1
|
Zhao Y, Liu MJ, Zhang L, Yang Q, Sun QH, Guo JR, Lei XY, He KY, Li JQ, Yang JY, Jian YP, Xu ZX. High mobility group A1 (HMGA1) promotes the tumorigenesis of colorectal cancer by increasing lipid synthesis. Nat Commun 2024; 15:9909. [PMID: 39548107 PMCID: PMC11568219 DOI: 10.1038/s41467-024-54400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to meet the high energy and biosynthetic demands required for their proliferation. High mobility group A1 (HMGA1) is a structural transcription factor and frequently overexpressed in human colorectal cancer (CRC). Here, we show that HMGA1 promotes CRC progression by driving lipid synthesis in a AOM/DSS-induced CRC mouse model. Using conditional knockout (Hmga1△IEC) and knock-in (Hmga1IEC-OE/+) mouse models, we demonstrate that HMGA1 enhances CRC cell proliferation and accelerates tumor development by upregulating fatty acid synthase (FASN). Mechanistically, HMGA1 increases the transcriptional activity of sterol regulatory element-binding protein 1 (SREBP1) on the FASN promoter, leading to increased lipid accumulation in intestinal epithelial cells. Moreover, a high-fat diet exacerbates CRC progression in Hmga1△IEC mice, while pharmacological inhibition of FASN by orlistat reduces tumor growth in Hmga1IEC-OE/+ mice. Our findings suggest that targeting lipid metabolism could offer a promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Meng-Jie Liu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Lei Zhang
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Qi Yang
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Qian-Hui Sun
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Jin-Rong Guo
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Xin-Yuan Lei
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Jun-Qi Li
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Jing-Yu Yang
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China.
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China.
| |
Collapse
|
2
|
Tierno D, Grassi G, Zanconati F, Dapas B, Scaggiante B. Plasma Circular RNAs as Biomarkers for Breast Cancer. Biomedicines 2024; 12:875. [PMID: 38672229 PMCID: PMC11048241 DOI: 10.3390/biomedicines12040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer (BC) is currently the most common neoplasm, the second leading cause of cancer death in women worldwide, and is a major health problem. The discovery of new biomarkers is crucial to improve our knowledge of breast cancer and strengthen our clinical approaches to diagnosis, prognosis, and follow-up. In recent decades, there has been increasing interest in circulating RNA (circRNA) as modulators of gene expression involved in tumor development and progression. The study of circulating circRNAs (ccircRNAs) in plasma may provide new non-invasive diagnostic, prognostic, and predictive biomarkers for BC. This review describes the latest findings on BC-associated ccircRNAs in plasma and their clinical utility. Several ccircRNAs in plasma have shown great potential as BC biomarkers, especially from a diagnostic point of view. Mechanistically, most of the reported BC-associated ccircRNAs are involved in the regulation of cell survival, proliferation, and invasion, mainly via MAPK/AKT signaling pathways. However, the study of circRNAs is a relatively new area of research, and a larger number of studies will be crucial to confirm their potential as plasma biomarkers and to understand their involvement in BC.
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Gabriele Grassi
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Fabrizio Zanconati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Barbara Dapas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy;
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Valerio 28, I-34127 Trieste, Italy
| |
Collapse
|
3
|
Strekalova T, Moskvin O, Jain AY, Gorbunov N, Gorlova A, Sadovnik D, Umriukhin A, Cespuglio R, Yu WS, Tse ACK, Kalueff AV, Lesch KP, Lim LW. Molecular signature of excessive female aggression: study of stressed mice with genetic inactivation of neuronal serotonin synthesis. J Neural Transm (Vienna) 2023; 130:1113-1132. [PMID: 37542675 PMCID: PMC10460733 DOI: 10.1007/s00702-023-02677-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023]
Abstract
Aggression is a complex social behavior, critically involving brain serotonin (5-HT) function. The neurobiology of female aggression remains elusive, while the incidence of its manifestations has been increasing. Yet, animal models of female aggression are scarce. We previously proposed a paradigm of female aggression in the context of gene x environment interaction where mice with partial genetic inactivation of tryptophan hydroxylase-2 (Tph2+/- mice), a key enzyme of neuronal 5-HT synthesis, are subjected to predation stress resulting in pathological aggression. Using deep sequencing and the EBSeq method, we studied the transcriptomic signature of excessive aggression in the prefrontal cortex of female Tph2+/- mice subjected to rat exposure stress and food deprivation. Challenged mutants, but not other groups, displayed marked aggressive behaviors. We found 26 genes with altered expression in the opposite direction between stressed groups of both Tph2 genotypes. We identified several molecular markers, including Dgkh, Arfgef3, Kcnh7, Grin2a, Tenm1 and Epha6, implicated in neurodevelopmental deficits and psychiatric conditions featuring impaired cognition and emotional dysregulation. Moreover, while 17 regulons, including several relevant to neural plasticity and function, were significantly altered in stressed mutants, no alteration in regulons was detected in stressed wildtype mice. An interplay of the uncovered pathways likely mediates partial Tph2 inactivation in interaction with severe stress experience, thus resulting in excessive female aggression.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Oleg Moskvin
- Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Singapore Medical School, BluMaiden Biosciences, Singapore, Singapore
| | - Aayushi Y Jain
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nikita Gorbunov
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Daria Sadovnik
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
- Neuroscience Research Center of Lyon, Beliv Plateau, Claude-Bernard Lyon-1 University, Bron, France
| | - Wing Shan Yu
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Anna Chung Kwan Tse
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
| |
Collapse
|
4
|
Greco M, Mirabelli M, Salatino A, Accattato F, Aiello V, Brunetti FS, Chiefari E, Pullano SA, Fiorillo AS, Foti DP, Brunetti A. From Euglycemia to Recent Onset of Type 2 Diabetes Mellitus: A Proof-of-Concept Study on Circulating microRNA Profiling Reveals Distinct, and Early microRNA Signatures. Diagnostics (Basel) 2023; 13:2443. [PMID: 37510186 PMCID: PMC10377827 DOI: 10.3390/diagnostics13142443] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Background and aim-Alterations in circulating microRNA (miRNA) expression patterns are thought to be involved in the early stages of prediabetes, as well as in the progression to overt type 2 diabetes mellitus (T2D) and its vascular complications. However, most research findings are conflicting, in part due to differences in miRNA extraction and normalization methods, and in part due to differences in the study populations and their selection. This cross-sectional study seeks to find new potentially useful biomarkers to predict and/or diagnose T2D by investigating the differential expression patterns of circulating miRNAs in the serum of patients with impaired fasting glucose (IFG) and new-onset T2D, with respect to euglycemic controls, using a high-throughput 384-well array and real-time PCR. Methods-Thirty subjects, aged 45-65 years, classified into three matched groups (of 10 participants each) according to their glycometabolic status, namely (1) healthy euglycemic controls, (2) patients with IFG and (3) patients with new-onset, uncomplicated T2D (<2 years since diagnosis) were enrolled. Circulating miRNAs were extracted from blood serum and profiled through real-time PCR on a commercial 384 well-array, containing spotted forward primers for 372 miRNAs. Data analysis was performed by using the online data analysis software GeneGlobe and normalized by the global Ct mean method. Results-Of the 372 analyzed miRNAs, 33 showed a considerably different expression in IFG and new-onset T2D compared to healthy euglycemic controls, with 2 of them down-regulated and 31 up-regulated. Stringent analysis conditions, using a differential fold regulation threshold ≥ 10, revealed that nine miRNAs (hsa-miR-3610, hsa-miR-3200-5p, hsa-miR-4651, hsa-miR-3135b, hsa-miR-1281, hsa-miR-4301, hsa-miR-195-5p, hsa-miR-523-5p and hsa-let-7a-5p) showed a specific increase in new-onset T2D patients compared to IFG patients, suggesting their possible role as early biomarkers of progression from prediabetes to T2D. Moreover, by conventional fold regulation thresholds of ±2, hsa-miR-146a-5p was down-regulated and miR-1225-3p up-regulated in new-onset T2D patients only. Whereas hsa-miR-146a-5p has a well-known role in glucose metabolism, insulin resistance and T2D complications, no association between hsa-miR-1225-3p and T2D has been previously reported. Bioinformatic and computational analysis predict a role of hsa-miR-1225-3p in the pathogenesis of T2D through the interaction with MAP3K1 and HMGA1. Conclusions-The outcomes of this study could aid in the identification and characterization of circulating miRNAs as potential novel biomarkers for the early diagnosis of T2D and may serve as a proof-of-concept for future mechanistic investigations.
Collapse
Affiliation(s)
- Marta Greco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Mirabelli
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Alessandro Salatino
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Accattato
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Aiello
- Department of Precision Medicine, Vanvitelli University, 80133 Naples, Italy
| | - Francesco S Brunetti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Salvatore A Pullano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Antonino S Fiorillo
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela P Foti
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Hussain K, Ishtiaq A, Mushtaq I, Murtaza I. Profiling of Targeted miRNAs (8-nt) for the Genes Involved in Type 2 Diabetes Mellitus and Cardiac Hypertrophy. Mol Biol 2023. [DOI: 10.1134/s0026893323020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Yam P, VerHague M, Albright J, Gertz E, Pardo-Manuel de Villena F, Bennett BJ. Altered macronutrient composition and genetics influence the complex transcriptional network associated with adiposity in the Collaborative Cross. GENES & NUTRITION 2022; 17:13. [PMID: 35945490 PMCID: PMC9364539 DOI: 10.1186/s12263-022-00714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/04/2022] [Indexed: 11/10/2022]
Abstract
Background Obesity is a serious disease with a complex etiology characterized by overaccumulation of adiposity resulting in detrimental health outcomes. Given the liver’s critical role in the biological processes that attenuate adiposity accumulation, elucidating the influence of genetics and dietary patterns on hepatic gene expression is fundamental for improving methods of obesity prevention and treatment. To determine how genetics and diet impact obesity development, mice from 22 strains of the genetically diverse recombinant inbred Collaborative Cross (CC) mouse panel were challenged to either a high-protein or high-fat high-sucrose diet, followed by extensive phenotyping and analysis of hepatic gene expression. Results Over 1000 genes differentially expressed by perturbed dietary macronutrient composition were enriched for biological processes related to metabolic pathways. Additionally, over 9000 genes were differentially expressed by strain and enriched for biological process involved in cell adhesion and signaling. Weighted gene co-expression network analysis identified multiple gene clusters (modules) associated with body fat % whose average expression levels were influenced by both dietary macronutrient composition and genetics. Each module was enriched for distinct types of biological functions. Conclusions Genetic background affected hepatic gene expression in the CC overall, but diet macronutrient differences also altered expression of a specific subset of genes. Changes in macronutrient composition altered gene expression related to metabolic processes, while genetic background heavily influenced a broad range of cellular functions and processes irrespective of adiposity. Understanding the individual role of macronutrient composition, genetics, and their interaction is critical to developing therapeutic strategies and policy recommendations for precision nutrition. Supplementary Information The online version contains supplementary material available at 10.1186/s12263-022-00714-x.
Collapse
|
7
|
Wang L, Zhang J, Xia M, Liu C, Zu X, Zhong J. High Mobility Group A1 (HMGA1): Structure, Biological Function, and Therapeutic Potential. Int J Biol Sci 2022; 18:4414-4431. [PMID: 35864955 PMCID: PMC9295051 DOI: 10.7150/ijbs.72952] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
High mobility group A1 (HMGA1) is a nonhistone chromatin structural protein characterized by no transcriptional activity. It mainly plays a regulatory role by modifying the structure of DNA. A large number of studies have confirmed that HMGA1 regulates genes related to tumours in the reproductive system, digestive system, urinary system and haematopoietic system. HMGA1 is rare in adult cells and increases in highly proliferative cells such as embryos. After being stimulated by external factors, it will produce effects through the Wnt/β-catenin, PI3K/Akt, Hippo and MEK/ERK pathways. In addition, HMGA1 also affects the ageing, apoptosis, autophagy and chemotherapy resistance of cancer cells, which are linked to tumorigenesis. In this review, we summarize the mechanisms of HMGA1 in cancer progression and discuss the potential clinical application of targeted HMGA1 therapy, indicating that targeted HMGA1 is of great significance in the diagnosis and treatment of malignancy.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Ji Zhang
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
| | - Min Xia
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Chang Liu
- Department of Endocrinology and Metabolism, The First People's Hospital of Chenzhou, First School of Clinical Medicine, University of Southern Medical, Guangzhou 510515, Guangdong, China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| |
Collapse
|
8
|
Liu W, Chen G. Regulation of energy metabolism in human pluripotent stem cells. Cell Mol Life Sci 2021; 78:8097-8108. [PMID: 34773132 PMCID: PMC11071932 DOI: 10.1007/s00018-021-04016-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
All living organisms need energy to carry out their essential functions. The importance of energy metabolism is increasingly recognized in human pluripotent stem cells. Energy production is not only essential for cell survival and proliferation, but also critical for pluripotency and cell fate determination. Thus, energy metabolism is an important target in cellular regulation and stem cell applications. In this review, we will discuss key factors that influence energy metabolism and their association with stem cell functions.
Collapse
Affiliation(s)
- Weiwei Liu
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, Macau SAR, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guokai Chen
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
9
|
Insulin Resistance and Cancer: In Search for a Causal Link. Int J Mol Sci 2021; 22:ijms222011137. [PMID: 34681797 PMCID: PMC8540232 DOI: 10.3390/ijms222011137] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance (IR) is a condition which refers to individuals whose cells and tissues become insensitive to the peptide hormone, insulin. Over the recent years, a wealth of data has made it clear that a synergistic relationship exists between IR, type 2 diabetes mellitus, and cancer. Although the underlying mechanism(s) for this association remain unclear, it is well established that hyperinsulinemia, a hallmark of IR, may play a role in tumorigenesis. On the other hand, IR is strongly associated with visceral adiposity dysfunction and systemic inflammation, two conditions which favor the establishment of a pro-tumorigenic environment. Similarly, epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNA, in IR states, have been often associated with tumorigenesis in numerous types of human cancer. In addition to these observations, it is also broadly accepted that gut microbiota may play an intriguing role in the development of IR-related diseases, including type 2 diabetes and cancer, whereas potential chemopreventive properties have been attributed to some of the most commonly used antidiabetic medications. Herein we provide a concise overview of the most recent literature in this field and discuss how different but interrelated molecular pathways may impact on tumor development.
Collapse
|
10
|
Pomar CA, Serra F, Palou A, Sánchez J. Lower miR-26a levels in breastmilk affect gene expression in adipose tissue of offspring. FASEB J 2021; 35:e21924. [PMID: 34582059 DOI: 10.1096/fj.202100623r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
Breastmilk miRNAs may act as epigenetic regulators of metabolism and energy homeostasis in offspring. Here, we aimed to investigate the regulatory effects of miR-26a on adipose tissue development. First, the 3T3-L1 cell model was used to identify putative target genes for miR-26a. Then, target genes were analysed in adipose tissue of offspring from dams that supplied lower levels of breastmilk miR-26a to determine whether miR-26a milk concentration might have a long-lasting impact on adipose tissue in the progeny. In the in vitro model, both over- and under-expression of miR-26a were induced by transfecting into 3T3-L1 with miR-26a mimic and inhibitor. Array analysis was performed after induction of miR-26a to ascertain the impact on mRNA target genes and influence of differentiation status. Focusing on genes related to adipose tissue development, transfection with miR-26a mimic reduced the expression of Pten, Hmga1, Stk11, Rb1, and Adam17 in both pre- and mature adipocytes. Data mostly confirmed the results found in the animal model. After weaning, descendants of cafeteria-fed dams breastfed with lower levels of miR-26a displayed greater expression of Hmag1, Rb1, and Adam17 in retroperitoneal white adipose tissue in comparison with controls. Hence, alterations in the amount of miR-26a supplied through milk during lactation is able to alter the expression of target genes in the descendants and may affect adipose tissue development. Thus, milk miR-26a may act as an epigenetic regulator influencing early metabolic program in the progeny, which emerges as a relevant component of an optimal milk composition for correct development.
Collapse
Affiliation(s)
- Catalina A Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, IdISBa, Palma, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, IdISBa, Palma, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, IdISBa, Palma, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, Palma, Spain.,Instituto de Investigación Sanitaria Illes Balears, IdISBa, Palma, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
11
|
Bai Y, Liu F, Yang Z. CircRNA LRP6 promotes high-glucose induced proliferation and migration of vascular smooth muscle cells through regulating miR-545-3p/HMGA1 signaling axis. Am J Transl Res 2021; 13:8909-8920. [PMID: 34540004 PMCID: PMC8430135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE The dysfunction of vascular smooth muscle cells (VSMCs) has been revealed to be closely linked with the pathogenesis of cardiovascular diseases in diabetes. Recently, circular RNAs (circRNAs) were found to regulate the behaviors of VSMCs. Here, we attempted to study the role of circLRP6 in VSMCs under diabetes condition. METHODS Human VSMCs were cultured under the condition of normal glucose (NG) or high glucose (HG). VSMC viability and proliferation were estimated by CCK-8 and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays. VSMC migration and invasion were assessed via wound-healing and transwell experiments. Protein expression of HMGA1 was measured in VSMCs using western blot and immunofluorescence analysis. Relative expressions of circLRP6, miR-545-3p, and HMGA1 mRNA were estimated in VSMCs using qRT-PCR. The co-localization of circLRP6 and miR-545-3p was verified by fluorescence in situ hybridization (FISH) analysis. Binding sequence of miR-545-3p in circLRP6 or HMGA1 was predicted using StarBase tool, and verified by RNA immunoprecipitation and dual-luciferase reporter experiments. RESULTS HG exposure promoted VSMC proliferation, migration and invasion, upregulated the circLRP6 expression, and downregulated HMGA1 expression. Knockdown of circLRP6 or overexpression of miR-545-3p abrogated the HG-caused VSMC proliferation, migration and invasion. CircLRP6 severed as a miR-545-3p sponge, and HMGA1 was targeted by miR-545-3p. MiR-545-3p inhibitor blocked the suppressive effects of si-circLRP6 on VSMC in the presence of HG. CONCLUSION These findings suggest that circRNA LRP6 promotes HG-induced VSMC proliferation and migration through regulating miR-545-3p/HMGA1 signaling axis.
Collapse
|
12
|
Yang Q, Wang Y, Li M, Wang Z, Zhang J, Dai W, Pei M, Hong L, Xiao Y, Hu H, Li J, Lin J, Wu X, Chen Y, Huang M, Li A, Liu S, Tang W, Xiang L, Wang J. HMGA1 promotes gastric cancer growth and metastasis by transactivating SUZ12 and CCDC43 expression. Aging (Albany NY) 2021; 13:16043-16061. [PMID: 34167089 PMCID: PMC8266323 DOI: 10.18632/aging.203130] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
HMGA1 protein is an architectural transcription factor that has been implicated in the progression of multiple malignant tumors. However, the role of HMGA1 in the growth and metastasis of gastric cancer (GC) has not yet been elucidated. Here, we show that HMGA1 is overexpressed in GC cells and the high expression of HMGA1 was correlated with worse survival in GC patients using a bioinformatics assay. Functionally, HMGA1 affected the EdU incorporation, colony formation, migration and invasion of GC cells by exogenously increasing or decreasing the expression of HMGA1. Mechanistically, HMGA1 directly bound to the SUZ12 and CCDC43 promoter and transactivated its expression in GC cells. Inhibition of SUZ12 and CCDC43 attenuated the proliferation, migration and invasiveness of HMGA1-overexpressing GC cells in vitro. Moreover, both HMGA1 and SUZ12/CCDC43 were highly expressed in cancer cells but not in normal gastric tissues, and their expressions were positively correlated. Finally, a tail vein metastatic assay showed that HMGA1 promoted SUZ12/CCDC43-mediated GC cell metastasis in vivo. Our findings suggest that HMGA1 promotes GC growth and metastasis by transactivating SUZ12 and CCDC43 expression, highlighting HMGA1 as a potential prognostic biomarker in the treatment of GC.
Collapse
Affiliation(s)
- Qiong Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Yusi Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengshu Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhi Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jieming Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weiyu Dai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Miaomiao Pei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yizhi Xiao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongsong Hu
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen 518172, China
| | - Jiaying Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianjiao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Gastroenterology, Longgang District People's Hospital, Shenzhen 518172, China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaying Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Miaojuan Huang
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen 518172, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Gastroenterology, Longgang District People's Hospital, Shenzhen 518172, China
| | - Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Xiang
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen 518172, China
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Gastroenterology, Longgang District People's Hospital, Shenzhen 518172, China
| |
Collapse
|
13
|
Barca I, Mignogna C, Donato G, Cristofaro MG. Expression of PLAG1, HMGA1 and HMGA2 in minor salivary glands tumours. Gland Surg 2021; 10:1609-1617. [PMID: 34164305 DOI: 10.21037/gs-20-667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Diagnosis of minor salivary gland (MSG) tumours is often difficult, due to the scarce tissue obtained from bioptic excision and complex histopathological differential diagnosis. In our study we performed an immunohistochemical analysis of PLAG1, HMGA1 and HMGA2 on a series of MSG tumours, in order to develop a new helpful diagnostic panel. Methods A retrospective series of 17 surgical specimens of MSG tumours were analysed for the expression of PLAG1, HMGA1 and HMGA2. Three control cases were enrolled and analysed. An intensity and percentage-based approach was performed, creating a combined score panel. Results PLAG1 facilitate the diagnosis of benign tumours, discriminating it from malignant histotypes, with a defined cut-off value. Similarly, HMGA1 is significantly higher in benign histotypes than in malignant ones. HMGA2 in our series, did not reveal any association in identifying benign from malignant histotypes. Conclusions In this study we assessed the diagnostic role of PLAG1, HMGA1 and HMGA2 immunohistochemical analysis. The score panel facilitate histopathological diagnosis of these rare tumours, helping to distinguish benign tumours from malignant ones and ameliorating the differential diagnosis of specific histotypes.
Collapse
Affiliation(s)
- Ida Barca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Chiara Mignogna
- Department of Health Science, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Science, Magna Græcia University, Catanzaro, Italy
| | | |
Collapse
|
14
|
Phan TK, Fonseka P, Tixeira R, Pathan M, Ang CS, Ozkocak DC, Mathivanan S, Poon IKH. Pannexin-1 channel regulates nuclear content packaging into apoptotic bodies and their size. Proteomics 2021; 21:e2000097. [PMID: 33661579 DOI: 10.1002/pmic.202000097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
Abstract
Apoptotic bodies (ApoBDs), which are large extracellular vesicles exclusively released by apoptotic cells, possess therapeutically exploitable properties including biomolecule loadability and transferability. However, current limited understanding of ApoBD biology has hindered its exploration for clinical use. Particularly, as ApoBD-accompanying cargoes (e.g., nucleic acids and proteins) have major influence on their functionality, further insights into the mechanism of biomolecule sorting into ApoBDs are critical to unleash their therapeutic potential. Previous studies suggested pannexin 1 (PANX1) channel, a negative regulator of ApoBD biogenesis, can modify synaptic vesicle contents. We also reported that trovafloxacin (a PANX1 inhibitor) increases proportion of ApoBDs containing DNA. Therefore, we sought to define the role of PANX1 in regulating the sorting of nuclear content into ApoBDs. Here, using flow cytometry and label-free quantitative proteomic analyses, we showed that targeting PANX1 activity during apoptosis, via either pharmacological inhibition or genetic disruption, resulted in enrichment of both DNA and nuclear proteins in ApoBDs that were unexpectedly smaller in size. Our data suggest that PANX1, besides being a key regulator of ApoBD formation, also functions as a negative regulator of nuclear content packaging and modulator of ApoBD size. Together, our findings provide further insights into ApoBD biology and form a novel conceptual framework for ApoBD-based therapies through pharmacologically manipulating ApoBD contents.
Collapse
Affiliation(s)
- Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Pamali Fonseka
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Rochelle Tixeira
- VIB-UGent Center for Inflammation Research, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mohashin Pathan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Ching-Seng Ang
- The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Dilara Ceyda Ozkocak
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Ivan Ka Ho Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Lee KS, Kim KH, Oh YM, Han B, Kim WJ. A genome wide association study for lung function in the Korean population using an exome array. Korean J Intern Med 2021; 36:S142-S150. [PMID: 32336055 PMCID: PMC8009153 DOI: 10.3904/kjim.2019.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS Lung function is an objective indicator of diagnosis and prognosis of respiratory diseases. Many common genetic variants have been associated with lung function in multiple ethnic populations. We looked for coding variants associated with forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC) in the Korean general population. METHODS We carried out exome array analysis and lung function measurements of the FEV1 and FEV1/FVC in 7,524 individuals of the Korean population. We evaluated single variants with minor allele frequency greater than 0.5%. We performed look-ups for candidate coding variants associations in the UK Biobank, SpiroMeta, and CHARGE consortia. RESULTS We identified coding variants in the SMIM29 (C6orf1) (p = 1.2 × 10-5) and HMGA1 locus on chromosome 6p21, the GIT2 (p = 6.5 × 10-5) locus on chromosome 12q24, and the ARHGEF40 (p = 9.9 × 10-5) locus on chromosome 14q11 as having a significant association with lung function (FEV1). We also confirmed a previously reported association with lung function and chronic obstructive pulmonary disease in the FAM13A (p = 4.54 × 10-6) locus on chromosome 4q22, in TNXB (p = 1.30 × 10-6) and in AGER (p = 1.09 × 10-8) locus on chromosome 6p21. CONCLUSION Our exome array analysis identified that several protein coding variants were associated with lung function in the Korean population. Common coding variants in SMIM29 (C6orf1), HMGA1, GIT2, FAM13A, TNXB, AGER and low-frequency variant in ARHGEF40 potentially affect lung function, which warrant further study.
Collapse
Affiliation(s)
- Kyu-Sun Lee
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Kun Hee Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Buhm Han
- Department of Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
- Correspondence to Woo Jin Kim, M.D. Department of Internal Medicine, Kangwon National University School of Medicine, 156 Baengnyeong-ro, Chuncheon 24289, Korea Tel: +82-33-250-7815 Fax: +82-33-255-6567 E-mail:
| |
Collapse
|
16
|
Wei T, Liu H, Chu B, Blasco P, Liu Z, Tian R, Li DX, Li X. Phosphorylation-regulated HMGA1a-P53 interaction unveils the function of HMGA1a acidic tail phosphorylations via synthetic proteins. Cell Chem Biol 2021; 28:722-732.e8. [PMID: 33545070 DOI: 10.1016/j.chembiol.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/13/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023]
Abstract
As a typical member of intrinsically disordered proteins (IDPs), HMGA1a carries many post-translational modifications (PTMs). To study the undefined function of acidic tail phosphorylations, seven HMGA1a proteins with site-specific modification(s) were chemically synthesized via Ser/Thr ligation. We found that the phosphorylations significantly inhibit HMGA1a-P53 interaction and the phosphorylations can induce conformational change of HMGA1a from an "open state" to a "close state." Notably, the positively charged lysine-arginine (KR) clusters are responsible for modulating HMGA1a conformation via electrostatic interaction with the phosphorylated acidic tail. Finally, we used a synthetic protein-affinity purification mass spectrometry (SP-AP-MS) methodology to profile the specific interactors, which further supported the function of HMGA1a phosphorylation. Collectively, this study highlights a mechanism for regulating IDPs' conformation and function by phosphorylation of non-protein-binding domain and showcases that the protein chemical synthesis in combination with mass spectrometry can serve as an efficient tool to study the IDPs' PTMs.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Heng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Bizhu Chu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Pilar Blasco
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Zheng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, P. R. China
| | - David Xiang Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China.
| |
Collapse
|
17
|
Wang XQ, Wang XQ, Hsu ATYW, Goytain A, Ng TLT, Nielsen TO. A Rapid and Cost-Effective Gene Expression Assay for the Diagnosis of Well-Differentiated and Dedifferentiated Liposarcomas. J Mol Diagn 2020; 23:274-284. [PMID: 33346147 DOI: 10.1016/j.jmoldx.2020.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
Histologic examination neither reliably distinguishes benign lipomas from atypical lipomatous tumor/well-differentiated liposarcoma, nor dedifferentiated liposarcoma from other pleomorphic sarcomas, entities with different prognoses and management. Molecular confirmation of pathognomonic 12q13-15 amplifications leading to MDM2 overexpression is a diagnostic gold standard. Currently the most commonly used assay for this purpose is fluorescence in situ hybridization (FISH), but this is labor intensive. This study assessed whether newer NanoString-based technology could allow for more rapid and cost-efficient diagnosis of liposarcomas on standard formalin-fixed tissues through gene expression. Leveraging large-scale transcriptome data from The Cancer Genome Atlas, 20 genes were identified, most from the 12q13-15 amplicon, that distinguish dedifferentiated liposarcoma from other sarcomas and can be measured within a single NanoString assay. Using 21 cases of histologically ambiguous low-grade adipocytic tumors with available MDM2 amplification status, a machine learning-based analytical pipeline was built that assigns a given sample as negative or positive for liposarcoma based on quantitative gene expression. The effectiveness of the assay was validated on an independent set of 100 sarcoma samples (including 40 incident prospective cases), where histologic examination was considered insufficient for clinical diagnosis. The NanoString assay had a 93% technical success rate, and an accuracy of 97.8% versus an MDM2 amplification FISH gold standard. NanoString had a considerably faster turnaround time and was cheaper than FISH.
Collapse
Affiliation(s)
- Xiu Q Wang
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xue Q Wang
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anika T Y W Hsu
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela Goytain
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tony L T Ng
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada.
| |
Collapse
|
18
|
HMGA Genes and Proteins in Development and Evolution. Int J Mol Sci 2020; 21:ijms21020654. [PMID: 31963852 PMCID: PMC7013770 DOI: 10.3390/ijms21020654] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
HMGA (high mobility group A) (HMGA1 and HMGA2) are small non-histone proteins that can bind DNA and modify chromatin state, thus modulating the accessibility of regulatory factors to the DNA and contributing to the overall panorama of gene expression tuning. In general, they are abundantly expressed during embryogenesis, but are downregulated in the adult differentiated tissues. In the present review, we summarize some aspects of their role during development, also dealing with relevant studies that have shed light on their functioning in cell biology and with emerging possible involvement of HMGA1 and HMGA2 in evolutionary biology.
Collapse
|
19
|
Oleacein Prevents High Fat Diet-Induced Adiposity and Ameliorates Some Biochemical Parameters of Insulin Sensitivity in Mice. Nutrients 2019; 11:nu11081829. [PMID: 31394876 PMCID: PMC6723526 DOI: 10.3390/nu11081829] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 01/15/2023] Open
Abstract
Oleacein is one of the most abundant polyphenolic compounds of olive oil, which has been shown to play a protective role against several metabolic abnormalities, including dyslipidemia, insulin resistance, and glucose intolerance. Herein, we investigated the effects of oleacein on certain markers of adipogenesis and insulin-resistance in vitro, in 3T3-L1 adipocytes, and in vivo in high-fat diet (HFD)-fed mice. During the differentiation process of 3T3-L1 preadipocytes into adipocytes, oleacein strongly inhibited lipid accumulation, and decreased protein levels of peroxisome proliferator-activated receptor gamma (PPARγ) and fatty acid synthase (FAS), while increasing Adiponectin levels. In vivo, treatment with oleacein of C57BL/6JOlaHsd mice fed with HFD for 5 and 13 weeks prevented the increase in adipocyte size and reduced the inflammatory infiltration of macrophages and lymphocytes in adipose tissue. These effects were accompanied by changes in the expression of adipose tissue-specific regulatory elements such as PPARγ, FAS, sterol regulatory element-binding transcription factor-1 (SREBP-1), and Adiponectin, while the expression of insulin-sensitive muscle/fat glucose transporter Glut-4 was restored in HFD-fed mice treated with oleacein. Collectively, our findings indicate that protection against HFD-induced adiposity by oleacein in mice is mediated by the modulation of regulators of adipogenesis. Protection against HFD-induced obesity is effective in improving peripheral insulin sensitivity.
Collapse
|
20
|
HMGA1 exacerbates tumor progression by activating miR-222 through PI3K/Akt/MMP-9 signaling pathway in uveal melanoma. Cell Signal 2019; 63:109386. [PMID: 31394192 DOI: 10.1016/j.cellsig.2019.109386] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 12/26/2022]
Abstract
High-mobility group A1 (HMGA1), an architectural transcription factor, participates in different human tumors' biological progression. HMGA1 overexpression is associated with malignant cellular behavior in a wide range of cancers but the underlying mechanism remains poorly illuminated. In this study, we showed PI3K/Akt/MMP9 pathway activity could be positively regulated by HMGA1 using western blotting, real-time polymerase chain reaction (RT-PCR) and immunochemistry both in vitro (C918 and MUM-2B cell lines) and in vivo (xenograft mouse model). Later, MiRTarBase was used to identify the relationship between HMGA1 and miR-222-3p, we found miR-222 is positively regulated by HMGA1. Moreover, the proliferation and migration of UM cells significantly increased in the miR-222 mimics group and decreased in the miR-222 inhibitor group detected by the Annexin V-FITC apoptosis detection kit, CCK-8 and scratch wound-healing. The p-PI3K, p-Akt and MMP9 expressions were elevated in UM cells transfected with miR-222 mimics, and suppressed in the miR-222 inhibitor group. Together, our study highlights that HMGA1 acts as a pivotal regulator in UM tumor growth, proposing a critical viewpoint that HMGA1 expedites progression through the PI3K/Akt/MMP9 pathway and oncogenic miR-222 in UM.
Collapse
|
21
|
Tanisawa K, Hirose N, Arai Y, Shimokata H, Yamada Y, Kawai H, Kojima M, Obuchi S, Hirano H, Suzuki H, Fujiwara Y, Taniguchi Y, Shinkai S, Ihara K, Sugaya M, Higuchi M, Arai T, Mori S, Sawabe M, Sato N, Muramatsu M, Tanaka M. Inverse Association Between Height-Increasing Alleles and Extreme Longevity in Japanese Women. J Gerontol A Biol Sci Med Sci 2019; 73:588-595. [PMID: 28958036 DOI: 10.1093/gerona/glx155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023] Open
Abstract
Growth hormone (GH)/insulin-like growth factor-1 (IGF-1)/insulin signaling is one of the most plausible biological pathways regulating aging and longevity. Previous studies have demonstrated that several single nucleotide polymorphisms (SNPs) in the GH/IGF-1/insulin signaling-associated genes influence both longevity and adult height, suggesting the possibility of a shared genetic architecture between longevity and height. We therefore examined the relationship between 30 height-associated SNPs and extreme longevity in a Japanese population consisting of 428 centenarians and 4,026 younger controls. We confirmed that height-increasing genetic scores (HGSs) constructed based on 30 SNPs were significantly associated with height in the controls (p = 6.95 × 10-23). HGS was significantly and inversely associated with extreme longevity in women (p = .011), but not in men, although no SNPs were significantly associated with extreme longevity after Bonferroni correction. The odds ratio for extreme longevity in the lowest HGS group (≤27) and the second lowest HGS group (28-30) relative to the highest HGS group (≥37) was 1.71 (p = .056) and 1.69 (p = .034), respectively, for women. In conclusion, the present study demonstrated an inverse association between height-increasing alleles with extreme longevity in Japanese women, providing novel insight into the genetic architecture of longevity and aging.
Collapse
Affiliation(s)
- Kumpei Tanisawa
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan.,Department of Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Research, Keio University School of Medicine, Tokyo, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Research, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Shimokata
- Section of Longitudinal Study of Aging, National Institute for Longevity Sciences (NILS-LSA), National Center for Geriatrics and Gerontology, Obu, Japan.,Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
| | - Hisashi Kawai
- Human Care Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Motonaga Kojima
- Human Care Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shuichi Obuchi
- Human Care Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hirohiko Hirano
- Research Team for Promoting Independence of the Elderly, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hiroyuki Suzuki
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yu Taniguchi
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shoji Shinkai
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kazushige Ihara
- Department of Public Health, Toho University School of Medicine, Tokyo, Japan
| | - Maki Sugaya
- Department of Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan.,Institute of Advanced Active Aging Research, Waseda University, Tokorozawa, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Motoji Sawabe
- Section of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriko Sato
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| |
Collapse
|
22
|
Alizarin increase glucose uptake through PI3K/Akt signaling and improve alloxan-induced diabetic mice. Future Med Chem 2019; 11:395-406. [DOI: 10.4155/fmc-2018-0515] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: Alizarin (AZ), that can be isolated from Rubia cordifolia, has biological activities such as antioxidation and anti-inflammatory. This study aimed to investigate the effect of AZ on glucose and lipid metabolism disorders in alloxan-induced diabetic mice and also explored the effect of AZ on insulin resistance in 3T3-L1 adipocytes. Results: The research showed that AZ could decrease fasting and postprandial blood glucose, TG, TC and MDA, and it could also increase liver glycogen levels and SOD activity in diabetic mice. AZ could significantly improve the glucose uptake of 3T3-L1 adipocytes under insulin resistance, and could also increase GLUT4 protein expression levels, IRS-1 and Akt protein phosphorylation. Conclusion: These results showed that AZ has the potential to reduce blood sugar and improve insulin resistance.
Collapse
|
23
|
Pasquier J, Spurgeon M, Bradic M, Thomas B, Robay A, Chidiac O, Dib MJ, Turjoman R, Liberska A, Staudt M, Fakhro KA, Menzies R, Jayyousi A, Zirie M, Suwaidi JA, Malik RA, Talal T, Rafii A, Mezey J, Rodriguez-Flores J, Crystal RG, Abi Khalil C. Whole-methylome analysis of circulating monocytes in acute diabetic Charcot foot reveals differentially methylated genes involved in the formation of osteoclasts. Epigenomics 2019; 11:281-296. [PMID: 30753117 DOI: 10.2217/epi-2018-0144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To assess whether DNA methylation of monocytes play a role in the development of acute diabetic Charcot foot (CF). PATIENTS & METHODS We studied the whole methylome (WM) of circulating monocytes in 18 patients with Type 2 diabetes (T2D) and acute CF, 18 T2D patients with equivalent neuropathy and 18 T2D patients without neuropathy, using the enhanced reduced representation bisulfite sequencing technique. RESULTS & CONCLUSION WM analysis demonstrated that CF monocytes are differentially methylated compared with non-CF monocytes, in both CpG-site and gene-mapped analysis approaches. Among the methylated genes, several are involved in the migration process during monocyte differentiation into osteoclasts or are indirectly involved through the regulation of inflammatory pathways. Finally, we demonstrated an association between methylation and gene expression in cis- and trans-association.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| | - Mark Spurgeon
- Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA.,Department of Biological Statistics and Computational Biology, Cornell University, Ithica, NY, NY-14850, USA
| | - Martina Bradic
- Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| | - Binitha Thomas
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Amal Robay
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| | - Omar Chidiac
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Marie-Joe Dib
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Rebal Turjoman
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Alexandra Liberska
- Flow Cytometry Facility, Microscopy Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Michelle Staudt
- Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| | - Khalid A Fakhro
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Human Genetics, Sidra Medical and Research Center, Doha, Qatar
| | - Robert Menzies
- Department of Podiatry, Hamad Medical Corporation, Doha, Qatar
| | - Amin Jayyousi
- Department of Diabetes and Endocrinology, Hamad Medical Corporation, Doha, Qatar
| | - Mahmoud Zirie
- Department of Diabetes and Endocrinology, Hamad Medical Corporation, Doha, Qatar
| | | | - Rayaz A Malik
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| | - Talal Talal
- Department of Podiatry, Hamad Medical Corporation, Doha, Qatar
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| | - Jason Mezey
- Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA.,Department of Biological Statistics and Computational Biology, Cornell University, Ithica, NY, NY-14850, USA
| | - Juan Rodriguez-Flores
- Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA.,Department of Biological Statistics and Computational Biology, Cornell University, Ithica, NY, NY-14850, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA.,Heart Hospital, Hamad Medical Corporation, Doha, Qatar.,Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| |
Collapse
|
24
|
Bortoli S, Collinet M, Desbuquois B. Vanadate inhibits transcription of the rat insulin receptor gene via a proximal sequence of the 5'flanking region. BIOCHIMIE OPEN 2018; 7:26-32. [PMID: 30416963 PMCID: PMC6205930 DOI: 10.1016/j.biopen.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/30/2018] [Indexed: 11/16/2022]
Abstract
Vanadate, a protein tyrosine phosphatase inhibitor which elicits insulin-like effects, has previously been shown to inhibit expression of the insulin receptor gene at the transcriptional level in rat hepatoma cells. In an attempt to identify the DNA sequence and transcription factors potentially involved in this effect, a fragment of the proximal 5'flanking region of the IR gene (-1143/-252 upstream the ATG codon) has been cloned and functionally characterized. RNase protection allowed the identification of several transcription start sites in the conserved region of the gene, among which two major sites at -455 and -396. Upon fusion to the luciferase gene and transient transfection into hepatoma cells, the -1143/-252 fragment showed promoter activity. This was unaffected by deletion of the -1143/-761 sequence, but markedly decreased (90%) by additional deletion of the -760/-465 sequence. Treatment of hepatoma cells with vanadate led to a dose-dependent decrease in promoter activity of the 1143/-252, -760/-252 and -464/-252 constructs (change relative to untreated cells, 40, 55 and 23% at 125 μM, and 70, 85 and 62% at 250 μM, respectively). These data suggest that although the entire DNA sequence upstream the transcription start sites is probably involved in vanadate-induced inhibition, the short sequence downstream of position -464 and is sufficient for inhibition. Potential targets of vanadate are the transcription factors FoxO1 and HMGA1, two downstream targets of the insulin signaling pathway which have been shown to mediate the inhibitory effect of insulin on IR gene expression.
Collapse
Key Words
- C/EBPβ, C/CAAT/enhancer binding protein β
- FoxO1, Forkhead box protein O1
- Gene transcription
- HMGA1, high mobility group A1 protein
- HNF4, hepatocyte nuclear factor 4
- Hepatoma cells
- IGFBP-1, insulin-like growth factor binding protein 1
- IR, insulin receptor
- Insulin receptor
- Liver
- PEPCK, phosphoenolpyruvate carboxykinase
- PI3K, phosphatidyl inositol 3-kinase
- Rat
- SINE, short interspersed nuclear element
- STZ, streptozotocin
- Sp1, specificity protein 1
- TCF7L2, T-cell specific transcription factor 7-like 2
- Vanadate
Collapse
Affiliation(s)
- Sylvie Bortoli
- INSERM UMR 1124, UFR des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Martine Collinet
- INSERM UMR 1124, UFR des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bernard Desbuquois
- INSERM U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
25
|
Cross-talk among HMGA1 and FoxO1 in control of nuclear insulin signaling. Sci Rep 2018; 8:8540. [PMID: 29867121 PMCID: PMC5986867 DOI: 10.1038/s41598-018-26968-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
As a mediator of insulin-regulated gene expression, the FoxO1 transcription factor represents a master regulator of liver glucose metabolism. We previously reported that the high-mobility group AT-hook 1 (HMGA1) protein, a molecular switch for the insulin receptor gene, functions also as a downstream target of the insulin receptor signaling pathway, representing a critical nuclear mediator of insulin function. Here, we investigated whether a functional relationship existed between FoxO1 and HMGA1, which might help explain insulin-mediated gene transcription in the liver. To this end, as a model study, we investigated the canonical FoxO1-HMGA1-responsive IGFBP1 gene, whose hepatic expression is regulated by insulin. By using a conventional GST-pull down assay combined with co-immunoprecipitation and Fluorescence Resonance Energy Transfer (FRET) analyses, we provide evidence of a physical interaction between FoxO1 and HMGA1. Further investigation with chromatin immunoprecipitation, confocal microscopy, and Fluorescence Recovery After Photobleaching (FRAP) technology indicated a functional significance of this interaction, in both basal and insulin-stimulated states, providing evidence that, by modulating FoxO1 transactivation, HMGA1 is essential for FoxO1-induced IGFBP1 gene expression, and thereby a critical modulator of insulin-mediated FoxO1 regulation in the liver. Collectively, our findings highlight a novel FoxO1/HMGA1-mediated mechanism by which insulin may regulate gene expression and metabolism.
Collapse
|
26
|
High Mobility Group A (HMGA) proteins: Molecular instigators of breast cancer onset and progression. Biochim Biophys Acta Rev Cancer 2018. [DOI: 10.1016/j.bbcan.2018.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Arcidiacono B, Chiefari E, Messineo S, Bilotta FL, Pastore I, Corigliano DM, Foti DP, Brunetti A. HMGA1 is a novel transcriptional regulator of the FoxO1 gene. Endocrine 2018; 60:56-64. [PMID: 29052178 PMCID: PMC5845622 DOI: 10.1007/s12020-017-1445-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/27/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE The forkhead transcription factor (FoxO1) is a master transcriptional regulator of fundamental cellular processes ranging from cell proliferation and differentiation to inflammation and metabolism. However, despite its relevance, the mechanism(s) underlying FoxO1 gene regulation are largely unknown. We have previously shown that the chromatin factor high-mobility group A1 (HMGA1) plays a key role in the transcriptional regulation of glucose-responsive genes, including some that are involved in FoxO1-mediated glucose metabolism. Here we investigated the impact of HMGA1 on FoxO1 gene expression. METHODS FoxO1 protein and gene expression studies were performed by Western blot analysis combined with qRT-PCR of material from human cultured cells and EBV-transformed lymphoblasts, and from primary cultured hepatocytes from wild-type and Hmga1 -/- mice. Reporter gene assays and chromatin immunoprecipitation for binding of HMGA1 to the endogenous FoxoO1 locus were performed in cells overexpressing HMGA1 and in cells pretreated with siRNA targeting HMGA1. RESULTS HMGA1 increased FoxO1 mRNA and protein expression in vitro, in cultured HepG2 and HEK-293 cells by binding FoxO1 gene promoter, thereby activating FoxO1 gene transcription. Forced expression of HMGA1 in primary cultured hepatocytes from Hmga1 -/- mice and in EBV-transformed lymphoblasts from subjects with reduced expression of endogenous HMGA1 increased FoxO1 mRNA and protein levels. CONCLUSION These findings may contribute to the understanding of FoxO1 gene regulation and its role in metabolism.
Collapse
Affiliation(s)
- Biagio Arcidiacono
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - Sebastiano Messineo
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - Francesco L Bilotta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - Ida Pastore
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - Domenica M Corigliano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - Daniela P Foti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa (Località Germaneto), 88100, Catanzaro, Italy.
| |
Collapse
|
28
|
Chiefari E, Foti DP, Sgarra R, Pegoraro S, Arcidiacono B, Brunetti FS, Greco M, Manfioletti G, Brunetti A. Transcriptional Regulation of Glucose Metabolism: The Emerging Role of the HMGA1 Chromatin Factor. Front Endocrinol (Lausanne) 2018; 9:357. [PMID: 30034366 PMCID: PMC6043803 DOI: 10.3389/fendo.2018.00357] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
HMGA1 (high mobility group A1) is a nonhistone architectural chromosomal protein that functions mainly as a dynamic regulator of chromatin structure and gene transcription. As such, HMGA1 is involved in a variety of fundamental cellular processes, including gene expression, epigenetic regulation, cell differentiation and proliferation, as well as DNA repair. In the last years, many reports have demonstrated a role of HMGA1 in the transcriptional regulation of several genes implicated in glucose homeostasis. Initially, it was proved that HMGA1 is essential for normal expression of the insulin receptor (INSR), a critical link in insulin action and glucose homeostasis. Later, it was demonstrated that HMGA1 is also a downstream nuclear target of the INSR signaling pathway, representing a novel mediator of insulin action and function at this level. Moreover, other observations have indicated the role of HMGA1 as a positive modulator of the Forkhead box protein O1 (FoxO1), a master regulatory factor for gluconeogenesis and glycogenolysis, as well as a positive regulator of the expression of insulin and of a series of circulating proteins that are involved in glucose counterregulation, such as the insulin growth factor binding protein 1 (IGFBP1), and the retinol binding protein 4 (RBP4). Thus, several lines of evidence underscore the importance of HMGA1 in the regulation of glucose production and disposal. Consistently, lack of HMGA1 causes insulin resistance and diabetes in humans and mice, while variations in the HMGA1 gene are associated with the risk of type 2 diabetes and metabolic syndrome, two highly prevalent diseases that share insulin resistance as a common pathogenetic mechanism. This review intends to give an overview about our current knowledge on the role of HMGA1 in glucose metabolism. Although research in this field is ongoing, many aspects still remain elusive. Future directions to improve our insights into the pathophysiology of glucose homeostasis may include epigenetic studies and the use of "omics" strategies. We believe that a more comprehensive understanding of HMGA1 and its networks may reveal interesting molecular links between glucose metabolism and other biological processes, such as cell proliferation and differentiation.
Collapse
Affiliation(s)
- Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Daniela P. Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvia Pegoraro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Manfredi Greco
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | | | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti
| |
Collapse
|
29
|
De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Front Endocrinol (Lausanne) 2018; 9:2. [PMID: 29387042 PMCID: PMC5776102 DOI: 10.3389/fendo.2018.00002] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (DM) is a common metabolic disorder predisposing to diabetic cardiomyopathy and atherosclerotic cardiovascular disease (CVD), which could lead to heart failure through a variety of mechanisms, including myocardial infarction and chronic pressure overload. Pathogenetic mechanisms, mainly linked to hyperglycemia and chronic sustained hyperinsulinemia, include changes in metabolic profiles, intracellular signaling pathways, energy production, redox status, increased susceptibility to ischemia, and extracellular matrix remodeling. The close relationship between type 2 DM and CVD has led to the common soil hypothesis, postulating that both conditions share common genetic and environmental factors influencing this association. However, although the common risk factors of both CVD and type 2 DM, such as obesity, insulin resistance, dyslipidemia, inflammation, and thrombophilia, can be identified in the majority of affected patients, less is known about how these factors influence both conditions, so that efforts are still needed for a more comprehensive understanding of this relationship. The genetic, epigenetic, and environmental backgrounds of both type 2 DM and CVD have been more recently studied and updated. However, the underlying pathogenetic mechanisms have seldom been investigated within the broader shared background, but rather studied in the specific context of type 2 DM or CVD, separately. As the precise pathophysiological links between type 2 DM and CVD are not entirely understood and many aspects still require elucidation, an integrated description of the genetic, epigenetic, and environmental influences involved in the concomitant development of both diseases is of paramount importance to shed new light on the interlinks between type 2 DM and CVD. This review addresses the current knowledge of overlapping genetic and epigenetic aspects in type 2 DM and CVD, including microRNAs and long non-coding RNAs, whose abnormal regulation has been implicated in both disease conditions, either etiologically or as cause for their progression. Understanding the links between these disorders may help to drive future research toward an integrated pathophysiological approach and to provide future directions in the field.
Collapse
Affiliation(s)
- Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| | - Daniela P. Foti
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| |
Collapse
|
30
|
Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R. Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr Rev 2017; 38:379-431. [PMID: 28973479 PMCID: PMC5629070 DOI: 10.1210/er.2017-00073] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023]
Abstract
The insulin receptor (IR) gene undergoes differential splicing that generates two IR isoforms, IR-A and IR-B. The physiological roles of IR isoforms are incompletely understood and appear to be determined by their different binding affinities for insulin-like growth factors (IGFs), particularly for IGF-2. Predominant roles of IR-A in prenatal growth and development and of IR-B in metabolic regulation are well established. However, emerging evidence indicates that the differential expression of IR isoforms may also help explain the diversification of insulin and IGF signaling and actions in various organs and tissues by involving not only different ligand-binding affinities but also different membrane partitioning and trafficking and possibly different abilities to interact with a variety of molecular partners. Of note, dysregulation of the IR-A/IR-B ratio is associated with insulin resistance, aging, and increased proliferative activity of normal and neoplastic tissues and appears to sustain detrimental effects. This review discusses novel information that has generated remarkable progress in our understanding of the physiology of IR isoforms and their role in disease. We also focus on novel IR ligands and modulators that should now be considered as an important strategy for better and safer treatment of diabetes and cancer and possibly other IR-related diseases.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, University Kore of Enna, via della Cooperazione, 94100 Enna, Italy
| | - Michael C. Lawrence
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesco Frasca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| |
Collapse
|
31
|
Arcidiacono B, Chiefari E, Laria AE, Messineo S, Bilotta FL, Britti D, Foti DP, Foryst-Ludwig A, Kintscher U, Brunetti A. Expression of matrix metalloproteinase-11 is increased under conditions of insulin resistance. World J Diabetes 2017; 8:422-428. [PMID: 28989568 PMCID: PMC5612832 DOI: 10.4239/wjd.v8.i9.422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/04/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate matrix metalloproteinase-11 (MMP-11) expression in adipose tissue dysfunction, using in vitro and in vivo models of insulin resistance.
METHODS Culture of mouse 3T3-L1 preadipocytes were induced to differentiation into mature 3T3-L1 adipocytes. Cellular insulin resistance was induced by treating differentiated cultured adipocytes with hypoxia and/or tumor necrosis factor (TNF)-α, and transcriptional changes were analyzed in each condition thereafter. For the in vivo studies, MMP-11 expression levels were measured in white adipose tissue (WAT) from C57BL/6J mice that underwent low fat diet or high-fat feeding in order to induce obesity and obesity-related insulin resistance. Statistical analysis was carried out with GraphPad Prism Software.
RESULTS MMP-11 mRNA expression levels were significantly higher in insulin resistant 3T3-L1 adipocytes compared to control cells (1.46 ± 0.49 vs 0.83 ± 0.21, respectively; P < 0.00036). The increase in MMP-11 expression was observed even in the presence of TNF-α alone (3.79 ± 1.11 vs 1 ± 0.17, P < 0.01) or hypoxia alone (1.79 ± 0.7 vs 0.88 ± 0.1, P < 0.00023). The results obtained in in vitro experiments were confirmed in the in vivo model of insulin resistance. In particular, MMP-11 mRNA was upregulated in WAT from obese mice compared to lean mice (5.5 ± 2.8 vs 1.1 ± 0.7, respectively; P < 3.72E-08). The increase in MMP-11 levels in obese mice was accompanied by the increase in typical markers of fibrosis, such as collagen type VI alpha 3 (Col6α3), and fibroblast-specific protein 1.
CONCLUSION Our results indicate that dysregulation of MMP-11 expression is an early process in the adipose tissue dysfunction, which leads to obesity and obesity-related insulin resistance.
Collapse
Affiliation(s)
- Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Elisa Laria
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Sebastiano Messineo
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | | | - Domenico Britti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela Patrizia Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Foryst-Ludwig
- Institute of Pharmacology, Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Ulrich Kintscher
- Institute of Pharmacology, Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
32
|
Jongbloed F, Saat TC, Verweij M, Payan-Gomez C, Hoeijmakers JHJ, van den Engel S, van Oostrom CT, Ambagtsheer G, Imholz S, Pennings JLA, van Steeg H, IJzermans JNM, Dollé MET, de Bruin RWF. A signature of renal stress resistance induced by short-term dietary restriction, fasting, and protein restriction. Sci Rep 2017; 7:40901. [PMID: 28102354 PMCID: PMC5244361 DOI: 10.1038/srep40901] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/14/2016] [Indexed: 11/09/2022] Open
Abstract
During kidney transplantation, ischemia-reperfusion injury (IRI) induces oxidative stress. Short-term preoperative 30% dietary restriction (DR) and 3-day fasting protect against renal IRI. We investigated the contribution of macronutrients to this protection on both phenotypical and transcriptional levels. Male C57BL/6 mice were fed control food ad libitum, underwent two weeks of 30%DR, 3-day fasting, or received a protein-, carbohydrate- or fat-free diet for various periods of time. After completion of each diet, renal gene expression was investigated using microarrays. After induction of renal IRI by clamping the renal pedicles, animals were monitored seven days postoperatively for signs of IRI. In addition to 3-day fasting and two weeks 30%DR, three days of a protein-free diet protected against renal IRI as well, whereas the other diets did not. Gene expression patterns significantly overlapped between all diets except the fat-free diet. Detailed meta-analysis showed involvement of nuclear receptor signaling via transcription factors, including FOXO3, HNF4A and HMGA1. In conclusion, three days of a protein-free diet is sufficient to induce protection against renal IRI similar to 3-day fasting and two weeks of 30%DR. The elucidated network of common protective pathways and transcription factors further improves our mechanistic insight into the increased stress resistance induced by short-term DR.
Collapse
Affiliation(s)
- F Jongbloed
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands.,Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - T C Saat
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Verweij
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - C Payan-Gomez
- Department of Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - J H J Hoeijmakers
- Department of Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S van den Engel
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - C T van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - G Ambagtsheer
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S Imholz
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - J L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - H van Steeg
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.,Department of Toxicogenetics, Leiden University Medical Center, Leiden, the Netherlands
| | - J N M IJzermans
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - R W F de Bruin
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
33
|
Chiefari E, Ventura V, Capula C, Randazzo G, Scorcia V, Fedele M, Arcidiacono B, Nevolo MT, Bilotta FL, Vitiello M, Palmieri C, Gulletta E, Fusco A, Foti D, Vero R, Brunetti A. A polymorphism of HMGA1 protects against proliferative diabetic retinopathy by impairing HMGA1-induced VEGFA expression. Sci Rep 2016; 6:39429. [PMID: 27991577 PMCID: PMC5171873 DOI: 10.1038/srep39429] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/22/2016] [Indexed: 12/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes mellitus, and is the leading cause of blindness in working-age people. Usually, DR progresses from the asymptomatic non-proliferative DR that does not significantly alter vision, to proliferative DR (PDR), which can result in aberrant retinal neovessel formation and blindness. The High-Mobility-Group A1 (HMGA1) protein is a transcriptional master regulator of numerous genes, including metabolic and inflammatory genes, which, by modulating the expression of angiogenic factors, may induce retinal neovascularization, a hallmark of PDR. Herein, we examined the relationship between HMGA1 rs139876191 variant and DR. Results revealed that patients with type 2 diabetes, who were carriers of the HMGA1 rs139876191 variant had a significantly lower risk of developing PDR, compared to non-carrier diabetic patients. From a mechanistic point of view, our findings indicated that, by adversely affecting HMGA1 protein expression and function, the HMGA1 rs139876191 variant played a key role in this protective mechanism by downregulating the expression of vascular endothelial growth factor A (VEGFA), a major activator of neovascularization in DR. These data provide new insights into the pathogenesis and progression of DR, and may offer opportunities for discovering novel biomarkers and therapeutic targets for diagnosis, prevention and treatment of PDR.
Collapse
Affiliation(s)
- Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Valeria Ventura
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Carmelo Capula
- Operative Unit of Endocrinology and Diabetes, Hospital Pugliese-Ciaccio, Catanzaro, Italy
| | - Giorgio Randazzo
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Scorcia
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology, CNR, Napoli, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Maria Teresa Nevolo
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | | | - Michela Vitiello
- Institute of Experimental Endocrinology and Oncology, CNR, Napoli, Italy
| | - Camillo Palmieri
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Elio Gulletta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Alfredo Fusco
- Institute of Experimental Endocrinology and Oncology, CNR, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Napoli, Italy
| | - Daniela Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Raffaella Vero
- Operative Unit of Endocrinology and Diabetes, Hospital Pugliese-Ciaccio, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
34
|
Messineo S, Laria AE, Arcidiacono B, Chiefari E, Luque Huertas RM, Foti DP, Brunetti A. Cooperation between HMGA1 and HIF-1 Contributes to Hypoxia-Induced VEGF and Visfatin Gene Expression in 3T3-L1 Adipocytes. Front Endocrinol (Lausanne) 2016; 7:73. [PMID: 27445976 PMCID: PMC4921468 DOI: 10.3389/fendo.2016.00073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/14/2016] [Indexed: 12/28/2022] Open
Abstract
The architectural transcription factor high-mobility group AT-hook 1 (HMGA1) is a chromatin regulator with implications in several biological processes, including tumorigenesis, inflammation, and metabolism. Previous studies have indicated a role for this factor in promoting the early stages of adipogenesis, while inhibiting adipocyte terminal differentiation, and decreasing fat mass. It has been demonstrated that hypoxia - through the hypoxia-inducible factor 1 (HIF-1) - plays a major role in triggering changes in the adipose tissue of the obese, leading to inhibition of adipocyte differentiation, adipose cell dysfunction, inflammation, insulin resistance, and type 2 diabetes. To examine the possible cooperation between HMGA1 and HIF-1, herein, we investigated the role of HMGA1 in the regulation of Visfatin and VEGF, two genes normally expressed in adipose cells, which are both responsive to hypoxia. We demonstrated that HMGA1 enhanced Visfatin and VEGF gene expression in human embryonic kidney (HEK) 293 cells in hypoxic conditions, whereas HMGA1 knockdown in differentiated 3T3-L1 adipocytes reduced these effects. Reporter gene analysis showed that Visfatin and VEGF transcriptional activity was increased by the addition of either HMGA1 or HIF-1 and even further by the combination of both factors. As demonstrated by chromatin immunoprecipitation in intact cells, HMGA1 directly interacted with the VEGF gene, and this interaction was enhanced in hypoxic conditions. Furthermore, as indicated by co-immunoprecipitation studies, HMGA1 and HIF-1 physically interacted with each other, supporting the notion that this association may corroborate a functional link between these factors. Therefore, our findings provide evidence for molecular cross-talk between HMGA1 and HIF-1, and this may be important for elucidating protein and gene networks relevant to obesity.
Collapse
Affiliation(s)
- Sebastiano Messineo
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Anna Elisa Laria
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Raúl M. Luque Huertas
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía (HURS), CIBERobn and ceiA3, University of Córdoba, Córdoba, Spain
| | - Daniela P. Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
35
|
Abstract
The high mobility group protein A1 (HMGA1) is a master regulator of chromatin structure mediating its major gene regulatory activity by direct interactions with A/T-rich DNA sequences located in the promoter and enhancer regions of a large variety of genes. HMGA1 DNA-binding through three AT-hook motifs results in an open chromatin structure and subsequently leads to changes in gene expression. Apart from its significant expression during development, HMGA1 is over-expressed in virtually every cancer, where HMGA1 expression levels correlate with tumor malignancy. The exogenous overexpression of HMGA1 can lead to malignant cell transformation, assigning the protein a key role during cancerogenesis. Recent studies have unveiled highly specific competitive interactions of HMGA1 with cellular and viral RNAs also through an AT-hook domain of the protein, significantly impacting the HMGA1-dependent gene expression. In this review, we discuss the structure and function of HMGA1-RNA complexes during transcription and epigenomic regulation and their implications in HMGA1-related diseases.
Collapse
|
36
|
Lv Z, Li Y, Wu Y, Qu Y. Association of ICAM-1 and HMGA1 Gene Variants with Retinopathy in Type 2 Diabetes Mellitus Among Chinese Individuals. Curr Eye Res 2015; 41:1118-1122. [PMID: 26717491 DOI: 10.3109/02713683.2015.1094093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the association of intercellular cell-adhesion molecule 1 (ICAM-1) and high-mobility group A1 (HMGA1) gene variants with diabetic retinopathy (DR) in a Chinese type 2 diabetes mellitus (T2DM) cohort. METHODS A total of 792 patients with T2DM were enrolled and categorized into two groups: (1) the DR group consisted of 448 patients, which was further subclassified into the proliferative DR (PDR) group with 220 patients and the nonproliferative DR (NPDR) group with 228 patients; (2) the diabetes without retinopathy (DNR) group comprised 344 patients who had no signs of DR. The single-nucleotide polymorphism (SNP) rs5498 in ICAM-1 gene and IVS5-13insC variant in HMGA1 gene were genotyped. RESULTS No evident association was found in the allele frequencies between SNP rs5498 in ICAM-1 gene and DR patients; the combined p values for the additive, dominant, and recessive models in genotype were greater than 0.05. No significant association was identified between the IVS5-13insC variant in HMGA1 gene and DR individuals. CONCLUSIONS Our results revealed that SNP rs5498 in ICAM-1 gene and IVS5-13insC variant in HMGA1 gene were not associated with the susceptibility of DR in the Chinese T2DM cohort.
Collapse
Affiliation(s)
- Zhiping Lv
- a Department of Ophthalmology , Qilu Hospital of Shandong University , Jinan , China
| | - Ying Li
- a Department of Ophthalmology , Qilu Hospital of Shandong University , Jinan , China
| | - Yongzhong Wu
- b State Key Lab of Crystal Materials, Shandong University , Jinan , China
| | - Yi Qu
- a Department of Ophthalmology , Qilu Hospital of Shandong University , Jinan , China
| |
Collapse
|
37
|
Bianco A, Chiefari E, Nobile CGA, Foti D, Pavia M, Brunetti A. The Association between HMGA1 rs146052672 Variant and Type 2 Diabetes: A Transethnic Meta-Analysis. PLoS One 2015; 10:e0136077. [PMID: 26296198 PMCID: PMC4546600 DOI: 10.1371/journal.pone.0136077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/29/2015] [Indexed: 12/16/2022] Open
Abstract
The high-mobility group A1 (HMGA1) gene has been previously identified as a potential novel candidate gene for susceptibility to insulin resistance and type 2 diabetes (T2D) mellitus. For this reason, several studies have been conducted in recent years examining the association of the HMGA1 gene variant rs146052672 (also designated IVS5-13insC) with T2D. Because of non-univocal data and non-overlapping results among laboratories, we conducted the current meta-analysis with the aim to yield a more precise and reliable conclusion for this association. Using predetermined inclusion criteria, MEDLINE, PubMed, Web of Science, Scopus, Google Scholar and Embase were searched for all relevant available literature published until November 2014. Two of the authors independently evaluated the quality of the included studies and extracted the data. Values from the single studies were combined to determine the meta-analysis pooled estimates. Heterogeneity and publication bias were also examined. Among the articles reviewed, five studies (for a total of 13,789 cases and 13,460 controls) met the predetermined criteria for inclusion in this meta-analysis. The combined adjusted odds ratio estimates revealed that the rs146052672 variant genotype had an overall statistically significant effect on increasing the risk of development of T2D. As most of the study subjects were Caucasian, further studies are needed to establish whether the association of this variant with an increased risk of T2D is generalizable to other populations. Also, in the light of this result, it would appear to be highly desirable that further in-depth investigations should be undertaken to elucidate the biological significance of the HMGA1 rs146052672 variant.
Collapse
Affiliation(s)
- Aida Bianco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Carmelo G. A. Nobile
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Daniela Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Maria Pavia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
38
|
Zhang Y, Meng N, Lv Z, Li H, Qu Y. The gene polymorphisms of UCP1 but not PPAR γ and TCF7L2 are associated with diabetic retinopathy in Chinese type 2 diabetes mellitus cases. Acta Ophthalmol 2015; 93:e223-9. [PMID: 25274455 DOI: 10.1111/aos.12542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/23/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE This study was designed to investigate the association between the polymorphisms in three insulin resistance-related genes, uncoupling protein-1 (UCP1), peroxisome proliferator-activated receptor γ (PPARγ) and transcription factor 7-like 2 (TCF7L2) and the susceptibility to diabetic retinopathy (DR) in a Chinese type 2 diabetes mellitus (T2DM) cohort. METHODS A total of 792 patients with T2DM were enrolled and categorized into two groups: (1) the DR group consisted of 448 patients, which was further subclassified into a proliferative DR (PDR) group with 220 patients and a non-proliferative DR (NPDR) group with 228 patients; (2) the diabetes without retinopathy (DNR) group, comprised 344 patients who had no signs of DR. Single-nucleotide polymorphisms (SNPs), rs1800592 in the UCP1 gene, rs1801282, rs3856806 and rs1249719 in the PPARγ gene and rs11196205 in the TCF7L2 gene were genotyped in this study. RESULTS For SNP rs1800592 of the UCP1 gene, the frequency of allele G and genotype GG was significantly higher in the PDR group than in the DNR group (allele OR: 1.32, 95% CI: 1.03-1.68, p = 0.03; genotype OR: 1.72, 95%CI: 1.06-2.79, p = 0.03). No evident association was found between the allele frequencies and genotype distributions of any individual SNP in the PPARγ or TCF7L2 genes and DR, PDR or NPDR. Haplotype analyses of the PPARγ gene did not provide any evidence for an association with DR, PDR or NPDR in this Chinese T2DM cohort. CONCLUSIONS This study suggests that the SNP rs1800592 in the UCP1 gene is associated with increased risk of PDR in the Chinese T2DM population.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Health Care, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
39
|
Arnoldo L, Sgarra R, Chiefari E, Iiritano S, Arcidiacono B, Pegoraro S, Pellarin I, Brunetti A, Manfioletti G. A novel mechanism of post-translational modulation of HMGA functions by the histone chaperone nucleophosmin. Sci Rep 2015; 5:8552. [PMID: 25711412 PMCID: PMC4339810 DOI: 10.1038/srep08552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/12/2015] [Indexed: 02/07/2023] Open
Abstract
High Mobility Group A are non-histone nuclear proteins that regulate chromatin plasticity and accessibility, playing an important role both in physiology and pathology. Their activity is controlled by transcriptional, post-transcriptional, and post-translational mechanisms. In this study we provide evidence for a novel modulatory mechanism for HMGA functions. We show that HMGAs are complexed in vivo with the histone chaperone nucleophosmin (NPM1), that this interaction requires the histone-binding domain of NPM1, and that NPM1 modulates both DNA-binding affinity and specificity of HMGAs. By focusing on two human genes whose expression is directly regulated by HMGA1, the Insulin receptor (INSR) and the Insulin-like growth factor-binding protein 1 (IGFBP1) genes, we demonstrated that occupancy of their promoters by HMGA1 was NPM1-dependent, reflecting a mechanism in which the activity of these cis-regulatory elements is directly modulated by NPM1 leading to changes in gene expression. HMGAs need short stretches of AT-rich nucleosome-free regions to bind to DNA. Therefore, many putative HMGA binding sites are present within the genome. Our findings indicate that NPM1, by exerting a chaperoning activity towards HMGAs, may act as a master regulator in the control of DNA occupancy by these proteins and hence in HMGA-mediated gene expression.
Collapse
Affiliation(s)
- Laura Arnoldo
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy
| | - Stefania Iiritano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy
| | - Silvia Pegoraro
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Ilenia Pellarin
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy
| | | |
Collapse
|
40
|
Abbruzzese C, Diodoro MG, Sperduti I, Mileo AM, Pattaro G, De Salvo L, Cosimelli M, Perrotti N, Paggi MG. Detection of phosphorylated insulin receptor in colorectal adenoma and adenocarcinoma: implications for prognosis and clinical outcome. J Cell Physiol 2015; 230:562-7. [PMID: 25102778 DOI: 10.1002/jcp.24733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/28/2014] [Indexed: 02/06/2023]
Abstract
Colorectal carcinoma remains among the most frequent causes of cancer death. Besides the well-known genetic predisposition, a key role in colorectal adenoma and adenocarcinoma etio-pathogenesis, mainly in sporadic cases, is played by definite risk factors, such as obesity, type 2 diabetes, insulin resistance, hyper-insulinemia, and insulin therapy. These epidemiological data motivated us to determine, by means of immunohistochemistry, the amount of activated (phosphorylated) insulin receptor in archival samples from 22 colorectal adenoma and 117 adenocarcinoma patients, with the objective to estimate the role of this factor in colorectal epithelium transformation and cancer progression. Statistical analysis of the results clearly showed that positive staining for phosphorylated insulin receptor was significantly more frequent in adenomas than adenocarcinomas (P < 0.0001) and, within the adenocarcinoma cohort, it was more frequent in low-grade tumors (P = 0.005). In adenomas, staining was exclusively cytoplasmic, while in adenocarcinomas it was cytoplasmic and/or nuclear (P < 0.0001). Interestingly, disease-free survival in colorectal adenocarcinoma patients pointed out a significantly better prognosis for those bearing a positive staining for phosphorylated insulin receptor (P = 0.02). From these data, we can argue that activated insulin receptor plays a fundamental role at the early stages of tumorigenesis, where late stages could be characterized by a shift toward more active oncogenic drivers. Determining the amount of phosphorylated insulin receptor could thus represent a novel prognostic/predictive tool in colorectal adenocarcinoma patients.
Collapse
Affiliation(s)
- Claudia Abbruzzese
- Department of Experimental Oncology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang JH, Du JY, Wu YY, Chen MC, Huang CH, Shen HJ, Lee CF, Lin TH, Lee YJ. Suppression of prolactin signaling by pyrrolidine dithiocarbamate is alleviated by N-acetylcysteine in mammary epithelial cells. Eur J Pharmacol 2014; 738:301-9. [PMID: 24952131 DOI: 10.1016/j.ejphar.2014.05.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/08/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
Abstract
Prolactin is the key hormone to stimulate milk synthesis in mammary epithelial cells. It signals through the Jak2-Stat5 pathway to induce the expression of β-casein, a milk protein which is often used as a marker for mammary differentiation. Here we examined the effect of pyrrolidine dithiocarbamate (PDTC) on prolactin signaling. Our results show that PDTC downregulates prolactin receptor levels, and inhibits prolactin-induced Stat5 tyrosine phosphorylation and β-casein expression. This is not due to its inhibitory action on NF-κB since application of another NF-κB inhibitor, BAY 11-7082, and overexpression of I-κBα super-repressor do not lead to the same results. Instead, the pro-oxidant activity of PDTC is involved as inclusion of the antioxidant N-acetylcysteine restores prolactin signaling. PDTC triggers great extents of activation of ERK and JNK in mammary epithelial cells. These do not cause suppression of prolactin signaling but confer serine phosphorylation of insulin receptor substrate-1, thereby perturbing insulin signal propagation. As insulin facilitates optimal β-casein expression, blocking insulin signaling by PDTC might pose additional impediment to β-casein expression. Our results thus imply that lactation will be compromised when the cellular redox balance is dysregulated, such as during mastitis.
Collapse
Affiliation(s)
- Jen-Hsing Wang
- Department of Obstetrics and Gynecology, Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan, Republic of China
| | - Jyun-Yi Du
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Yi-Ying Wu
- Department of Medical Laboratory Science and Technology, China Medical University and Hospital, Taichung 404, Taiwan, Republic of China
| | - Meng-Chi Chen
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Chun-Hao Huang
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Hsin-Ju Shen
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Chin-Feng Lee
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Yi-Ju Lee
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China; Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan, Republic of China.
| |
Collapse
|
42
|
A polymorphism of HMGA1 is associated with increased risk of metabolic syndrome and related components. Sci Rep 2014; 3:1491. [PMID: 23512162 PMCID: PMC3603272 DOI: 10.1038/srep01491] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/04/2013] [Indexed: 12/11/2022] Open
Abstract
The metabolic syndrome (MetS) is a common disorder, where systemic insulin-resistance is associated with increased risk for type 2 diabetes (T2D) and cardiovascular disease. Identifying genetic traits influencing risk and progression of MetS is important. We and others previously reported a functional HMGA1 gene variant, rs146052672, predisposing to T2D. Here we investigated the association of rs146052672 variant with MetS and related components. In a case-control study from Italy and Turkey, increased risk of MetS was seen among carriers of the HMGA1 variant. In the larger Italian cohort, this variant positively correlated with BMI, hyperglycemia and insulin-resistance, and negatively correlated with serum HDL-cholesterol. Association between rs146052672 variant and MetS occurred independently of T2D, indicating that HMGA1 gene defects play a pathogenetic role in MetS and other insulin-resistance-related conditions. Overall, our results indicate that the rs146052672 variant represents an early predictive marker of MetS, as well as a predictive tool for therapy.
Collapse
|
43
|
Brunetti A, Chiefari E, Foti D. Recent advances in the molecular genetics of type 2 diabetes mellitus. World J Diabetes 2014; 5:128-140. [PMID: 24748926 PMCID: PMC3990314 DOI: 10.4239/wjd.v5.i2.128] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/28/2013] [Accepted: 01/20/2014] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease in which both genetic and environmental factors interact in determining impaired β-cell insulin secretion and peripheral insulin resistance. Insulin resistance in muscle, liver and fat is a prominent feature of most patients with T2DM and obesity, resulting in a reduced response of these tissues to insulin. Considerable evidence has been accumulated to indicate that heredity is a major determinant of insulin resistance and T2DM. It is believed that, among individuals destined to develop T2DM, hyperinsulinemia is the mechanism by which the pancreatic β-cell initially compensates for deteriorating peripheral insulin sensitivity, thus ensuring normal glucose tolerance. Most of these people will develop T2DM when β-cells fail to compensate. Despite the progress achieved in this field in recent years, the genetic causes of insulin resistance and T2DM remain elusive. Candidate gene association, linkage and genome-wide association studies have highlighted the role of genetic factors in the development of T2DM. Using these strategies, a large number of variants have been identified in many of these genes, most of which may influence both hepatic and peripheral insulin resistance, adipogenesis and β-cell mass and function. Recently, a new gene has been identified by our research group, the HMGA1 gene, whose loss of function can greatly raise the risk of developing T2DM in humans and mice. Functional genetic variants of the HMGA1 gene have been associated with insulin resistance syndromes among white Europeans, Chinese individuals and Americans of Hispanic ancestry. These findings may represent new ways to improve or even prevent T2DM.
Collapse
|
44
|
Arcidiacono B, Iiritano S, Chiefari E, Brunetti FS, Gu G, Foti DP, Brunetti A. Cooperation between HMGA1, PDX-1, and MafA is Essential for Glucose-Induced Insulin Transcription in Pancreatic Beta Cells. Front Endocrinol (Lausanne) 2014; 5:237. [PMID: 25628604 PMCID: PMC4292585 DOI: 10.3389/fendo.2014.00237] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/18/2014] [Indexed: 01/03/2023] Open
Abstract
The high-mobility group AT-hook 1 (HMGA1) protein is a nuclear architectural factor that can organize chromatin structures. It regulates gene expression by controlling the formation of stereospecific multiprotein complexes called "enhanceosomes" on the AT-rich regions of target gene promoters. Previously, we reported that defects in HMGA1 caused decreased insulin receptor expression and increased susceptibility to type 2 diabetes mellitus in humans and mice. Interestingly, mice with disrupted HMGA1 gene had significantly smaller islets and decreased insulin content in their pancreata, suggesting that HMGA1 may have a direct role in insulin transcription and secretion. Herein, we investigate the regulatory roles of HMGA1 in insulin transcription. We provide evidence that HMGA1 physically interacts with PDX-1 and MafA, two critical transcription factors for insulin gene expression and beta-cell function, both in vitro and in vivo. We then show that the overexpression of HMGA1 significantly improves the transactivating activity of PDX-1 and MafA on human and mouse insulin promoters, while HMGA1 knockdown considerably decreased this transactivating activity. Lastly, we demonstrate that high glucose stimulus significantly increases the binding of HMGA1 to the insulin (INS) gene promoter, suggesting that HMGA1 may act as a glucose-sensitive element controlling the transcription of the INS gene. Together, our findings provide evidence that HMGA1, by regulating PDX-1- and MafA-induced transactivation of the INS gene promoter, plays a critical role in pancreatic beta-cell function and insulin production.
Collapse
Affiliation(s)
- Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefania Iiritano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Center of Stem Cell Biology, Vanderbilt Medical Center, Nashville, TN, USA
| | - Daniela Patrizia Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa (Località Germaneto), Catanzaro 88100, Italy e-mail:
| |
Collapse
|
45
|
Chiefari E, Arcidiacono B, Possidente K, Iiritano S, Ventura V, Pandolfo R, Brunetti FS, Greco M, Foti D, Brunetti A. Transcriptional regulation of the HMGA1 gene by octamer-binding proteins Oct-1 and Oct-2. PLoS One 2013; 8:e83969. [PMID: 24367622 PMCID: PMC3867479 DOI: 10.1371/journal.pone.0083969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/19/2013] [Indexed: 01/20/2023] Open
Abstract
The High-Mobility Group AT-Hook 1 (HMGA1) protein is an architectural transcription factor that binds to AT-rich sequences in the promoter region of DNA and functions as a specific cofactor for gene activation. Previously, we demonstrated that HMGA1 is a key regulator of the insulin receptor (INSR) gene and an important downstream target of the INSR signaling cascade. Moreover, from a pathogenic point of view, overexpression of HMGA1 has been associated with human cancer, whereas functional variants of the HMGA1 gene have been recently linked to type 2 diabetes mellitus and metabolic syndrome. However, despite of this biological and pathological relevance, the mechanisms that control HMGA1 gene expression remain unknown. In this study, to define the molecular mechanism(s) that regulate HMGA1 gene expression, the HMGA1 gene promoter was investigated by transient transfection of different cell lines, either before or after DNA and siRNA cotransfections. An octamer motif was identified as an important element of transcriptional regulation of this gene, the interaction of which with the octamer transcription factors Oct-1 and Oct-2 is crucial in modulating HMGA1 gene and protein expression. Additionally, we demonstrate that HMGA1 binds its own promoter and contributes to its transactivation by Oct-2 (but not Oct-1), supporting its role in an auto-regulatory circuit. Overall, our results provide insight into the transcriptional regulation of the HMGA1 gene, revealing a differential control exerted by both Oct-1 and Oct-2. Furthermore, they consistently support the hypothesis that a putative defect in Oct-1 and/or Oct-2, by affecting HMGA1 expression, may cause INSR dysfunction, leading to defects of the INSR signaling pathway.
Collapse
Affiliation(s)
- Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa (Loc. Germaneto), Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa (Loc. Germaneto), Catanzaro, Italy
| | - Katiuscia Possidente
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa (Loc. Germaneto), Catanzaro, Italy
| | - Stefania Iiritano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa (Loc. Germaneto), Catanzaro, Italy
| | - Valeria Ventura
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa (Loc. Germaneto), Catanzaro, Italy
| | - Rosantony Pandolfo
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa (Loc. Germaneto), Catanzaro, Italy
| | - Francesco Saverio Brunetti
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Viale Europa (Loc. Germaneto), Catanzaro, Italy
| | - Manfredi Greco
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Viale Europa (Loc. Germaneto), Catanzaro, Italy
| | - Daniela Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa (Loc. Germaneto), Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa (Loc. Germaneto), Catanzaro, Italy
| |
Collapse
|
46
|
Yuan J, Muljo SA. Exploring the RNA world in hematopoietic cells through the lens of RNA-binding proteins. Immunol Rev 2013; 253:290-303. [PMID: 23550653 DOI: 10.1111/imr.12048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of microRNAs has renewed interest in posttranscriptional modes of regulation, fueling an emerging view of a rich RNA world within our cells that deserves further exploration. Much work has gone into elucidating genetic regulatory networks that orchestrate gene expression programs and direct cell fate decisions in the hematopoietic system. However, the focus has been to elucidate signaling pathways and transcriptional programs. To bring us one step closer to reverse engineering the molecular logic of cellular differentiation, it will be necessary to map posttranscriptional circuits as well and integrate them in the context of existing network models. In this regard, RNA-binding proteins (RBPs) may rival transcription factors as important regulators of cell fates and represent a tractable opportunity to connect the RNA world to the proteome. ChIP-seq has greatly facilitated genome-wide localization of DNA-binding proteins, helping us to understand genomic regulation at a systems level. Similarly, technological advances such as CLIP-seq allow transcriptome-wide mapping of RBP binding sites, aiding us to unravel posttranscriptional networks. Here, we review RBP-mediated posttranscriptional regulation, paying special attention to findings relevant to the immune system. As a prime example, we highlight the RBP Lin28B, which acts as a heterochronic switch between fetal and adult lymphopoiesis.
Collapse
Affiliation(s)
- Joan Yuan
- Integrative Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | |
Collapse
|
47
|
Panda AC, Grammatikakis I, Yoon JH, Abdelmohsen K. Posttranscriptional regulation of insulin family ligands and receptors. Int J Mol Sci 2013; 14:19202-29. [PMID: 24051403 PMCID: PMC3794829 DOI: 10.3390/ijms140919202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/17/2013] [Accepted: 09/06/2013] [Indexed: 01/02/2023] Open
Abstract
Insulin system including ligands (insulin and IGFs) and their shared receptors (IR and IGFR) are critical regulators of insulin signaling and glucose homeostasis. Altered insulin system is associated with major pathological conditions like diabetes and cancer. The mRNAs encoding for these ligands and their receptors are posttranscriptionally controlled by three major groups of regulators; (i) alternative splicing regulatory factors; (ii) turnover and translation regulator RNA-binding proteins (TTR-RBPs); and (iii) non-coding RNAs including miRNAs and long non-coding RNAs (lncRNAs). In this review, we discuss the influence of these regulators on alternative splicing, mRNA stability and translation. Due to the pathological impacts of insulin system, we also discussed the possibilities of discovering new potential regulators which will improve understanding of insulin system and associated diseases.
Collapse
Affiliation(s)
- Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
48
|
Chen W, Chen Z, Xue N, Zheng Z, Li S, Wang L. Effects of CB1 receptor blockade on monosodium glutamate induced hypometabolic and hypothalamic obesity in rats. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:721-32. [PMID: 23620336 DOI: 10.1007/s00210-013-0875-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 04/10/2013] [Indexed: 12/16/2022]
Abstract
Effects of cannabinoid receptor 1 (CB1R) blockade were observed by comparing 9-day and 6-week SR141716 treatments in monosodium glutamate (MSG)-induced hypometabolic and hypothalamic obesity (HO) in rats for the first time and molecular mechanisms were investigated. Compared with normal rats, the MSG rats display typical symptoms of the metabolic syndrome, i.e., excessive abdominal obesity, hypertriglyceridemia, hyperinsulinemia, insulin resistance, and hepatic steatosis, but with lower food intake. Although both the 9-day and 6-week treatments with the specific CB1R antagonist SR141716 effectively lowered body weight, intraperitoneal adipose tissue mass, serum triglyceride (TG), and insulin level, the effect of chronic treatment is more impressive. Moreover, serum cholesterol, free fatty acids (FFA), fasted and postprandial blood glucose, and insulin insensitivity were more effectively improved by 6-week exposure to SR141716, whereas hypophagia was only effective within the initial 2 weeks. In addition, hepatic steatosis as well as hepatic and adipocyte morphology was improved. Western blot analysis revealed that the markedly increased CB1R expression and decreased insulin receptor (INR) expression in liver and adipose tissues were effectively corrected by SR141716. Consistent with this, deregulated gene expression of lipogenesis and lipolysis as well as glucose metabolic key enzymes were also restored by SR141716. In conclusion, based on present data we found that: (1) alteration of the hypothalamus in MSG rats leads to a lower expression of INR in crucially insulin-targeted tissues and hyperinsulinemia that was reversed by SR141716, (2) the abnormally increased expression of CB1R in liver and adipose tissues plays a vital role in the pathophysiological process of MSG rats, and (3) chronic CB1R blockade leads to a sustained improvement of the metabolic dysfunctions of MSG rats.
Collapse
Affiliation(s)
- Wei Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | | | | | | | | | | |
Collapse
|
49
|
Gasparini G, De Gori M, Paonessa F, Chiefari E, Brunetti A, Galasso O. Functional relationship between high mobility group A1 (HMGA1) protein and insulin-like growth factor-binding protein 3 (IGFBP-3) in human chondrocytes. Arthritis Res Ther 2012; 14:R207. [PMID: 23036517 PMCID: PMC3580519 DOI: 10.1186/ar4045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/04/2012] [Indexed: 11/10/2022] Open
Abstract
Introduction Insulin-like growth factor I (IGF-I) regulates articular cartilage homeostasis. During osteoarthritis (OA), the anabolic responses of chondrocytes to IGF-I are likely to be prevented by the enhanced production of IGF-binding proteins (IGFBPs), especially IGFBP-3. The aim of this study is to evaluate whether the architectural transcription factor high mobility group A1 (HMGA1) influences IGFBP-3 overexpression in vitro, in cultured chondrocytic cell lines, and ex vivo, in human osteoarthritic cartilage compared to healthy human cartilage controls. Methods Quantitative real-time reverse transcription-PCR (qRT-PCR) was performed to assess the relative transcript levels of HMGA1 and IGFBP-3 in vitro, in the human chondrocytic cell lines T/C-28a4 and C-28/I2. An electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) and transient transfection assays were performed to investigate the HMGA1-IGFBP-3 gene interaction. Samples of articular cartilage were harvested from osteoarthritic patients and controls and analyzed by qRT-PCR for HMGA1 and IGFBP-3 mRNA levels. Results A parallelism between HMGA1 protein levels and IGFBP-3 gene expression has been observed in T/C-28a4 and C-28/I2 cells. The interaction of HMGA1 with the IGFBP-3 gene promoter has been demonstrated by EMSA and ChIP. In transient transfections, IGFBP-3 promoter activity increased in cells overexpressing HMGA1 and decreased in cells pretreated with siRNA detected against HMGA1. IGFBP-3 mRNA expression was higher in cartilage from patients with OA, where the increased expression of IGFBP-3 closely paralleled the increased expression of HMGA1 mRNA. Conclusions Our observations indicate that increased HMGA1 expression in human chondrocytes is associated with increased expression of IGFBP-3. It is tempting to speculate that, through the regulation of IGFBP3 expression, HMGA1 may act as a pathogenetic factor for OA.
Collapse
|