEGF in response to injury was much lower than in the adult injured animals. EPO was upregulated in the adult injured brain, but not in the aged injured brain. These results support the hypothesis that reduced expression of genes in the HIF-1alpha neuroprotective pathway in aging may contribute to poor prognosis in the elderly following TBI.
Collapse
Affiliation(s)
- Joshua Anderson
- Steve Palermo Nerve Regeneration Laboratory, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | |
Collapse
|
34
|
Role of the oxygen-dependent degradation domain in a hypoxia-inducible gene expression system in vascular endothelial growth factor gene therapy. Spine (Phila Pa 1976) 2009; 34:E952-8. [PMID: 20010384 DOI: 10.1097/brs.0b013e3181c4af80] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN.: An in vitro neural hypoxia model and rat spinal cord injury (SCI) model were used to assess the regulation effect of a reporter or therapeutic gene expression by an oxygen-dependent degradation (ODD) domain in a hypoxia-inducible gene expression system with or without the erythropoietin (EPO) enhancer. OBJECTIVE.: To increase vascular endothelial growth factor (VEGF) gene expression in SCI lesions but avoid unwanted overexpression of VEGF in normal sites, we developed a hypoxia-inducible gene expression system consisting of the EPO enhancer upstream of the SV promoter and an ODD domain C-terminally fused to VEGF. SUMMARY OF BACKGROUND DATA.: ODD domain plays a major role in the degradation of hypoxia-inducible factor 1alpha and has been used in a hypoxia-specific gene expression system as a post-translational regulatory factor. METHODS.: The hypoxia-inducible luciferase or VEGF plasmid was constructed using the EPO enhancer combined with or without the ODD domain. The constructed plasmid was transfected into mouse Neuro 2a (N2a) neuroblastoma cells by Lipofectamine 2000, followed by a 24-hour incubation in hypoxia or normoxia. For in vivo analysis, the naked plasmid DNA was directly injected into the injured rat spinal cord. The gene expression was evaluated by luciferase activity assay, enzyme-linked immunosorbent assay, reverse transcriptase-polymerase chain reaction, and immunofluorescence staining. RESULTS.: The EPO enhancer/ODD domain-combined hypoxia-inducible gene expression system clearly increased the expression of the reporter luciferase gene and therapeutic VEGF gene specifically under hypoxic conditions and SCI, and quickly downregulated protein expression to a very low level after reoxygenation. CONCLUSION.: These results strongly suggest the potential applicability of this EPO enhancer/ODD domain-based hypoxia-inducible gene expression system in the development of a safer and more effective VEGF gene therapy for SCI.
Collapse
|
35
|
Kim HA, Mahato RI, Lee M. Hypoxia-specific gene expression for ischemic disease gene therapy. Adv Drug Deliv Rev 2009; 61:614-22. [PMID: 19394379 DOI: 10.1016/j.addr.2009.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 04/04/2009] [Indexed: 11/30/2022]
Abstract
Gene therapy for ischemic diseases has been developed with various growth factors and anti-apoptotic genes. However, non-specific expression of therapeutic genes may induce deleterious side effects such as tumor formation. Hypoxia-specific regulatory systems can be used to regulate transgene expression in hypoxic tissues, in which gene expression is induced in ischemic tissues, but reduced in normal tissues by transcriptional, translational or post-translational regulation. Since hypoxia-inducible factor 1 (HIF-1) activates transcription of genes in hypoxic tissues, it can play an important role in the prevention of myocardial and cerebral ischemia. Hypoxia-specific promoters including HIF-1 binding sites have been used for transcriptional regulation of therapeutic genes. Also, hypoxia-specific untranslated regions (UTRs) and oxygen dependent degradation (ODD) domains have been investigated for translational and post-translational regulations, respectively. Hypoxia-specific gene expression systems have been applied to various ischemic disease models, including ischemic myocardium, stroke, and injured spinal cord. This review examines the current status and future challenges of hypoxia-specific systems for safe and effective gene therapy of ischemic diseases.
Collapse
Affiliation(s)
- Hyun Ah Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | | | | |
Collapse
|
36
|
Anderson J, Sandhir R, Hamilton ES, Berman NE. Impaired Expression of Neuroprotective Molecules in the HIF-1-α Pathway following Traumatic Brain Injury in Aged Mice. J Neurotrauma 2009. [DOI: 10.1089/neu.2008-0765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
37
|
Pan CL, Garriga G. Fresh air is good for nerves: hypoxia disturbs axon guidance. Nat Neurosci 2008; 11:859-61. [PMID: 18660836 DOI: 10.1038/nn0808-859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chun-Liang Pan
- Helen Wills Neuroscience Institute and Department of Molecular and Cell Biology, 16 Barker Hall, University of California, Berkeley, California 94720-3204, USA
| | | |
Collapse
|
38
|
Nesic O, Lee J, Unabia GC, Johnson K, Ye Z, Vergara L, Hulsebosch CE, Perez-Polo JR. Aquaporin 1 - a novel player in spinal cord injury. J Neurochem 2008; 105:628-40. [PMID: 18248364 DOI: 10.1111/j.1471-4159.2007.05177.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The role of water channel aquaporin 1 (AQP-1) in uninjured or injured spinal cords is unknown. AQP-1 is weakly expressed in neurons and gray matter astrocytes, and more so in white matter astrocytes in uninjured spinal cords, a novel finding. As reported before, AQP-1 is also present in ependymal cells, but most abundantly in small diameter sensory fibers of the dorsal horn. Rat contusion spinal cord injury (SCI) induced persistent and significant four- to eightfold increases in AQP-1 levels at the site of injury (T10) persisting up to 11 months post-contusion, a novel finding. Delayed AQP-1 increases were also found in cervical and lumbar segments, suggesting the spreading of AQP-1 changes over time after SCI. Given that the antioxidant melatonin significantly decreased SCI-induced AQP-1 increases and that hypoxia inducible factor-1alpha was increased in acutely and chronically injured spinal cords, we propose that chronic hypoxia contributes to persistent AQP-1 increases after SCI. Interestingly; AQP-1 levels were not affected by long-lasting hypertonicity that significantly increased astrocytic AQP-4, suggesting that the primary role of AQP-1 is not regulating isotonicity in spinal cords. Based on our results we propose possible novel roles for AQP-1 in the injured spinal cords: (i) in neuronal and astrocytic swelling, as AQP-1 was increased in all surviving neurons and reactive astrocytes after SCI and (ii) in the development of the neuropathic pain after SCI. We have shown that decreased AQP-1 in melatonin-treated SCI rats correlated with decreased AQP-1 immunolabeling in the dorsal horns sensory afferents, and with significantly decreased mechanical allodynia, suggesting a possible link between AQP-1 and chronic neuropathic pain after SCI.
Collapse
Affiliation(s)
- O Nesic
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1072, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Savas S, Savas C, Altuntas I, Adiloglu A. The correlation between nitric oxide and vascular endothelial growth factor in spinal cord injury. Spinal Cord 2007; 46:113-7. [PMID: 17420770 DOI: 10.1038/sj.sc.3102066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Prospective, randomized, placebo-controlled, experimental study. OBJECTIVES The issue of whether nitric oxide (NO) production is beneficial or deleterious on ischemic injuries of the central nervous system still remains doubtful. Vascular endothelial growth factor (VEGF) is known to induce the release of NO from endothelial cells. However, the effect of NO on VEGF synthesis is not clear. We aimed to determine the effects of L-arginine and NG-nitro-L-arginine methyl ester (L-NAME) on VEGF synthesis and free radicals in a rat model of spinal cord ischemia-reperfusion (IR) injury. SETTING Surgical Research Laboratory of a Medical School. MATERIAL AND METHODS Twenty-eight Wistar rats were divided into four groups as follows (n=7): Sham, IR injury, L-arginine, and L-NAME. Infrarenal abdominal aorta was occluded to induce spinal cord ischemia. L-Arginine (100 mg/kg) and L-NAME (10 mg/kg) were given before aortic occlusion. Biochemical assays of malondialdehyde (MDA), NO and VEGF were carried out in spinal cord specimens. RESULTS L-Arginine treatment significantly increased MDA and NO, but decreased VEGF levels in spinal cord. However, nonselective inhibition of NOS with L-NAME significantly decreased MDA and NO, but increased VEGF levels. Besides, the positive linear correlation between MDA and NO, and negative linear correlations between MDA, NO and VEGF levels have also been demonstrated. CONCLUSION Nonselective inhibition of NO synthase activity with L-NAME attenuated free radical formation and increased VEGF level when compared with NO precursor L-arginine in a rat model of spinal cord ischemia. We suggest that inhibition of NO synthase, as well as induction of VEGF, may be a therapeutic option in spinal cord IR injury.
Collapse
Affiliation(s)
- S Savas
- Department of Physical Medicine and Rehabilitation, Süleyman Demirel University Medical School, Isparta, Turkey.
| | | | | | | |
Collapse
|