1
|
Zhou L, Montalvo AD, Collins JM, Wang D. Quantitative analysis of the UDP-glucuronosyltransferase transcriptome in human tissues. Pharmacol Res Perspect 2023; 11:e01154. [PMID: 37983911 PMCID: PMC10659769 DOI: 10.1002/prp2.1154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/22/2023] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are phase II drug metabolizing enzymes that play important roles in the detoxification of endogenous and exogenous substrates. The 22 human UGTs belong to four families (UGT1, UGT2, UGT3, and UGT8) and differ in their expression, substrate specificity, UDP-sugar preference, and physiological functions. Differential expression/activity of the UGTs contributes to interperson variability in drug responses and toxicity, hormone homeostasis, and disease/cancer risks. However, in normal tissues, the tissue-specific expression profiles and transcriptional regulation of the UGTs are still not fully understood. In this study, we comprehensively analyzed the transcriptome of 22 UGTs in 54 human tissues/regions using RNAseq data from GTEx. We then validated the findings in the liver and small intestine samples using real-time PCR. Our results showed large interindividual variability across tissues in the expression of each UGT and the overall composition of UGT pools, consisting of different UGTs and their splice isoforms. Our results also revealed coexpression of the UGTs, Cytochrome P450s, and many transcription factors in the liver, suggesting potential coregulation or functional coordination. Our results provide the groundwork for future studies to detail further the regulation of the expression and activity of the UGTs.
Collapse
Affiliation(s)
- Lucas Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Abelardo D. Montalvo
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Joseph M. Collins
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
2
|
Yang J, Bai X, Liu G, Li X. A transcriptional regulatory network of HNF4α and HNF1α involved in human diseases and drug metabolism. Drug Metab Rev 2022; 54:361-385. [PMID: 35892182 DOI: 10.1080/03602532.2022.2103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HNF4α and HNF1α are core transcription factors involved in the development and progression of a variety of human diseases and drug metabolism. They play critical roles in maintaining the normal growth and function of multiple organs, mainly the liver, and in the metabolism of endogenous and exogenous substances. The twelve isoforms of HNF4α may exhibit different physiological functions, and HNF4α and HNF1α show varying or even opposing effects in different types of diseases, particularly cancer. Additionally, the regulation of CYP450, phase II drug-metabolizing enzymes, and drug transporters is affected by several factors. This article aims to review the role of HNF4α and HNF1α in human diseases and drug metabolism, including their structures and physiological functions, affected diseases, regulated drug metabolism genes, influencing factors, and related mechanisms. We also propose a transcriptional regulatory network of HNF4α and HNF1α that regulates the expression of target genes related to disease and drug metabolism.
Collapse
Affiliation(s)
- Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
3
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
4
|
Nie YL, Meng XG, Liu JY, Yan L, Wang P, Bi HZ, Kan QC, Zhang LR. Histone Modifications Regulate the Developmental Expression of Human Hepatic UDP-Glucuronosyltransferase 1A1. Drug Metab Dispos 2017; 45:1372-1378. [PMID: 29025858 DOI: 10.1124/dmd.117.076109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/29/2017] [Indexed: 12/23/2022] Open
Abstract
Human UDP-glucuronosyltransferase 1A1 (UGT1A1) is a unique enzyme involved in bilirubin conjugation. We previously characterized the hepatic expression of transcription factors affecting UGT1A1 expression during development. Accordingly, in this study, we characterized the ontogenetic expression of hepatic UGT1A1 from the perspective of epigenetic regulation. We observed significant histone-3-lysine-4 dimethylation (H3K4me2) enrichment in the adult liver and histone-3-lysine-27 trimethylation (H3K27me3) enrichment in the fetal liver, indicating that dynamic alterations of histone methylation were associated with ontogenetic UGT1A1 expression. We further showed that the transcription factor hepatocyte nuclear factor 1α (HNF1A) affects histone modifications around the UGT1A1 locus. In particular, we demonstrated that by recruiting HNF1A the cofactors mixed-lineage leukemia 1, the transcriptional coactivator p300, and nuclear receptor coactivator 6 aggregate at the UGT1A1 promoter, thereby regulating histone modifications and subsequent UGT1A1 expression. In this study, we proposed new ideas for the developmental regulation of metabolic enzymes via histone modifications, and our findings will potentially contribute to the development of age-specific therapies.
Collapse
Affiliation(s)
- Ya-Li Nie
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| | - Xiang-Guang Meng
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| | - Jing-Yang Liu
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| | - Liang Yan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| | - Hong-Zheng Bi
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| | - Quan-Cheng Kan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University (Y.-L.N., J.-Y.L., L.Y., P.W., H.-Z.B., L.-R.Z.); Laboratory of Cardiovascular Disease and Drug Research, Seventh People's Hospital of Zhengzhou (X.-G.M.); Department of Clinical Pharmacology, First Affiliated Hospital, Zhengzhou University (Q.-C.K.), Zhengzhou, People's Republic of China
| |
Collapse
|
5
|
Scotcher D, Billington S, Brown J, Jones CR, Brown CDA, Rostami-Hodjegan A, Galetin A. Microsomal and Cytosolic Scaling Factors in Dog and Human Kidney Cortex and Application for In Vitro-In Vivo Extrapolation of Renal Metabolic Clearance. Drug Metab Dispos 2017; 45:556-568. [PMID: 28270564 PMCID: PMC5399648 DOI: 10.1124/dmd.117.075242] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/27/2017] [Indexed: 12/17/2022] Open
Abstract
In vitro-in vivo extrapolation of drug metabolism data obtained in enriched preparations of subcellular fractions rely on robust estimates of physiologically relevant scaling factors for the prediction of clearance in vivo. The purpose of the current study was to measure the microsomal and cytosolic protein per gram of kidney (MPPGK and CPPGK) in dog and human kidney cortex using appropriate protein recovery marker and evaluate functional activity of human cortex microsomes. Cytochrome P450 (CYP) content and glucose-6-phosphatase (G6Pase) activity were used as microsomal protein markers, whereas glutathione-S-transferase activity was a cytosolic marker. Functional activity of human microsomal samples was assessed by measuring mycophenolic acid glucuronidation. MPPGK was 33.9 and 44.0 mg/g in dog kidney cortex, and 41.1 and 63.6 mg/g in dog liver (n = 17), using P450 content and G6Pase activity, respectively. No trends were noted between kidney, liver, and intestinal scalars from the same animals. Species differences were evident, as human MPPGK and CPPGK were 26.2 and 53.3 mg/g in kidney cortex (n = 38), respectively. MPPGK was 2-fold greater than the commonly used in vitro-in vivo extrapolation scalar; this difference was attributed mainly to tissue source (mixed kidney regions versus cortex). Robust human MPPGK and CPPGK scalars were measured for the first time. The work emphasized the importance of regional differences (cortex versus whole kidney–specific MPPGK, tissue weight, and blood flow) and a need to account for these to improve assessment of renal metabolic clearance and its extrapolation to in vivo.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Sarah Billington
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Jay Brown
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Christopher R Jones
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Colin D A Brown
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| |
Collapse
|
6
|
Hepatic expression of transcription factors affecting developmental regulation of UGT1A1 in the Han Chinese population. Eur J Clin Pharmacol 2016; 73:29-37. [PMID: 27704169 DOI: 10.1007/s00228-016-2137-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023]
Abstract
PURPOSE Complete or partial inactivity of UGT1A1, the unique enzyme responsible for bilirubin glucuronidation, is commonly associated with hyperbilirubinemia. We investigated the dynamic expression of UGT1A1, and that of the transcription factors (TFs) involved in its developmental regulation, during human hepatic growth in Han Chinese individuals. METHODS Eighty-eight prenatal, pediatric, and adult liver samples were obtained from Han Chinese individuals. Quantitative real-time polymerase chain reaction was used to evaluate mRNA expression of UGT1A1 and TFs including PXR, CAR, HNF1A, HNF4A, PPARA, etc. UGT1A1 protein levels and metabolic activity were determined by western blotting and high-performance liquid chromatography. Direct sequencing was employed to genotype UGT1A1*6 (211G˃A) and UGT1A1*28 (TA6˃TA7) polymorphisms. RESULTS UGT1A1 expression was minimal in prenatal samples, but significantly elevated during pediatric and adult stages. mRNA and protein levels and metabolic activity were prominently increased (120-, 20-, and 10-fold, respectively) in pediatric and adult livers compared to prenatal samples. Furthermore, expression did not differ appreciably between pediatric and adult periods. Dynamic expression of TFs, including PXR, CAR, HNF1A, HNF4A, and PPARA, was consistent with UGT1A1 levels at each developmental stage. A pronounced correlation between expression of these TFs and that of UGT1A1 (P < 0.001) was observed. Moreover, UGT1A1*6 and UGT1A1*28 polymorphisms reduced levels of UGT1A1 by up to 40-60 %. CONCLUSIONS Hepatic expression of transcription factors is associated with developmental regulation of UGT1A1 in the Han Chinese population. Moreover, UGT1A1 polymorphisms are associated with reduced expression of UGT1A1 mRNA and protein, as well as enzyme activity.
Collapse
|
7
|
Clinical validity of new genetic biomarkers of irinotecan neutropenia: an independent replication study. THE PHARMACOGENOMICS JOURNAL 2015; 16:54-9. [PMID: 25869015 DOI: 10.1038/tpj.2015.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/04/2014] [Accepted: 01/28/2015] [Indexed: 01/26/2023]
Abstract
The overall goal of this study was to provide evidence for the clinical validity of nine genetic variants in five genes previously associated with irinotecan neutropenia and pharmacokinetics. Variants associated with absolute neutrophil count (ANC) nadir and/or irinotecan pharmacokinetics in a discovery cohort of cancer patients were genotyped in an independent replication cohort of 108 cancer patients. Patients received single-agent irinotecan every 3 weeks. For ANC nadir, we replicated UGT1A1*28, UGT1A1*93 and SLCO1B1*1b in univariate analyses. For irinotecan area under the concentration-time curve (AUC0-24), we replicated ABCC2 -24C>T; however, ABCC2 -24C>T only predicted a small fraction of the variance. For SN-38 AUC0-24 and the glucuronidation ratio, we replicated UGT1A1*28 and UGT1A1*93. In addition to UGT1A1*28, this study independently validated UGT1A1*93 and SLCO1B1*1b as new predictors of irinotecan neutropenia. Further demonstration of their clinical utility will optimize irinotecan therapy in cancer patients.
Collapse
|
8
|
Hu DG, Meech R, McKinnon RA, Mackenzie PI. Transcriptional regulation of human UDP-glucuronosyltransferase genes. Drug Metab Rev 2014; 46:421-58. [PMID: 25336387 DOI: 10.3109/03602532.2014.973037] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucuronidation is an important metabolic pathway for many small endogenous and exogenous lipophilic compounds, including bilirubin, steroid hormones, bile acids, carcinogens and therapeutic drugs. Glucuronidation is primarily catalyzed by the UDP-glucuronosyltransferase (UGT) 1A and two subfamilies, including nine functional UGT1A enzymes (1A1, 1A3-1A10) and 10 functional UGT2 enzymes (2A1, 2A2, 2A3, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28). Most UGTs are expressed in the liver and this expression relates to the major role of hepatic glucuronidation in systemic clearance of toxic lipophilic compounds. Hepatic glucuronidation activity protects the body from chemical insults and governs the therapeutic efficacy of drugs that are inactivated by UGTs. UGT mRNAs have also been detected in over 20 extrahepatic tissues with a unique complement of UGT mRNAs seen in almost every tissue. This extrahepatic glucuronidation activity helps to maintain homeostasis and hence regulates biological activity of endogenous molecules that are primarily inactivated by UGTs. Deciphering the molecular mechanisms underlying tissue-specific UGT expression has been the subject of a large number of studies over the last two decades. These studies have shown that the constitutive and inducible expression of UGTs is primarily regulated by tissue-specific and ligand-activated transcription factors (TFs) via their binding to cis-regulatory elements (CREs) in UGT promoters and enhancers. This review first briefly summarizes published UGT gene transcriptional studies and the experimental models and tools utilized in these studies, and then describes in detail the TFs and their respective CREs that have been identified in the promoters and/or enhancers of individual UGT genes.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre , Bedford Park, SA , Australia
| | | | | | | |
Collapse
|
9
|
Ito Y, Fukami T, Yokoi T, Nakajima M. An orphan esterase ABHD10 modulates probenecid acyl glucuronidation in human liver. Drug Metab Dispos 2014; 42:2109-16. [PMID: 25217485 DOI: 10.1124/dmd.114.059485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Probenecid, a widely used uricosuric agent, is mainly metabolized to probenecid acyl glucuronide (PRAG), which is considered a causal substance of severe allergic or anaphylactoid reactions. PRAG can be hydrolyzed (deglucuronidated) to probenecid. The purpose of this study was to identify enzymes responsible for probenecid acyl glucuronidation and PRAG deglucuronidation in human livers and to examine the effect of deglucuronidation in PRAG formation. In human liver homogenates (HLHs), the intrinsic clearance (CLint) of PRAG deglucuronidation was much greater (497-fold) than that of probenecid acyl glucuronidation. Evaluation of PRAG formation by recombinant UDP-glucuronosyltransferase (UGT) isoforms and an inhibition study using HLHs as an enzyme source demonstrated that multiple UGT isoforms, including UGT1A1, UGT1A9, and UGT2B7, catalyzed probenecid acyl glucuronidation. We found that recombinant α/β hydrolase domain containing 10 (ABHD10) substantially catalyzed PRAG deglucuronidation activity, whereas carboxylesterases did not. Similar inhibitory patterns by chemicals between HLHs and recombinant ABHD10 supported the major contribution of ABHD10 to PRAG deglucuronidation in human liver. Interestingly, it was demonstrated that the CLint value of probenecid acyl glucuronidation in HLHs was increased by 1.7-fold in the presence of phenylmethylsulfonyl fluoride, which potently inhibited ABHD10 activity. In conclusion, we found that PRAG deglucuronidation catalyzed by ABHD10 suppressively regulates PRAG formation via multiple UGT enzymes in human liver. The balance of activities by these enzymes is important for the formation of PRAG, which may be associated with the adverse reactions observed after probenecid administration.
Collapse
Affiliation(s)
- Yusuke Ito
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Tsuyoshi Yokoi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
10
|
Achour B, Rostami-Hodjegan A, Barber J. Protein expression of various hepatic uridine 5′-diphosphate glucuronosyltransferase (UGT) enzymes and their inter-correlations: a meta-analysis. Biopharm Drug Dispos 2014; 35:353-61. [DOI: 10.1002/bdd.1906] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/15/2014] [Accepted: 06/03/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Brahim Achour
- Manchester Pharmacy School; University of Manchester; Manchester UK
| | - Amin Rostami-Hodjegan
- Manchester Pharmacy School; University of Manchester; Manchester UK
- Simcyp Limited (a Certara Company); Sheffield UK
| | - Jill Barber
- Manchester Pharmacy School; University of Manchester; Manchester UK
| |
Collapse
|
11
|
Innocenti F, Schilsky RL, Ramírez J, Janisch L, Undevia S, House LK, Das S, Wu K, Turcich M, Marsh R, Karrison T, Maitland ML, Salgia R, Ratain MJ. Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer. J Clin Oncol 2014; 32:2328-34. [PMID: 24958824 DOI: 10.1200/jco.2014.55.2307] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The risk of severe neutropenia from treatment with irinotecan is related in part to UGT1A1*28, a variant that reduces the elimination of SN-38, the active metabolite of irinotecan. We aimed to identify the maximum-tolerated dose (MTD) and dose-limiting toxicity (DLT) of irinotecan in patients with advanced solid tumors stratified by the *1/*1, *1/*28, and *28/*28 genotypes. PATIENTS AND METHODS Sixty-eight patients received an intravenous flat dose of irinotecan every 3 weeks. Forty-six percent of the patients had the *1/*1 genotype, 41% had the *1/*28 genotype, and 13% had the *28/*28 genotype. The starting dose of irinotecan was 700 mg in patients with the *1/*1 and *1/*28 genotypes and 500 mg in patients with the *28/*28 genotype. Pharmacokinetic evaluation was performed at cycle 1. RESULTS In patients with the *1/*1 genotype, the MTD was 850 mg (four DLTs per 16 patients), and 1,000 mg was not tolerated (two DLTs per six patients). In patients with the *1/*28 genotype, the MTD was 700 mg (five DLTs per 22 patients), and 850 mg was not tolerated (four DLTs per six patients). In patients with the *28/*28 genotype, the MTD was 400 mg (one DLT per six patients), and 500 mg was not tolerated (three DLTs per three patients). The DLTs were mainly myelosuppression and diarrhea. Irinotecan clearance followed linear kinetics. At the MTD for each genotype, dosing by genotype resulted in similar SN-38 areas under the curve (AUCs; r(2) = 0.0003; P = .97), but the irinotecan AUC was correlated with the actual dose (r(2) = 0.39; P < .001). Four of 48 patients with disease known to be responsive to irinotecan achieved partial response. CONCLUSION The UGT1A1*28 genotype can be used to individualize dosing of irinotecan. Additional studies should evaluate the effect of genotype-guided dosing on efficacy in patients receiving irinotecan.
Collapse
Affiliation(s)
- Federico Innocenti
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL.
| | - Richard L Schilsky
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Jacqueline Ramírez
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Linda Janisch
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Samir Undevia
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Larry K House
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Soma Das
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Kehua Wu
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Michelle Turcich
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Robert Marsh
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Theodore Karrison
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Michael L Maitland
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Ravi Salgia
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| | - Mark J Ratain
- Federico Innocenti, Richard L. Schilsky, Jacqueline Ramírez, Linda Janisch, Samir Undevia, Larry K. House, Soma Das, Kehua Wu, Michelle Turcich, Theodore Karrison, Michael L. Maitland, Ravi Salgia, and Mark J. Ratain, University of Chicago, Chicago; and Robert Marsh, NorthShore University Health System, Evanston, IL
| |
Collapse
|
12
|
Liu W, Ramírez J, Gamazon ER, Mirkov S, Chen P, Wu K, Sun C, Cox NJ, Cook E, Das S, Ratain MJ. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver. Hum Mol Genet 2014; 23:5558-69. [PMID: 24879639 DOI: 10.1093/hmg/ddu268] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74-217% and 52%, 39-105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6-58%; 47%, 9-58%; and 52%, 24-75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P < 0.05) associated with mRNA expression and/or activities of UGT1A1, UGT1A3 and UGT2B17. We found novel SNPs in the UGT2B17 CNV region accounting for variability in UGT2B17 gene transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs.
Collapse
Affiliation(s)
- Wanqing Liu
- Department of Medicine and Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA and
| | | | | | | | | | | | - Chang Sun
- Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Nancy J Cox
- Department of Medicine and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Edwin Cook
- Department of Psychiatry, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Soma Das
- Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
13
|
O'Brien VP, Bokelmann K, Ramírez J, Jobst K, Ratain MJ, Brockmöller J, Tzvetkov MV. Hepatocyte nuclear factor 1 regulates the expression of the organic cation transporter 1 via binding to an evolutionary conserved region in intron 1 of the OCT1 gene. J Pharmacol Exp Ther 2013; 347:181-92. [PMID: 23922447 DOI: 10.1124/jpet.113.206359] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The organic cation transporter 1 (OCT1), also known as solute carrier family 22 member 1, is strongly and specifically expressed in the human liver. Here we show that the hepatocyte nuclear factor 1 (HNF1) regulates OCT1 transcription and contributes to the strong, liver-specific expression of OCT1. Bioinformatic analyses revealed strong conservation of HNF1 binding motifs in an evolutionary conserved region (ECR) in intron 1 of the OCT1 gene. Electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed the specific binding of HNF1 to the intron 1 ECR. In reporter gene assays performed in HepG2 cells, the intron 1 ECR increased SV40 promoter activity by 22-fold and OCT1 promoter activity by 13-fold. The increase was reversed when the HNF1 binding sites in the intron 1 ECR were mutated or the endogenous HNF1α expression was downregulated with small interfering RNA. Following HNF1α overexpression in Huh7 cells, the intron 1 ECR increased SV40 promoter activity by 11-fold and OCT1 promoter activity by 6-fold. Without HNF1α overexpression, the increases were only 3- and 2-fold, respectively. Finally, in human liver samples, high HNF1 expression was significantly correlated with high OCT1 expression (r = 0.48, P = 0.002, n = 40). In conclusion, HNF1 is a strong regulator of OCT1 expression. It remains to be determined whether genetic variants, disease conditions, or drugs that affect HNF1 activity may affect the pharmacokinetics and efficacy of OCT1-transported drugs such as morphine, tropisetron, ondansetron, tramadol, and metformin. Beyond OCT1, this study demonstrates the validity and usefulness of interspecies comparisons in the discovery of functionally relevant genomic sequences.
Collapse
Affiliation(s)
- Valerie P O'Brien
- Institute of Clinical Pharmacology, University Medical Center, Georg-August-Universität Göttingen, Germany (V.P.O., K.B., K.J., J.B., M.V.T.); and Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois (J.R., M.J.R.)
| | | | | | | | | | | | | |
Collapse
|
14
|
Ekström L, Johansson M, Rane A. Tissue Distribution and Relative Gene Expression of UDP-Glucuronosyltransferases (2B7, 2B15, 2B17) in the Human Fetus. Drug Metab Dispos 2012; 41:291-5. [DOI: 10.1124/dmd.112.049197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
15
|
Young NR, Liu J, Pierce C, Wei TF, Grushko T, Olopade OI, Liu W, Shen C, Seiwert TY, Cohen EEW. Molecular phenotype predicts sensitivity of squamous cell carcinoma of the head and neck to epidermal growth factor receptor inhibition. Mol Oncol 2012. [PMID: 23200321 DOI: 10.1016/j.molonc.2012.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite nearly universal expression of the wild-type epidermal growth factor receptor (EGFR) and reproducible activity of EGFR inhibitors in patients with squamous cell carcinoma of the head and neck (SCCHN), the majority of patients will not have objective responses. The mechanisms of this intrinsic resistance are not well established. We hypothesized that sensitivity to EGFR inhibitors can be predicted based on the inhibitors' effects on downstream signaling. Cell viability assays were used to assess sensitivity to the EGFR inhibitor gefitinib (ZD1839) in 8 SCCHN cell lines. Fluorescence in-situ hybridization showed the two most sensitive lines to be highly gene-amplified for EGFR. Western blotting confirmed that phosphoEGFR was inhibited at low concentrations of gefitinib in all lines tested. Phosphorylation of downstream signaling protein AKT was inhibited in sensitive lines while inhibition of phosphoERK displayed no relationship to gefitinib efficacy. Phosphatase and tensin homolog (PTEN) expression was evident in all cell lines. Activating PIK3CA mutations were found in two resistant cell lines where pAKT was not inhibited by gefitinib. In resistant cell lines harboring PIK3CA mutations, a PI3K inhibitor, LY294002, or AKT siRNA reduced cell viability with an additive effect demonstrated in combination with gefitinib. Additionally, LY294002 alone and in combination with gefitinib, was effective at treating PIK3CA mutated tumors xenografted into nude mice. Taken together this suggests that constitutively active AKT is a mechanism of intrinsic gefitinib resistance in SCCHN. This resistance can be overcome through targeting of the PI3K/AKT pathway in combination with EGFR inhibition.
Collapse
Affiliation(s)
- Natalie R Young
- Department of Medicine and Comprehensive Cancer Center, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Crona D, Innocenti F. Can knowledge of germline markers of toxicity optimize dosing and efficacy of cancer therapy? Biomark Med 2012; 6:349-62. [PMID: 22731909 DOI: 10.2217/bmm.12.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The systemic treatment of cancer with traditional cytotoxic chemotherapeutic agents and more targeted agents is often complicated by the onset of adverse drug reactions. Pharmacogenetic prediction of adverse drug reactions might have consequences for dosing and efficacy. This review discusses relevant examples where the germline variant-toxicity relationship has been validated as an initial step in developing clinically useful pharmacogenetic markers and provides examples where germline variants have influenced dosing strategies and/or survival or other outcomes of efficacy. This review will also provide insight into the reasons why more pharmacogenetic markers have not been routinely integrated into clinical practice.
Collapse
Affiliation(s)
- Daniel Crona
- Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, USA
| | | |
Collapse
|
17
|
Oda S, Nakajima M, Hatakeyama M, Fukami T, Yokoi T. Preparation of a Specific Monoclonal Antibody against Human UDP-Glucuronosyltransferase (UGT) 1A9 and Evaluation of UGT1A9 Protein Levels in Human Tissues. Drug Metab Dispos 2012; 40:1620-7. [DOI: 10.1124/dmd.112.045625] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Kato Y, Nakajima M, Oda S, Fukami T, Yokoi T. Human UDP-glucuronosyltransferase isoforms involved in haloperidol glucuronidation and quantitative estimation of their contribution. Drug Metab Dispos 2011; 40:240-8. [PMID: 22028316 DOI: 10.1124/dmd.111.042150] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major metabolic pathway of haloperidol is glucuronidation catalyzed by UDP-glucuronosyltransferase (UGT). In this study, we found that two glucuronides were formed by the incubation of haloperidol with human liver microsomes (HLM) and presumed that the major and minor metabolites (>10-fold difference) were O- and N-glucuronide, respectively. The haloperidol N-glucuronidation was catalyzed solely by UGT1A4, whereas the haloperidol O-glucuronidation was catalyzed by UGT1A4, UGT1A9, and UGT2B7. The kinetics of the haloperidol O-glucuronidation in HLM was monophasic with K(m) and V(max) values of 85 μM and 3.2 nmol · min⁻¹ · mg⁻¹, respectively. From the kinetic parameters of the recombinant UGT1A4 (K(m) = 64 μM, V(max) = 0.6 nmol · min⁻¹ · mg⁻¹), UGT1A9 (K(m) = 174 μM, V(max) = 2.3 nmol · min⁻¹ · mg⁻¹), and UGT2B7 (K(m) = 45 μM, V(max) = 1.0 nmol · min⁻¹ · mg⁻¹), we could not estimate which isoform largely contributes to the reaction. Because the haloperidol O-glucuronidation in a panel of 17 HLM was significantly correlated (r = 0.732, p < 0.01) with zidovudine O-glucuronidation, a probe activity of UGT2B7, and the activity in the pooled HLM was prominently inhibited (58% of control) by gemfibrozil, an inhibitor of UGT2B7, we surmised that the reaction would mainly be catalyzed by UGT2B7. We could successfully estimate, using the concept of the relative activity factor, that the contributions of UGT1A4, UGT1A9, and UGT2B7 in HLM were approximately 10, 20, and 70%, respectively. The present study provides new insight into haloperidol glucuronidation, concerning the causes of interindividual differences in the efficacy and adverse reactions or drug-drug interactions.
Collapse
Affiliation(s)
- Yukiko Kato
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
19
|
Sun C, Southard C, Huo D, Hernandez RD, Witonsky DB, Olopade OI, Di Rienzo A. SNP discovery, expression and cis-regulatory variation in the UGT2B genes. THE PHARMACOGENOMICS JOURNAL 2011; 12:287-96. [PMID: 21358749 DOI: 10.1038/tpj.2011.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
UGT2B enzymes metabolize multiple endogenous and exogenous molecules, including steroid hormones and clinical drugs. However, little is known about the inter-individual variation in gene expression and its determinants. We re-sequenced candidate regulatory regions and the partial coding regions (41.1 kb) of UGT2B genes and identified 332 genetic variants. We measured gene expression in normal breast and liver samples and observed different patterns. The expression levels varied greatly across individuals in both tissues and were significantly correlated with each other in liver. Genotyping of tagging single-nucleotide polymorphisms (SNPs) in the same samples and association tests between genotype and transcript levels identified 62 variants that were associated with at least one UGT2B mRNA levels in either tissue. Most of these cis-regulatory SNPs were not shared between tissues, suggesting that this gene family is regulated in a tissue-specific manner. Our results provide insight into studying the role of UGT2B variation in hormone-dependent cancers and drug response.
Collapse
Affiliation(s)
- C Sun
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Glubb DM, Innocenti F. Mechanisms of genetic regulation in gene expression: examples from drug metabolizing enzymes and transporters. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:299-313. [PMID: 20865777 DOI: 10.1002/wsbm.125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Interindividual variability in the response to drug therapy is due, in part, to genetic mechanisms which influence the expression of genes involved with drug metabolism and transport. Genetic elements and processes such as DNA methylation, histone deacetylation, transcription factors, DNA sequence variants, and microRNAs (miRNAs) can impact at either the transcriptional or translational levels to modulate gene expression. Identification of such genetic regulators has greatly advanced in the last decade. Genome-wide analyses, using different types of approaches and methodologies, have uncovered many potential regulators of the expression of drug metabolizing enzymes and transporters. However, confirming the function of these putative regulators is necessary and requires further work in the laboratory, using techniques which are still evolving. It also still remains to be seen whether these findings have clinical implications for drug therapy but the realization of personalized medicine is a possible consequence of this research.
Collapse
Affiliation(s)
- Dylan M Glubb
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
21
|
Bock KW. Functions and transcriptional regulation of adult human hepatic UDP-glucuronosyl-transferases (UGTs): mechanisms responsible for interindividual variation of UGT levels. Biochem Pharmacol 2010; 80:771-7. [PMID: 20457141 DOI: 10.1016/j.bcp.2010.04.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 11/19/2022]
Abstract
Ten out of 19 UDP-glucuronosyltransferases (UGTs) are substantially expressed in adult human liver (>1% of total UGTs); 5 UGT1 isoforms (UGT1A1, 1A3, 1A4, 1A6 and 1A9) and 5 UGT2 family members (UGT2B4, 2B7, 2B10, 2B15 and 2B17) (Izukawa et al. [11]). Surprisingly, UGT2B4 and UGT2B10 mRNA were found to be abundant in human liver suggesting an underestimated role of the liver in detoxification of their major substrates, bile acids and eicosanoids. Among factors responsible for high interindividual variation of hepatic UGT levels (genetic diversity including polymorphisms and splice variants, regulation by liver-enriched transcription factors such as HNF1 and HNF4, and ligand-activated transcription factors) nuclear receptors (PXR, CAR, PPARalpha, etc.), and the Ah receptor are discussed. Unraveling the mechanisms responsible for interindividual variation of UGT expression will be beneficial for drug therapy but still remains a major challenge.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
22
|
Ramírez J, Ratain MJ, Innocenti F. Uridine 5'-diphospho-glucuronosyltransferase genetic polymorphisms and response to cancer chemotherapy. Future Oncol 2010; 6:563-85. [PMID: 20373870 PMCID: PMC3102300 DOI: 10.2217/fon.10.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pharmacogenetics aims to elucidate how genetic variation affects the efficacy and side effects of drugs, with the ultimate goal of personalizing medicine. Clinical studies of the genetic variation in the uridine 5'-diphosphoglucuronosyltransferase gene have demonstrated how reduced-function allele variants can predict the risk of severe toxicity and help identify cancer patients who could benefit from reduced-dose schedules or alternative chemotherapy. Candidate polymorphisms have also been identified in vitro, although the functional consequences of these variants still need to be tested in the clinical setting. Future approaches in uridine 5'-diphosphoglucuronosyltransferase pharmacogenetics include genetic testing prior to drug treatment, genotype-directed dose-escalation studies, study of genetic variation at the haplotype level and genome-wide studies.
Collapse
Affiliation(s)
- Jacqueline Ramírez
- Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 834 2451, Fax: +1 773 702 9268,
| | - Mark J Ratain
- Department of Medicine, Committee on Clinical Pharmacology & Pharmacogenomics, Cancer Research Center, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 702 4400, Fax: +1 773 702 3969,
| | - Federico Innocenti
- Department of Medicine, Committee on Clinical Pharmacology & Pharmacogenomics, Cancer Research Center, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 834 2452, Fax: +1 773 702 9268,
| |
Collapse
|
23
|
Zhang WX, Chen B, Chen H, Cai Q, Cai WM. Co-regulation of mRNA level of UDP glucuronosyltransferase 1A9 and multi-drug resistance protein 2 in Chinese human liver. Clin Chim Acta 2010; 411:119-21. [PMID: 19833113 DOI: 10.1016/j.cca.2009.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 10/05/2009] [Accepted: 10/06/2009] [Indexed: 11/22/2022]
|
24
|
Toffoli G, Cecchin E, Gasparini G, D'Andrea M, Azzarello G, Basso U, Mini E, Pessa S, De Mattia E, Lo Re G, Buonadonna A, Nobili S, De Paoli P, Innocenti F. Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. J Clin Oncol 2009; 28:866-71. [PMID: 20038727 DOI: 10.1200/jco.2009.23.6125] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE We aimed to identify the maximum-tolerated dose (MTD) of irinotecan in patients with cancer with UGT1A1*1/*1 and *1/*28 genotypes. We hypothesize that the patients without the *28/*28 genotype tolerate higher doses of irinotecan. PATIENTS AND METHODS Patients undergoing first-line treatment for metastatic colorectal cancer (CRC) eligible for treatment with irinotecan plus infusional fluorouracil/leucovorin (FOLFIRI) were screened for the UGT1A1*28/*28 genotype and excluded from the study. Fifty-nine white patients with either the *1/*1 or the *1/*28 genotype were eligible for dose escalation of irinotecan. The starting dose of biweekly irinotecan was 215 mg/m(2) for both genotype groups, whereas the dose of infusional fluorouracil was fixed. Pharmacokinetic data of irinotecan and metabolites were also obtained. Results The dose of irinotecan was escalated to 370 mg/m(2) in patients with the *1/*28 genotype and to 420 mg/m(2) in those with the *1/*1 genotype. Dose-limiting toxicities (DLTs) were observed in two of four of *1/*28 patients at 370 mg/m(2) and in two of three of *1/*1 patients at 420 mg/m(2). No DLTs were observed in 10 *1/*28 patients at 310 mg/m(2) and in 10 *1/*1 patients at 370 mg/m(2); hence these dose levels were the MTD for each genotype group. The most common grade 3 to 4 toxicities were neutropenia and diarrhea. The pharmacokinetics of irinotecan and SN-38 exhibit linear kinetics. CONCLUSION The recommended dose of 180 mg/m(2) for irinotecan in FOLFIRI is considerably lower than the dose that can be tolerated when patients with the UGT1A1*28/*28 genotype are excluded. Prospective genotype-driven studies should test the efficacy of higher irinotecan doses in the FOLFIRI schedule.
Collapse
Affiliation(s)
- Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico National Cancer Institute, via Pedemontana Occidentale 12, Aviano 33081, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Guillemette C, Lévesque E, Harvey M, Bellemare J, Menard V. UGT genomic diversity: beyond gene duplication. Drug Metab Rev 2009; 42:24-44. [DOI: 10.3109/03602530903210682] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Li Y, Buckley D, Wang S, Klaassen CD, Zhong XB. Genetic polymorphisms in the TATA box and upstream phenobarbital-responsive enhancer module of the UGT1A1 promoter have combined effects on UDP-glucuronosyltransferase 1A1 transcription mediated by constitutive androstane receptor, pregnane X receptor, or glucocorticoid receptor in human liver. Drug Metab Dispos 2009; 37:1978-86. [PMID: 19541828 DOI: 10.1124/dmd.109.027409] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transcription of UDP-glucuronosyltransferase (UGT) 1A1 is regulated by the transcription factors, constitutive androstane receptor (CAR), pregnane X receptor (PXR), glucocorticoid receptor (GR), hepatocyte nuclear factor (HNF) 1 alpha, and HNF4 alpha. The purpose of this study was to determine whether the genetic polymorphisms in the RNA polymerase II core promoter and the upstream phenobarbital-responsive element module (PBREM) of the UGT1A1 promoter have combined effects on UGT1A1 transcription mediated by the transcription factors. A polymorphism of A(TA)(5-8)TAA in the UGT1A1 TATA box and a single nucleotide polymorphism of -3279T>G in PBREM were genotyped in 98 human liver samples. Relative mRNA levels of CAR, PXR, GR, HNF1 alpha, HNF4 alpha, and UGT1A1 were quantified by a multiplex branched DNA technique. Correlations of mRNA levels between UGT1A1 and the transcription factors were established in liver samples with different combined genetic polymorphisms. Correlation of mRNA levels between UGT1A1 and CAR, PXR, or GR, but not HNF1 alpha or HNF4 alpha, was abolished in the samples with the combined genotype of TA7/7 plus -3279G/G, which was also associated with significantly lower UGT1A1 mRNA levels compared with other combined genotypes. Correlations of mRNA levels between UGT1A1 and CAR or PXR were reduced but not abolished in the samples with the combined genotype of TA6/7 plus -3279 G/G, which showed significantly lower UGT1A1 mRNA levels compared with the combined genotype of TA6/7 plus -3279T/G and other genotypes containing TA6/6. In conclusion, the combined genotypes containing A(TA)(7)TAA and -3279G decrease UGT1A transcription mediated by CAR, PXR, or GR but not by HNF1 alpha or HNF4 alpha.
Collapse
Affiliation(s)
- Ye Li
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
27
|
Izukawa T, Nakajima M, Fujiwara R, Yamanaka H, Fukami T, Takamiya M, Aoki Y, Ikushiro SI, Sakaki T, Yokoi T. Quantitative analysis of UDP-glucuronosyltransferase (UGT) 1A and UGT2B expression levels in human livers. Drug Metab Dispos 2009; 37:1759-68. [PMID: 19439486 DOI: 10.1124/dmd.109.027227] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) catalyze glucuronidation of a variety of xenobiotics and endobiotics. UGTs are divided into two families, UGT1 and UGT2. The purpose of this study was to estimate the absolute expression levels of each UGT isoform in human liver and to evaluate the interindividual variability. Real-time reverse transcriptase-polymerase chain reaction analysis was performed to determine the copy numbers of nine functional UGT1A isoforms and seven UGT2B isoforms. We noticed that not only primers but also templates as a standard for quantification should prudently be selected. Once we established appropriate conditions, the mRNA levels of each UGT isoform in 25 individual human livers were determined. UGT1A1 (0.9-138.5), UGT1A3 (0.1-66.6), UGT1A4 (0.1-143.3), UGT1A6 (1.0-70.4), UGT1A9 (0.3-132.4), UGT2B4 (0.3-615.0), UGT2B7 (0.2-97.4), UGT2B10 (0.7-253.2), UGT2B15 (0.3-107.8), and UGT2B17 (0.5-157.1) were substantially expressed (x10(4) copy/mug RNA) with large interindividual variability. Abundant isoforms were UGT2B4 and UGT2B10, followed by UGT1A1, UGT2B15, and UGT1A6. The sum of the UGT2B mRNA levels was higher than that of UGT1A mRNA levels. It is interesting to note that the mRNA levels normalized with glyceraldehyde-3-phosphate dehydrogenase mRNA for almost UGT isoforms that are substantially expressed in liver showed significant correlations to each other. Western blot analysis was performed using antibodies specific for UGT1A1, UGT1A4, UGT1A6, or UGT2B7. Correlation between the protein and mRNA levels was observed in only UGT1A1 (r = 0.488; p < 0.01). In conclusion, this study comprehensively determined the absolute values of mRNA expression of each UGT isoform in human livers and found considerable interindividual variability.
Collapse
Affiliation(s)
- Takeshi Izukawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Current World Literature. Curr Opin Lipidol 2009; 20:135-42. [PMID: 19276892 DOI: 10.1097/mol.0b013e32832a7e09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Zhang D, Zhang D, Cui D, Gambardella J, Ma L, Barros A, Wang L, Fu Y, Rahematpura S, Nielsen J, Donegan M, Zhang H, Humphreys WG. Characterization of the UDP glucuronosyltransferase activity of human liver microsomes genotyped for the UGT1A1*28 polymorphism. Drug Metab Dispos 2007; 35:2270-80. [PMID: 17898154 DOI: 10.1124/dmd.107.017806] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The UGT1A1*28 polymorphism is known to correlate with altered clearance of bilirubin (Gilbert syndrome) and drugs such as 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxy camptothecin (CPT-11). Although this polymorphism is clinically relevant and leads to significant drug-related toxicity of CPT-11, in vitro tools to allow prediction of how it will affect the clearance of new chemical entities have not been completely developed. To allow a more complete assessment of whether new chemical entities will be affected by the UGT1A1*28 polymorphism, a panel of microsomes was prepared from 15 donor livers genotyped as UGT1A1*1/*1, UGT1A1*1/*28, and UGT1A1*28/*28 (five donors per genotype). The microsomes were phenotyped by measuring activities of a panel of substrates, both those reported to be conjugated specifically by UGT1A1 or by other UDP glucuronosyltransferase enzymes. Bilirubin, estradiol (3-OH), ethinyl estradiol (3-OH), and 7-ethyl-10-hydroxycamptothecin (SN-38) were found to show significantly lower rates of metabolism in the UGT1A1*28/*28 microsomes with no change in K(m) values. In addition, microsomes genotyped as UGT1A1*1/*28 showed intermediate rates of metabolism. Acetaminophen, 3'-azido-3'-deoxythymidine, muraglitazar, estradiol (17-OH), and ethinyl estradiol (17-OH) were all found to show similar rates of metabolism regardless of UGT1A1 genotype. Interestingly, muraglitazar (UGT1A3 substrate) showed an inverse correlation with glucuronidation of UGT1A1 substrates. These genotyped microsomes should provide a useful tool to allow a more comprehensive prediction of UGT1A1 metabolism of a new drug and gain insight into the effect of the UGT1A1*28 polymorphism.
Collapse
Affiliation(s)
- Donglu Zhang
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|