1
|
Bao L, Zhu Z, Ismail A, Zhu B, Anandan V, Whiteley M, Kitten T, Xu P. Experimental evolution of gene essentiality in bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.600122. [PMID: 39071448 PMCID: PMC11275930 DOI: 10.1101/2024.07.16.600122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Essential gene products carry out fundamental cellular activities in interaction with other components. However, the lack of essential gene mutants and appropriate methodologies to link essential gene functions with their partners poses significant challenges. Here, we have generated deletion mutants in 32 genes previously identified as essential, with 23 mutants showing extremely slow growth in the SK36 strain of Streptococcus sanguinis. The 23 genes corresponding to these mutants encode components of diverse pathways, are widely conserved among bacteria, and are essential in many other bacterial species. Whole-genome sequencing of 243 independently evolved populations of these mutants has identified >1000 spontaneous suppressor mutations in experimental evolution. Many of these mutations define new gene and pathway relationships, such as F1Fo-ATPase/V1Vo-ATPase/TrkA1-H1 that were demonstrated across multiple Streptococcus species. Patterns of spontaneous mutations occurring in essential gene mutants differed from those found in wildtype. While gene duplications occurred rarely and appeared most often at later stages of evolution, substitutions, deletions, and insertions were prevalent in evolved populations. These essential gene deletion mutants and spontaneous mutations fixed in the mutant populations during evolution establish a foundation for understanding gene essentiality and the interaction of essential genes in networks.
Collapse
Affiliation(s)
- Liang Bao
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Zan Zhu
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Ahmed Ismail
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Bin Zhu
- Massey Cancer Center, Virginia Commonwealth University, Virginia, USA
| | - Vysakh Anandan
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Marvin Whiteley
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Georgia, USA
| | - Todd Kitten
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| | - Ping Xu
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Virginia, USA
| |
Collapse
|
2
|
Zhu B, Anandan V, Bao L, Xu P. High-throughput characterization of the influence of Streptococcus sanguinis genes on the interaction between Streptococcus sanguinis and Porphyromonas gingivalis. Mol Oral Microbiol 2024; 39:461-467. [PMID: 39054378 PMCID: PMC11534528 DOI: 10.1111/omi.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/30/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Porphyromonas gingivalis is a keystone pathogen in periodontitis, and Streptococcus sanguinis is an abundant oral commensal bacterium associated with periodontal health. However, the interaction between P. gingivalis and S. sanguinis remains obscure. Here, we established a strategy for high-throughput measurement of the cell number of P. gingivalis in the coculture with S. sanguinis by detecting the concentration of hydrogen sulfate. The interaction between P. gingivalis and over 2000 S. sanguinis single-gene mutants was characterized using this strategy, and several interaction-associated genes in S. sanguinis were determined by detecting more P. gingivalis cells in the coculture with matched S. sanguinis mutants. Three S. sanguinis interaction-associated genes were predicted to be responsible for cysteine metabolism, and the supplementation of exogenous L-cysteine promoted the cell number of P. gingivalis in the coculture with S. sanguinis. Thus, exogenous L-cysteine and the compromised cysteine metabolism in S. sanguinis enhanced the growth of P. gingivalis in the existence of S. sanguinis. Additionally, the interaction between P. gingivalis and other Streptococcus spp. was examined, and S. pneumoniae was the only streptococci that had no inhibition on the cell number of P. gingivalis. In total, this study established a new strategy for high-throughput screening of the interaction between Streptococcus and P. gingivalis and discovered a set of genes in S. sanguinis that impacted the interaction. The influence of exogenous L-cysteine on the interaction between P. gingivalis and S. sanguinis in the oral cavity needs further investigation.
Collapse
Affiliation(s)
- Bin Zhu
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Vysakh Anandan
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Liang Bao
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ping Xu
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA 23298, USA
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
3
|
Jaiswal LK, Singh RK, Nayak T, Kakkar A, Kandwal G, Singh VS, Gupta A. A comparative analysis of mycobacterial ribonucleases: Towards a therapeutic novel drug target. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105645. [PMID: 39067582 DOI: 10.1016/j.meegid.2024.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Bacterial responses to continuously changing environments are addressed through modulation of gene expression at the level of transcription initiation, RNA processing and/or decay. Ribonucleases (RNases) are hydrolytic or phosphorolytic enzymes involved in a majority of RNA metabolism reactions. RNases play a crucial role in RNA degradation, either independently or in collaboration with various trans-acting regulatory factors. The genus Mycobacterium consists of five subgenera: Mycobacteroides, Mycolicibacterium, Mycobacterium, Mycolicibacter and Mycolicibacillus, which include 63 fully sequenced species (pathogenic/non-pathogenic) to date. These include 13 different RNases, among which 5 are exonucleases (RNase PH, PNPase, RNase D, nano-RNases and RNase AS) and 8 are endonucleases (RNase J, RNase H, RNase P, RNase III, RNase BN, RNase Z, RNase G and RNase E), although RNase J and RNase BN were later identified to have exoribonuclease functions also. Here, we provide a detailed comparative insight into the Escherichia coli and mycobacterial RNases with respect to their types, phylogeny, structure, function, regulation and mechanism of action, with the main emphasis on RNase E. Among these 13 different mycobacterial RNases, 10 are essential for cell survival and have diverse structures hence, they are promising drug targets. RNase E is also an essential endonuclease that is abundant in many bacteria, forms an RNA degradosome complex that controls central RNA processing/degradation and has a conserved 5' sensor domain/DNase-I like region in its RNase domain. The essential mycobacterial RNases especially RNase E provide a potential repertoire of drug targets that can be exploited for inhibitor/modulator screening against many deadly mycobacterial diseases.
Collapse
Affiliation(s)
- Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Rakesh Kumar Singh
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Garima Kandwal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Vijay Shankar Singh
- Department of Microbiology, School of life Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India.
| |
Collapse
|
4
|
Rogers RR, Kesthely CA, Jean-Pierre F, El Hafi B, O'Toole GA. Dpr-mediated H 2O 2 resistance contributes to streptococcus survival in a cystic fibrosis airway model system. J Bacteriol 2024; 206:e0017624. [PMID: 38940597 PMCID: PMC11270861 DOI: 10.1128/jb.00176-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024] Open
Abstract
The cystic fibrosis (CF) lung environment is conducive to the colonization of bacteria as polymicrobial biofilms, which are associated with poor clinical outcomes for persons with CF (pwCF). Streptococcus spp. are highly prevalent in the CF airway, but its role in the CF lung microbiome is poorly understood. Some studies have shown Streptococcus spp. to be associated with better clinical outcomes for pwCF, while others show that high abundance of Streptococcus spp. is correlated with exacerbations. Our lab previously reported a polymicrobial culture system consisting of four CF-relevant pathogens that can be used to study microbial behavior in a more clinically relevant setting. Here, we use this model system to identify genetic pathways that are important for Streptococcus sanguinis survival in the context of the polymicrobial community. We identified genes related to reactive oxygen species as differentially expressed in S. sanguinis monoculture versus growth of this microbe in the mixed community. Genetic studies identified Dpr as important for S. sanguinis survival in the community. We show that Dpr, a DNA-binding ferritin-like protein, and PerR, a peroxide-responsive transcriptional regulator of Dpr, are important for protecting S. sanguinis from phenazine-mediated toxicity in co-culture with Pseudomonas aeruginosa and when exposed to hydrogen peroxide, both of which mimic the CF lung environment. Characterizing such interactions in a clinically relevant model system contributes to our understanding of microbial behavior in the context of polymicrobial biofilm infections. IMPORTANCE Streptococcus spp. are recognized as a highly prevalent pathogen in cystic fibrosis (CF) airway infections. However, the role of this microbe in clinical outcomes for persons with CF is poorly understood. Here, we leverage a polymicrobial community system previously developed by our group to model CF airway infections as a tool to investigate a Pseudomonas-Streptococcus interaction involving reactive oxygen species (ROS). We show that protection against ROS is required for Streptococcus sanguinis survival in a clinically relevant polymicrobial system. Using this model system to study interspecies interactions contributes to our broader understanding of the complex role of Streptococcus spp. in the CF lung.
Collapse
Affiliation(s)
- Rendi R. Rogers
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Christopher A. Kesthely
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bassam El Hafi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
5
|
Rudzite M, O’Toole GA. An energy coupling factor transporter of Streptococcus sanguinis impacts antibiotic susceptibility as well as metal and membrane homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603315. [PMID: 39026867 PMCID: PMC11257530 DOI: 10.1101/2024.07.12.603315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Streptococcus sanguinis is a prevalent member of human microbiome capable of acting as a causative agent of oral and respiratory infections. S. sanguinis competitive success within the infection niche is dependent on acquisition of metal ions and vitamins. Among the systems that bacteria use for micronutrient uptake is the energy coupling factor (ECF) transporter system EcfAAT. Here we describe physiological changes arising from EcfAAT transporter disruption. We found that EcfAAT contributes to S. sanguinis antibiotic sensitivity as well as metal and membrane homeostasis. Specifically, our work found that disruption of EcfAAT results in increased polymyxin susceptibility. We performed assessment of cell-associated metal content and found depletion of iron, magnesium, and manganese. Furthermore, membrane composition analysis revealed significant enrichment in unsaturated fatty acid species resulting in increased membrane fluidity. Our results demonstrate how disruption of a single EcfAAT transporter can have broad consequences on bacterial cell homeostasis. ECF transporters are of interest within the context of infection biology in bacterial species other than streptococci, hence work described here will further the understanding of how micronutrient uptake systems contribute to bacterial pathogenesis.
Collapse
Affiliation(s)
- Marta Rudzite
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
6
|
Anandan V, Bao L, Zhu Z, Bradley J, Assi VF, Chavda H, Kitten T, Xu P. A novel infective endocarditis virulence factor related to multiple functions for bacterial survival in blood was discovered in Streptococcus sanguinis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601854. [PMID: 39005390 PMCID: PMC11244957 DOI: 10.1101/2024.07.03.601854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
We identified the role of a conserved hypothetical protein (SSA_0451) in S. sanguinis that is involved in the virulence of infective endocarditis. An in vitro whole blood killing assay and rabbit endocarditis model studies revealed that the SSA_0451 mutant (ΔSSA_0451) was significantly less virulent than the wild-type (SK36) and its complementation mutant (ΔSSA_0451C). The mechanism underlying the SSA_0451 mutant's reduced virulence in infective endocarditis was evidentially linked to oxidative stress and environmental stress. The genes related to the survival of S. sanguinis in an oxidative stress environment were downregulated in ΔSSA_0451, which affected its survival in blood. Our findings suggest that SSA_0451 is a novel IE virulence factor and a new target for drug discovery against IE.
Collapse
Affiliation(s)
- Vysakh Anandan
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | - Liang Bao
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | - Zan Zhu
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | - Jennifer Bradley
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | - Valery-Francine Assi
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | - Henna Chavda
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | - Todd Kitten
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | - Ping Xu
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
7
|
St. Pierre J, Roberts J, Alam MA, Shields RC. Construction of an arrayed CRISPRi library as a resource for essential gene function studies in Streptococcus mutans. Microbiol Spectr 2024; 12:e0314923. [PMID: 38054713 PMCID: PMC10783072 DOI: 10.1128/spectrum.03149-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE The construction of arrayed mutant libraries has advanced the field of bacterial genetics by allowing researchers to more efficiently study the exact function and importance of encoded genes. In this study, we constructed an arrayed clustered regularly interspaced short palindromic repeats interference (CRISPRi) library, known as S treptococcus mutans arrayed CRISPRi (SNAP), as a resource to study >250 essential and growth-supporting genes in Streptococcus mutans. SNAP will be made available to the research community, and we anticipate that its distribution will lead to high-quality, high-throughput, and reproducible studies of essential genes.
Collapse
Affiliation(s)
- Jackson St. Pierre
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
- New York Institute of Technology College of Osteopathic Medicine, Jonesboro, Arkansas, USA
| | - Justin Roberts
- Department of Chemistry & Physics, Arkansas State University, Jonesboro, Arkansas, USA
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mohammad A. Alam
- Department of Chemistry & Physics, Arkansas State University, Jonesboro, Arkansas, USA
| | - Robert C. Shields
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
8
|
Kurisu M, Imai M. Concepts of a synthetic minimal cell: Information molecules, metabolic pathways, and vesicle reproduction. Biophys Physicobiol 2023; 21:e210002. [PMID: 38803330 PMCID: PMC11128301 DOI: 10.2142/biophysico.bppb-v21.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/15/2023] [Indexed: 05/29/2024] Open
Abstract
How do the living systems emerge from non-living molecular assemblies? What physical and chemical principles supported the process? To address these questions, a promising strategy is to artificially reconstruct living cells in a bottom-up way. Recently, the authors developed the "synthetic minimal cell" system showing recursive growth and division cycles, where the concepts of information molecules, metabolic pathways, and cell reproduction were artificially and concisely redesigned with the vesicle-based system. We intentionally avoided using the sophisticated molecular machinery of the biological cells and tried to redesign the cells in the simplest forms. This review focuses on the similarities and differences between the biological cells and our synthetic minimal cell concerning each concept of cells. Such comparisons between natural and artificial cells will provide insights on how the molecules should be assembled to create living systems to the wide readers in the field of synthetic biology, artificial cells, and protocells research. This review article is an extended version of the Japanese article "Growth and division of vesicles coupled with information molecules," published in SEIBUTSU-BUTSURI vol. 61, p. 378-381 (2021).
Collapse
Affiliation(s)
- Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
9
|
Gupta R, Singh M, Pathania R. Chemical genetic approaches for the discovery of bacterial cell wall inhibitors. RSC Med Chem 2023; 14:2125-2154. [PMID: 37974958 PMCID: PMC10650376 DOI: 10.1039/d3md00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Antimicrobial resistance (AMR) in bacterial pathogens is a worldwide health issue. The innovation gap in discovering new antibiotics has remained a significant hurdle in combating the AMR problem. Currently, antibiotics target various vital components of the bacterial cell envelope, nucleic acid and protein biosynthesis machinery and metabolic pathways essential for bacterial survival. The critical role of the bacterial cell envelope in cell morphogenesis and integrity makes it an attractive drug target. While a significant number of in-clinic antibiotics target peptidoglycan biosynthesis, several components of the bacterial cell envelope have been overlooked. This review focuses on various antibacterial targets in the bacterial cell wall and the strategies employed to find their novel inhibitors. This review will further elaborate on combining forward and reverse chemical genetic approaches to discover antibacterials that target the bacterial cell envelope.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| |
Collapse
|
10
|
Kesthely CA, Rogers RR, El Hafi B, Jean-Pierre F, O’Toole GA. Transcriptional profiling and genetic analysis of a cystic fibrosis airway-relevant model shows asymmetric responses to growth in a polymicrobial community. Microbiol Spectr 2023; 11:e0220123. [PMID: 37772884 PMCID: PMC10580927 DOI: 10.1128/spectrum.02201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Bacterial infections in the lungs of persons with cystic fibrosis are typically composed of multispecies biofilm-like communities, which modulate clinically relevant phenotypes that cannot be explained in the context of a single species culture. Most analyses to date provide a picture of the transcriptional responses of individual pathogens; however, there is relatively little data describing the transcriptional landscape of clinically relevant multispecies communities. Harnessing a previously described cystic fibrosis-relevant, polymicrobial community model consisting of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis, and Prevotella melaninogenica, we performed an RNA-Seq analysis on the biofilm population to elucidate the transcriptional profiles of the community grown in artificial sputum medium (ASM) as compared to growth in monoculture, without mucin, and in fresh medium supplemented with tobramycin. We provide evidence that, although the transcriptional profile of P. aeruginosa is community agnostic, the transcriptomes of S. aureus and S. sanguinis are community aware. Furthermore, P. aeruginosa and P. melaninogenica are transcriptionally sensitive to the presence of mucin in ASM, whereas S. aureus and S. sanguinis largely do not alter their transcriptional profiles in the presence of mucin when grown in a community. Only P. aeruginosa shows a robust response to tobramycin. Genetic studies of mutants altered in community-specific growth provide complementary data regarding how these microbes adapt to a community context. IMPORTANCE Polymicrobial infections constitute the majority of infections in the cystic fibrosis (CF) airway, but their study has largely been neglected in a laboratory setting. Our lab previously reported a polymicrobial community that can help explain clinical outcomes in the lungs of persons with CF. Here, we obtained transcriptional profiles of the community versus monocultures to provide transcriptional information about how this model community responds to CF-related growth conditions and perturbations. Genetic studies provide complementary functional outputs to assess how the microbes adapt to life in a community.
Collapse
Affiliation(s)
- Christopher A. Kesthely
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Rendi R. Rogers
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bassam El Hafi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
11
|
Liu C, Zhang H, Peng X, Blackledge MS, Furlani RE, Li H, Su Z, Melander RJ, Melander C, Michalek S, Wu H. Small Molecule Attenuates Bacterial Virulence by Targeting Conserved Response Regulator. mBio 2023; 14:e0013723. [PMID: 37074183 PMCID: PMC10294662 DOI: 10.1128/mbio.00137-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 04/20/2023] Open
Abstract
Antibiotic tolerance within a biofilm community presents a serious public health challenge. Here, we report the identification of a 2-aminoimidazole derivative that inhibits biofilm formation by two pathogenic Gram-positive bacteria, Streptococcus mutans and Staphylococcus aureus. In S. mutans, the compound binds to VicR, a key response regulator, at the N-terminal receiver domain, and concurrently inhibits expression of vicR and VicR-regulated genes, including the genes that encode the key biofilm matrix producing enzymes, Gtfs. The compound inhibits S. aureus biofilm formation via binding to a Staphylococcal VicR homolog. In addition, the inhibitor effectively attenuates S. mutans virulence in a rat model of dental caries. As the compound targets bacterial biofilms and virulence through a conserved transcriptional factor, it represents a promising new class of anti-infective agents that can be explored to prevent or treat a host of bacterial infections. IMPORTANCE Antibiotic resistance is a major public health issue due to the growing lack of effective anti-infective therapeutics. New alternatives to treat and prevent biofilm-driven microbial infections, which exhibit high tolerance to clinically available antibiotics, are urgently needed. We report the identification of a small molecule that inhibits biofilm formation by two important pathogenic Gram-positive bacteria, Streptococcus mutans and Staphylococcus aureus. The small molecule selectively targets a transcriptional regulator leading to attenuation of a biofilm regulatory cascade and concurrent reduction of bacterial virulence in vivo. As the regulator is highly conserved, the finding has broad implication for the development of antivirulence therapeutics that selectively target biofilms.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pediatric Dentistry, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
- Department of Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
| | - Hua Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, Oregon, USA
- Department of Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
| | - Xian Peng
- Department of Pediatric Dentistry, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
- Department of Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
| | - Meghan S. Blackledge
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Robert E. Furlani
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Haoting Li
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhaoming Su
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Roberta J. Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Suzanne Michalek
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, Oregon, USA
| | - Hui Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, Oregon, USA
- Department of Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Kurisu M, Katayama R, Sakuma Y, Kawakatsu T, Walde P, Imai M. Synthesising a minimal cell with artificial metabolic pathways. Commun Chem 2023; 6:56. [PMID: 36977828 PMCID: PMC10050237 DOI: 10.1038/s42004-023-00856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
A "synthetic minimal cell" is considered here as a cell-like artificial vesicle reproduction system in which a chemical and physico-chemical transformation network is regulated by information polymers. Here we synthesise such a minimal cell consisting of three units: energy production, information polymer synthesis, and vesicle reproduction. Supplied ingredients are converted to energy currencies which trigger the synthesis of an information polymer, where the vesicle membrane plays the role of a template. The information polymer promotes membrane growth. By tuning the membrane composition and permeability to osmolytes, the growing vesicles show recursive reproduction over several generations. Our "synthetic minimal cell" greatly simplifies the scheme of contemporary living cells while keeping their essence. The chemical pathways and the vesicle reproduction pathways are well described by kinetic equations and by applying the membrane elasticity model, respectively. This study provides new insights to better understand the differences and similarities between non-living forms of matter and life.
Collapse
Affiliation(s)
- Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Ryosuke Katayama
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Toshihiro Kawakatsu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladmir-Prelog-Weg 5, CH-8093, Zürich, Switzerland
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan.
| |
Collapse
|
13
|
Zeng L, Walker AR, Burne RA, Taylor ZA. Glucose Phosphotransferase System Modulates Pyruvate Metabolism, Bacterial Fitness, and Microbial Ecology in Oral Streptococci. J Bacteriol 2023; 205:e0035222. [PMID: 36468868 PMCID: PMC9879115 DOI: 10.1128/jb.00352-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Spontaneous mutants with defects in the primary glucose phosphotransferase permease (manLMNO) of Streptococcus sanguinis SK36 showed enhanced fitness at low pH. Transcriptomics and metabolomics with a manL deletion mutant (SK36/manL) revealed redirection of pyruvate to production of acetate and formate, rather than lactate. These observations were consistent with measurements of decreased lactic acid accumulation and increased excretion of acetate, formate, pyruvate, and H2O2. Genes showing increased expression in SK36/manL included those encoding carbohydrate transporters, extracellular glycosidases, intracellular polysaccharide metabolism, and arginine deiminase and pathways for metabolism of acetoin, ethanolamine, ascorbate, and formate, along with genes required for membrane biosynthesis and adhesion. Streptococcus mutans UA159 persisted much better in biofilm cocultures with SK36/manL than with SK36, an effect that was further enhanced by culturing the biofilms anaerobically but dampened by adding arginine to the medium. We posited that the enhanced persistence of S. mutans with SK36/manL was in part due to excess excretion of pyruvate by the latter, as addition of pyruvate to S. mutans-S. sanguinis cocultures increased the proportions of UA159 in the biofilms. Reducing the buffer capacity or increasing the concentration of glucose benefited UA159 when cocultured with SK36, but not with SK36/manL, likely due to the altered metabolism and enhanced acid tolerance of the mutant. When manL was deleted in S. mutans or Streptococcus gordonii, the mutants presented altered fitness characteristics. Our study demonstrated that phosphotransferase system (PTS)-dependent modulation of central metabolism can profoundly affect streptococcal fitness and metabolic interactions, revealing another dimension in commensal-pathogen relationships influencing dental caries development. IMPORTANCE Dental caries is underpinned by a dysbiotic microbiome and increased acid production. As beneficial bacteria that can antagonize oral pathobionts, oral streptococci such as S. sanguinis and S. gordonii can ferment many carbohydrates, despite their relative sensitivity to low pH. We characterized the molecular basis for why mutants of glucose transporter ManLMNO of S. sanguinis showed enhanced production of hydrogen peroxide and ammonia and improved persistence under acidic conditions. A metabolic shift involving more than 300 genes required for carbohydrate transport, energy production, and envelope biogenesis was observed. Significantly, manL mutants engineered in three different oral streptococci displayed altered capacities for acid production and interspecies antagonism, highlighting the potential for targeting the glucose-PTS to modulate the pathogenicity of oral biofilms.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Alejandro R. Walker
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert A. Burne
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Zachary A. Taylor
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Zhang Y, Li Z, Xu X, Peng X. Transposon mutagenesis in oral streptococcus. J Oral Microbiol 2022; 14:2104951. [PMID: 35903085 PMCID: PMC9318214 DOI: 10.1080/20002297.2022.2104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oral streptococci are gram-positive facultative anaerobic bacteria that are normal inhabitants of the human oral cavity and play an important role in maintaining oral microecological balance and pathogenesis. Transposon mutagenesis is an effective genetic manipulation strategy for studying the function of genomic features. In order to study cariogenic related genes and crucial biological element genes of oral Streptococcus, transposon mutagenesis was widely used to identify functional genes. With the advent of next-generation sequencing (NGS) technology and the development of transposon random mutation library construction methods, transposon insertion sequencing (TIS) came into being. Benefiting from high-throughput advances in NGS, TIS was able to evaluate the fitness contribution and essentiality of genetic features in the bacterial genome. The application of transposon mutagenesis, including TIS, to oral streptococci provided a massive amount of valuable detailed linkage data between genetic fitness and genetic backgrounds, further clarify the processes of colonization, virulence, and persistence and provides a more reliable basis for investigating relationships with host ecology and disease status. This review focuses on transposon mutagenesis, including TIS, and its applicability in oral streptococci.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Islam J, Sarkar H, Hoque H, Hasan MN, Jewel GNA. In-silico approach of identifying novel therapeutic targets against Yersinia pestis using pan and subtractive genomic analysis. Comput Biol Chem 2022; 101:107784. [DOI: 10.1016/j.compbiolchem.2022.107784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
16
|
Imai M, Sakuma Y, Kurisu M, Walde P. From vesicles toward protocells and minimal cells. SOFT MATTER 2022; 18:4823-4849. [PMID: 35722879 DOI: 10.1039/d1sm01695d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In contrast to ordinary condensed matter systems, "living systems" are unique. They are based on molecular compartments that reproduce themselves through (i) an uptake of ingredients and energy from the environment, and (ii) spatially and timely coordinated internal chemical transformations. These occur on the basis of instructions encoded in information molecules (DNAs). Life originated on Earth about 4 billion years ago as self-organised systems of inorganic compounds and organic molecules including macromolecules (e.g. nucleic acids and proteins) and low molar mass amphiphiles (lipids). Before the first living systems emerged from non-living forms of matter, functional molecules and dynamic molecular assemblies must have been formed as prebiotic soft matter systems. These hypothetical cell-like compartment systems often are called "protocells". Other systems that are considered as bridging units between non-living and living systems are called "minimal cells". They are synthetic, autonomous and sustainable reproducing compartment systems, but their constituents are not limited to prebiotic substances. In this review, we focus on both membrane-bounded (vesicular) protocells and minimal cells, and provide a membrane physics background which helps to understand how morphological transformations of vesicle systems might have happened and how vesicle reproduction might be coupled with metabolic reactions and information molecules. This research, which bridges matter and life, is a great challenge in which soft matter physics, systems chemistry, and synthetic biology must take joined efforts to better understand how the transformation of protocells into living systems might have occurred at the origin of life.
Collapse
Affiliation(s)
- Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
17
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
18
|
da Costa AR, Chideroli RT, Lanes GC, Ferrari NA, Chicoski LM, Batista CE, Pandolfi VCF, Ware C, Griffin MJ, Dos Santos AR, de Carvalho Azevedo VA, da Costa MM, de Pádua Pereira U. Multiplex PCR assay for correct identification of the fish pathogenic species of Edwardsiella genus reveals the presence of E. anguillarum in South America in strains previously characterized as E. tarda. J Appl Microbiol 2022; 132:4225-4235. [PMID: 35332638 DOI: 10.1111/jam.15538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
AIMS Develop a species-specific multiplex PCR to correctly identify Edwardsiella species in routine diagnostic for fish bacterial diseases. METHODS AND RESULTS The genomes of 62 Edwardsiella spp. isolates available from the National Center for Biotechnology Information (NCBI) database were subjected to taxonomic and pan-genomic analyses to identify unique regions that could be exploited by species-specific PCR. The designed primers were tested against isolated Edwardsiella spp. strains, revealing errors in commercial biochemical tests for bacterial classification regarding Edwardsiella species. CONCLUSION Some of the genomes of Edwardsiella spp. in the NCBI platform were incorrectly classified, which can lead to errors in some research. A functional mPCR was developed to differentiate between phenotypically and genetically ambiguous Edwardsiella, with which, we detected the presence of Edwardsiella anguillarum affecting fish in Brazil. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows that the misclassification of Edwardsiella spp in Brazil concealed the presence of E. anguillarum in South America. Also, this review of the taxonomic classification of the Edwardsiella genus is a contribution to the field to help researchers with their sequencing and identification of genomes, showing some misclassifications in online databases that must be corrected, as well as developing an easy assay to characterize Edwardsiella species in an end-point mPCR.
Collapse
Affiliation(s)
- Arthur Roberto da Costa
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Roberta Torres Chideroli
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil.,Microbiology and Immunology Laboratory, Department of Zootechnics, Federal University of São Francisco Valley, Petrolina, Brazil
| | - Gabriel Chagas Lanes
- Faculty of Computer Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Natália Amoroso Ferrari
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Larissa Melo Chicoski
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Catiane Estefani Batista
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Victor César Freitas Pandolfi
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Cynthia Ware
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Stoneville, MS, USA
| | - Matt J Griffin
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Stoneville, MS, USA
| | | | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Molecular and Cellular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mateus Matiuzzi da Costa
- Microbiology and Immunology Laboratory, Department of Zootechnics, Federal University of São Francisco Valley, Petrolina, Brazil
| | - Ulisses de Pádua Pereira
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| |
Collapse
|
19
|
Kwack KH, Lee JH, Moon JH. Whole genome and RNA sequencing of oral commensal bacterium Streptococcus anginosus subsp. anginosus with vancomycin tolerance. J Microbiol 2022; 60:167-176. [PMID: 34997538 DOI: 10.1007/s12275-022-1425-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022]
Abstract
"Antibiotic tolerance" promotes the rapid subsequent evolution of "antibiotic resistance," however, it is often overlooked because it is difficult to distinguish between tolerant and susceptible organisms. A commensal bacterium S. anginosus subsp. anginosus strain KHUD_S1, isolated from dental biofilm was found to exhibit a high MBC/MIC ratio of 32 against vancomycin. We observed KHUD_S1 cells exposed to vancomycin did not grow but maintained viability. Transmission electron microscope showed KHUD_S1 cells possessed a dense, thick capsule and maintained the cell wall integrity upon vancomycin exposure. To infer the underlying mechanisms of the vancomycin tolerance in KHUD_S1, we performed whole genome sequencing and RNA sequencing. The KHUD_S1 genome carried three genes encoding branching enzymes that can affect peptidoglycan structure through interpeptide bridge formation. Global gene expression profiling revealed that the vancomycin-induced downregulation of carbohydrate and inorganic ion transport/metabolism as well as translation is less prominent in KHUD_S1 than in the vancomycin susceptible strain KHUD_S3. Based on the transcriptional levels of genes related to peptidoglycan synthesis, KHUD_S1 was determined to have a 3D peptidoglycan architecture distinct from KHUD_S3. It was found that, under vancomycin exposure, the peptidoglycan was remodeled through changes in the interpeptide bridge and transpeptidation reactions. Collectively, these features of S. anginosus KHUD_S1, including a dense capsule and differential gene expression in peptidoglycan synthesis, may contribute to vancomycin tolerance. Our results showing the occurrence of vancomycin tolerance amongst oral commensal bacteria highlight the need for considering future strategies for screening of antibiotic tolerance as an effort to reduce antibiotic resistance.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Present address: Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, New York, 14214, USA
| | - Jae-Hyung Lee
- Department of Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Ji-Hoi Moon
- Department of Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
20
|
Targeting the ATP synthase in bacterial and fungal pathogens – beyond Mycobacterium tuberculosis. J Glob Antimicrob Resist 2022; 29:29-41. [DOI: 10.1016/j.jgar.2022.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
|
21
|
Zaidi S, Bhardwaj T, Somvanshi P, Khan AU. Proteomic Characterization and Target Identification Against Streptococcus mutans Under Bacitracin Stress Conditions Using LC-MS and Subtractive Proteomics. Protein J 2022; 41:166-178. [PMID: 34989956 PMCID: PMC8733428 DOI: 10.1007/s10930-021-10038-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2021] [Indexed: 11/24/2022]
Abstract
The aim of the present study, is to identify potential targets against the highly pathogenic bacteria Streptococcus mutans that causes dental caries as well as the deadly infection of endocarditis. The powerful and highly sensitive technique of liquid chromatography-mass spectrometry (LC–MS/MS) identified 321 proteins of S. mutans when grown under stressful conditions induced by the antibiotic bacitracin. These 321 proteins were subjected to the insilico method of subtractive proteomics to screen out potential targets by utilizing different analyses like CD-HIT, non-homologous sequence screening, KEGG pathway, essentiality screening, gut-flora non-homology, and codon usage analysis. A database of essential proteins was employed to find sequence homology of non-paralogous proteins to determine proteins which are essential for bacterial survival. Cellular localization analysis of the selected proteins was done to localize them inside the cell along with physico-chemical characterization and druggability analysis. Using computational tools, 22 proteins out of 321, that are functionally distinguishable from their human counterparts and passed the criterion of a potential therapeutic candidate were identified. The selected proteins comprise central energy metabolic proteins, virulence factors, proteins of the sortase family, and essentiality factors. The presented analyses identified proteins of the sortase family, which appear as key therapeutic targets against caries infection. These proteins regulate a number of virulence factors, thus can be simultaneously inhibited to obstruct multiple virulence pathways.
Collapse
Affiliation(s)
- Sahar Zaidi
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Tulika Bhardwaj
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pallavi Somvanshi
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, New Delhi, 110067, India.,Special Centre of Systems Medicine (SCSM), Jawaharlal Nehru University, New Delhi, 110067, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
22
|
Chen H, Du R, Zhang Y, Du P, Zhang S, Ren W, Yang M. Evolution of PM 2.5 bacterial community structure in Beijing's suburban atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149387. [PMID: 34365268 DOI: 10.1016/j.scitotenv.2021.149387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Biosafety has become one of the greatest challenges facing humanity. Outbreaks of infectious diseases caused by bacteria and viruses have had a huge impact on public health. In addition, non-severe polluted air quality has gradually become the norm; however, literature on the impacts of bioaerosols under long-term exposure to low concentrations of PM2.5 in China is limited. This study analyzed the evolution of the PM2.5 bacterial community in the Huairou district of Beijing under different pollution conditions. We used high-throughput sequencing to seasonally analyze samples over a year (from July 2018 to May 2019) and winter samples from different years (2015, 2016, 2018, and 2019). The results showed that the bacterial diversity and community composition of PM2.5 were significantly different in different seasons, whereas under different pollution levels, there were no significant differences. During the observation period, the number of bacterial species decreased with the increase in pollution; however, a high proportion of bacteria can exist as core species under different pollution levels for a long time. Furthermore, bacteria can be relatively stable in the local environment during the same season but in different years. Although the relative abundances of different bacteria change differently with the variation in pollution level, there is no statistical difference. Importantly, there was a higher abundance of opportunistic pathogenic bacteria when the air quality index was 0-100 in winter. This study comprehensively revealed the characteristics of the evolution of bacterial communities under different pollution levels and in different years and emphasized the health effects of non-pollution air quality. This study can provide a theoretical basis for establishing a sound environmental microbial monitoring and defense system.
Collapse
Affiliation(s)
- Hanlin Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongtao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengrui Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sujian Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weishan Ren
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Puccio T, Kunka KS, An SS, Kitten T. Contribution of a ZIP-family protein to manganese uptake and infective endocarditis virulence in Streptococcus sanguinis. Mol Microbiol 2021; 117:353-374. [PMID: 34855265 PMCID: PMC8844249 DOI: 10.1111/mmi.14853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023]
Abstract
Streptococcus sanguinis is an important cause of infective endocarditis. In strain SK36, the ABC‐family manganese transporter, SsaACB, is essential for virulence. We have now identified a ZIP‐family protein, TmpA, as a secondary manganese transporter. A tmpA mutant had no phenotype, but a ΔssaACB ΔtmpA mutant was more attenuated for serum growth and for virulence in a rabbit model than its ΔssaACB parent. The growth of both mutants was restored by supplemental manganese, but the ΔssaACB ΔtmpA mutant required twenty‐fold more and accumulated less. Although ZIP‐family proteins are known for zinc and iron transport, TmpA‐mediated transport of either metal was minimal. While ssaACB appears ubiquitous in St. sanguinis, tmpA was present in a majority of strains and a mntH gene encoding an NRAMP‐family transporter was identified in relatively few, including VMC66. As in SK36, deletion of ssaACB greatly diminished VMC66 endocarditis virulence and serum growth, and deletion of tmpA from this mutant diminished virulence further. Virulence was not significantly altered by deletion of mntH from either VMC66 or its ΔssaACB mutant. This and the accompanying paper together suggest that SsaACB is of primary importance for endocarditis virulence while secondary transporters TmpA and MntH contribute to growth under differing conditions.
Collapse
Affiliation(s)
- Tanya Puccio
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Karina S Kunka
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| |
Collapse
|
24
|
Aromolaran O, Aromolaran D, Isewon I, Oyelade J. Machine learning approach to gene essentiality prediction: a review. Brief Bioinform 2021; 22:6219158. [PMID: 33842944 DOI: 10.1093/bib/bbab128] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Essential genes are critical for the growth and survival of any organism. The machine learning approach complements the experimental methods to minimize the resources required for essentiality assays. Previous studies revealed the need to discover relevant features that significantly classify essential genes, improve on the generalizability of prediction models across organisms, and construct a robust gold standard as the class label for the train data to enhance prediction. Findings also show that a significant limitation of the machine learning approach is predicting conditionally essential genes. The essentiality status of a gene can change due to a specific condition of the organism. This review examines various methods applied to essential gene prediction task, their strengths, limitations and the factors responsible for effective computational prediction of essential genes. We discussed categories of features and how they contribute to the classification performance of essentiality prediction models. Five categories of features, namely, gene sequence, protein sequence, network topology, homology and gene ontology-based features, were generated for Caenorhabditis elegans to perform a comparative analysis of their essentiality prediction capacity. Gene ontology-based feature category outperformed other categories of features majorly due to its high correlation with the genes' biological functions. However, the topology feature category provided the highest discriminatory power making it more suitable for essentiality prediction. The major limiting factor of machine learning to predict essential genes conditionality is the unavailability of labeled data for interest conditions that can train a classifier. Therefore, cooperative machine learning could further exploit models that can perform well in conditional essentiality predictions. SHORT ABSTRACT Identification of essential genes is imperative because it provides an understanding of the core structure and function, accelerating drug targets' discovery, among other functions. Recent studies have applied machine learning to complement the experimental identification of essential genes. However, several factors are limiting the performance of machine learning approaches. This review aims to present the standard procedure and resources available for predicting essential genes in organisms, and also highlight the factors responsible for the current limitation in using machine learning for conditional gene essentiality prediction. The choice of features and ML technique was identified as an important factor to predict essential genes effectively.
Collapse
Affiliation(s)
- Olufemi Aromolaran
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria.,Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Damilare Aromolaran
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria.,Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Itunuoluwa Isewon
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria.,Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Jelili Oyelade
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria.,Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
25
|
Vestergaard M, Roshanak S, Ingmer H. Targeting the ATP Synthase in Staphylococcus aureus Small Colony Variants, Streptococcus pyogenes and Pathogenic Fungi. Antibiotics (Basel) 2021; 10:antibiotics10040376. [PMID: 33918382 PMCID: PMC8067178 DOI: 10.3390/antibiotics10040376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
The ATP synthase has been validated as a druggable target with the approval of the ATP synthase inhibitor, bedaquiline, for treatment of drug-resistant Mycobacterium tuberculosis, a bacterial species in which the ATP synthase is essential for viability. Gene inactivation studies have also shown that the ATP synthase is essential among Streptococci, and some studies even suggest that inhibition of the ATP synthase is a strategy for the elimination of Staphylococcus aureus small colony variants with deficiencies in the electron transport chain, as well as pathogenic fungi, such as Candida albicans. Here we investigated five structurally diverse ATP synthase inhibitors, namely N,N′-dicyclohexylcarbodiimide (DCCD), oligomycin A, tomatidine, resveratrol and piceatannol, for their growth inhibitory activity against the bacterial strains Streptococcus pyogenes, S. aureus and two isogenic small colony variants, as well as the pathogenic fungal species, C. albicans and Aspergillus niger. DCCD showed broad-spectrum inhibitory activity against all the strains (minimum inhibitory concentration (MIC) 2–16 µg/mL), except for S. aureus, where the ATP synthase is dispensable for growth. Contrarily, oligomycin A selectively inhibited the fungal strains (MIC 1–8 µg/mL), while tomatidine showed very potent, but selective, activity against small colony variants of S. aureus with compromised electron transport chain activity (MIC 0.0625 µg/mL). Small colony variants of S. aureus were also more sensitive to resveratrol and piceatannol than the wild-type strain, and piceatannol inhibited S. pyogenes at 16–32 µg/mL. We previously showed that transposon inactivation of the ATP synthase sensitizes S. aureus towards polymyxin B and colistin, and here we demonstrate that treatment with structurally diverse ATP synthase inhibitors sensitized S. aureus towards polymyxin B. Collectively, our data show that ATP synthase inhibitors can have selective inhibitory activity against pathogenic microorganisms in which the ATP synthase is essential. The data also show that the inhibition of the ATP synthase in Streptococcus pyogenes may be a new strategy for development of a narrow-spectrum antibiotic class. In other major bacterial pathogens, such as S. aureus and potentially Escherichia coli, where the ATP synthase is dispensable, the ATP synthase inhibitors may be applied in combination with antimicrobial peptides to provide new therapeutic options.
Collapse
Affiliation(s)
- Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark; (M.V.); (S.R.)
| | - Sahar Roshanak
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark; (M.V.); (S.R.)
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark; (M.V.); (S.R.)
- Correspondence:
| |
Collapse
|
26
|
Zhu B, Green SP, Ge X, Puccio T, Nadhem H, Ge H, Bao L, Kitten T, Xu P. Genome-wide identification of Streptococcus sanguinis fitness genes in human serum and discovery of potential selective drug targets. Mol Microbiol 2021; 115:658-671. [PMID: 33084151 PMCID: PMC8055731 DOI: 10.1111/mmi.14629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/20/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
Streptococcus sanguinis is a primary colonizer of teeth and is associated with oral health. When it enters the bloodstream, however, this bacterium may cause the serious illness infective endocarditis. The genes required for survival and proliferation in blood have not been identified. The products of these genes could provide a rich source of targets for endocarditis-specific antibiotics possessing greater efficacy for endocarditis, and also little or no activity against those bacteria that remain in the mouth. We previously created a comprehensive library of S. sanguinis mutants lacking every nonessential gene. We have now screened each member of this library for growth in human serum and discovered 178 mutants with significant abundance changes. The main biological functions disrupted in these mutants, including purine metabolism, were highlighted via network analysis. The components of an ECF-family transporter were required for growth in serum and were shown for the first time in any bacterium to be essential for endocarditis virulence. We also identified two mutants whose growth was reduced in serum but not in saliva. This strategy promises to enable selective targeting of bacteria based on their location in the body, in this instance, treating or preventing endocarditis while leaving the oral microbiome intact.
Collapse
Affiliation(s)
- Bin Zhu
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
| | - Shannon P. Green
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
- Department of Microbiology and ImmunologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Xiuchun Ge
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
| | - Tanya Puccio
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
| | - Haider Nadhem
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
| | - Henry Ge
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
| | - Liang Bao
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
| | - Todd Kitten
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
- Department of Microbiology and ImmunologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Ping Xu
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
- Department of Microbiology and ImmunologyVirginia Commonwealth UniversityRichmondVAUSA
- Center for Biological Data ScienceVirginia Commonwealth UniversityRichmondVAUSA
| |
Collapse
|
27
|
Luo H, Lin Y, Liu T, Lai FL, Zhang CT, Gao F, Zhang R. DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools. Nucleic Acids Res 2021; 49:D677-D686. [PMID: 33095861 PMCID: PMC7779065 DOI: 10.1093/nar/gkaa917] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Essential genes refer to genes that are required by an organism to survive under specific conditions. Studies of the minimal-gene-set for bacteria have elucidated fundamental cellular processes that sustain life. The past five years have seen a significant progress in identifying human essential genes, primarily due to the successful use of CRISPR/Cas9 in various types of human cells. DEG 15, a new release of the Database of Essential Genes (www.essentialgene.org), has provided major advancements, compared to DEG 10. Specifically, the number of eukaryotic essential genes has increased by more than fourfold, and that of prokaryotic ones has more than doubled. Of note, the human essential-gene number has increased by more than tenfold. Moreover, we have developed built-in analysis modules by which users can perform various analyses, such as essential-gene distributions between bacterial leading and lagging strands, sub-cellular localization distribution, enrichment analysis of gene ontology and KEGG pathways, and generation of Venn diagrams to compare and contrast gene sets between experiments. Additionally, the database offers customizable BLAST tools for performing species- and experiment-specific BLAST searches. Therefore, DEG comprehensively harbors updated human-curated essential-gene records among prokaryotes and eukaryotes with built-in tools to enhance essential-gene analysis.
Collapse
Affiliation(s)
- Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Yan Lin
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Tao Liu
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Fei-Liao Lai
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Chun-Ting Zhang
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
28
|
Puccio T, Kunka KS, Zhu B, Xu P, Kitten T. Manganese Depletion Leads to Multisystem Changes in the Transcriptome of the Opportunistic Pathogen Streptococcus sanguinis. Front Microbiol 2020; 11:592615. [PMID: 33250881 PMCID: PMC7674665 DOI: 10.3389/fmicb.2020.592615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus sanguinis is a primary colonizer of teeth and is typically considered beneficial due to its antagonistic relationship with the cariogenic pathogen Streptococcus mutans. However, S. sanguinis can also act as an opportunistic pathogen should it enter the bloodstream and colonize a damaged heart valve, leading to infective endocarditis. Studies have implicated manganese acquisition as an important virulence determinant in streptococcal endocarditis. A knockout mutant lacking the primary manganese import system in S. sanguinis, SsaACB, is severely attenuated for virulence in an in vivo rabbit model. Manganese is a known cofactor for several important enzymes in S. sanguinis, including superoxide dismutase, SodA, and the aerobic ribonucleotide reductase, NrdEF. To determine the effect of manganese depletion on S. sanguinis, we performed transcriptomic analysis on a ΔssaACB mutant grown in aerobic fermentor conditions after the addition of the metal chelator EDTA. Despite the broad specificity of EDTA, analysis of cellular metal content revealed a decrease in manganese, but not in other metals, that coincided with a drop in growth rate. Subsequent supplementation with manganese, but not iron, zinc, or magnesium, restored growth in the fermentor post-EDTA. Reduced activity of Mn-dependent SodA and NrdEF likely contributed to the decreased growth rate post-EDTA, but did not appear entirely responsible. With the exception of the Dps-like peroxide resistance gene, dpr, manganese depletion did not induce stress response systems. By comparing the transcriptome of ΔssaACB cells pre- and post-EDTA, we determined that manganese deprivation led to altered expression of diverse systems. Manganese depletion also led to an apparent induction of carbon catabolite repression in a glucose-independent manner. The combined results suggest that manganese limitation produces effects in S. sanguinis that are diverse and complex, with no single protein or system appearing entirely responsible for the observed growth rate decrease. This study provides further evidence for the importance of this trace element in streptococcal biology. Future studies will focus on determining mechanisms for regulation, as the multitude of changes observed in this study indicate that multiple regulators may respond to manganese levels.
Collapse
Affiliation(s)
| | | | | | | | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
29
|
Muir A, Gurung I, Cehovin A, Bazin A, Vallenet D, Pelicic V. Construction of a complete set of Neisseria meningitidis mutants and its use for the phenotypic profiling of this human pathogen. Nat Commun 2020; 11:5541. [PMID: 33139723 PMCID: PMC7606547 DOI: 10.1038/s41467-020-19347-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/05/2020] [Indexed: 01/29/2023] Open
Abstract
The bacterium Neisseria meningitidis causes life-threatening meningitis and sepsis. Here, we construct a complete collection of defined mutants in protein-coding genes of this organism, identifying all genes that are essential under laboratory conditions. The collection, named NeMeSys 2.0, consists of individual mutants in 1584 non-essential genes. We identify 391 essential genes, which are associated with basic functions such as expression and preservation of genome information, cell membrane structure and function, and metabolism. We use this collection to shed light on the functions of diverse genes, including a gene encoding a member of a previously unrecognised class of histidinol-phosphatases; a set of 20 genes required for type IV pili function; and several conditionally essential genes encoding antitoxins and/or immunity proteins. We expect that NeMeSys 2.0 will facilitate the phenotypic profiling of a major human bacterial pathogen.
Collapse
Affiliation(s)
- Alastair Muir
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Ishwori Gurung
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Ana Cehovin
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Adelme Bazin
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Evry, Université Paris-Saclay, CNRS, Evry, France
| | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Evry, Université Paris-Saclay, CNRS, Evry, France
| | - Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.
| |
Collapse
|
30
|
Kurnia D, Hutabarat GS, Windaryanti D, Herlina T, Herdiyati Y, Satari MH. Potential Allylpyrocatechol Derivatives as Antibacterial Agent Against Oral Pathogen of S. sanguinis ATCC 10,556 and as Inhibitor of MurA Enzymes: in vitro and in silico Study. Drug Des Devel Ther 2020; 14:2977-2985. [PMID: 32801638 PMCID: PMC7396738 DOI: 10.2147/dddt.s255269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Streptococcus sanguinis is Gram-positive bacteria that contribute to caries. Many antibacterial agents are resistant against bacteria so that the discovery of new antibacterial agents is a crucial issue. Mechanism of antibacterial agents by disrupting cell wall bacteria is a promising target to be developed. One of the enzymes contributing to the cell wall is MurA enzyme. MurA is an enzyme catalyzing the first step of peptidoglycan biosynthesis in the cell wall formation. Inhibiting MurA is an effective and efficient way to kill the bacteria. Source of bioactive compounds including the antibacterial agent can be found in natural product such as herbal plant. Piper betle L. was reported to contain active antibacterial compounds. However, there is no more information on the antibacterial activity and molecular mechanism of P. betle's compound against S. sanguinis. PURPOSE The study aims to identify antibacterial constituents of P. betle L. and evaluate their activities through two different methods including in vitro and in silico analysis. MATERIALS AND METHODS The antibacterial agent was purified by bioactivity-guided isolation with combination chromatography methods and the chemical structure was determined by spectroscopic methods. The in vitro antibacterial activity was evaluated by disc diffusion and dilution methods while the in silico study of a compound binds on the MurA was determined using PyRx program. RESULTS The antibacterial compound identified as allylpyrocatechol showed inhibitory activity against S. sanguinis with an inhibition zone of 11.85 mm at 1%, together with MIC and MBC values of 39.1 and 78.1 μg/mL, respectively. Prediction for molecular inhibition mechanism of allylpyrocatechols against the MurA presented two allylpyrocatechol derivatives showing binding activity of -5.4, stronger than fosfomycin as a reference with the binding activity of -4.6. CONCLUSION Two allylpyrocatechol derivatives were predicted to have a good potency as a novel natural antibacterial agent against S. sanguinis through blocking MurA activity that causes disruption of bacterial cell wall.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Geofanny Sarah Hutabarat
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Devi Windaryanti
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Tati Herlina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Yetty Herdiyati
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Mieke Hemiawati Satari
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
31
|
Murgas CJ, Green SP, Forney AK, Korba RM, An SS, Kitten T, Lucas HR. Intracellular Metal Speciation in Streptococcus sanguinis Establishes SsaACB as Critical for Redox Maintenance. ACS Infect Dis 2020; 6:1906-1921. [PMID: 32329608 DOI: 10.1021/acsinfecdis.0c00132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Streptococcus sanguinis is an oral commensal bacterium, but it can colonize pre-existing heart valve vegetations if introduced into the bloodstream, leading to infective endocarditis. Loss of Mn- or Fe-cofactored virulence determinants are thought to result in weakening of this bacterium. Indeed, intracellular Mn accumulation mediated by the lipoprotein SsaB, a component of the SsaACB transporter complex, has been shown to promote virulence for endocarditis and O2 tolerance. To delineate intracellular metal-ion abundance and redox speciation within S. sanguinis, we developed a protocol exploiting two spectroscopic techniques, Inductively coupled plasma-optical emission spectrometry (ICP-OES) and electron paramagnetic resonance (EPR) spectroscopy, to respectively quantify total intracellular metal concentrations and directly measure redox speciation of Fe and Mn within intact whole-cell samples. Addition of the cell-permeable siderophore deferoxamine shifts the oxidation states of accessible Fe and Mn from reduced-to-oxidized, as verified by magnetic moment calculations, aiding in the characterization of intracellular metal pools and metal sequestration levels for Mn2+ and Fe. We have applied this methodology to S. sanguinis and an SsaACB knockout strain (ΔssaACB), indicating that SsaACB mediates both Mn and Fe uptake, directly influencing the metal-ion pools available for biological inorganic pathways. Mn supplementation of ΔssaACB returns total intracellular Mn to wild-type levels, but it does not restore wild-type redox speciation or distribution of metal cofactor availability for either Mn or Fe. Our results highlight the biochemical basis for S. sanguinis oxidative resistance, revealing a dynamic role for SsaACB in controlling redox homeostasis by managing the intracellular Fe/Mn composition and distribution.
Collapse
Affiliation(s)
- Cody J. Murgas
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Shannon P. Green
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Ashley K. Forney
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Rachel M. Korba
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Heather R. Lucas
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
32
|
Pyruvate secretion by oral streptococci modulates hydrogen peroxide dependent antagonism. THE ISME JOURNAL 2020; 14:1074-1088. [PMID: 31988475 PMCID: PMC7174352 DOI: 10.1038/s41396-020-0592-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/28/2023]
Abstract
Many commensal oral streptococci generate H2O2 via pyruvate oxidase (SpxB) to inhibit the growth of competing bacteria like Streptococcus mutans, a major cariogenic species. In Streptococcus sanguinis SK36 (SK36) and Streptococcus gordonii DL1 (DL1), spxB expression and H2O2 release are subject to carbon catabolite repression by the catabolite control protein A (CcpA). Surprisingly, ccpA deletion mutants of SK36 and DL1 fail to inhibit S. mutans despite their production of otherwise inhibitory levels of H2O2. Using H2O2-deficient spxB deletion mutants of SK36 and DL1, it was subsequently discovered that both strains confer protection in trans to other bacteria when H2O2 is added exogenously. This protective effect depends on the direct detoxification of H2O2 by the release of pyruvate. The pyruvate dependent protective effect is also present in other spxB-encoding streptococci, such as the pneumococcus, but is missing from spxB-negative species like S. mutans. Targeted and transposon-based mutagenesis revealed Nox (putative H2O-forming NADH dehydrogenase) as an essential component required for pyruvate release and oxidative protection, while other genes such as sodA and dps play minor roles. Furthermore, pyruvate secretion is only detectable in aerobic growth conditions at biofilm-like cell densities and is responsive to CcpA-dependent catabolite control. This ability of spxB-encoding streptococci reveals a new facet of the competitive interactions between oral commensals and pathobionts and provides a mechanistic basis for the variable levels of inhibitory potential observed among H2O2-producing strains of commensal oral streptococci.
Collapse
|
33
|
Jensen CS, Norsigian CJ, Fang X, Nielsen XC, Christensen JJ, Palsson BO, Monk JM. Reconstruction and Validation of a Genome-Scale Metabolic Model of Streptococcus oralis (iCJ415), a Human Commensal and Opportunistic Pathogen. Front Genet 2020; 11:116. [PMID: 32194617 PMCID: PMC7063969 DOI: 10.3389/fgene.2020.00116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/31/2020] [Indexed: 11/22/2022] Open
Abstract
The mitis group of streptococci (MGS) is a member of the healthy human microbiome in the oral cavity and upper respiratory tract. Troublingly, some MGS are able to escape this niche and cause infective endocarditis, a severe and devastating disease. Genome-scale models have been shown to be valuable in investigating metabolism of bacteria. Here we present the first genome-scale model, iCJ415, for Streptococcus oralis SK141. We validated the model using gene essentiality and amino acid auxotrophy data from closely related species. iCJ415 has 71-76% accuracy in predicting gene essentiality and 85% accuracy in predicting amino acid auxotrophy. Further, the phenotype of S. oralis was tested using the Biolog Phenotype microarrays, giving iCJ415 a 82% accuracy in predicting carbon sources. iCJ415 can be used to explore the metabolic differences within the MGS, and to explore the complicated metabolic interactions between different species in the human oral cavity.
Collapse
Affiliation(s)
- Christian S Jensen
- The Regional Department of Clinical Microbiology, Region Zealand, Slagelse, Denmark
| | - Charles J Norsigian
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Xin Fang
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Xiaohui C Nielsen
- The Regional Department of Clinical Microbiology, Region Zealand, Slagelse, Denmark
| | - Jens Jørgen Christensen
- The Regional Department of Clinical Microbiology, Region Zealand, Slagelse, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Jonathan M Monk
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
34
|
Martini AM, Moricz BS, Ripperger AK, Tran PM, Sharp ME, Forsythe AN, Kulhankova K, Salgado-Pabón W, Jones BD. Association of Novel Streptococcus sanguinis Virulence Factors With Pathogenesis in a Native Valve Infective Endocarditis Model. Front Microbiol 2020; 11:10. [PMID: 32082276 PMCID: PMC7005726 DOI: 10.3389/fmicb.2020.00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022] Open
Abstract
Streptococcus sanguinis (S. sanguinis) is an abundant oral commensal which can cause disseminated human infection if it gains access to the bloodstream. The most important among these diseases is infective endocarditis (IE). While virulence phenotypes of S. sanguinis have been correlated to disease severity, genetic factors mediating these phenotypes, and contributing to pathogenesis are largely uncharacterized. In this report, we investigate the roles of 128 genes in virulence-related phenotypes of S. sanguinis and characterize the pathogenic potential of two selected mutants in a left-sided, native valve IE rabbit model. Assays determining the ability of our mutant strains to produce a biofilm, bind to and aggregate platelets, and adhere to or invade endothelial cells identified sixteen genes with novel association to these phenotypes. These results suggest the presence of many uncharacterized genes involved in IE pathogenesis which may be relevant for disease progression. Two mutants identified by the above screening process – SSA_1099, encoding an RTX-like protein, and mur2, encoding a peptidoglycan hydrolase – were subsequently evaluated in vivo. Wild type (WT) S. sanguinis reliably induced cardiac vegetations, while the SSA_1099 and mur2 mutants produced either no vegetation or vegetations of small size. Splenomegaly was reduced in both mutant strains compared to WT, while pathology of other distal organs was indistinguishable. Histopathology analyses suggest the cardiac lesions and vegetations in this model resemble those observed in humans. These data indicate that SSA_1099 and mur2 encode virulence factors in S. sanguinis which are integral to pathogenesis of IE.
Collapse
Affiliation(s)
- Anthony M Martini
- Department of Microbiology & Immunology, The Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Bridget S Moricz
- Department of Microbiology & Immunology, The Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Allison K Ripperger
- Department of Microbiology & Immunology, The Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Phuong M Tran
- Department of Microbiology & Immunology, The Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Molly E Sharp
- Department of Microbiology & Immunology, The Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Ana N Forsythe
- Department of Microbiology & Immunology, The Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Katarina Kulhankova
- Department of Microbiology & Immunology, The Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Wilmara Salgado-Pabón
- Department of Microbiology & Immunology, The Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Bradley D Jones
- Department of Microbiology & Immunology, The Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, United States.,Graduate Program in Genetics, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
35
|
Availability of Zinc Impacts Interactions between Streptococcus sanguinis and Pseudomonas aeruginosa in Coculture. J Bacteriol 2020; 202:JB.00618-19. [PMID: 31685535 DOI: 10.1128/jb.00618-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Airway infections associated with cystic fibrosis (CF) are polymicrobial. We reported previously that clinical isolates of Pseudomonas aeruginosa promote the growth of a variety of streptococcal species. To explore the mechanistic basis of this interaction, we performed a genetic screen to identify mutants of Streptococcus sanginuis SK36 whose growth was no longer enhanced by P. aeruginosa PAO1. Mutations in the zinc uptake systems of S. sanguinis SK36 reduced growth of these strains by 1 to 3 logs compared to that of wild-type S. sanguinis SK36 when grown in coculture with P. aeruginosa PAO1, and exogenous zinc (0.1 to 10 μM) rescued the coculture defect of zinc uptake mutants of S. sanguinis SK36. Zinc uptake mutants of S. sanguinis SK36 had no obvious growth defect in monoculture. Consistent with competition for zinc driving coculture dynamics, S. sanguinis SK36 grown in coculture with P. aeruginosa showed increased expression of zinc uptake genes compared to that of S. sanguinis grown alone. Strains of P. aeruginosa PAO1 defective in zinc transport also supported ∼2-fold more growth by S. sanguinis compared to that in coculture with wild-type P. aeruginosa PAO1. An analysis of 118 CF sputum samples revealed that total zinc levels varied from ∼5 to 145 μM. At relatively low zinc levels, Pseudomonas and Streptococcus spp. were found in approximately equal abundance; at higher zinc levels, we observed a decline in relative abundance of Streptococcus spp., perhaps as a result of increasing zinc toxicity. Together, our data indicate that the relative abundances of these microbes in the CF airway may be impacted by zinc levels.IMPORTANCE Polymicrobial infections in CF cases likely impact patient health, but the mechanism(s) underlying such interactions is poorly understood. Here, we show using an in vitro model system that interactions between Pseudomonas and Streptococcus are modulated by zinc availability, and clinical data are consistent with this model. Together with previous studies, our work supports a role for metal homeostasis as a key factor driving microbial interactions.
Collapse
|
36
|
Sztukowska MN, Roky M, Demuth DR. Peptide and non-peptide mimetics as potential therapeutics targeting oral bacteria and oral biofilms. Mol Oral Microbiol 2019; 34:169-182. [PMID: 31389653 PMCID: PMC6772003 DOI: 10.1111/omi.12267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
Abstract
The development of the oral biofilm requires a complex series of interactions between host tissues and the colonizing bacteria as well as numerous interspecies interactions between the organisms themselves. Disruption of normal host-microbe homoeostasis in the oral cavity can lead to a dysbiotic microbial community that contributes to caries or periodontal disease. A variety of approaches have been pursued to develop novel potential therapeutics that are active against the oral biofilm and/or target specific oral bacteria. The structure and function of naturally occurring antimicrobial peptides from oral tissues and secretions as well as external sources such as frog skin secretions have been exploited to develop numerous peptide mimetics and small molecule peptidomimetics that show improved antimicrobial activity, increased stability and other desirable characteristics relative to the parent peptides. In addition, a rational and minimalist approach has been developed to design small artificial peptides with amphipathic α-helical properties that exhibit potent antibacterial activity. Furthermore, with an increased understanding of the molecular mechanisms of beneficial and/or antagonistic interspecies interactions that contribute to the formation of the oral biofilm, new potential targets for therapeutic intervention have been identified and both peptide-based and small molecule mimetics have been developed that target these key components. Many of these mimetics have shown promising results in in vitro and pre-clinical testing and the initial clinical evaluation of several novel compounds has demonstrated their utility in humans.
Collapse
Affiliation(s)
- Maryta N. Sztukowska
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Mohammad Roky
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Donald R. Demuth
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| |
Collapse
|
37
|
Kong X, Zhu B, Stone VN, Ge X, El-Rami FE, Donghai H, Xu P. ePath: an online database towards comprehensive essential gene annotation for prokaryotes. Sci Rep 2019; 9:12949. [PMID: 31506471 PMCID: PMC6737131 DOI: 10.1038/s41598-019-49098-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/15/2019] [Indexed: 02/01/2023] Open
Abstract
Experimental techniques for identification of essential genes (EGs) in prokaryotes are usually expensive, time-consuming and sometimes unrealistic. Emerging in silico methods provide alternative methods for EG prediction, but often possess limitations including heavy computational requirements and lack of biological explanation. Here we propose a new computational algorithm for EG prediction in prokaryotes with an online database (ePath) for quick access to the EG prediction results of over 4,000 prokaryotes ( https://www.pubapps.vcu.edu/epath/ ). In ePath, gene essentiality is linked to biological functions annotated by KEGG Ortholog (KO). Two new scoring systems, namely, E_score and P_score, are proposed for each KO as the EG evaluation criteria. E_score represents appearance and essentiality of a given KO in existing experimental results of gene essentiality, while P_score denotes gene essentiality based on the principle that a gene is essential if it plays a role in genetic information processing, cell envelope maintenance or energy production. The new EG prediction algorithm shows prediction accuracy ranging from 75% to 91% based on validation from five new experimental studies on EG identification. Our overall goal with ePath is to provide a comprehensive and reliable reference for gene essentiality annotation, facilitating the study of those prokaryotes without experimentally derived gene essentiality information.
Collapse
Affiliation(s)
- Xiangzhen Kong
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, 23298, United States of America
| | - Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, 23298, United States of America
| | - Victoria N Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, 23298, United States of America
| | - Xiuchun Ge
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, 23298, United States of America
| | - Fadi E El-Rami
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, 23298, United States of America
| | - Huangfu Donghai
- Application Services, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, 23298, United States of America.
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America.
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, Virginia, United States of America.
| |
Collapse
|
38
|
El-Rami F, Kong X, Parikh H, Zhu B, Stone V, Kitten T, Xu P. Analysis of essential gene dynamics under antibiotic stress in Streptococcus sanguinis. MICROBIOLOGY-SGM 2019; 164:173-185. [PMID: 29393020 PMCID: PMC5882076 DOI: 10.1099/mic.0.000595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The paradoxical response of Streptococcus sanguinis to drugs prescribed for dental and clinical practices has complicated treatment guidelines and raised the need for further investigation. We conducted a high throughput study on concomitant transcriptome and proteome dynamics in a time course to assess S. sanguinis behaviour under a sub-inhibitory concentration of ampicillin. Temporal changes at the transcriptome and proteome level were monitored to cover essential genes and proteins over a physiological map of intricate pathways. Our findings revealed that translation was the functional category in S. sanguinis that was most enriched in essential proteins. Moreover, essential proteins in this category demonstrated the greatest conservation across 2774 bacterial proteomes, in comparison to other essential functional categories like cell wall biosynthesis and energy production. In comparison to non-essential proteins, essential proteins were less likely to contain ‘degradation-prone’ amino acids at their N-terminal position, suggesting a longer half-life. Despite the ampicillin-induced stress, the transcriptional up-regulation of amino acid-tRNA synthetases and proteomic elevation of amino acid biosynthesis enzymes favoured the enriched components of essential proteins revealing ‘proteomic signatures’ that can be used to bridge the genotype–phenotype gap of S. sanguinis under ampicillin stress. Furthermore, we identified a significant correlation between the levels of mRNA and protein for essential genes and detected essential protein-enriched pathways differentially regulated through a persistent stress response pattern at late time points. We propose that the current findings will help characterize a bacterial model to study the dynamics of essential genes and proteins under clinically relevant stress conditions.
Collapse
Affiliation(s)
- Fadi El-Rami
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Xiangzhen Kong
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Hardik Parikh
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Victoria Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Ping Xu
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
39
|
The Second Messenger c-di-AMP Regulates Diverse Cellular Pathways Involved in Stress Response, Biofilm Formation, Cell Wall Homeostasis, SpeB Expression, and Virulence in Streptococcus pyogenes. Infect Immun 2019; 87:IAI.00147-19. [PMID: 30936159 DOI: 10.1128/iai.00147-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. The cellular level of c-di-AMP in Streptococcus pyogenes is predicted to be controlled by the synthase DacA and two putative phosphodiesterases, GdpP and Pde2. To investigate the role of c-di-AMP in S. pyogenes, we generated null mutants in each of these proteins by gene deletion. Unlike those in other Gram-positive pathogens such as Staphylococcus aureus and Listeria monocytogenes, DacA in S. pyogenes was not essential for growth in rich media. The DacA null mutant presented a growth defect that manifested through an increased lag time, produced no detectable biofilm, and displayed increased susceptibility toward environmental stressors such as high salt, low pH, reactive oxygen radicals, and cell wall-targeting antibiotics, suggesting that c-di-AMP plays significant roles in crucial cellular processes involved in stress management. The Pde2 null mutant exhibited a lower growth rate and increased biofilm formation, and interestingly, these phenotypes were distinct from those of the null mutant of GdpP, suggesting that Pde2 and GdpP play distinctive roles in c-di-AMP signaling. DacA and Pde2 were critical to the production of the virulence factor SpeB and to the overall virulence of S. pyogenes, as both DacA and Pde2 null mutants were highly attenuated in a mouse model of subcutaneous infection. Collectively, these results show that c-di-AMP is an important global regulator and is required for a proper response to stress and for virulence in S. pyogenes, suggesting that its signaling pathway could be an attractive antivirulence drug target against S. pyogenes infections.
Collapse
|
40
|
Scott JE, Li K, Filkins LM, Zhu B, Kuchma SL, Schwartzman JD, O'Toole GA. Pseudomonas aeruginosa Can Inhibit Growth of Streptococcal Species via Siderophore Production. J Bacteriol 2019; 201:e00014-19. [PMID: 30718303 PMCID: PMC6436353 DOI: 10.1128/jb.00014-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 12/30/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that causes patients to accumulate thick, dehydrated mucus in the lung and develop chronic, polymicrobial infections due to reduced mucociliary clearance. These chronic polymicrobial infections and subsequent decline in lung function are significant factors in the morbidity and mortality of CF. Pseudomonas aeruginosa and Streptococcus spp. are among the most prevalent organisms in the CF lung; the presence of P. aeruginosa correlates with lung function decline, and the Streptococcus milleri group (SMG), a subgroup of the viridans streptococci, is associated with exacerbations in patients with CF. Here we characterized the interspecies interactions that occur between these two genera. We demonstrated that multiple P. aeruginosa laboratory strains and clinical CF isolates promote the growth of multiple SMG strains and oral streptococci in an in vitro coculture system. We investigated the mechanism by which P. aeruginosa enhances growth of streptococci by screening for mutants of P. aeruginosa PA14 that are unable to enhance Streptococcus growth, and we identified the P. aeruginosapqsL::TnM mutant, which failed to promote growth of Streptococcus constellatus and S. sanguinis Characterization of the P. aeruginosa ΔpqsL mutant revealed that this strain cannot promote Streptococcus growth. Our genetic data and growth studies support a model whereby the P. aeruginosa ΔpqsL mutant overproduces siderophores and thus likely outcompetes Streptococcus sanguinis for limited iron. We propose a model whereby competition for iron represents one important means of interaction between P. aeruginosa and Streptococcus spp.IMPORTANCE Cystic fibrosis (CF) lung infections are increasingly recognized for their polymicrobial nature. These polymicrobial infections may alter the biology of the organisms involved in CF-related infections, leading to changes in growth, virulence, and/or antibiotic tolerance, and could thereby affect patient health and response to treatment. In this study, we demonstrate interactions between P. aeruginosa and streptococci using a coculture model and show that one interaction between these microbes is likely competition for iron. Thus, these data indicate that one CF pathogen may influence the growth of another, and they add to our limited knowledge of polymicrobial interactions in the CF airway.
Collapse
Affiliation(s)
- Jessie E Scott
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Kewei Li
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Laura M Filkins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bin Zhu
- VCU Philips Institute for Oral Health Research, Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sherry L Kuchma
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joseph D Schwartzman
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
41
|
Shields RC, Jensen PA. The bare necessities: Uncovering essential and condition-critical genes with transposon sequencing. Mol Oral Microbiol 2019; 34:39-50. [PMID: 30739386 DOI: 10.1111/omi.12256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Querying gene function in bacteria has been greatly accelerated by the advent of transposon sequencing (Tn-seq) technologies (related Tn-seq strategies are known as TraDIS, INSeq, RB-TnSeq, and HITS). Pooled populations of transposon mutants are cultured in an environment and next-generation sequencing tools are used to determine areas of the genome that are important for bacterial fitness. In this review we provide an overview of Tn-seq methodologies and discuss how Tn-seq has been applied, or could be applied, to the study of oral microbiology. These applications include studying the essential genome as a means to rationally design therapeutic agents. Tn-seq has also contributed to our understanding of well-studied biological processes in oral bacteria. Other important applications include in vivo pathogenesis studies and use of Tn-seq to probe the molecular basis of microbial interactions. We also highlight recent advancements in techniques that act in synergy with Tn-seq such as clustered regularly interspaced short palindromic repeats (CRISPR) interference and microfluidic chip platforms.
Collapse
Affiliation(s)
- Robert C Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Paul A Jensen
- Department of Bioengineering and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
42
|
Mutations in cdsA and pgsA Correlate with Daptomycin Resistance in Streptococcus mitis and S. oralis. Antimicrob Agents Chemother 2019; 63:AAC.01531-18. [PMID: 30509945 DOI: 10.1128/aac.01531-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
We investigated the ability of several recent clinical viridans group streptococci (VGS) bloodstream isolates (Streptococcus mitis/S. oralis subgroup) from daptomycin (DAP)-naive patients to develop DAP resistance in vitro All strains rapidly developed high-level and stable DAP resistance. Substitutions in two enzymes involved in the cardiolipin biosynthesis pathway were identified, i.e., CdsA (phosphatidate cytidylyltransferase) and PgsA (CDP-diacylglycerol-glycerol-3-phosphate-3-phosphatidyltransferase). These mutations were associated with complete disappearance of phosphatidylglycerol and cardiolipin from cell membranes. DAP interactions with the cell membrane differed in isolates with PgsA versus CdsA substitutions.
Collapse
|
43
|
Metabolic models and gene essentiality data reveal essential and conserved metabolism in prokaryotes. PLoS Comput Biol 2018; 14:e1006556. [PMID: 30444863 PMCID: PMC6283598 DOI: 10.1371/journal.pcbi.1006556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 12/06/2018] [Accepted: 10/09/2018] [Indexed: 01/13/2023] Open
Abstract
Essential metabolic reactions are shaping constituents of metabolic networks, enabling viable and distinct phenotypes across diverse life forms. Here we analyse and compare modelling predictions of essential metabolic functions with experimental data and thereby identify core metabolic pathways in prokaryotes. Simulations of 15 manually curated genome-scale metabolic models were integrated with 36 large-scale gene essentiality datasets encompassing a wide variety of species of bacteria and archaea. Conservation of metabolic genes was estimated by analysing 79 representative genomes from all the branches of the prokaryotic tree of life. We find that essentiality patterns reflect phylogenetic relations both for modelling and experimental data, which correlate highly at the pathway level. Genes that are essential for several species tend to be highly conserved as opposed to non-essential genes which may be conserved or not. The tRNA-charging module is highlighted as ancestral and with high centrality in the networks, followed closely by cofactor metabolism, pointing to an early information processing system supplied by organic cofactors. The results, which point to model improvements and also indicate faults in the experimental data, should be relevant to the study of centrality in metabolic networks and ancient metabolism but also to metabolic engineering with prokaryotes. If we tried to list every known chemical reaction within an organism–human, plant or even bacteria–we would get quite a long and confusing read. But when this information is represented in so-called genome-scale metabolic networks, we have the means to access computationally each of those reactions and their interconnections. Some parts of the network have alternatives, while others are unique and therefore can be essential for growth. Here, we simulate growth and compare essential reactions and genes for the simplest type of unicellular species–prokaryotes–to understand which parts of their metabolism are universally essential and potentially ancestral. We show that similar patterns of essential reactions echo phylogenetic relationships (this makes sense, as the genome provides the building plan for the enzymes that perform those reactions). Our computational predictions correlate strongly with experimental essentiality data. Finally, we show that a crucial step of protein synthesis (tRNA charging) and the synthesis and transformation of small molecules that enzymes require (cofactors) are the most essential and conserved parts of metabolism in prokaryotes. Our results are a step further in understanding the biology and evolution of prokaryotes but can also be relevant in applied studies including metabolic engineering and antibiotic design.
Collapse
|
44
|
Zhu B, Song L, Kong X, Macleod LC, Xu P. A Novel Regulator Modulates Glucan Production, Cell Aggregation and Biofilm Formation in Streptococcus sanguinis SK36. Front Microbiol 2018; 9:1154. [PMID: 29896189 PMCID: PMC5987052 DOI: 10.3389/fmicb.2018.01154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Streptococcus sanguinis is an early colonizer of tooth surfaces and a key player in plaque biofilm development. However, the mechanism of biofilm formation of S. sanguinis is still unclear. Here, we showed that deletion of a transcription factor, brpL, promotes cell aggregation and biofilm formation in S. sanguinis SK36. Glucan, a polysaccharide synthesized from sucrose, was over-produced and aggregated in the biofilm of ΔbrpL, which was necessary for better biofilm formation ability of ΔbrpL. Quantitative RT-PCR demonstrated that gtfP was significantly up-regulated in ΔbrpL, which increased the productions of water-insoluble and water-soluble glucans. The ΔbrpLΔgtfP double mutant decreased biofilm formation ability of ΔbrpL to a level similar like that of ΔgtfP. Interestingly, the biofilm of ΔbrpL had an increased tolerance to ampicillin treatment, which might be due to better biofilm formation ability through the mechanisms of cellular and glucan aggregation. RNA sequencing and quantitative RT-PCR revealed the modulation of a group of genes in ΔbrpL was mediated by activating the expression of ciaR, another gtfP-related biofilm formation regulator. Double deletion of brpL and ciaR decreased biofilm formation ability to the phenotype of a ΔciaR mutant. Additionally, RNA sequencing elucidated a broad range of genes, related to carbohydrate metabolism and uptake, were activated in ΔbrpL. SSA_0222, a gene involved in the phosphotransferase system, was dramatically up-regulated in ΔbrpL and essential for S. sanguinis survival under our experimental conditions. In summary, brpL modulates glucan production, cell aggregation and biofilm formation by regulating the expression of ciaR in S. sanguinis SK36.
Collapse
Affiliation(s)
- Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Lei Song
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Xiangzhen Kong
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Lorna C Macleod
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, United States.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
45
|
Systematic approach for dissecting the molecular mechanisms of transcriptional regulation in bacteria. Proc Natl Acad Sci U S A 2018; 115:E4796-E4805. [PMID: 29728462 PMCID: PMC6003448 DOI: 10.1073/pnas.1722055115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Organisms must constantly make regulatory decisions in response to a change in cellular state or environment. However, while the catalog of genomes expands rapidly, we remain ignorant about how the genes in these genomes are regulated. Here, we show how a massively parallel reporter assay, Sort-Seq, and information-theoretic modeling can be used to identify regulatory sequences. We then use chromatography and mass spectrometry to identify the regulatory proteins that bind these sequences. The approach results in quantitative base pair-resolution models of promoter mechanism and was shown in both well-characterized and unannotated promoters in Escherichia coli. Given the generality of the approach, it opens up the possibility of quantitatively dissecting the mechanisms of promoter function in a wide range of bacteria. Gene regulation is one of the most ubiquitous processes in biology. However, while the catalog of bacterial genomes continues to expand rapidly, we remain ignorant about how almost all of the genes in these genomes are regulated. At present, characterizing the molecular mechanisms by which individual regulatory sequences operate requires focused efforts using low-throughput methods. Here, we take a first step toward multipromoter dissection and show how a combination of massively parallel reporter assays, mass spectrometry, and information-theoretic modeling can be used to dissect multiple bacterial promoters in a systematic way. We show this approach on both well-studied and previously uncharacterized promoters in the enteric bacterium Escherichia coli. In all cases, we recover nucleotide-resolution models of promoter mechanism. For some promoters, including previously unannotated ones, the approach allowed us to further extract quantitative biophysical models describing input–output relationships. Given the generality of the approach presented here, it opens up the possibility of quantitatively dissecting the mechanisms of promoter function in E. coli and a wide range of other bacteria.
Collapse
|
46
|
Shields RC, Zeng L, Culp DJ, Burne RA. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. mSphere 2018; 3:e00031-18. [PMID: 29435491 PMCID: PMC5806208 DOI: 10.1128/msphere.00031-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 11/20/2022] Open
Abstract
Transposon mutagenesis coupled with next-generation DNA sequencing (Tn-seq) is a powerful tool for discovering regions of the genome that are required for the survival of bacteria in different environments. We adapted this technique to the dental caries pathogen Streptococcus mutans UA159 and identified 11% of the genome as essential, with many genes encoding products required for replication, translation, lipid metabolism, and cell wall biogenesis. Comparison of the essential genome of S. mutans UA159 with those of selected other streptococci for which such information is available revealed several metabolic pathways and genes that are required in S. mutans, but not in some Streptococcus spp. We further identified genes that are essential for sustained growth in rich or defined medium, as well as for persistence in vivo in a rodent model of oral infection. Collectively, our results provide a novel and comprehensive view of the genes required for essential processes of S. mutans, many of which could represent potential targets for therapeutics. IMPORTANCE Tooth decay (dental caries) is a common cause of pain, impaired quality of life, and tooth loss in children and adults. It begins because of a compositional change in the microorganisms that colonize the tooth surface driven by repeated and sustained carbohydrate intake. Although several bacterial species are associated with tooth decay, Streptococcus mutans is the most common cause. Therefore, it is important to identify biological processes that contribute to the survival of S. mutans in the human mouth, with the aim of disrupting the processes with antimicrobial agents. We successfully applied Tn-seq to S. mutans, discovering genes that are required for survival, growth, and persistence, both in laboratory environments and in a mouse model of tooth decay. This work highlights new avenues for the control of an important human pathogen.
Collapse
Affiliation(s)
- Robert C. Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Lin Zeng
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - David J. Culp
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
47
|
ciaR impacts biofilm formation by regulating an arginine biosynthesis pathway in Streptococcus sanguinis SK36. Sci Rep 2017; 7:17183. [PMID: 29215019 PMCID: PMC5719415 DOI: 10.1038/s41598-017-17383-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/21/2017] [Indexed: 01/02/2023] Open
Abstract
Streptococcus sanguinis is an early colonizer of the tooth surface and competes with oral pathogens such as Streptococcus mutans to maintain oral health. However, little is known about its mechanism of biofilm formation. Here, we show that mutation of the ciaR gene, encoding the response regulator of the CiaRH two-component system in S. sanguinis SK36, produced a fragile biofilm. Cell aggregation, gtfP gene expression and water-insoluble glucan production were all reduced, which suggested polysaccharide production was decreased in ΔciaR. RNA sequencing and qRT-PCR revealed that arginine biosynthesis genes (argR, argB, argC, argG, argH and argJ) and two arginine/histidine permease genes (SSA_1568 and SSA_1569) were upregulated in ΔciaR. In contrast to ΔciaR, most of strains constructed to contain deletions in each of these genes produced more biofilm and water-insoluble glucan than SK36. A ΔciaRΔargB double mutant was completely restored for the gtfP gene expression, glucan production and biofilm formation ability that was lost in ΔciaR, indicating that argB was essential for ciaR to regulate biofilm formation. We conclude that by promoting the expression of arginine biosynthetic genes, especially argB gene, the ciaR mutation reduced polysaccharide production, resulting in the formation of a fragile biofilm in Streptococcus sanguinis.
Collapse
|
48
|
Mobegi FM, Zomer A, de Jonge MI, van Hijum SAFT. Advances and perspectives in computational prediction of microbial gene essentiality. Brief Funct Genomics 2017; 16:70-79. [PMID: 26857942 DOI: 10.1093/bfgp/elv063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The minimal subset of genes required for cellular growth, survival and viability of an organism are classified as essential genes. Knowledge of essential genes gives insight into the core structure and functioning of a cell. This might lead to more efficient antimicrobial drug discovery, to elucidation of the correlations between genotype and phenotype, and a better understanding of the minimal requirements for a (synthetic) cell. Traditionally, constructing a catalog of essential genes for a given microbe involved costly and time-consuming laboratory experiments. While experimental methods have produced abundant gene essentiality data for model organisms like Escherichia coli and Bacillus subtilis, the knowledge generated cannot automatically be extrapolated to predict essential genes in all bacteria. In addition, essential genes identified in the laboratory are by definition 'conditionally essential', as they are essential under the specified experimental conditions: these might not resemble conditions in the microorganisms' natural habitat(s). Also, large-scale experimental assaying for essential genes is not always feasible because of the time investment required to setup these assays. The ability to rapidly and precisely identify essential genes in silico is therefore important and has great potential for applications in medicine, biotechnology and basic biological research. Here, we review the advances made in the use of computational methods to predict microbial gene essentiality, perspectives for the future of these techniques and the possible practical applications of essential genes.
Collapse
Affiliation(s)
- Fredrick M Mobegi
- Laboratory of Pediatric Infectious Diseases and Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Aldert Zomer
- Radboud university medical center, Laboratory of Pediatric Infectious Diseases, Nijmegen, The Netherlands.,Radboud university medical center, Bacterial Genomics Group; Center for Molecular and Biomolecular Informatics, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboudumc, Nijmegen, The Netherlands
| | - Sacha A F T van Hijum
- Radboud Institute for Molecular Life Sciences, Laboratory of Paediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Aynapudi J, El-Rami F, Ge X, Stone V, Zhu B, Kitten T, Xu P. Involvement of signal peptidase I in Streptococcus sanguinis biofilm formation. MICROBIOLOGY-SGM 2017; 163:1306-1318. [PMID: 28869408 PMCID: PMC5817204 DOI: 10.1099/mic.0.000516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biofilm accounts for 65–80 % of microbial infections in humans. Considerable evidence links biofilm formation by oral microbiota to oral disease and consequently systemic infections. Streptococcus sanguinis, a Gram-positive bacterium, is one of the most abundant species of the oral microbiota and it contributes to biofilm development in the oral cavity. Due to its altered biofilm formation, we investigated a biofilm mutant, ΔSSA_0351, that is deficient in type I signal peptidase (SPase) in this study. Although the growth curve of the ΔSSA_0351 mutant showed no significant difference from that of the wild-type strain SK36, biofilm assays using both microtitre plate assay and confocal laser scanning microscopy (CLSM) confirmed a sharp reduction in biofilm formation in the mutant compared to the wild-type strain and the paralogous mutant ΔSSA_0849. Scanning electron microscopy (SEM) revealed remarkable differences in the cell surface morphologies and chain length of the ΔSSA_0351 mutant compared with those of the wild-type strain. Transcriptomic and proteomic assays using RNA sequencing and mass spectrometry, respectively, were conducted on the ΔSSA_0351 mutant to evaluate the functional impact of SPase on biofilm formation. Subsequently, bioinformatics analysis revealed a number of proteins that were differentially regulated in the ΔSSA_0351 mutant, narrowing down the list of SPase substrates involved in biofilm formation to lactate dehydrogenase (SSA_1221) and a short-chain dehydrogenase (SSA_0291). With further experimentation, this list defined the link between SSA_0351-encoded SPase, cell wall biosynthesis and biofilm formation.
Collapse
Affiliation(s)
- Jessica Aynapudi
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Present address: School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Fadi El-Rami
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Xiuchun Ge
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Victoria Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
50
|
Abstract
BACKGROUND Campylobacter species are a leading cause of bacterial foodborne illness worldwide. Despite the global efforts to curb them, Campylobacter infections have increased continuously in both developed and developing countries. The development of effective strategies to control the infection by this pathogen is warranted. The essential genes of bacteria are the most prominent targets for this purpose. In this study, we used transposon sequencing (Tn-seq) of a genome-saturating library of Tn5 insertion mutants to define the essential genome of C. jejuni at a high resolution. RESULT We constructed a Tn5 mutant library of unprecedented complexity in C. jejuni NCTC 11168 with 95,929 unique insertions throughout the genome and used the genomic DNA of the library for the reconstruction of Tn5 libraries in the same (C. jejuni NCTC 11168) and different strain background (C. jejuni 81-176) through natural transformation. We identified 166 essential protein-coding genes and 20 essential transfer RNAs (tRNA) in C. jejuni NCTC 11168 which were intolerant to Tn5 insertions during in vitro growth. The reconstructed C. jejuni 81-176 library had 384 protein coding genes with no Tn5 insertions. Essential genes in both strain backgrounds were highly enriched in the cluster of orthologous group (COG) categories of 'Translation, ribosomal structure and biogenesis (J)', 'Energy production and conversion (C)', and 'Coenzyme transport and metabolism (H)'. CONCLUSION Comparative analysis among this and previous studies identified 50 core essential genes of C. jejuni, which can be further investigated for the development of novel strategies to control the spread of this notorious foodborne bacterial pathogen.
Collapse
Affiliation(s)
- Rabindra K. Mandal
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
- Present Address: Department of Microbiology and Immunology, Clinical Translational Research Building, University of Louisville, Louisville, KY 40202 USA
| | - Tieshan Jiang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701 USA
| |
Collapse
|