1
|
Sharma R, Chirom O, Mujib A, Prasad M, Prasad A. UFMylation: Exploring a lesser known post translational modification. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112435. [PMID: 39993644 DOI: 10.1016/j.plantsci.2025.112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Ubiquitination is a highly conserved post-translational modification (PTM) in which ubiquitin (Ub) is covalently attached to substrate proteins resulting in the alteration of protein structure, function, and stability. Another class of PTM mediated by ubiquitin-like proteins (UBLs) has gained significant attention among researchers in recent years. This article focuses on one such UBL-mediated PTM i.e. UFMylation. The enzymatic mechanism of UFMylation is similar to ubiquitination, involving three steps regulated by three different enzymes. In plants, reports suggest that UFMylation is predominantly involved in maintaining ER homeostasis including ER-phagy. However, studies related to this PTM are limited and future studies might reveal other molecular pathways regulated by UFMylation.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Botany, Kurukshetra University, Kurukshetra, India
| | - Oceania Chirom
- Department of Botany, Jamia Hamdard University, New Delhi, India
| | - Abdul Mujib
- Department of Botany, Jamia Hamdard University, New Delhi, India
| | - Manoj Prasad
- Department of Genetics, University of Delhi South Campus, New Delhi, India; National Institute of Plant Genome Research, New Delhi, India.
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| |
Collapse
|
2
|
Feldman-Trabelsi S, Touitou N, Nagar R, Schwartz Z, Michelson A, Shaki S, Avivi MY, Lerrer B, Snir S, Cohen HY. The mammalian longevity associated acetylome. Nat Commun 2025; 16:3749. [PMID: 40263264 DOI: 10.1038/s41467-025-58762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
Despite extensive studies at the genomic, transcriptomic and metabolomic levels, the underlying mechanisms regulating longevity are incompletely understood. Post-translational protein acetylation is suggested to regulate aspects of longevity. To further explore the role of acetylation, we develop the PHARAOH computational tool based on the 100-fold differences in longevity within the mammalian class. Analyzing acetylome and proteome data across 107 mammalian species identifies 482 and 695 significant longevity-associated acetylated lysine residues in mice and humans, respectively. These sites include acetylated lysines in short-lived mammals that are replaced by permanent acetylation or deacetylation mimickers, glutamine or arginine, respectively, in long-lived mammals. Conversely, glutamine or arginine residues in short-lived mammals are replaced by reversibly acetylated lysine in long-lived mammals. Pathway analyses highlight the involvement of mitochondrial translation, cell cycle, fatty acid oxidation, transsulfuration, DNA repair and others in longevity. A validation assay shows that substituting lysine 386 with arginine in mouse cystathionine beta synthase, to attain the human sequence, increases the pro-longevity activity of this enzyme. Likewise, replacing the human ubiquitin-specific peptidase 10 acetylated lysine 714 with arginine as in short-lived mammals, reduces its anti-neoplastic function. Overall, in this work we propose a link between the conservation of protein acetylation and mammalian longevity.
Collapse
Affiliation(s)
- S Feldman-Trabelsi
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - N Touitou
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - R Nagar
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Z Schwartz
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - A Michelson
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - S Shaki
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - M Y Avivi
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - B Lerrer
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel
| | - S Snir
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - H Y Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
- The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
3
|
Ratinho L, Meyer N, Greive S, Cressiot B, Pelta J. Nanopore sensing of protein and peptide conformation for point-of-care applications. Nat Commun 2025; 16:3211. [PMID: 40180898 PMCID: PMC11968944 DOI: 10.1038/s41467-025-58509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
The global population's aging and growth will likely result in an increase in chronic aging-related diseases. Early diagnosis could improve the medical care and quality of life. Many diseases are linked to misfolding or conformational changes in biomarker peptides and proteins, which affect their function and binding properties. Current clinical methods struggle to detect and quantify these changes. Therefore, there is a need for sensitive conformational sensors that can detect low-concentration analytes in biofluids. Nanopore electrical detection has shown potential in sensing subtle protein and peptide conformation changes. This technique can detect single molecules label-free while distinguishing shape or physicochemical property changes. Its proven sensitivity makes nanopore sensing technology promising for ultra-sensitive, personalized point-of-care devices. We focus on the capability of nanopore sensing for detecting and quantifying conformational modifications and enantiomers in biomarker proteins and peptides and discuss this technology as a solution to future societal health challenges.
Collapse
Affiliation(s)
- Laura Ratinho
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France
| | - Nathan Meyer
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France
| | | | - Benjamin Cressiot
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Evry-Courcouronnes, France.
| |
Collapse
|
4
|
Su T, Fellers RT, Greer JB, LeDuc RD, Thomas PM, Kelleher NL. Proteoform-predictor: Increasing the Phylogenetic Reach of Top-Down Proteomics. J Proteome Res 2025; 24:1861-1870. [PMID: 40062899 DOI: 10.1021/acs.jproteome.4c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Proteoforms are distinct molecular forms of proteins that act as building blocks of organisms, with post-translational modifications (PTMs) being one of the key changes that generate these variations. Mass spectrometry (MS)-based top-down proteomics (TDP) is the leading technology for proteoform identification due to its preservation of intact proteoforms for analysis, making it well-suited for comprehensive PTM characterization. A crucial step in TDP is searching MS data against a database of candidate proteoforms. To extend the reach of TDP to organisms with limited PTM annotations, we developed Proteoform-predictor, an open-source tool that integrates homology-based PTM site prediction into proteoform database creation. The new tool creates databases of proteoform candidates after registration of homologous sequences, transferring PTM sites from well-characterized species to those with less comprehensive proteomic data. Our tool features a user-friendly interface and intuitive workflow, making it accessible to a wide range of researchers. We demonstrate that Proteoform-predictor expands proteoform databases with tens of thousands of proteoforms for three bacterial strains by comparing them to the reference proteome of Escherichia coli (E. coli) K12. Subsequent TDP analysis for Serratia marcescens (S. marcescens) and Salmonella typhimurium (S. typhimurium) demonstrated significant improvement in protein and proteoform identification, even for proteins with variant sequences. As TDP technology advances, Proteoform-predictor will become an important tool for expanding the applicability of proteoform identification and PTM biology to more diverse species across the phylogenetic tree of life.
Collapse
Affiliation(s)
- Taojunfeng Su
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan T Fellers
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, 4605 Silverman Hall, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Joseph B Greer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D LeDuc
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Paul M Thomas
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, 4605 Silverman Hall, 2170 Campus Drive, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Bolanle IO, Palmer TM. O-GlcNAcylation and Phosphorylation Crosstalk in Vascular Smooth Muscle Cells: Cellular and Therapeutic Significance in Cardiac and Vascular Pathologies. Int J Mol Sci 2025; 26:3303. [PMID: 40244145 PMCID: PMC11989994 DOI: 10.3390/ijms26073303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
More than 400 different types of post-translational modifications (PTMs), including O-GlcNAcylation and phosphorylation, combine to co-ordinate almost all aspects of protein function. Often, these PTMs overlap and the specific relationship between O-GlcNAcylation and phosphorylation has drawn much attention. In the last decade, the significance of this dynamic crosstalk has been linked to several chronic pathologies of cardiovascular origin. However, very little is known about the pathophysiological significance of this crosstalk for vascular smooth muscle cell dysfunction in cardiovascular disease. O-GlcNAcylation occurs on serine and threonine residues which are also targets for phosphorylation. A growing body of research has now emerged linking altered vascular integrity and homeostasis with highly regulated crosstalk between these PTMs. Additionally, a significant body of evidence indicates that O-GlcNAcylation is an important contributor to the pathogenesis of neointimal hyperplasia and vascular restenosis responsible for long-term vein graft failure. In this review, we evaluate the significance of this dynamic crosstalk and its role in cardiovascular pathologies, and the prospects of identifying possible targets for more effective therapeutic interventions.
Collapse
Affiliation(s)
| | - Timothy M. Palmer
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK;
| |
Collapse
|
6
|
Crawford CEW, Burslem GM. Acetylation: a new target for protein degradation in cancer. Trends Cancer 2025; 11:403-420. [PMID: 40055119 PMCID: PMC11981854 DOI: 10.1016/j.trecan.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 04/11/2025]
Abstract
Acetylation is an increasing area of focus for cancer research as it is closely related to a variety of cellular processes through modulation of histone and non-histone proteins. However, broadly targeting acetylation threatens to yield nonselective toxic effects owing to the vital role of acetylation in cellular function. There is thus a pressing need to elucidate and characterize the specific cancer-relevant roles of acetylation for future therapeutic design. Acetylation-mediated protein homeostasis is an example of selective acetylation that affects a myriad of proteins as well as their correlated functions. We review recent examples of acetylation-mediated protein homeostasis that have emerged as key contributors to tumorigenesis, tumor proliferation, metastasis, and/or drug resistance, and we discuss their implications for future exploration of this intriguing phenomenon.
Collapse
Affiliation(s)
- Callie E W Crawford
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
7
|
Nickchi P, Vadadokhau U, Mirzaie M, Baumann M, Saei AA, Jafari M. Monitoring Functional Posttranslational Modifications Using a Data-Driven Proteome Informatic Pipeline. Proteomics 2025:e202400238. [PMID: 40100226 DOI: 10.1002/pmic.202400238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/20/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
Posttranslational modifications (PTMs) are of significant interest in molecular biomedicine due to their crucial role in signal transduction across various cellular and organismal processes. Characterizing PTMs, distinguishing between functional and inert modifications, quantifying their occupancies, and understanding PTM crosstalk are challenging tasks in any biosystem. Studying each PTM often requires a specific, labor-intensive experimental design. Here, we present a PTM-centric proteome informatic pipeline for predicting relevant PTMs in mass spectrometry-based proteomics data without prior information. Once predicted, these in silico identified PTMs can be incorporated into a refined database search and compared to measured data. As a practical application, we demonstrate how this pipeline can be used to study glycoproteomics in oral squamous cell carcinoma based on the proteome profile of primary tumors. Subsequently, we experimentally identified cellular proteins that are differentially expressed in cells treated with multikinase inhibitors dasatinib and staurosporine using mass spectrometry-based proteomics. Computational enrichment analysis was then employed to determine the potential PTMs of differentially expressed proteins induced by both drugs. Finally, we conducted an additional round of database search with the predicted PTMs. Our pipeline successfully analyzed the enriched PTMs, and detected proteins not identified in the initial search. Our findings support the effectiveness of PTM-centric searching of MS data in proteomics based on computational enrichment analysis, and we propose integrating this approach into future proteomics search engines.
Collapse
Affiliation(s)
- Payman Nickchi
- Department of Statistics, University of British Columbia, Vancouver, Biritish Columbia, Canada
| | - Uladzislau Vadadokhau
- Medicum, Department of Biochemistry and Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Mehdi Mirzaie
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Marc Baumann
- Medicum, Department of Biochemistry and Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Amir A Saei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mohieddin Jafari
- Medicum, Department of Biochemistry and Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Celine G, Thomas M. Temporal characterisation and electrophysiological implications of TBI-induced serine/threonine kinase activity in mouse cortex. Cell Mol Life Sci 2025; 82:102. [PMID: 40045019 PMCID: PMC11883073 DOI: 10.1007/s00018-025-05638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/05/2025] [Accepted: 02/23/2025] [Indexed: 03/09/2025]
Abstract
Traumatic brain injury (TBI) remains the leading cause of death and disability worldwide with no existing effective treatment. The early phase after TBI induction triggers numerous molecular cascades to regulate adaptive processes and cortical network activity. Kinases play a particularly prominent role in modifying peptide substrates, which include ion channels, receptors, transcription factors and inflammatory mediators. This study aimed to better understand the post-injury serine/threonine kinome; (1) Which kinases conduct phosphorylation-induced alterations of target peptides following unilateral TBI in mouse cortex? (2) How do these kinases effectuate pathological network hyperexcitability, which has detrimental long-term outcomes? We used a serine/threonine kinase assay at 4 h, 24 h and 72 h post-TBI to identify hyper-/hypo-active/phosphorylated kinases and peptides in the ipsilateral and contralateral cortical hemispheres relative to sham-operated controls. We pharmacologically mimicked the changes seen in ERK1/2 and PKC kinase activity, and using microelectrode array recordings we explored their significant electrophysiological implications on spontaneous and evoked cortical activity. We then used these findings to manipulate key kinase activity changes at 24 h post-TBI to rescue the hyperexcitability that is seen in the contralateral cortical network at this timepoint back to sham level. The contribution of specific downstream peptide target channel/receptor subunits was also shown. We conclude that volatile kinase activity has potent implications on cortical network activity after the injury and that these kinases and/or their peptide substrates should be more seriously considered as therapeutic targets for the clinical treatment of TBI.
Collapse
Affiliation(s)
- Gallagher Celine
- Institute of Physiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mittmann Thomas
- Institute of Physiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
9
|
Chen L, Jiang H, Licinio J, Wu H. Brain O-GlcNAcylation: Bridging physiological functions, disease mechanisms, and therapeutic applications. Mol Psychiatry 2025:10.1038/s41380-025-02943-z. [PMID: 40033044 DOI: 10.1038/s41380-025-02943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
O-GlcNAcylation, a dynamic post-translational modification occurring on serine or threonine residues of numerous proteins, plays a pivotal role in various cellular processes, including gene regulation, metabolism, and stress response. Abundant in the brain, O-GlcNAcylation intricately governs neurodevelopment, synaptic assembly, and neuronal functions. Recent investigations have established a correlation between the dysregulation of brain O-GlcNAcylation and a broad spectrum of neurological disorders and injuries, spanning neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as injuries to the central nervous system (CNS). Manipulating O-GlcNAcylation has demonstrated neuroprotective properties against these afflictions. This review delineates the roles and mechanisms of O-GlcNAcylation in the CNS under both physiological and pathological circumstances, with a focus on its neuroprotective effects in neurological disorders and injuries. We discuss the involvement of O-GlcNAcylation in key processes such as neurogenesis, synaptic plasticity, and energy metabolism, as well as its implications in conditions like Alzheimer's disease, Parkinson's disease, and ischemic stroke. Additionally, we explore prospective therapeutic approaches for CNS disorders and injuries by targeting O-GlcNAcylation, highlighting recent clinical developments and future research directions. This comprehensive overview aims to provide insights into the potential of O-GlcNAcylation as a therapeutic target and guide future investigations in this promising field.
Collapse
Affiliation(s)
- Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huihui Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Julio Licinio
- Department of Psychiatry, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
10
|
Kratka K, Sistik P, Olivkova I, Kusnierova P, Svagera Z, Stejskal D. Mass Spectrometry-Based Proteomics in Clinical Diagnosis of Amyloidosis and Multiple Myeloma: A Review (2012-2024). JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5116. [PMID: 39967472 PMCID: PMC11836596 DOI: 10.1002/jms.5116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Proteomics is nowadays increasingly becoming part of the routine clinical practice of diagnostic laboratories, especially due to the advent of advanced mass spectrometry techniques. This review focuses on the application of proteomic analysis in the identification of pathological conditions in a hospital setting, with a particular focus on the analysis of protein biomarkers. In particular, the main purpose of the review is to highlight the challenges associated with the identification of specific disease-causing proteins, given their complex nature and the variety of posttranslational modifications (PTMs) they can undergo. PTMs, such as phosphorylation and glycosylation, play critical roles in protein function but can also lead to diseases if dysregulated. Proteomics plays an important role especially in various medical fields ranging from cardiology, internal medicine to hemato-oncology emphasizing the interdisciplinary nature of this field. Traditional methods such as electrophoretic or immunochemical methods have been mainstay in protein detection; however, these techniques are limited in terms of specificity and sensitivity. Examples include the diagnosis of multiple myeloma and the detection of its specific protein or amyloidosis, which relies heavily on these conventional methods, which sometimes lead to false positives or inadequate disease monitoring. Mass spectrometry in this respect emerges as a superior alternative, providing high sensitivity and specificity in the detection and quantification of specific protein sequences. This technique is particularly beneficial for monitoring minimal residual disease (MRD) in the diagnosis of multiple myeloma where traditional methods fall short. Furthermore mass spectrometry can provide precise typing of amyloid proteins, which is crucial for the appropriate treatment of amyloidosis. This review summarizes the opportunities for proteomic determination using mass spectrometry between 2012 and 2024, highlighting the transformative potential of mass spectrometry in clinical proteomics and encouraging its wider use in diagnostic laboratories.
Collapse
Affiliation(s)
- Katerina Kratka
- Institute of Laboratory Medicine, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
- Institute of Laboratory MedicineUniversity Hospital OstravaOstravaCzech Republic
| | - Pavel Sistik
- Institute of Laboratory Medicine, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
- Department of Clinical Pharmacology, Institute of Laboratory MedicineUniversity Hospital OstravaOstravaCzech Republic
| | - Ivana Olivkova
- Institute of Laboratory Medicine, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
- Institute of Laboratory MedicineUniversity Hospital OstravaOstravaCzech Republic
| | - Pavlina Kusnierova
- Institute of Laboratory Medicine, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
- Department of Clinical BiochemistryUniversity Hospital OstravaOstravaCzech Republic
| | - Zdenek Svagera
- Institute of Laboratory Medicine, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
- Department of Clinical BiochemistryUniversity Hospital OstravaOstravaCzech Republic
| | - David Stejskal
- Institute of Laboratory Medicine, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
- Institute of Laboratory MedicineUniversity Hospital OstravaOstravaCzech Republic
| |
Collapse
|
11
|
Kumar SB, Girish A, Sutar S, Premanand SA, Garg V, Yadav AK, Shukla R, Murthy TPK, Singh TR. A computational study on structural and functional consequences of nsSNPs in human dopa decarboxylase. J Biomol Struct Dyn 2025; 43:2503-2517. [PMID: 38193892 DOI: 10.1080/07391102.2023.2301517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/04/2023] [Indexed: 01/10/2024]
Abstract
The Dopa Decarboxylase (DDC) gene plays an important role in the synthesis of biogenic amines such as dopamine, serotonin, and histamine. Non-synonymous single nucleotide polymorphisms (nsSNPs) in the DDC gene have been linked with various neurodegenerative disorders. In this study, a comprehensive in silico analysis of nsSNPs in the DDC gene was conducted to assess their potential functional consequences and associations with disease outcomes. Using publicly available databases, a complete list of nsSNPs in the DDC gene was obtained. 29 computational tools and algorithms were used to characterise the effects of these nsSNPs on protein structure, function, and stability. In addition, the population-based association studies were performed to investigate possible associations between specific nsSNPs and arthritis. Our research identified four novel DDC gene nsSNPs that have a major impact on the structure and function of proteins. Through molecular dynamics simulations (MDS), we observed changes in the stability of the DDC protein induced by specific nsSNPs. Furthermore, population-based association studies have revealed potential associations between certain DDC nsSNPs and various neurological disorders, including Parkinson's disease and dementia. The in silico approach used in this study offers insightful information about the functional effects of nsSNPs in the DDC gene. These discoveries provide insight into the cellular processes that underlie cognitive disorders. Furthermore, the detection of disease-associated nsSNPs in the DDC gene may facilitate the development of tailored and targeted therapy approaches.
Collapse
Affiliation(s)
- S Birendra Kumar
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - Aishwarya Girish
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - Samruddhi Sutar
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | | | - Vrinda Garg
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - Arvind Kumar Yadav
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - T P Krishna Murthy
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
12
|
Song H, Zhang M, Guo C, Guo X, Ma Y, Ma Y. Implication of protein post translational modifications in gastric cancer. Front Cell Dev Biol 2025; 13:1523958. [PMID: 39968176 PMCID: PMC11833226 DOI: 10.3389/fcell.2025.1523958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Gastric cancer (GC) is one of the most common and highly lethal malignant tumors worldwide, and its occurrence and development are regulated by multiple molecular mechanisms. Post-translational modifications (PTM) common forms include ubiquitylation, phosphorylation, acetylation and methylation. Emerging research has highlighted lactylation and glycosylation. The diverse realm of PTM and PTM crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. This review provides a comprehensive overview of the impact of PTM on the occurrence and progression of GC. Specifically, aberrant PTM have been shown to alter the proliferation, migration, and invasion capabilities of GC cells. Moreover, PTM are closely associated with resistance to chemotherapeutic agents in GC. Notably, this review also discusses the phenomenon of PTM crosstalk, highlighting the interactions among PTM and their roles in regulating signaling pathways and protein functions. Therefore, in-depth investigation into the mechanisms of PTM and the development of targeted therapeutic strategies hold promise for advancing early diagnosis, treatment, and prognostic evaluation of GC, offering novel insights and future research directions.
Collapse
Affiliation(s)
- Houji Song
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mingze Zhang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Chengwang Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xi Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuqi Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuntao Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
13
|
van Oostrum M, Schuman EM. Understanding the molecular diversity of synapses. Nat Rev Neurosci 2025; 26:65-81. [PMID: 39638892 DOI: 10.1038/s41583-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Synapses are composed of thousands of proteins, providing the potential for extensive molecular diversity to shape synapse type-specific functional specializations. In this Review, we explore the landscape of synaptic diversity and describe the mechanisms that expand the molecular complexity of synapses, from the genotype to the regulation of gene expression to the production of specific proteoforms and the formation of localized protein complexes. We emphasize the importance of examining every molecular layer and adopting a systems perspective to understand how these interconnected mechanisms shape the diverse functional and structural properties of synapses. We explore current frameworks for classifying synapses and methodologies for investigating different synapse types at varying scales, from synapse-type-specific proteomics to advanced imaging techniques with single-synapse resolution. We highlight the potential of synapse-type-specific approaches for integrating molecular data with cellular functions, circuit organization and organismal phenotypes to enable a more holistic exploration of neuronal phenomena across different scales.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Zhu G, Tong N, Zhu Y, Wang L, Wang Q. The crosstalk between SUMOylation and immune system in host-pathogen interactions. Crit Rev Microbiol 2025; 51:164-186. [PMID: 38619159 DOI: 10.1080/1040841x.2024.2339259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Pathogens can not only cause infectious diseases, immune system diseases, and chronic diseases, but also serve as potential triggers or initiators for certain tumors. They directly or indirectly damage human health and are one of the leading causes of global deaths. Small ubiquitin-like modifier (SUMO) modification, a type of protein post-translational modification (PTM) that occurs when SUMO groups bond covalently to particular lysine residues on substrate proteins, plays a crucial role in both innate and adaptive immunologic responses, as well as pathogen-host immune system crosstalk. SUMOylation participates in the host's defense against pathogens by regulating immune responses, while numerically vast and taxonomically diverse pathogens have evolved to exploit the cellular SUMO modification system to break through innate defenses. Here, we describe the characteristics and multiple functions of SUMOylation as a pivotal PTM mechanism, the tactics employed by various pathogens to counteract the immune system through targeting host SUMOylation, and the character of the SUMOylation system in the fight between pathogens and the host immune system. We have also included a summary of the potential anti-pathogen SUMO enzyme inhibitors. This review serves as a reference for basic research and clinical practice in the diagnosis, prognosis, and treatment of pathogenic microorganism-caused disorders.
Collapse
Affiliation(s)
- Gangli Zhu
- Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environment Protection Engineering, Foshan, Guangdong, China
| | - Ni Tong
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yipeng Zhu
- Guagnzhou NO.6 Middle school, Guangzhou, Guangdong, China
| | - Lize Wang
- General Department, Institute of Software Chinese Academy of Sciences, Beijing, China
| | - Qirui Wang
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
O'Boyle B, Yeung W, Lu JD, Katiyar S, Yaron-Barir TM, Johnson JL, Cantley LC, Kannan N. Atlas of the Bacterial Serine-Threonine Kinases expands the functional diversity of the kinome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632604. [PMID: 39868133 PMCID: PMC11760699 DOI: 10.1101/2025.01.12.632604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Bacterial serine-threonine protein kinases (STKs) regulate diverse cellular processes associated with cell growth, virulence, and pathogenicity. They are evolutionarily related to the druggable eukaryotic STKs. However, an incomplete knowledge of how bacterial STKs differ from their eukaryotic counterparts and how they have diverged to regulate diverse bacterial signaling functions presents a bottleneck in targeting them for drug discovery efforts. Here, we classified over 300,000 bacterial STK sequences from the NCBI RefSeq non-redundant and UniProt protein databases into 35 canonical and seven non-canonical (pseudokinase) families based on the patterns of evolutionary constraints in the conserved catalytic domain and flanking regulatory domains. Through statistical comparisons, we identified distinguishing features of bacterial STKs, including a distinctive arginine residue in a regulatory helix (C-Helix) that dynamically couples ATP and substrate binding lobes of the kinase domain. Biochemical and peptide-library screens demonstrated that constrained residues contribute to substrate specificity and kinase activation in the Mycobacterium tuberculosis kinase PknB. Collectively, these findings open new avenues for investigating bacterial STK functions in cellular signaling and for the development of selective bacterial STK inhibitors.
Collapse
|
16
|
Pratyush P, Pokharel S, Ismail HD, Bahmani S, Kc DB. LMPTMSite: A Platform for PTM Site Prediction in Proteins Leveraging Transformer-Based Protein Language Models. Methods Mol Biol 2025; 2867:261-297. [PMID: 39576587 DOI: 10.1007/978-1-0716-4196-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Protein post-translational modifications (PTMs) introduce new functionalities and play a critical role in the regulation of protein functions. Characterizing these modifications, especially PTM sites, is essential for unraveling complex biological systems. However, traditional experimental approaches, such as mass spectrometry, are time-consuming and expensive. Machine learning and deep learning techniques offer promising alternatives for predicting PTM sites. In this chapter, we introduce our LMPTMSite (language model-based post-translational modification site predictor) platform, which emphasizes two transformer-based protein language model (pLM) approaches: pLMSNOSite and LMSuccSite, for the prediction of S-nitrosylation sites and succinylation sites in proteins, respectively. We highlight the various methods of using pLM-based sequence encoding, explain the underlying deep learning architectures, and discuss the superior efficacy of these tools compared to other state-of-the-art tools. Subsequently, we present an analysis of runtime and memory usage for pLMSNOSite, with a focus on CPU and RAM usage as the input sequence length is scaled up. Finally, we showcase a case study predicting succinylation sites in proteins active within the tricarboxylic acid (TCA) cycle pathway using LMSuccSite, demonstrating its potential utility and efficiency in real-world biological contexts. The LMPTMSite platform, inclusive of pLMSNOSite and LMSuccSite, is freely available both as a web server ( http://kcdukkalab.org/pLMSNOSite/ and http://kcdukkalab.org/LMSuccSite/ ) and as standalone packages ( https://github.com/KCLabMTU/pLMSNOSite and https://github.com/KCLabMTU/LMSuccSite ), providing valuable tools for researchers in the field.
Collapse
Affiliation(s)
- Pawel Pratyush
- Computer Science Department, Rochester Institute of Technology, Rochester, NY, USA
| | - Suresh Pokharel
- Computer Science Department, Rochester Institute of Technology, Rochester, NY, USA
| | - Hamid D Ismail
- Computer Science Department, Rochester Institute of Technology, Rochester, NY, USA
- North Carolina A&T State University, Computational Data Science and Engineering, Greensboro, NC, USA
| | - Soufia Bahmani
- Computer Science Department, Rochester Institute of Technology, Rochester, NY, USA
- Michigan Technological University, Comptuer Science Department, Houghton, MI, USA
| | - Dukka B Kc
- Computer Science Department, Rochester Institute of Technology, Rochester, NY, USA.
| |
Collapse
|
17
|
Stastna M. Post-translational modifications of proteins in cardiovascular diseases examined by proteomic approaches. FEBS J 2025; 292:28-46. [PMID: 38440918 PMCID: PMC11705224 DOI: 10.1111/febs.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
Over 400 different types of post-translational modifications (PTMs) have been reported and over 200 various types of PTMs have been discovered using mass spectrometry (MS)-based proteomics. MS-based proteomics has proven to be a powerful method capable of global PTM mapping with the identification of modified proteins/peptides, the localization of PTM sites and PTM quantitation. PTMs play regulatory roles in protein functions, activities and interactions in various heart related diseases, such as ischemia/reperfusion injury, cardiomyopathy and heart failure. The recognition of PTMs that are specific to cardiovascular pathology and the clarification of the mechanisms underlying these PTMs at molecular levels are crucial for discovery of novel biomarkers and application in a clinical setting. With sensitive MS instrumentation and novel biostatistical methods for precise processing of the data, low-abundance PTMs can be successfully detected and the beneficial or unfavorable effects of specific PTMs on cardiac function can be determined. Moreover, computational proteomic strategies that can predict PTM sites based on MS data have gained an increasing interest and can contribute to characterization of PTM profiles in cardiovascular disorders. More recently, machine learning- and deep learning-based methods have been employed to predict the locations of PTMs and explore PTM crosstalk. In this review article, the types of PTMs are briefly overviewed, approaches for PTM identification/quantitation in MS-based proteomics are discussed and recently published proteomic studies on PTMs associated with cardiovascular diseases are included.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
18
|
Zhang Q, Yu J, You Q, Wang L. Modulating Phosphorylation by Proximity-Inducing Modalities for Cancer Therapy. J Med Chem 2024; 67:21695-21716. [PMID: 39648992 DOI: 10.1021/acs.jmedchem.4c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Abnormal phosphorylation of proteins can lead to various diseases, particularly cancer. Therefore, the development of small molecules for precise regulation of protein phosphorylation holds great potential for drug design. While the traditional kinase/phosphatase small-molecule modulators have shown some success, achieving precise phosphorylation regulation has proven to be challenging. The emergence of heterobifunctional molecules, such as phosphorylation-inducing chimeric small molecules (PHICSs) and phosphatase recruiting chimeras (PHORCs), with proximity-inducing modalities is expected to lead to a breakthrough by specifically recruiting kinase or phosphatase to the protein of interest. Herein, we summarize the drug targets with aberrant phosphorylation in cancer and underscore the potential of correcting phosphorylation in cancer therapy. Through reported cases of heterobifunctional molecules targeting phosphorylation regulation, we highlight the current design strategies and features of these molecules. We also provide a systematic elaboration of the link between aberrantly phosphorylated targets and cancer as well as the existing challenges and future research directions for developing heterobifunctional molecular drugs for phosphorylation regulation.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
19
|
Cartwright M, Parakra R, Oduwole A, Zhang F, Deredge DJ, Smith AT. Identification of an Intrinsically Disordered Region (IDR) in Arginyltransferase 1 (ATE1). Biochemistry 2024; 63:3236-3249. [PMID: 39642180 DOI: 10.1021/acs.biochem.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Arginyltransferase 1 (ATE1) catalyzes arginylation, an important posttranslational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while posttranslational arginylation has also been linked to the activities of several important human viruses such as SARS-CoV-2 and HIV. Despite the known significance of ATE1 in mammalian cellular function, past biophysical studies of this enzyme have mainly focused on yeast ATE1, leaving the mechanism of arginylation in mammalian cells unclear. In this study, we sought to structurally and biophysically characterize mouse (Mus musculus) ATE1. Using size-exclusion chromatography (SEC), small-angle X-ray scattering (SAXS), and hydrogen-deuterium exchange mass spectrometry (HDX-MS), assisted by AlphaFold modeling, we found that mouse ATE1 is structurally more complex than yeast ATE1. Importantly, our data indicate the existence of an intrinsically disordered region (IDR) in all mouse ATE1 splice variants. However, comparative HDX-MS analyses show that yeast ATE1 does not have such an IDR, consistent with prior X-ray, cryo-EM, and SAXS analyses. Furthermore, bioinformatics approaches reveal that mammalian ATE1 sequences, as well those as in a large majority of other eukaryotes, contain an IDR-like sequence positioned in proximity to the ATE1 GNAT active-site fold. Computational analysis suggests that the IDR facilitates the formation of a complex between ATE1 and tRNAArg, adding a new complexity to the ATE1 structure and providing new insights for future studies of ATE1 functions.
Collapse
Affiliation(s)
- Misti Cartwright
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Rinky Parakra
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Ayomide Oduwole
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine & Sylvester Comprehensive Cancer Center, Miami, Florida 33136, United States
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
20
|
Cremelie E, Vázquez R, Briers Y. A comparative guide to expression systems for phage lysin production. Essays Biochem 2024; 68:645-659. [PMID: 39290148 DOI: 10.1042/ebc20240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Phage lysins, bacteriophage-encoded enzymes tasked with degrading their host's cell wall, are increasingly investigated and engineered as novel antibacterials across diverse applications. Their rapid action, tuneable specificity, and low likelihood of resistance development make them particularly interesting. Despite numerous application-focused lysin studies, the art of their recombinant production remains relatively undiscussed. Here, we provide an overview of the available expression systems for phage lysin production and discuss key considerations guiding the choice of a suitable recombinant host. We systematically surveyed recent literature to evaluate the hosts used in the lysin field and cover various recombinant systems, including the well-known bacterial host Escherichia coli or yeast Saccharomyces cerevisiae, as well as plant, mammalian, and cell-free systems. Careful analysis of the limited studies expressing lysins in various hosts suggests a host-dependent effect on activity. Nonetheless, the multitude of available expression systems should be further leveraged to accommodate the growing interest in phage lysins and their expanding range of applications.
Collapse
Affiliation(s)
- Emma Cremelie
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Roberto Vázquez
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Chen K, Shoulders MD. Protein Glycosylation Patterns Shaped By the IRE1-XBP1s Arm of the Unfolded Protein Response. Isr J Chem 2024; 64:e202300162. [PMID: 40083477 PMCID: PMC11906193 DOI: 10.1002/ijch.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 03/16/2025]
Abstract
The unfolded protein response (UPR) is a sensing and signaling pathway that surveys the endoplasmic reticulum (ER) for protein folding challenges and responds whenever issues are detected. UPR activation leads to upregulation of secretory pathway chaperones and quality control factors, as well as reduces the nascent protein load on the ER, thereby restoring and maintaining proteostasis. This paradigm-defining view of the role of the UPR is accurate, but it elides additional key functions of the UPR in cell biology. In particular, recent work has revealed that the UPR can shape the structure and function of N- and O-glycans installed on ER client proteins. This crosstalk between the UPR's response to protein misfolding and the regulation of glycosylation remains insufficiently understood. Still, emerging evidence makes it clear that the UPR, and particularly the IRE1-XBP1s arm of the UPR, may be a central regulator of protein glycosylation with important biological consequences. In this review, we discuss the crosstalk between proteostasis, the UPR, and glycosylation, present progress towards understanding biological functions of this crosstalk, and examine potential roles in diseases such as cancer.
Collapse
Affiliation(s)
- Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
22
|
Park JB, Lee MY, Lee J, Moon GH, Kim SJ, Chun YS. Neddylation steers the fate of cellular receptors. Exp Mol Med 2024; 56:2569-2577. [PMID: 39623094 DOI: 10.1038/s12276-024-01358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 12/28/2024] Open
Abstract
Cellular receptors regulate physiological responses by interacting with ligands, thus playing a crucial role in intercellular communication. Receptors are categorized on the basis of their location and engage in diverse biochemical mechanisms, which include posttranslational modifications (PTMs). Considering the broad impact and diversity of PTMs on cellular functions, we focus narrowly on neddylation, a modification closely resembling ubiquitination. We systematically organize its canonical and noncanonical roles in modulating proteins associated with cellular receptors with the goal of providing a more detailed perspective on the intricacies of both intracellular and cell-surface receptors.
Collapse
Affiliation(s)
- Jun Bum Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Min Young Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jooseung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Geon Ho Moon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Joon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Erckes V, Hilleke M, Isert C, Steuer C. PICKAPEP: An application for parameter calculation and visualization of cyclized and modified peptidomimetics. J Pept Sci 2024; 30:e3646. [PMID: 39085168 DOI: 10.1002/psc.3646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024]
Abstract
The interest in peptides and especially in peptidomimetic structures has risen enormously in the past few years. Novel modification strategies including nonnatural amino acids, sophisticated cyclization strategies, and side chain modifications to improve the pharmacokinetic properties of peptides are continuously arising. However, a calculator tool accompanying the current development in peptide sciences towards modified peptides is missing. Herein, we present the application PICKAPEP, enabling the virtual construction and visualization of peptidomimetics ranging from well-known cyclized and modified peptides such as ciclosporin A up to fully self-designed peptide-based structures with custom amino acids. Calculated parameters include the molecular weight, the water-octanol partition coefficient, the topological polar surface area, the number of rotatable bonds, and the peptide SMILES code. To our knowledge, PICKAPEP is the first tool allowing users to add custom amino acids as building blocks and also the only tool giving the possibility to process large peptide libraries and calculate parameters for multiple peptides at once. We believe that PICKAPEP will support peptide researchers in their work and will find wide application in current as well as future peptide drug development processes. PICKAPEP is available open source for Windows and Mac operating systems (https://www.research-collection.ethz.ch/handle/20.500.11850/681174).
Collapse
Affiliation(s)
- Vanessa Erckes
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Laboratory of Pharmaceutical Analytics, ETH Zurich, Zurich, Switzerland
| | - Mattis Hilleke
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Laboratory of Computer-Assisted Drug Design, ETH Zurich, Zurich, Switzerland
| | - Clemens Isert
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Laboratory of Computer-Assisted Drug Design, ETH Zurich, Zurich, Switzerland
| | - Christian Steuer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Laboratory of Pharmaceutical Analytics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Morales PN, Coons AN, Koopman AJ, Patel S, Chase PB, Parvatiyar MS, Pinto JR. Post-translational modifications of vertebrate striated muscle myosin heavy chains. Cytoskeleton (Hoboken) 2024; 81:832-842. [PMID: 38587113 PMCID: PMC11458826 DOI: 10.1002/cm.21857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating the function of many sarcomeric proteins, including myosin. Myosins comprise a family of motor proteins that play fundamental roles in cell motility in general and muscle contraction in particular. A myosin molecule consists of two myosin heavy chains (MyHCs) and two pairs of myosin light chains (MLCs); two MLCs are associated with the neck region of each MyHC's N-terminal head domain, while the two MyHC C-terminal tails form a coiled-coil that polymerizes with other MyHCs to form the thick filament backbone. Myosin undergoes extensive PTMs, and dysregulation of these PTMs may lead to abnormal muscle function and contribute to the development of myopathies and cardiovascular disorders. Recent studies have uncovered the significance of PTMs in regulating MyHC function and showed how these PTMs may provide additional modulation of contractile processes. Here, we discuss MyHC PTMs that have been biochemically and/or functionally studied in mammals' and rodents' striated muscle. We have identified hotspots or specific regions in three isoforms of myosin (MYH2, MYH6, and MYH7) where the prevalence of PTMs is more frequent and could potentially play a significant role in fine-tuning the activity of these proteins.
Collapse
Affiliation(s)
- Paula Nieto Morales
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| | - Arianna N. Coons
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Amelia J. Koopman
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Sonu Patel
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Michelle S. Parvatiyar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| |
Collapse
|
25
|
Wang Y, Liu Y, Xiang G, Jian Y, Yang Z, Chen T, Ma X, Zhao N, Dai Y, Lv Y, Wang H, He L, Shi B, Liu Q, Liu Y, Otto M, Li M. Post-translational toxin modification by lactate controls Staphylococcus aureus virulence. Nat Commun 2024; 15:9835. [PMID: 39537625 PMCID: PMC11561239 DOI: 10.1038/s41467-024-53979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Diverse post-translational modifications have been shown to play important roles in regulating protein function in eukaryotes. By contrast, the roles of post-translational modifications in bacteria are not so well understood, particularly as they relate to pathogenesis. Here, we demonstrate post-translational protein modification by covalent addition of lactate to lysine residues (lactylation) in the human pathogen Staphylococcus aureus. Lactylation is dependent on lactate concentration and specifically affects alpha-toxin, in which a single lactylated lysine is required for full activity and virulence in infection models. Given that lactate levels typically increase during infection, our results suggest that the pathogen can use protein lactylation as a mechanism to increase toxin-mediated virulence during infection.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfeng Liu
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoxiu Xiang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Jian
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyu Yang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianchi Chen
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Ma
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Zhao
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxin Dai
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Lv
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei He
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bisheng Shi
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yao Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
de Andrade-da-Costa J, de-Souza-Ferreira M, Dos Santos Touça NC, Sousa-Squiavinato ACM, Soares-Lima SC, Morgado-Díaz JA, de-Freitas-Junior JCM. Enrichment of cancer stem cell subpopulation alters the glycogene expression profile of colorectal cancer cells. Discov Oncol 2024; 15:647. [PMID: 39532788 PMCID: PMC11557779 DOI: 10.1007/s12672-024-01536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Colorectal cancer (CRC) has a high mortality rate, resulting from the processes of metastasis and disease recurrence. Cancer stem cells (CSCs) are believed to be crucial for both processes, as they ensure the maintenance of the tumor bulk, in addition to being intrinsically resistant to conventional therapies. Thus, the present study aimed to investigate glycobiomarkers in colorectal cancer stem cell subpopulations. For this purpose, a sphere formation assay was standardized for CACO-2 and HT-29 cell lines, which were monitored through gene expression analysis of five known CSC markers (CD24, CD44, ALDH1, LGR5, and PROM1). Compared to the parental condition (2D), a reduction in CD24 expression was seen in CACO-2, while in HT-29 an increase in the expression levels of ALDH1, LGR5, and PROM1 was observed. Regarding glycogenes, eight of them (ST3GAL1, OGT, OGA, MGAT5, GFAT1, GFAT2, B4GALT1 e B3GNT2) have had their expression monitored. An increase in B3GNT2, OGT, and OGA was observed in the HT-29 sphere condition. On the other hand, no change in the glycogenes expression was observed in CACO-2. In silico correlation analyses (CSCs markers versus glycogenes) using TCGA data from colon and rectum carcinoma samples showed a weak positive correlation between LGR5 vs OGA expression regardless of the sample location. In addition, an increase in the expression of LGR5, OGA, and OGT as well as a decrease in the expression of ALDH1 were observed in colon carcinoma samples when compared to the adjacent normal tissue. Interestingly, greater OGA expression resulted in both lower overall survival of colon carcinoma patients and lower disease-free survival of rectum carcinoma patients. Therefore, our data indicates that OGA expression correlates with CSC markers and directly impacts the survival of colorectal carcinoma patients.
Collapse
Affiliation(s)
- Jéssica de Andrade-da-Costa
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Michelle de-Souza-Ferreira
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
- Cellular and Molecular Pharmacology Laboratory, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Nathália Campos Dos Santos Touça
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
- Cellular and Molecular Pharmacology Laboratory, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | | | - Sheila Coelho Soares-Lima
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - José Andrés Morgado-Díaz
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Julio Cesar Madureira de-Freitas-Junior
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil.
- Cellular and Molecular Pharmacology Laboratory, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
27
|
Sotomayor B, Donahue TC, Mahajan SP, Taw MN, Hulbert SW, Bidstrup EJ, Owitipana DN, Pang A, Yang X, Ghosal S, Alabi CA, Azadi P, Gray JJ, Jewett MC, Wang LX, DeLisa MP. Discovery of a single-subunit oligosaccharyltransferase that enables glycosylation of full-length IgG antibodies in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607630. [PMID: 39574765 PMCID: PMC11580905 DOI: 10.1101/2024.08.12.607630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Human immunoglobulin G (IgG) antibodies are one of the most important classes of biotherapeutic agents and undergo glycosylation at the conserved N297 site in the CH2 domain, which is critical for IgG Fc effector functions and anti-inflammatory activity. Hence, technologies for producing authentically glycosylated IgGs are in high demand. While attempts to engineer Escherichia coli for this purpose have been described, they have met limited success due in part to the lack of available oligosaccharyltransferase (OST) enzymes that can install N-linked glycans within the QYNST sequon of the IgG CH2 domain. Here, we identified a previously uncharacterized single-subunit OST (ssOST) from the bacterium Desulfovibrio marinus that exhibited greatly relaxed substrate specificity and, as a result, was able to catalyze glycosylation of native CH2 domains in the context of both a hinge-Fc fragment and a full-length IgG. Although the attached glycans were bacterial in origin, conversion to a homogeneous, asialo complex-type G2 N-glycan at the QYNST sequon of the E. coli-derived hinge-Fc was achieved via chemoenzymatic glycan remodeling. Importantly, the resulting G2-hinge-Fc exhibited strong binding to human FcγRIIIa (CD16a), one of the most potent receptors for eliciting antibody-dependent cellular cytotoxicity (ADCC). Taken together, the discovery of a unique ssOST from D. marinus provides previously unavailable biocatalytic capabilities to the bacterial glycoprotein engineering toolbox and opens the door to using E. coli for the production and glycoengineering of human IgGs and fragments derived thereof.
Collapse
Affiliation(s)
- Belen Sotomayor
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Thomas C. Donahue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Sai Pooja Mahajan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - May N. Taw
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Sophia W. Hulbert
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Erik J. Bidstrup
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - D. Natasha Owitipana
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Alexandra Pang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602-4712, USA
| | - Souvik Ghosal
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Christopher A. Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602-4712, USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Michael C. Jewett
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Biotechnology, Cornell University, 130 Biotechnology Building, Ithaca, NY 14853, USA
| |
Collapse
|
28
|
Zhan Y, Huang C, Wang R, Xiao X, Xu X, Gao C. N-acetylglucosaminyltransferase V drives colorectal cancer metastasis by facilitating ZO-1 ubiquitination and degradation. Cancer Cell Int 2024; 24:366. [PMID: 39511539 PMCID: PMC11545198 DOI: 10.1186/s12935-024-03551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Increasing evidence supports the crucial role of Epithelial-Mesenchymal Transition (EMT) in cancer invasion and metastasis. N-acetylglucosaminyltransferase V (MGAT5), which is associated with multiantenna glycosylation, can contribute to tumorigenesis, yet its specific role in promoting colorectal cancer (CRC) metastasis remains unclear. Bioinformatics analysis of CRC datasets revealed that elevated MGAT5 expression was associated with EMT and a poor prognosis. In vitro experiments confirmed the pivotal role of MGAT5 as an EMT regulator in CRC cells. MGAT5 overexpression stimulated cell proliferation and migration, while MGAT5 knockdown had the opposite effect. Mechanistically, MGAT5 promoted EMT through multiantenna glycosylation of ZO-1, promoting its ubiquitination and reducing its expression. Clinically, MGAT5 upregulation in the CRC TMA correlated negatively with ZO-1 expression, which is indicative of malignancy and a poor prognosis. This study revealed that MGAT5 promotes EMT in CRC via interactions between multiple antenna glycosylation products and ZO-1 ubiquitination/degradation, indicating that MGAT5 could serve as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Yueping Zhan
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenjun Huang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Xiao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuewen Xu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunfang Gao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
29
|
Martyn GD, Kalagiri R, Veggiani G, Stanfield RL, Choudhuri I, Sala M, Meisenhelder J, Chen C, Biswas A, Levy RM, Lyumkis D, Wilson IA, Hunter T, Sidhu SS. Using phage display for rational engineering of a higher affinity humanized 3'phosphohistidine-specific antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621849. [PMID: 39574610 PMCID: PMC11580931 DOI: 10.1101/2024.11.04.621849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Histidine phosphorylation (pHis) is a non-canonical post-translational modification (PTM) that is historically understudied due to a lack of robust reagents that are required for its investigation, such as high affinity pHis-specific antibodies. Engineering pHis-specific antibodies is very challenging due to the labile nature of the phosphoramidate (P-N) bond and the stringent requirements for selective recognition of the two isoforms, 1-phosphohistidine (1-pHis) and 3-phosphohistidine (3-pHis). Here, we present a strategy for in vitro engineering of antibodies for detection of native 3-pHis targets. Specifically, we humanized the rabbit SC44-8 anti-3-pTza (a stable 3-pHis mimetic) mAb into a scaffold (herein referred to as hSC44) that was suitable for phage display. We then constructed six unique Fab phage-displayed libraries using the hSC44 scaffold and selected high affinity 3-pHis binders. Our selection strategy was carefully designed to enrich antibodies that bound 3-pHis with high affinity and had specificity for 3-pHis versus 3-pTza. hSC44.20N32F L , the best engineered antibody, has an ∼10-fold higher affinity for 3-pHis than the parental hSC44. Eleven new Fab structures, including the first reported antibody-pHis peptide structures were solved by X-ray crystallography. Structural and quantum mechanical calculations provided molecular insights into 3-pHis and 3-pTza discrimination by different hSC44 variants and their affinity increase obtained through in vitro engineering. Furthermore, we demonstrate the utility of these newly developed high-affinity 3-pHis-specific antibodies for recognition of pHis proteins in mammalian cells by immunoblotting and immunofluorescence staining. Overall, our work describes a general method for engineering PTM-specific antibodies and provides a set of novel antibodies for further investigations of the role of 3-pHis in cell biology. Significance Statement Histidine phosphorylation is an elusive PTM whose role in mammalian cell biology is largely unknown due to the lack of robust tools and methods for its analysis. Here we report the development of antibodies with unprecedented affinity and specificity towards 3-pHis and present the first crystal structures of a pHis peptide in complex with an antibody. Finally, we show how these antibodies can be used in standard molecular biology workflows to investigate pHis-dependent biology.
Collapse
Affiliation(s)
- Gregory D. Martyn
- School of Pharmacy, University of Waterloo, 10 Victoria St A, Kitchener, ON, N2G 1C5, Canada
| | - Rajasree Kalagiri
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gianluca Veggiani
- School of Pharmacy, University of Waterloo, 10 Victoria St A, Kitchener, ON, N2G 1C5, Canada
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA
| | - Indrani Choudhuri
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Margaux Sala
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Chao Chen
- School of Pharmacy, University of Waterloo, 10 Victoria St A, Kitchener, ON, N2G 1C5, Canada
| | - Avik Biswas
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, and Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California, 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sachdev S. Sidhu
- School of Pharmacy, University of Waterloo, 10 Victoria St A, Kitchener, ON, N2G 1C5, Canada
| |
Collapse
|
30
|
Li X, Wang W, Luo J, Guo L, Zhou Y, Li Y, Chen HX. Comprehensive Glycosylation Characterization of Recombinant Human Erythropoietin by Electron-Activated Dissociation Mass Spectrometry. Appl Biochem Biotechnol 2024; 196:8317-8331. [PMID: 38743293 DOI: 10.1007/s12010-024-04954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Recombinant human erythropoietin (rhEPO) is a glycoprotein that acts as the main hormone involved in regulating red blood cell production to treat anemia caused by chronic kidney disease or chemotherapy, which has three N-glycosylation sites and one O-glycosylation site. It contains a variety of different glycosylation modifications, such as sialyation, O-acetylation on sialic acids, etc., which causes a big challenge for the glycosylation analysis of rhEPO. In this study, a liquid chromatography-mass spectrometry (LC-MS) method combined with electron-activated dissociation (EAD) technology was used in qualitative and quantitative characterization of rhEPO N-glycosylation and O-glycosylation in just one injection. The usage of EAD not only generated abundant MS/MS fragment ions of glycopeptides and improved the MS/MS sequence coverage but also preserved the glycan structures in the MS/MS fragment ions and the integrity of the glycosidic bond between the glycans and peptides. Three N-glycosylation sites (N24, N38, and N83) and one O-glycosylation site (S126) of rhEPO samples were successfully identified. Among them, the glycosylation ratios of N24, N38, and N83 sites were 82.7%, 100%, and 100% respectively, and 15, 10, and 12 different N-glycans could be identified at the glycopeptide level. The total average number of sialic acids, N-hydroxyacetylneuraminoic acid, and O-acetylation on sialic acid were 7.28, 4.21, and 0.66 at the intact protein level, respectively. For O-glycosylation site S126, O-glycosylation ratios analyzed at the intact protein level and the glycopeptide level were 80.2% and 80.3%, respectively, and two O-glycans were identified, including Core1_S1 and Core1_S2. This study also compared the difference of the glycans and their relative contents in batch-to-batch rhEPO samples. The results proved that the workflow using EAD fragmentation in LC-MS method could be effectively applied for characterizing the glycosylation analysis of rhEPO samples and batch-to-batch consistency analysis, which would help to reasonably guide the optimization of rhEPO production process.
Collapse
Affiliation(s)
- Xiang Li
- Division of Recombinant Biological Products, National Institutes for Food and Drug Control (NIFDC), Beijing, 100501, People's Republic of China
| | - Wentao Wang
- SCIEX, Beijing, 100015, People's Republic of China
| | - Ji Luo
- SCIEX, Beijing, 100015, People's Republic of China
| | - Lihai Guo
- SCIEX, Beijing, 100015, People's Republic of China
| | - Yong Zhou
- Division of Recombinant Biological Products, National Institutes for Food and Drug Control (NIFDC), Beijing, 100501, People's Republic of China.
| | - Yan Li
- SiChuan Institute for Drug Control, NMPA Key Laboratory for Quality Control and Evaluation of Vaccines and Biological Products, Chengdu, 611731, People's Republic of China.
| | - Hong-Xu Chen
- SCIEX, Beijing, 100015, People's Republic of China.
| |
Collapse
|
31
|
Class LC, Kuhnen G, Schmid J, Rohn S, Kuballa J. Marker Peptides for Indicating the Spoilage of Milk-Sample Preparation and Chemometric Approaches for Yielding Potential Peptides in a Raw Milk Model. Foods 2024; 13:3315. [PMID: 39456376 PMCID: PMC11507367 DOI: 10.3390/foods13203315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The diminishing of food waste is gaining increasing importance, especially in context with a growing population and a need for the sustainable use of food resources. A more precise determination of the best-before date can contribute to this general aim. As proteoforms can be regarded as indicators for ecophysiological influences, their suitability for determining the spoilage and, consequently, the shelf-life of food is suggested. Proteoforms reflect the spoilage of food more accurately. The aim of the present study was to develop an efficient proteomics workflow to determine the shelf-life of milk as a prominent target. In this case, raw milk was chosen as model, as it degrades much faster. The integration of different multivariate analysis techniques was used to analyze the spoilage of raw milk with regard to aspects of its proteome. As the feasibility of such an approach has already been demonstrated in previous studies, it is further necessary to enable a robust and reproducible workflow, primarily gaining appropriate numbers and amounts of peptides when the research question differs and other dairy products are evaluated. In the present study, two approaches for gaining peptides were considered: In addition to a direct hydrolysis of a protein-rich sample solution, in-gel hydrolysis is another common approach in proteomics. By separating the proteins in a traditional gel electrophoresis before hydrolysis, the change in the individual proteins and, consequently, potential peptides can be monitored more specifically during storage. However, the traditional approach offers not only possibilities but also limitations that must be considered. The study showed that it is beneficial to apply a combination of different application strategies, as they complement each other and can thus increase the information content of a sample or confirm a theory. Mass spectrometric features, which represent a chemical-structural change of all kinds of compounds during storage, were selected, and three of them were identified as peptides, originating from α-s1-casein.
Collapse
Affiliation(s)
- Lisa-Carina Class
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany; (L.-C.C.); (G.K.)
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Gesine Kuhnen
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany; (L.-C.C.); (G.K.)
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany;
| | - Jasmin Schmid
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany; (L.-C.C.); (G.K.)
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany;
| | - Jürgen Kuballa
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany; (L.-C.C.); (G.K.)
| |
Collapse
|
32
|
Wang M, Jia J, Xu F, Zhou H, Liu Y, Yu B. Res-GCN: Identification of protein phosphorylation sites using graph convolutional network and residual network. Comput Biol Chem 2024; 112:108183. [PMID: 39208554 DOI: 10.1016/j.compbiolchem.2024.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
An essential post-translational modification, phosphorylation is intimately related with a wide range of biological activities. The advancement of effective computational methods for correctly recognizing phosphorylation sites is important for in-depth understanding of various physiological phenomena. However, the traditional method of identifying phosphorylation sites experimentally is time-consuming and laborious, which makes it difficult to meet the processing demands of today's big data. This research proposes the use of a novel model, Res-GCN, to recognize the phosphorylation sites of SARS-CoV-2. Firstly, eight feature extraction strategies are utilized to digitize the protein sequence from multiple viewpoints, including amino acid property encodings (AAindex), pseudo-amino acid composition (PseAAC), adapted normal distribution bi-profile Bayes (ANBPB), dipeptide composition (DC), binary encoding (BE), enhanced amino acid composition (EAAC), Word2Vec, and BLOSUM62 matrices. Secondly, elastic net is utilized to eliminate redundant data in the fused matrix. Finally, a combination of graph convolutional network (GCN) and residual network (ResNet) is used to classify the phosphorylated sites and output predictions using a fully connected layer (FC). The performance of Res-GCN is tested by 5-fold cross-validation and independent testing, and excellent results are obtained on S/T and Y datasets. This demonstrates that the Res-GCN model exhibits exceptional predictive performance and generalizability.
Collapse
Affiliation(s)
- Minghui Wang
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Jihua Jia
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Fei Xu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Hongyan Zhou
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Yushuang Liu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China.
| | - Bin Yu
- School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China; School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
33
|
Dalton HM, Young NJ, Berman AR, Evans HD, Peterson SJ, Patterson KA, Chow CY. A drug repurposing screen reveals dopamine signaling as a critical pathway underlying potential therapeutics for the rare disease DPAGT1-CDG. PLoS Genet 2024; 20:e1011458. [PMID: 39466823 PMCID: PMC11542785 DOI: 10.1371/journal.pgen.1011458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/07/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
DPAGT1-CDG is a Congenital Disorder of Glycosylation (CDG) that lacks effective therapies. It is caused by mutations in the gene DPAGT1 which encodes the first enzyme in N-linked glycosylation. We used a Drosophila rough eye model of DPAGT1-CDG with an improperly developed, small eye phenotype. We performed a drug repurposing screen on this model using 1,520 small molecules that are 98% FDA/EMA-approved to find drugs that improved its eye. We identified 42 candidate drugs that improved the DPAGT1-CDG model. Notably from this screen, we found that pharmacological and genetic inhibition of the dopamine D2 receptor partially rescued the DPAGT1-CDG model. Loss of both dopamine synthesis and recycling partially rescued the model, suggesting that dopaminergic flux and subsequent binding to D2 receptors is detrimental under DPAGT1 deficiency. This links dopamine signaling to N-glycosylation and represents a new potential therapeutic target for treating DPAGT1-CDG. We also genetically validate other top drug categories including acetylcholine-related drugs, COX inhibitors, and an inhibitor of NKCC1. These drugs and subsequent analyses reveal novel biology in DPAGT1 mechanisms, and they may represent new therapeutic options for DPAGT1-CDG.
Collapse
Affiliation(s)
- Hans M. Dalton
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Naomi J. Young
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Alexys R. Berman
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Heather D. Evans
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sydney J. Peterson
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kaylee A. Patterson
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Clement Y. Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
34
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
35
|
Shaw JB, Harvey SR, Du C, Xu Z, Edgington RM, Olmedillas E, Saphire EO, Wysocki VH. Protein Complex Heterogeneity and Topology Revealed by Electron Capture Charge Reduction and Surface Induced Dissociation. ACS CENTRAL SCIENCE 2024; 10:1537-1547. [PMID: 39220701 PMCID: PMC11363329 DOI: 10.1021/acscentsci.4c00461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
We illustrate the utility of native mass spectrometry (nMS) combined with a fast, tunable gas-phase charge reduction, electron capture charge reduction (ECCR), for the characterization of protein complex topology and glycoprotein heterogeneity. ECCR efficiently reduces the charge states of tetradecameric GroEL, illustrating Orbitrap m/z measurements to greater than 100,000 m/z. For pentameric C-reactive protein and tetradecameric GroEL, our novel device combining ECCR with surface induced dissociation (SID) reduces the charge states and yields more topologically informative fragmentation. This is the first demonstration that ECCR yields more native-like SID fragmentation. ECCR also significantly improved mass and glycan heterogeneity measurements of heavily glycosylated SARS-CoV-2 spike protein trimer and thyroglobulin dimer. Protein glycosylation is important for structural and functional properties and plays essential roles in many biological processes. The immense heterogeneity in glycosylation sites and glycan structure poses significant analytical challenges that hinder a mechanistic understanding of the biological role of glycosylation. Without ECCR, average mass determination of glycoprotein complexes is available only through charge detection mass spectrometry or mass photometry. With narrow m/z selection windows followed by ECCR, multiple glycoform m/z values are apparent, providing quick global glycoform profiling and providing a future path for glycan localization on individual intact glycoforms.
Collapse
Affiliation(s)
- Jared B. Shaw
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Sophie R. Harvey
- Native
Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, Ohio 43210, United States
| | - Chen Du
- Native
Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, Ohio State
University, Columbus, Ohio 43210, United
States
| | - Zhixin Xu
- Native
Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, Ohio State
University, Columbus, Ohio 43210, United
States
| | - Regina M. Edgington
- Department
of Chemistry and Biochemistry, Ohio State
University, Columbus, Ohio 43210, United
States
| | - Eduardo Olmedillas
- Center
for Vaccine Innovation, La Jolla Institute
for Immunology, La Jolla, California 92037, United States
| | - Erica Ollmann Saphire
- Center
for Vaccine Innovation, La Jolla Institute
for Immunology, La Jolla, California 92037, United States
- Department
of Medicine, University of California San
Diego, La Jolla, California 92037, United States
| | - Vicki H. Wysocki
- Native
Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, Ohio State
University, Columbus, Ohio 43210, United
States
| |
Collapse
|
36
|
Marien J, Prévost C, Sacquin-Mora S. nP-Collabs: Investigating Counterion-Mediated Bridges in the Multiply Phosphorylated Tau-R2 Repeat. J Chem Inf Model 2024; 64:6570-6582. [PMID: 39092904 DOI: 10.1021/acs.jcim.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tau is an intrinsically disordered (IDP) microtubule-associated protein (MAP) that plays a key part in microtubule assembly and organization. The function of tau can be regulated by multiple phosphorylation sites. These post-translational modifications are known to decrease the binding affinity of tau for microtubules, and abnormal tau phosphorylation patterns are involved in Alzheimer's disease. Using all-atom molecular dynamics simulations, we compared the conformational landscapes explored by the tau R2 repeat domain (which comprises a strong tubulin binding site) in its native state and with multiple phosphorylations on the S285, S289, and S293 residues, with four different standard force field (FF)/water model combinations. We find that the different parameters used for the phosphate groups (which can be more or less flexible) in these FFs and the specific interactions between bulk cations and water lead to the formation of a specific type of counterion bridge, termed nP-collab (for nphosphate collaboration, with n being an integer), where counterions form stable structures binding with two or three phosphate groups simultaneously. The resulting effect of nP-collabs on the tau-R2 conformational space differs when using sodium or potassium cations and is likely to impact the peptide overall dynamics and how this MAP interacts with tubulins. We also investigated the effect of phosphoresidue spacing and ionic concentration by modeling polyalanine peptides containing two phosphoserines located one-six residues apart. Three new metrics specifically tailored for IDPs (proteic Menger curvature, local curvature, and local flexibility) were introduced, which allow us to fully characterize the impact of nP-collabs on the dynamics of disordered peptides at the residue level.
Collapse
Affiliation(s)
- Jules Marien
- Laboratoire de Biochimie Théorique, Université Paris-Cité, CNRS, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Chantal Prévost
- Laboratoire de Biochimie Théorique, Université Paris-Cité, CNRS, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, Université Paris-Cité, CNRS, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
37
|
Cartwright M, Parakra R, Oduwole A, Zhang F, Deredge DJ, Smith AT. Identification of an intrinsically disordered region (IDR) in arginyltransferase 1 (ATE1). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609426. [PMID: 39229138 PMCID: PMC11370617 DOI: 10.1101/2024.08.23.609426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Arginyltransferase 1 (ATE1) catalyzes arginylation, an important post-translational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while post-translational arginylation has also been linked to the activities of several important human viruses such as SARS-CoV-2 and HIV. Despite the known significance of ATE1 in mammalian cellular function, past biophysical studies of this enzyme have mainly focused on yeast ATE1, leaving the mechanism of arginylation in mammalian cells unclear. In this study, we sought to structurally and biophysically characterize mouse (Mus musculus) ATE1. Using size-exclusion chromatography (SEC), small angle X-ray scattering (SAXS), and hydrogen deuterium exchange mass spectrometry (HDX-MS), assisted by AlphaFold modeling, we found that mouse ATE1 is structurally more complex than yeast ATE1. Importantly, our data indicate the existence of an intrinsically disordered region (IDR) in all mouse ATE1 splice variants. However, comparative HDX-MS analyses show that yeast ATE1 does not have such an IDR, consistent with prior X-ray, cryo-EM, and SAXS analyses. Furthermore, bioinformatics approaches reveal that mammalian ATE1 sequences, as well as in a large majority of other eukaryotes, contain an IDR-like sequence positioned in proximity to the ATE1 GNAT active-site fold. Computational analysis suggests that the IDR likely facilitates the formation of the complex between ATE1 and tRNAArg, adding a new complexity to ATE1 structure and providing new insights for future studies of ATE1 functions.
Collapse
Affiliation(s)
- Misti Cartwright
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, 21250 USA
| | - Rinky Parakra
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, 21201 USA
| | - Ayomide Oduwole
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, 21250 USA
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida, 33136 USA
| | - Daniel J. Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, 21201 USA
| | - Aaron T. Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, 21250 USA
| |
Collapse
|
38
|
Yin B, Xie W, Fang S, He S, Ma W, Liang L, Yin Y, Zhou D, Wang Z, Wang D. Research Progress on Saccharide Molecule Detection Based on Nanopores. SENSORS (BASEL, SWITZERLAND) 2024; 24:5442. [PMID: 39205136 PMCID: PMC11360570 DOI: 10.3390/s24165442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Saccharides, being one of the fundamental molecules of life, play essential roles in the physiological and pathological functions of cells. However, their intricate structures pose challenges for detection. Nanopore technology, with its high sensitivity and capability for single-molecule-level analysis, has revolutionized the identification and structural analysis of saccharide molecules. This review focuses on recent advancements in nanopore technology for carbohydrate detection, presenting an array of methods that leverage the molecular complexity of saccharides. Biological nanopore techniques utilize specific protein binding or pore modifications to trigger typical resistive pulses, enabling the high-sensitivity detection of monosaccharides and oligosaccharides. In solid-state nanopore sensing, boronic acid modification and pH gating mechanisms are employed for the specific recognition and quantitative analysis of polysaccharides. The integration of artificial intelligence algorithms can further enhance the accuracy and reliability of analyses. Serving as a crucial tool in carbohydrate detection, we foresee significant potential in the application of nanopore technology for the detection of carbohydrate molecules in disease diagnosis, drug screening, and biosensing, fostering innovative progress in related research domains.
Collapse
Affiliation(s)
- Bohua Yin
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Shaoxi Fang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Shixuan He
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Wenhao Ma
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400714, China
| | - Liyuan Liang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Yajie Yin
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Daming Zhou
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
| | - Deqiang Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| |
Collapse
|
39
|
Macchia E, Björkström K, Tewari A, Eskonen V, Luukkonen A, Ghafari AM, Sarcina L, Caputo M, Tong-Ochoa N, Kopra K, Pettersson F, Gounani Z, Torsi L, Härmä H, Österbacka R. Label-free electronic detection of peptide post-translational modification with functional enzyme-driven assay at the physical limit. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101874. [PMID: 39906902 PMCID: PMC11791991 DOI: 10.1016/j.xcrp.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 02/06/2025]
Abstract
High-performance, ultra-sensitive, and universal protein post-translational modification (PTM) and protein-protein interaction (PPI) technologies are eagerly pursued in the pharmaceutical industry and bioanalytical research. Novel PTM and PPI detection methods outperform traditional assays in scope and scalability, enabling the collection of information on multiple biochemical targets. Detecting peptides and proteins at the single-molecule level is done by utilizing nanosized transducing elements and assaying solutions at very high analyte concentrations, in the nanomolar range or higher. Here, a proof of principle of a biosensing platform for single-molecule PTM detection is demonstrated. This platform is based on the single molecule with a large transistor (SiMoT) technology, encompassing a millimeter-sized electrolyte-gated organic field-effect transistor, for label-free PTM detection with a zeptomolar limit of detection. Sensitivity is improved 106- to 1012-fold compared with mass-spectrometry and luminescence-based assay methods. A functional assay for detecting enzyme-driven peptide PTMs in the zeptomolar concentration range is demonstrated using multivariate data processing, opening the way for future applications to monitor PTMs.
Collapse
Affiliation(s)
- Eleonora Macchia
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
- Department of Pharmaceutical Sciences, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Kim Björkström
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Amit Tewari
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Ville Eskonen
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Axel Luukkonen
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Amir Mohammad Ghafari
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Mariapia Caputo
- Department of Pharmaceutical Sciences, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Natalia Tong-Ochoa
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Kari Kopra
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Fredrik Pettersson
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Zahra Gounani
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Harri Härmä
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Ronald Österbacka
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| |
Collapse
|
40
|
Palma JA, Bunyatov MI, Hulbert SW, Jewett MC, DeLisa MP. Bacterial glycoengineering: Cell-based and cell-free routes for producing biopharmaceuticals with customized glycosylation. Curr Opin Chem Biol 2024; 81:102500. [PMID: 38991462 DOI: 10.1016/j.cbpa.2024.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024]
Abstract
Glycosylation plays a pivotal role in tuning the folding and function of proteins. Because most human therapeutic proteins are glycosylated, understanding and controlling glycosylation is important for the design, optimization, and manufacture of biopharmaceuticals. Unfortunately, natural eukaryotic glycosylation pathways are complex and often produce heterogeneous glycan patterns, making the production of glycoproteins with chemically precise and homogeneous glycan structures difficult. To overcome these limitations, bacterial glycoengineering has emerged as a simple, cost-effective, and scalable approach to produce designer glycoprotein therapeutics and vaccines in which the glycan structures are engineered to reduce heterogeneity and improve biological and biophysical attributes of the protein. Here, we discuss recent advances in bacterial cell-based and cell-free glycoengineering that have enabled the production of biopharmaceutical glycoproteins with customized glycan structures.
Collapse
Affiliation(s)
- Jaymee A Palma
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Mehman I Bunyatov
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sophia W Hulbert
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Matthew P DeLisa
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA; Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Biotechnology, Cornell University, Biotechnology Building, Ithaca, NY 14853, USA.
| |
Collapse
|
41
|
Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:525-544. [PMID: 38499867 DOI: 10.1038/s41569-024-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Protein glycosylation, which involves the attachment of carbohydrates to proteins, is one of the most abundant protein co-translational and post-translational modifications. Advances in technology have substantially increased our knowledge of the biosynthetic pathways involved in protein glycosylation, as well as how changes in glycosylation can affect cell function. In addition, our understanding of the role of protein glycosylation in disease processes is growing, particularly in the context of immune system function, infectious diseases, neurodegeneration and cancer. Several decades ago, cell surface glycoproteins were found to have an important role in regulating ion transport across the cardiac sarcolemma. However, with very few exceptions, our understanding of how changes in protein glycosylation influence cardiovascular (patho)physiology remains remarkably limited. Therefore, in this Review, we aim to provide an overview of N-linked and O-linked protein glycosylation, including intracellular O-linked N-acetylglucosamine protein modification. We discuss our current understanding of how all forms of protein glycosylation contribute to normal cardiovascular function and their roles in cardiovascular disease. Finally, we highlight potential gaps in our knowledge about the effects of protein glycosylation on the heart and vascular system, highlighting areas for future research.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rakesh P Patel
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
42
|
Zanella CA, Marques N, Junqueira S, Prediger RD, Tasca CI, Cimarosti HI. Guanosine increases global SUMO1-ylation in the hippocampus of young and aged mice and improves the short-term memory of young mice. J Neurochem 2024; 168:1503-1513. [PMID: 37491912 DOI: 10.1111/jnc.15920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
The nucleoside guanosine is an endogenous neuromodulator associated with neuroprotection. The roles of guanosine during aging are still not fully elucidated. Guanosine modulates SUMOylation in neurons and astrocytes in vitro, but it is not known whether guanosine can modulate SUMOylation in vivo and improve cognitive functions during aging. SUMOylation is a post-translational protein modification with potential neuroprotective roles. In this follow-up study, we investigated whether guanosine could modulate SUMOylation in vivo and behavior in young and aged mice. Young (3-month-old) and aged (24-month-old) C57BL/6 mice were treated with guanosine (8 mg/kg intraperitoneal) daily for 14 days. Starting on day 8 of treatment, the following behavioral tests were performed: open field, novel object location, Y-maze, sucrose splash test, and tail suspension test. Treatment with guanosine did not change the locomotor activity of young or aged mice in the open-field test. Treatment with guanosine improved short-term memory only for young mice but did not change the working memory of either young or aged mice, as evaluated using object recognition and the Y-maze tests, respectively. Depressive-like behaviors, such as impaired grooming evaluated through the splash test, did not change in either young or aged mice. However, young mice treated with guanosine increased their immobility time in the tail suspension test, suggesting an effect on behavioral coping strategies. Global SUMO1-ylation was significantly increased in the hippocampus of young and aged mice after 14 days of treatment with guanosine, whereas no changes were detected in the cerebral cortex of either young or aged mice. Our findings demonstrate that guanosine also targets hippocampal SUMOylation in vivo, thereby contributing to a deeper understanding of its mechanisms of action. This highlights the involvement of SUMOylation in guanosine's modulatory and neuroprotective effects.
Collapse
Affiliation(s)
- Camila A Zanella
- Pharmacology Department, Pharmacology Postgraduate Program, Biological Sciences Center (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Naiani Marques
- Biochemistry Department, Biochemistry Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Stella Junqueira
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Rui D Prediger
- Pharmacology Department, Pharmacology Postgraduate Program, Biological Sciences Center (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Carla I Tasca
- Biochemistry Department, Biochemistry Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Helena I Cimarosti
- Pharmacology Department, Pharmacology Postgraduate Program, Biological Sciences Center (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| |
Collapse
|
43
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
44
|
Shaw JB, Harvey SR, Du C, Xu Z, Edgington RM, Olmedillas E, Saphire EO, Wysocki VH. Protein complex heterogeneity and topology revealed by electron capture charge reduction and surface induced dissociation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583498. [PMID: 38496594 PMCID: PMC10942452 DOI: 10.1101/2024.03.07.583498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We illustrate the utility of native mass spectrometry (nMS) combined with a fast, tunable gas-phase charge reduction, electron capture charge reduction (ECCR), for the characterization of protein complex topology and glycoprotein heterogeneity. ECCR efficiently reduces the charge states of tetradecameric GroEL, illustrating Orbitrap m/z measurements to greater than 100,000 m/z. For pentameric C-reactive protein and tetradecameric GroEL, our novel device combining ECCR with surface induced dissociation (SID) reduces the charge states and yields more topologically informative fragmentation. This is the first demonstration that ECCR yields more native-like SID fragmentation. ECCR also significantly improved mass and glycan heterogeneity measurements of heavily glycosylated SARS-CoV-2 spike protein trimer and thyroglobulin dimer. Protein glycosylation is important for structural and functional properties and plays essential roles in many biological processes. The immense heterogeneity in glycosylation sites and glycan structure poses significant analytical challenges that hinder a mechanistic understanding of the biological role of glycosylation. Without ECCR, average mass determination of glycoprotein complexes is available only through charge detection mass spectrometry or mass photometry. With narrow m/z selection windows followed by ECCR, multiple glycoform m/z values are apparent, providing quick global glycoform profiling and providing a future path for glycan localization on individual intact glycoforms.
Collapse
Affiliation(s)
- Jared B. Shaw
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588
| | - Sophie R. Harvey
- Native Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, OH 43210
| | - Chen Du
- Native Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210
| | - Zhixin Xu
- Native Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210
| | - Regina M. Edgington
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210
| | - Eduardo Olmedillas
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Medicine, University of California San Diego, La Jolla, CA 92037
| | - Vicki H. Wysocki
- Native Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210
| |
Collapse
|
45
|
Rizo J, Encarnación-Guevara S. Bacterial protein acetylation: mechanisms, functions, and methods for study. Front Cell Infect Microbiol 2024; 14:1408947. [PMID: 39027134 PMCID: PMC11254643 DOI: 10.3389/fcimb.2024.1408947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
46
|
Bickel D, Vranken W. Effects of Phosphorylation on Protein Backbone Dynamics and Conformational Preferences. J Chem Theory Comput 2024; 20:4998-5011. [PMID: 38830621 PMCID: PMC11210476 DOI: 10.1021/acs.jctc.4c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Phosphorylations are the most common and extensively studied post-translational modification (PTM) of proteins in eukaryotes. They constitute a major regulatory mechanism, modulating protein function, protein-protein interactions, as well as subcellular localization. Phosphorylation sites are preferably located in intrinsically disordered regions and have been shown to trigger structural rearrangements and order-to-disorder transitions. They can therefore have a significant effect on protein backbone dynamics or conformation, but only sparse experimental data are available. To obtain a more general description of how and when phosphorylations have a significant effect on protein behavior, molecular dynamics (MD) currently provides the only suitable framework to study these effects at a large scale in atomistic detail. This study develops a systematic MD simulation framework to explore the influence of phosphorylations on the local backbone dynamics and conformational propensities of proteins. Through a series of glycine-backbone peptides, we studied the effects of amino acid residues including the three most common phosphorylations (Ser, Thr, and Tyr), on local backbone dynamics and conformational propensities. We further extended our study to investigate the interactions of all such residues between position i to positions i + 1, i + 2, i + 3, and i + 4 in such peptides. The final data set comprises structural ensembles for 3393 sequences with more than 1 μs of sampling for each ensemble. To validate the relevance of the results, the structural and conformational properties extracted from the MD simulations are compared to NMR data from the Biological Magnetic Resonance Data Bank. The systematic nature of this study enables the projection of the gained knowledge onto any phosphorylation site in the proteome and provides a general framework for the study of further PTMs. The full data set is publicly available, as a training and reference set.
Collapse
Affiliation(s)
- David Bickel
- Interuniversity
Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
- Structural
Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium
| | - Wim Vranken
- Interuniversity
Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
- Structural
Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium
| |
Collapse
|
47
|
Chamrád I, Simerský R, Lenobel R, Novák O. Exploring affinity chromatography in proteomics: A comprehensive review. Anal Chim Acta 2024; 1306:342513. [PMID: 38692783 DOI: 10.1016/j.aca.2024.342513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Over the past decades, the proteomics field has undergone rapid growth. Progress in mass spectrometry and bioinformatics, together with separation methods, has brought many innovative approaches to the study of the molecular biology of the cell. The potential of affinity chromatography was recognized immediately after its first application in proteomics, and since that time, it has become one of the cornerstones of many proteomic protocols. Indeed, this chromatographic technique exploiting the specific binding between two molecules has been employed for numerous purposes, from selective removal of interfering (over)abundant proteins or enrichment of scarce biomarkers in complex biological samples to mapping the post-translational modifications and protein interactions with other proteins, nucleic acids or biologically active small molecules. This review presents a comprehensive survey of this versatile analytical tool in current proteomics. To navigate the reader, the haphazard space of affinity separations is classified according to the experiment's aims and the separated molecule's nature. Different types of available ligands and experimental strategies are discussed in further detail for each of the mentioned procedures.
Collapse
Affiliation(s)
- Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic.
| | - Radim Simerský
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| |
Collapse
|
48
|
Holfeld A, Schuster D, Sesterhenn F, Gillingham AK, Stalder P, Haenseler W, Barrio-Hernandez I, Ghosh D, Vowles J, Cowley SA, Nagel L, Khanppnavar B, Serdiuk T, Beltrao P, Korkhov VM, Munro S, Riek R, de Souza N, Picotti P. Systematic identification of structure-specific protein-protein interactions. Mol Syst Biol 2024; 20:651-675. [PMID: 38702390 PMCID: PMC11148107 DOI: 10.1038/s44320-024-00037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
The physical interactome of a protein can be altered upon perturbation, modulating cell physiology and contributing to disease. Identifying interactome differences of normal and disease states of proteins could help understand disease mechanisms, but current methods do not pinpoint structure-specific PPIs and interaction interfaces proteome-wide. We used limited proteolysis-mass spectrometry (LiP-MS) to screen for structure-specific PPIs by probing for protease susceptibility changes of proteins in cellular extracts upon treatment with specific structural states of a protein. We first demonstrated that LiP-MS detects well-characterized PPIs, including antibody-target protein interactions and interactions with membrane proteins, and that it pinpoints interfaces, including epitopes. We then applied the approach to study conformation-specific interactors of the Parkinson's disease hallmark protein alpha-synuclein (aSyn). We identified known interactors of aSyn monomer and amyloid fibrils and provide a resource of novel putative conformation-specific aSyn interactors for validation in further studies. We also used our approach on GDP- and GTP-bound forms of two Rab GTPases, showing detection of differential candidate interactors of conformationally similar proteins. This approach is applicable to screen for structure-specific interactomes of any protein, including posttranslationally modified and unmodified, or metabolite-bound and unbound protein states.
Collapse
Affiliation(s)
- Aleš Holfeld
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Dina Schuster
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Fabian Sesterhenn
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Patrick Stalder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Walther Haenseler
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- University Research Priority Program AdaBD (Adaptive Brain Circuits in Development and Learning), University of Zurich, Zurich, Switzerland
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Dhiman Ghosh
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Jane Vowles
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Luise Nagel
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Basavraj Khanppnavar
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Tetiana Serdiuk
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Pedro Beltrao
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Volodymyr M Korkhov
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
49
|
Anjo SI, He Z, Hussain Z, Farooq A, McIntyre A, Laughton CA, Carvalho AN, Finelli MJ. Protein Oxidative Modifications in Neurodegenerative Diseases: From Advances in Detection and Modelling to Their Use as Disease Biomarkers. Antioxidants (Basel) 2024; 13:681. [PMID: 38929122 PMCID: PMC11200609 DOI: 10.3390/antiox13060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidation-reduction post-translational modifications (redox-PTMs) are chemical alterations to amino acids of proteins. Redox-PTMs participate in the regulation of protein conformation, localization and function, acting as signalling effectors that impact many essential biochemical processes in the cells. Crucially, the dysregulation of redox-PTMs of proteins has been implicated in the pathophysiology of numerous human diseases, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This review aims to highlight the current gaps in knowledge in the field of redox-PTMs biology and to explore new methodological advances in proteomics and computational modelling that will pave the way for a better understanding of the role and therapeutic potential of redox-PTMs of proteins in neurodegenerative diseases. Here, we summarize the main types of redox-PTMs of proteins while providing examples of their occurrence in neurodegenerative diseases and an overview of the state-of-the-art methods used for their detection. We explore the potential of novel computational modelling approaches as essential tools to obtain insights into the precise role of redox-PTMs in regulating protein structure and function. We also discuss the complex crosstalk between various PTMs that occur in living cells. Finally, we argue that redox-PTMs of proteins could be used in the future as diagnosis and prognosis biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra I. Anjo
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-517 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Zhicheng He
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zohaib Hussain
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aruba Farooq
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alan McIntyre
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Charles A. Laughton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mattéa J. Finelli
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
50
|
Pongracz T, Mayboroda OA, Wuhrer M. The Human Blood N-Glycome: Unraveling Disease Glycosylation Patterns. JACS AU 2024; 4:1696-1708. [PMID: 38818049 PMCID: PMC11134357 DOI: 10.1021/jacsau.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 06/01/2024]
Abstract
Most of the proteins in the circulation are N-glycosylated, shaping together the total blood N-glycome (TBNG). Glycosylation is known to affect protein function, stability, and clearance. The TBNG is influenced by genetic, environmental, and metabolic factors, in part epigenetically imprinted, and responds to a variety of bioactive signals including cytokines and hormones. Accordingly, physiological and pathological events are reflected in distinct TBNG signatures. Here, we assess the specificity of the emerging disease-associated TBNG signatures with respect to a number of key glycosylation motifs including antennarity, linkage-specific sialylation, fucosylation, as well as expression of complex, hybrid-type and oligomannosidic N-glycans, and show perplexing complexity of the glycomic dimension of the studied diseases. Perspectives are given regarding the protein- and site-specific analysis of N-glycosylation, and the dissection of underlying regulatory layers and functional roles of blood protein N-glycosylation.
Collapse
Affiliation(s)
- Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| |
Collapse
|