1
|
Han SI, Jeon MS, Ahn JW, Choi YE. Establishment of ultrasonic stimulation to enhance growth of Haematococcus lacustris. BIORESOURCE TECHNOLOGY 2022; 360:127525. [PMID: 35760247 DOI: 10.1016/j.biortech.2022.127525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
In this study, ultrasonication at a frequency of 40 kHz was used to shorten the sonication period and enhance the growth of Haematococcus lacustris. To confirm the optimal conditions, the effects of ultrasound output and treatment interval were examined. Under optimal conditions (20 W and 15-day cycle), the maximum cell density and chlorophyll content were 66.75 × 104 cells mL-1 and 36.54 mg g-1, respectively, which were increased by 50.00% and 39.01%, respectively, compared to the control. Transmission electron microscopy analysis showed that ultrasonication caused tiny cracks in the W4 and W6 strata but did not disrupt the inner W2 layer. Additionally, RT-qPCR analysis showed that ultrasonication upregulated both cell division and nitrogen uptake. No difference were detected in the composition or quantity of fatty acids. This study demonstrates a novel ultrasonic approach for enhancing the growth of H. lacustris.
Collapse
Affiliation(s)
- Sang-Il Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Min Seo Jeon
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Mondal D, Prabhune AG, Ramaswamy S, Sharma P. Strong confinement of active microalgae leads to inversion of vortex flow and enhanced mixing. eLife 2021; 10:e67663. [PMID: 34806977 PMCID: PMC8758135 DOI: 10.7554/elife.67663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms swimming through viscous fluids imprint their propulsion mechanisms in the flow fields they generate. Extreme confinement of these swimmers between rigid boundaries often arises in natural and technological contexts, yet measurements of their mechanics in this regime are absent. Here, we show that strongly confining the microalga Chlamydomonas between two parallel plates not only inhibits its motility through contact friction with the walls but also leads, for purely mechanical reasons, to inversion of the surrounding vortex flows. Insights from the experiment lead to a simplified theoretical description of flow fields based on a quasi-2D Brinkman approximation to the Stokes equation rather than the usual method of images. We argue that this vortex flow inversion provides the advantage of enhanced fluid mixing despite higher friction. Overall, our results offer a comprehensive framework for analyzing the collective flows of strongly confined swimmers.
Collapse
Affiliation(s)
- Debasmita Mondal
- Department of Physics, Indian Institute of ScienceBangaloreIndia
| | - Ameya G Prabhune
- Department of Physics, Indian Institute of ScienceBangaloreIndia
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of ScienceBangaloreIndia
| | - Prerna Sharma
- Department of Physics, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
3
|
Rawat J, Gupta PK, Pandit S, Prasad R, Pande V. Current perspectives on integrated approaches to enhance lipid accumulation in microalgae. 3 Biotech 2021; 11:303. [PMID: 34194896 DOI: 10.1007/s13205-021-02851-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, research initiatives on renewable bioenergy or biofuels have been gaining momentum, not only due to fast depletion of finite reserves of fossil fuels but also because of the associated concerns for the environment and future energy security. In the last few decades, interest is growing concerning microalgae as the third-generation biofuel feedstock. The CO2 fixation ability and conversion of it into value-added compounds, devoid of challenging food and feed crops, make these photosynthetic microorganisms an optimistic producer of biofuel from an environmental point of view. Microalgal-derived fuels are currently being considered as clean, renewable, and promising sustainable biofuel. Therefore, most research targets to obtain strains with the highest lipid productivity and a high growth rate at the lowest cultivation costs. Different methods and strategies to attain higher biomass and lipid accumulation in microalgae have been extensively reported in the previous research, but there are fewer inclusive reports that summarize the conventional methods with the modern techniques for lipid enhancement and biodiesel production from microalgae. Therefore, the current review focuses on the latest techniques and advances in different cultivation conditions, the effect of different abiotic and heavy metal stress, and the role of nanoparticles (NPs) in the stimulation of lipid accumulation in microalgae. Techniques such as genetic engineering, where particular genes associated with lipid metabolism, are modified to boost lipid synthesis within the microalgae, the contribution of "Omics" in metabolic pathway studies. Further, the contribution of CRISPR/Cas9 system technique to the production of microalgae biofuel is also briefly described.
Collapse
Affiliation(s)
- Jyoti Rawat
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845801 India
| | - Veena Pande
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| |
Collapse
|
4
|
Song J, Kim D, Lee LP. Mechanobiological Stimulations of Algal Cells for Energy Harvesting. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202000281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jihwan Song
- Department of Bioengineering University of California, Berkeley Berkeley CA 94720 USA
| | - Dongchoul Kim
- Department of Mechanical Engineering Sogang University Seoul 04107 Republic of Korea
| | - Luke P. Lee
- Department of Bioengineering University of California, Berkeley Berkeley CA 94720 USA
- Berkeley Sensor and Actuator Center University of California, Berkeley Berkeley CA 94720 USA
- Department of Electrical Engineering and Computer Science University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
5
|
Yao J, Kim HS, Kim JY, Choi YE, Park J. Mechanical stress induced astaxanthin accumulation of H. pluvialis on a chip. LAB ON A CHIP 2020; 20:647-654. [PMID: 31930234 DOI: 10.1039/c9lc01030k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microalgae have been envisioned as a source of food, feed, health nutraceuticals, and cosmetics. Among various microalgae, Haematococcus pluvialis (H. pluvialis) is known to be the richest feedstock of natural astaxanthin. Astaxanthin is a highly effective antioxidation material and is being widely used in aquaculture, nutraceuticals, pharmacology, and feed industries. Here, we present a microfluidic chip consisting of a micropillar array and six sets of culture chambers, which enables sorting of motile flagellated vegetative stage H. pluvialis (15-20 μm) from cyst stage H. pluvialis as well as culture of the selected cells under a mechanically stressed microenvironment. The micropillar array successfully sorted only the motile early vegetative stage cells (avg. size = 19.8 ± 1.6 μm), where these sorted cells were uniformly loaded inside each culture chamber (229 ± 39 cells per chamber). The mechanical stress level applied to the cells was controlled by designing the culture chambers with different heights (5-70 μm). Raman analysis results revealed that the mechanical stress indeed induced the accumulation of astaxanthin in H. pluvialis. Also, the most effective chamber height enhancing the astaxanthin accumulation (i.e., 15 μm) was successfully screened using the developed chip. Approximately 9 times more astaxanthin accumulation was detected after 7 days of culture compared to the no mechanical stress condition. The results clearly demonstrate the capability of the developed chip to investigate bioactive metabolite accumulation of microalgae induced by mechanical stress, where the amount was quantitatively analyzed in a label-free manner. We believe that the developed chip has great potential for studying the effects of mechanical stress on not only H. pluvialis but also various microalgal species in general.
Collapse
Affiliation(s)
- Junyi Yao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Hyun Soo Kim
- Korea Institute of Machinery and Materials, Daegu Research Center for Medical Devices and Rehabilitation, Daegu 42994, South Korea
| | - Jee Young Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Korea.
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Korea.
| | - Jaewon Park
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Batista AD, Rosa RM, Machado M, Magalhães AS, Shalaguti BA, Gomes PF, Covell L, Vaz MGMV, Araújo WL, Nunes-Nesi A. Increased urea availability promotes adjustments in C/N metabolism and lipid content without impacting growth in Chlamydomonas reinhardtii. Metabolomics 2019; 15:31. [PMID: 30830512 DOI: 10.1007/s11306-019-1496-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/21/2019] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The use of urea as a nitrogen (N) source by Chlorophytes usually enhances biomass and lipid production when compared to ammonium (NH4+). However, the metabolic shifts displayed by Chlamydomonas reinhardtii growing with this organic N source are not known. OBJECTIVES This study aimed: (i) to characterize the metabolism of C. reinhardtii cultivated in media containing only urea as N source as well as combined with different NH4+ ratios; (ii) to understand how metabolism respond to urea availability. METHODS Specific quantification of metabolites using 96-well microplates, and high-performance liquid chromatography combined with non-targeted metabolite profiling by gas chromatography (GC)-time-of-flight (TOF)-mass spectrometry (MS) were used in this study. In addition, GC analysis was used to determine fatty acid profiling. RESULTS The use of urea did not alter the growth rate in comparison with NH4+. Interestingly, the cell number decreased and the cell size increased proportionally with urea availability. Furthermore, chlorophyll, protein and lipid contents increased with the amount of urea. Regarding the fatty acid profile, oleic acid (C18:1 w8) decreased with amount of urea, while linoleic acid (C18:2 w6) doubled in urea-containing medium. CONCLUSIONS These results indicate that urea promotes remarkable adjustments in metabolism, without drastic changes in biomass, promoting changes in carbohydrate and amino acid metabolism, as well as in lipids production and fatty acid profile.
Collapse
Affiliation(s)
- Aline D Batista
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Rinamara M Rosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Mariana Machado
- Instituto de Biociências, Universidade Federal de Goiás - Regional Jataí, Jataí, Goiás, 75801-615, Brazil
| | - Alan S Magalhães
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Bárbara A Shalaguti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Priscilla F Gomes
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Lidiane Covell
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcelo G M V Vaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
7
|
Bodénès P, Wang HY, Lee TH, Chen HY, Wang CY. Microfluidic techniques for enhancing biofuel and biorefinery industry based on microalgae. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:33. [PMID: 30815031 PMCID: PMC6376642 DOI: 10.1186/s13068-019-1369-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/03/2019] [Indexed: 05/03/2023]
Abstract
This review presents a critical assessment of emerging microfluidic technologies for the application on biological productions of biofuels and other chemicals from microalgae. Comparisons of cell culture designs for the screening of microalgae strains and growth conditions are provided with three categories: mechanical traps, droplets, or microchambers. Emerging technologies for the in situ characterization of microalgae features and metabolites are also presented and evaluated. Biomass and secondary metabolite productivities obtained at microscale are compared with the values obtained at bulk scale to assess the feasibility of optimizing large-scale operations using microfluidic platforms. The recent studies in microsystems for microalgae pretreatment, fractionation and extraction of metabolites are also reviewed. Finally, comments toward future developments (high-pressure/-temperature process; solvent-resistant devices; omics analysis, including genome/epigenome, proteome, and metabolome; biofilm reactors) of microfluidic techniques for microalgae applications are provided.
Collapse
Affiliation(s)
- Pierre Bodénès
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiang-Yu Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Nuclear Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsung-Hua Lee
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Yu Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Yen Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
8
|
Bensalem S, Lopes F, Bodénès P, Pareau D, Français O, Le Pioufle B. Understanding the mechanisms of lipid extraction from microalga Chlamydomonas reinhardtii after electrical field solicitations and mechanical stress within a microfluidic device. BIORESOURCE TECHNOLOGY 2018; 257:129-136. [PMID: 29494840 DOI: 10.1016/j.biortech.2018.01.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 05/12/2023]
Abstract
One way envisioned to overcome part of the issues biodiesel production encounters today is to develop a simple, economically viable and eco-friendly process for the extraction of lipids from microalgae. This study investigates the lipid extraction efficiency from the microalga Chlamydomonas reinhardtii as well as the underlying mechanisms. We propose a new methodology combining a pulsed electric field (PEF) application and mechanical stresses as a pretreatment to improve lipid extraction with solvents. Cells enriched in lipids are therefore submitted to electric field pulses creating pores on the cell membrane and then subjected to a mechanical stress by applying cyclic pressures on the cell wall (using a microfluidic device). Results showed an increase in lipid extraction when cells were pretreated by the combination of both methods. Microscopic observations showed that both pretreatments affect the cell structure. Finally, the dependency of solvent lipid extraction efficiency with the cell wall structure is discussed.
Collapse
Affiliation(s)
- Sakina Bensalem
- Ecole Normale Supérieure Paris Saclay, CNRS SATIE, Université Paris Saclay, 61 av du Pdt Wilson, 94230 Cachan, France; LGPM, EA 4038, CentraleSupélec, Université Paris Saclay, 3 rue Juliot Curie, 91190 Gif-sur-Yvette, France
| | - Filipa Lopes
- LGPM, EA 4038, CentraleSupélec, Université Paris Saclay, 3 rue Juliot Curie, 91190 Gif-sur-Yvette, France
| | - Pierre Bodénès
- Ecole Normale Supérieure Paris Saclay, CNRS SATIE, Université Paris Saclay, 61 av du Pdt Wilson, 94230 Cachan, France; LGPM, EA 4038, CentraleSupélec, Université Paris Saclay, 3 rue Juliot Curie, 91190 Gif-sur-Yvette, France
| | - Dominique Pareau
- LGPM, EA 4038, CentraleSupélec, Université Paris Saclay, 3 rue Juliot Curie, 91190 Gif-sur-Yvette, France
| | - Olivier Français
- ESIEE-Paris, ESYCOM EA 2552, Université Paris Est, 93160 Noisy Le Grand, France
| | - Bruno Le Pioufle
- Ecole Normale Supérieure Paris Saclay, CNRS SATIE, Université Paris Saclay, 61 av du Pdt Wilson, 94230 Cachan, France.
| |
Collapse
|
9
|
Ostapenko T, Schwarzendahl FJ, Böddeker TJ, Kreis CT, Cammann J, Mazza MG, Bäumchen O. Curvature-Guided Motility of Microalgae in Geometric Confinement. PHYSICAL REVIEW LETTERS 2018; 120:068002. [PMID: 29481277 DOI: 10.1103/physrevlett.120.068002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 06/08/2023]
Abstract
Microorganisms, such as bacteria and microalgae, often live in habitats consisting of a liquid phase and a plethora of interfaces. The precise ways in which these motile microbes behave in their confined environment remain unclear. Using experiments and Brownian dynamics simulations, we study the motility of a single Chlamydomonas microalga in an isolated microhabitat with controlled geometric properties. We demonstrate how the geometry of the habitat controls the cell's navigation in confinement. The probability of finding the cell swimming near the boundary increases with the wall curvature, as seen for both circular and elliptical chambers. The theory, utilizing an asymmetric dumbbell model of the cell and steric wall interactions, captures this curvature-guided navigation quantitatively with no free parameters.
Collapse
Affiliation(s)
- Tanya Ostapenko
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Fabian Jan Schwarzendahl
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
- Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Thomas J Böddeker
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Christian Titus Kreis
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
- Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Jan Cammann
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Marco G Mazza
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| |
Collapse
|
10
|
Wagner I, Posten C. Pressure reduction affects growth and morphology of Chlamydomonas reinhardtii. Eng Life Sci 2016; 17:552-560. [PMID: 32624800 DOI: 10.1002/elsc.201600131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 11/10/2022] Open
Abstract
Cellular perception of pressure is a largely unknown field in microalgae research although it should be addressed for optimization of a photobioreactor design regarding typically occurring pressure cycles. Also for the purpose of using microalgae as basic modules for material cycles in controlled ecological life support systems, the absence of pressure in outer space or the low absolute pressures on other planets is an abiotic factor that needs to be considered for design of integrated microalgae-based modules. The aim of this work is to study the effects of lowered pressure and pressure changes on photosynthesis as well as morphology. Two Chlamydomonas reinhardtii wild-type strains were exposed to controlled pressure patterns during batch cultivations. Sudden pressure changes should test for existing threshold values for cell survival to mimic such events during space missions. Algae were grown inside a 2 L photobioreactor with an integrated vacuum pump ensuring constant pressures down to 700 mbar. Cultivation samples were analyzed for OD750, cell dry weight, and morphology via light microscope. Chlamydomonas reinhardtii CC-1690 cells showed decreased growth rates, higher carbon dioxide uptake rates, and unchanged oxygen production rates at lower pressures. For sudden pressures changes in the range of 300 mbar no fatal threshold was determined. This study shows that pressure reduction affects growth, gas exchange rates, and morphology. Within the tested pressure range no fatal threshold value was reached.
Collapse
Affiliation(s)
- Ines Wagner
- Department of Bioprocess Engineering KIT Karlsruhe Institute of Technology Karlsruhe Germany
| | - Clemens Posten
- Department of Bioprocess Engineering KIT Karlsruhe Institute of Technology Karlsruhe Germany
| |
Collapse
|
11
|
Yu SI, Min SK, Shin HS. Nanocellulose size regulates microalgal flocculation and lipid metabolism. Sci Rep 2016; 6:35684. [PMID: 27796311 PMCID: PMC5086845 DOI: 10.1038/srep35684] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/03/2016] [Indexed: 11/09/2022] Open
Abstract
Harvesting of microalgae is a cost-consuming step for biodiesel production. Cellulose has recently been studied as a biocompatible and inexpensive flocculant for harvesting microalgae via surface modifications such as cation-modifications. In this study, we demonstrated that cellulose nanofibrils (CNF) played a role as a microalgal flocculant via its network geometry without cation modification. Sulfur acid-treated tunicate CNF flocculated microalgae, but cellulose nanocrystals (CNC) did not. In addition, desulfurization did not significantly influence the flocculation efficiency of CNF. This mechanism is likely related to encapsulation of microalgae by nanofibrous structure formation, which is derived from nanofibrils entanglement and intra-hydrogen bonding. Moreover, flocculated microalgae were subject to mechanical stress resulting in changes in metabolism induced by calcium ion influx, leading to upregulated lipid synthesis. CNF do not require surface modifications such as cation modified CNC and flocculation is derived from network geometry related to nanocellulose size; accordingly, CNF is one of the least expensive cellulose-based flocculants ever identified. If this flocculant is applied to the biodiesel process, it could decrease the cost of harvest, which is one of the most expensive steps, while increasing lipid production.
Collapse
Affiliation(s)
- Sun Il Yu
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Seul Ki Min
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Hwa Sung Shin
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| |
Collapse
|
12
|
Cho MK, Shin HS. Mechanotransduction-Induced Lipid Production System with High Robustness and Controllability for Microalgae. Sci Rep 2016; 6:32860. [PMID: 27609701 PMCID: PMC5016897 DOI: 10.1038/srep32860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
Microalgae lipids are a promising energy source, but current biochemical methods of lipid-inductions such as nitrogen deprivation have low process robustness and controllability. Recently, use of mechanotransduction based membrane distortion by applying compression stress in a 2D-microsystem was suggested as a way to overcome these limitations of biochemical induction. However, reproduction in large numbers of cells without cell death has been difficult to overcome because compression for direct membrane distortion reduces culture volume and leads to cell death due to nutrient deprivation. In this study, a mechanotransduction-induced lipid production (MDLP) system that redirects elastic microbeads to induce membrane distortion of microalgae with alleviating cell death was developed. This system resulted in accumulation of lipid in as little as 4 hr. Once compressed, porous microbeads absorb media and swell simultaneously while homogeneously inducing compression stress of microalgae. The absorbed media within beads could be supplied to adjacent cells and could minimize cell death from nutrient deficiency. All mechanotransduction was confirmed by measuring upregulation of calcium influx and Mat3 genes. The microbeads ensured robustness and controllability in repeated compression/de-compression processes. Overall, the MDLP system has potential for use as a fundamental biodiesel process that requires robustness and controllability.
Collapse
Affiliation(s)
- Myung Kwon Cho
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Hwa Sung Shin
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| |
Collapse
|
13
|
Choi YJ, Ingram PN, Yang K, Coffman L, Iyengar M, Bai S, Thomas DG, Yoon E, Buckanovich RJ. Identifying an ovarian cancer cell hierarchy regulated by bone morphogenetic protein 2. Proc Natl Acad Sci U S A 2015; 112:E6882-8. [PMID: 26621735 PMCID: PMC4687560 DOI: 10.1073/pnas.1507899112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Whether human cancer follows a hierarchical or stochastic model of differentiation is controversial. Furthermore, the factors that regulate cancer stem-like cell (CSC) differentiation potential are largely unknown. We used a novel microfluidic single-cell culture method to directly observe the differentiation capacity of four heterogeneous ovarian cancer cell populations defined by the expression of the CSC markers aldehyde dehydrogenase (ALDH) and CD133. We evaluated 3,692 progeny from 2,833 cells. We found that only ALDH(+)CD133(+) cells could generate all four ALDH(+/-)CD133(+/-) cell populations and identified a clear branched differentiation hierarchy. We also observed a single putative stochastic event. Within the hierarchy of cells, bone morphologenetic protein 2 (BMP2) is preferentially expressed in ALDH(-)CD133(-) cells. BMP2 promotes ALDH(+)CD133(+) cell expansion while suppressing the proliferation of ALDH(-)CD133(-) cells. As such, BMP2 suppressed bulk cancer cell growth in vitro but increased tumor initiation rates, tumor growth, and chemotherapy resistance in vivo whereas BMP2 knockdown reduced CSC numbers, in vivo growth, and chemoresistance. These data suggest a hierarchical differentiation pattern in which BMP2 acts as a feedback mechanism promoting ovarian CSC expansion and suppressing progenitor proliferation. These results explain why BMP2 suppresses growth in vitro and promotes growth in vivo. Together, our results support BMP2 as a therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Yun-Jung Choi
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Patrick N Ingram
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109
| | - Kun Yang
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Lan Coffman
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Mangala Iyengar
- Department of Cell and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| | - Shoumei Bai
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Dafydd G Thomas
- Department of Pathology University of Michigan, Ann Arbor, MI 48109
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109
| | - Ronald J Buckanovich
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; Department of Cell and Molecular Biology, University of Michigan, Ann Arbor, MI 48109; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
14
|
López García de Lomana A, Schäuble S, Valenzuela J, Imam S, Carter W, Bilgin DD, Yohn CB, Turkarslan S, Reiss DJ, Orellana MV, Price ND, Baliga NS. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:207. [PMID: 26633994 PMCID: PMC4667458 DOI: 10.1186/s13068-015-0391-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/17/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. RESULTS We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 min that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. CONCLUSIONS In this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid accumulation. The program coordinates sequentially ordered transcriptional waves that simultaneously arrest growth and lead to lipid accumulation. This study has generated predictive tools that will aid in devising strategies for the rational manipulation of regulatory and metabolic networks for better biofuel and biomass production.
Collapse
Affiliation(s)
| | - Sascha Schäuble
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
- />Jena University Language and Information Engineering (JULIE) Lab, Friedrich-Schiller-University Jena, Jena, Germany
- />Research Group Theoretical Systems Biology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jacob Valenzuela
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | - Saheed Imam
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | - Warren Carter
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | | | | | - Serdar Turkarslan
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | - David J. Reiss
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | - Mónica V. Orellana
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
- />Polar Science Center, University of Washington, Seattle, WA USA
| | - Nathan D. Price
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
- />Departments of Bioengineering and Computer Science and Engineering, University of Washington, Seattle, WA USA
- />Molecular and Cellular Biology Program, University of Washington, Seattle, WA USA
| | - Nitin S. Baliga
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
- />Departments of Biology and Microbiology, University of Washington, Seattle, WA USA
- />Molecular and Cellular Biology Program, University of Washington, Seattle, WA USA
- />Lawrence Berkeley National Lab, Berkeley, CA USA
| |
Collapse
|