1
|
Ramasubbu K, Venkatraman G, Ramanathan G, Dhanasekar S, Rajeswari VD. Molecular and cellular signalling pathways for promoting neural tissue growth - A tissue engineering approach. Life Sci 2024; 346:122640. [PMID: 38614302 DOI: 10.1016/j.lfs.2024.122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Neural tissue engineering is a sub-field of tissue engineering that develops neural tissue. Damaged central and peripheral nervous tissue can be fabricated with a suitable scaffold printed with biomaterials. These scaffolds promote cell growth, development, and migration, yet they vary according to the biomaterial and scaffold printing technique, which determine the physical and biochemical properties. The physical and biochemical properties of scaffolds stimulate diverse signalling pathways, such as Wnt, NOTCH, Hedgehog, and ion channels- mediated pathways to promote neuron migration, elongation and migration. However, neurotransmitters like dopamine, acetylcholine, gamma amino butyric acid, and other signalling molecules are critical in neural tissue engineering to tissue fabrication. Thus, this review focuses on neural tissue regeneration with a tissue engineering approach highlighting the signalling pathways. Further, it explores the interaction of the scaffolds with the signalling pathways for generating neural tissue.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology-, Vellore 632 014, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology-, Vellore 632 014, Tamil Nadu, India
| | - Ganasambanthan Ramanathan
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology-, Vellore 632 014, Tamil Nadu, India
| | - Sivaraman Dhanasekar
- Department of Biotechnology, Pandit Deendayal Energy University, Gandhinagar 382007, Gujarat, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology-, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
2
|
Russo A, Cavalera S, Murray R, Lovera P, Quinn A, Anfossi L, Iacopino D. Pen direct writing of SERRS-based lateral flow assays for detection of penicillin G in milk. NANOSCALE ADVANCES 2024; 6:1524-1534. [PMID: 38419877 PMCID: PMC10898433 DOI: 10.1039/d3na00846k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
Direct pen writing offers versatile opportunities for development of low-cost tests for point-of-care applications. In this work a lateral flow immunoassay (LFIA) test was fabricated by hand "writing" immunoprobes onto hand-cut nitrocellulose strips with a commercial fountain pen. The qualitative capabilities of the test were extended by addition of a Raman reporter and consequent design and fabrication of a Surface Enhanced Resonant Raman Scattering (SERRS)-LFIA test. As proof-of-concept, dual detection of penicillin G was achieved in milk with a visual LOD of 20 ppm and a dynamic range of 0.03-97.5 ppm. Evaluation against equivalent tests performed with conventionally prepared LFIA strips showed comparable results, thus demonstrating the validity of the test. These results demonstrate the potential for further decrease in cost and consequent broader use of LFIA tests in remote regions and resource-limited environments.
Collapse
Affiliation(s)
- Alida Russo
- Tyndall National Institute, University College Cork Lee Maltings Complex, Dyke Parade T12R5CP Cork Ireland
| | - Simone Cavalera
- Department of Chemistry, University of Turin Via P. Giuria 5 10125 Turin Italy
| | - Richard Murray
- Tyndall National Institute, University College Cork Lee Maltings Complex, Dyke Parade T12R5CP Cork Ireland
| | - Pierre Lovera
- Tyndall National Institute, University College Cork Lee Maltings Complex, Dyke Parade T12R5CP Cork Ireland
| | - Aidan Quinn
- Tyndall National Institute, University College Cork Lee Maltings Complex, Dyke Parade T12R5CP Cork Ireland
| | - Laura Anfossi
- Department of Chemistry, University of Turin Via P. Giuria 5 10125 Turin Italy
| | - Daniela Iacopino
- Tyndall National Institute, University College Cork Lee Maltings Complex, Dyke Parade T12R5CP Cork Ireland
| |
Collapse
|
3
|
Kalligosfyri PM, Tragoulias SS, Tsikas P, Lamprou E, Christopoulos TK, Kalogianni DP. Design and Validation of a Three-Dimensional Printer-Based System Enabling Rapid, Low-Cost Construction of the Biosensing Areas of Lateral Flow Devices for Immunoassays and Nucleic Acid Assays. Anal Chem 2024; 96:572-580. [PMID: 38150187 DOI: 10.1021/acs.analchem.3c04915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The COVID-19 pandemic proved the great usefulness of lateral flow tests as self- and rapid tests. The rapid expansion of this field requires the design and validation of novel, affordable, and versatile technologies for the easy fabrication of a variety of lateral flow devices. In the present work, we have developed a new, simple, and cost-effective system for the dispensing of reagents on the membranes of lateral flow devices to be used for research purposes. The 3D printing technology is integrated, for the first time, with simple and inexpensive tools such as a technical pen and disposable pipet tips for the construction of the test and the control areas of the devices. We also used this system for the automated fabrication of spots on the membrane for multiplex analysis. The devices were applied for the detection of proteins/antibodies and single- and double-stranded DNA targets. Also, devices with multiple biosensing areas on the membrane were constructed for the simultaneous detection of different analytes. The proposed system is very simple, automated, and inexpensive and has provided rapid and reproducible construction of lateral flow devices. Compared to a commercially available automated dispenser, the devices showed similar detection capabilities and reproducibility in various real samples. Moreover, contrary to the existing dispensers, the proposed system does not require any gas or costly precision pumps and syringes for the deposition. In conclusion, the developed 3D printer-based system could be an extremely useful alternative for research laboratories for the construction of lateral flow devices of various assay configurations.
Collapse
Affiliation(s)
- Panagiota M Kalligosfyri
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, GR26504, Rio, 26504 Patras, Greece
| | - Sotirios S Tragoulias
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, GR26504, Rio, 26504 Patras, Greece
| | - Panagiotis Tsikas
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, GR26504, Rio, 26504 Patras, Greece
| | - Eleni Lamprou
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, GR26504, Rio, 26504 Patras, Greece
| | - Theodore K Christopoulos
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, GR26504, Rio, 26504 Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras 26504, Greece
| | - Despina P Kalogianni
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, GR26504, Rio, 26504 Patras, Greece
| |
Collapse
|
4
|
Bhattacharyya A, Ham HW, Sonh J, Gunbayar M, Jeffy R, Nagarajan R, Khatun MR, Noh I. 3D bioprinting of complex tissue scaffolds with in situ homogeneously mixed alginate-chitosan-kaolin bioink using advanced portable biopen. Carbohydr Polym 2023; 317:121046. [PMID: 37364947 DOI: 10.1016/j.carbpol.2023.121046] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Control of in situ 3D bioprinting of hydrogel without toxic crosslinker is ideal for tissue regeneration by reinforcing and homogeneously distributing biocompatible reinforcing agent during fabrication of large area and complex tissue engineering scaffolds. In this study, homogeneous mixing, and simultaneous 3D bioprinting of a multicomponent bioink based on alginate (AL)-chitosan (CH), and kaolin was obtained by an advanced pen-type extruder to ensure structural and biological homogeneity during the large area tissue reconstruction. The static, dynamic and cyclic mechanical properties as well as in situ self-standing printability significantly improved with the kaolin concentration for AL-CH bioink-printed samples due to polymer-kaolin nanoclay hydrogen bonding and cross-linking with less amount of calcium ions. The Biowork pen ensures better mixing effectiveness for the kaolin-dispersed AL-CH hydrogels (evident from computational fluid dynamics study, aluminosilicate nanoclay mapping and 3D printing of complex multilayered structures) than the conventional mixing process. Two different cell lines (osteoblast and fibroblast) introduced during large area multilayered 3D bioprinting have confirmed the suitability of such multicomponent bioinks for in vitro even tissue regeneration. The effect of kaolin to promote uniform growth and proliferation of the cells throughout the bioprinted gel matrix is more significant for this advanced pen-type extruder processed samples.
Collapse
Affiliation(s)
- Amitava Bhattacharyya
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Hyeong-Wook Ham
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - JiAe Sonh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Marla Gunbayar
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - R Jeffy
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - R Nagarajan
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Mst Rita Khatun
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
5
|
Arya N, Chandran Y, Singh A, Sharma R, Halder A, Balakrishnan V. Substrate Versatile Roller Ball Pen Writing of Nanoporous MoS 2 for Energy Storage Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41447-41456. [PMID: 37615402 DOI: 10.1021/acsami.3c05536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Low-cost fabrication of customizable supercapacitors and batteries to power up portable electronic devices is a much-needed step in advancing energy storage devices. The processing methods and techniques involved in developing small-sized entities in complex patterns are expensive, tedious, and time-consuming. Here, we demonstrate the fabrication of customizable electrochemical supercapacitors and batteries by simply employing the universal and conventional paradigm of direct pen writing with hands and evaluating their energy storage performance. The fabrication technique involves the refilling of MoS2 ink into the pen and then scripting of MoS2 nanostructures onto various substrates. The electrode material employed here consists of nanoporous microspheres of MoS2 synthesized by a simple one-step hydrothermal method. Direct pen writing with porous MoS2 in complex patterns enables easy, affordable, and simple fabrication of energy storage devices as and when required based on user choice toward distributed manufacturing and sustainability.
Collapse
Affiliation(s)
- Nitika Arya
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Yadu Chandran
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Arkaj Singh
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Ravinder Sharma
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Aditi Halder
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Viswanath Balakrishnan
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
6
|
Pazhouhnia Z, Beheshtizadeh N, Namini MS, Lotfibakhshaiesh N. Portable hand-held bioprinters promote in situ tissue regeneration. Bioeng Transl Med 2022; 7:e10307. [PMID: 36176625 PMCID: PMC9472017 DOI: 10.1002/btm2.10307] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 12/17/2022] Open
Abstract
Three-dimensional bioprinting, as a novel technique of fabricating engineered tissues, is positively correlated with the ultimate goal of regenerative medicine, which is the restoration, reconstruction, and repair of lost and/or damaged tissue function. The progressive trend of this technology resulted in developing the portable hand-held bioprinters, which could be used quite easily by surgeons and physicians. With the advent of portable hand-held bioprinters, the obstacles and challenges of utilizing statistical bioprinters could be resolved. This review attempts to discuss the advantages and challenges of portable hand-held bioprinters via in situ tissue regeneration. All the tissues that have been investigated by this approach were reviewed, including skin, cartilage, bone, dental, and skeletal muscle regeneration, while the tissues that could be regenerated via this approach are targeted in the authors' perspective. The design and applications of hand-held bioprinters were discussed widely, and the marketed printers were introduced. It has been prospected that these facilities could ameliorate translating the regenerative medicine science from the bench to the bedside actively.
Collapse
Affiliation(s)
- Zahra Pazhouhnia
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Beheshtizadeh
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Mojdeh Salehi Namini
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| |
Collapse
|
7
|
Osouli-Bostanabad K, Masalehdan T, Kapsa RMI, Quigley A, Lalatsa A, Bruggeman KF, Franks SJ, Williams RJ, Nisbet DR. Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomater Sci Eng 2022; 8:2764-2797. [PMID: 35696306 DOI: 10.1021/acsbiomaterials.2c00094] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Tahereh Masalehdan
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16444, Iran
| | - Robert M I Kapsa
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Anita Quigley
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stephanie J Franks
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Richard J Williams
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
8
|
Qi L, Du Y. Diagnosis of disease relevant nucleic acid biomarkers with off-the-shelf devices. J Mater Chem B 2022; 10:3959-3973. [PMID: 35575030 DOI: 10.1039/d2tb00232a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Changes in the level of nucleic acids in blood may be correlated with some clinical disorders like cancer, stroke, trauma and autoimmune diseases, and thus, nucleic acids can serve as potential biomarkers for pathological processes. The requirement of technical equipment and operator expertise in effective information readout of modern molecular diagnostic technologies significantly restricted application outside clinical laboratories. The ability to detect nucleic acid biomarkers with off-the-shelf devices, which have the advantages of portability, simplicity, low cost and short response time, is critical to provide a prompt clinical result in circumstances where the laboratory instruments are not available. This review throws light on the current strategies and challenges for nucleic acid diagnosis with commercial portable devices, indicating the future prospect of portable diagnostic devices and making a great difference in improving the healthcare and disease surveillance in resource-limited areas.
Collapse
Affiliation(s)
- Lijuan Qi
- State key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, P. R. China. .,Department of Chemistry, University of Science and Technology of China, Anhui, P. R. China
| | - Yan Du
- State key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, P. R. China. .,Department of Chemistry, University of Science and Technology of China, Anhui, P. R. China
| |
Collapse
|
9
|
An Overview on the Rheology, Mechanical Properties, Durability, 3D Printing, and Microstructural Performance of Nanomaterials in Cementitious Composites. MATERIALS 2021; 14:ma14112950. [PMID: 34070728 PMCID: PMC8198580 DOI: 10.3390/ma14112950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 01/28/2023]
Abstract
The most active research area is nanotechnology in cementitious composites, which has a wide range of applications and has achieved popularity over the last three decades. Nanoparticles (NPs) have emerged as possible materials to be used in the field of civil engineering. Previous research has concentrated on evaluating the effect of different NPs in cementitious materials to alter material characteristics. In order to provide a broad understanding of how nanomaterials (NMs) can be used, this paper critically evaluates previous research on the influence of rheology, mechanical properties, durability, 3D printing, and microstructural performance on cementitious materials. The flow properties of fresh cementitious composites can be measured using rheology and slump. Mechanical properties such as compressive, flexural, and split tensile strength reveal hardened properties. The necessary tests for determining a NM’s durability in concrete are shrinkage, pore structure and porosity, and permeability. The advent of modern 3D printing technologies is suitable for structural printing, such as contour crafting and binder jetting. Three-dimensional (3D) printing has opened up new avenues for the building and construction industry to become more digital. Regardless of the material science, a range of problems must be tackled, including developing smart cementitious composites suitable for 3D structural printing. According to the scanning electron microscopy results, the addition of NMs to cementitious materials results in a denser and improved microstructure with more hydration products. This paper provides valuable information and details about the rheology, mechanical properties, durability, 3D printing, and microstructural performance of cementitious materials with NMs and encourages further research.
Collapse
|
10
|
Recent Advances of Wearable Antennas in Materials, Fabrication Methods, Designs, and Their Applications: State-of-the-Art. MICROMACHINES 2020; 11:mi11100888. [PMID: 32987793 PMCID: PMC7598725 DOI: 10.3390/mi11100888] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/03/2023]
Abstract
The demand for wearable technologies has grown tremendously in recent years. Wearable antennas are used for various applications, in many cases within the context of wireless body area networks (WBAN). In WBAN, the presence of the human body poses a significant challenge to the wearable antennas. Specifically, such requirements are required to be considered on a priority basis in the wearable antennas, such as structural deformation, precision, and accuracy in fabrication methods and their size. Various researchers are active in this field and, accordingly, some significant progress has been achieved recently. This article attempts to critically review the wearable antennas especially in light of new materials and fabrication methods, and novel designs, such as miniaturized button antennas and miniaturized single and multi-band antennas, and their unique smart applications in WBAN. Finally, the conclusion has been drawn with respect to some future directions.
Collapse
|
11
|
O’Connell CD, Konate S, Onofrillo C, Kapsa R, Baker C, Duchi S, Eekel T, Yue Z, Beirne S, Barnsley G, Di Bella C, Choong PF, Wallace GG. Free-form co-axial bioprinting of a gelatin methacryloyl bio-ink by direct in situ photo-crosslinking during extrusion. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Shrivas K, Ghosale A, Bajpai P, Kant T, Dewangan K, Shankar R. Advances in flexible electronics and electrochemical sensors using conducting nanomaterials: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104944] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Liang B, Wei J, Fang L, Cao Q, Tu T, Ren H, Ye X. High-Resolution Rapid Prototyping of Liquid Metal Electronics by Direct Writing on Highly Prestretched Substrates. ACS OMEGA 2019; 4:21072-21077. [PMID: 31867499 PMCID: PMC6921252 DOI: 10.1021/acsomega.9b02440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/22/2019] [Indexed: 05/28/2023]
Abstract
A rapid and inexpensive method to produce high-resolution liquid metal patterns and electronics on stretchable substrates was introduced. Two liquid-phase gallium-indium (GaIn) alloy patterns, conductive lines, and interdigitated electrodes, were directly written or shadow mask-printed on a prestretched elastomeric substrate surface. Then, the prestretched substrate was released to recover its original length, and thus, electronic patterns simultaneously shrank on it. After these patterns were transferred to another prestretched substrate by the stamp printing method, the patterning resolution was demonstrated to increase by totally 50 times for the two successive stretch-release-shrink operations. Additionally, the resistance of the handwritten liquid metal conductive line traces remained nearly unchanged during the stretching process, which is believed to be feasible for electrical connections in stretchable electronics. The rapid prototyping of a serpentine strain sensor was successfully demonstrated to be highly sensitive and repeatable with a stretching ratio ranging from 0 to 200%. The proposed method paves a new way to fabricate stretchable electronic devices with high patterning resolution.
Collapse
Affiliation(s)
- Bo Liang
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Jinwei Wei
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Lu Fang
- College
of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Qingpeng Cao
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Tingting Tu
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Hangxu Ren
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Xuesong Ye
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
14
|
Heinrich MA, Liu W, Jimenez A, Yang J, Akpek A, Liu X, Pi Q, Mu X, Hu N, Schiffelers RM, Prakash J, Xie J, Zhang YS. 3D Bioprinting: from Benches to Translational Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805510. [PMID: 31033203 PMCID: PMC6752725 DOI: 10.1002/smll.201805510] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Indexed: 05/07/2023]
Abstract
Over the last decades, the fabrication of 3D tissues has become commonplace in tissue engineering and regenerative medicine. However, conventional 3D biofabrication techniques such as scaffolding, microengineering, and fiber and cell sheet engineering are limited in their capacity to fabricate complex tissue constructs with the required precision and controllability that is needed to replicate biologically relevant tissues. To this end, 3D bioprinting offers great versatility to fabricate biomimetic, volumetric tissues that are structurally and functionally relevant. It enables precise control of the composition, spatial distribution, and architecture of resulting constructs facilitating the recapitulation of the delicate shapes and structures of targeted organs and tissues. This Review systematically covers the history of bioprinting and the most recent advances in instrumentation and methods. It then focuses on the requirements for bioinks and cells to achieve optimal fabrication of biomimetic constructs. Next, emerging evolutions and future directions of bioprinting are discussed, such as freeform, high-resolution, multimaterial, and 4D bioprinting. Finally, the translational potential of bioprinting and bioprinted tissues of various categories are presented and the Review is concluded by exemplifying commercially available bioprinting platforms.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, Enschede 7500AE, The Netherlands
| | - Wanjun Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, P.R. China
| | - Andrea Jimenez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Biomedical Engineering Laboratory, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Jingzhou Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Center of Biomedical Materials 3D Printing, National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing, Baoding 071000, P.R. China
| | - Ali Akpek
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Istanbul Yeni Yuzyil University, Istanbul 34010, Turkey
| | - Xiao Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Qingmeng Pi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, P.R. China
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ning Hu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Raymond Michel Schiffelers
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, Enschede 7500AE, The Netherlands
| | - Jingwei Xie
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
|
16
|
Hakimi N, Cheng R, Leng L, Sotoudehfar M, Ba PQ, Bakhtyar N, Amini-Nik S, Jeschke MG, Günther A. Handheld skin printer: in situ formation of planar biomaterials and tissues. LAB ON A CHIP 2018; 18:1440-1451. [PMID: 29662977 PMCID: PMC5965293 DOI: 10.1039/c7lc01236e] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present a handheld skin printer that enables the in situ formation of biomaterial and skin tissue sheets of different homogeneous and architected compositions. When manually positioned above a target surface, the compact instrument (weight <0.8 kg) conformally deposits a biomaterial or tissue sheet from a microfluidic cartridge. Consistent sheet formation is achieved by coordinating the flow rates at which bioink and cross-linker solution are delivered, with the speed at which a pair of rollers actively translate the cartridge along the surface. We demonstrate compatibility with dermal and epidermal cells embedded in ionically cross-linkable biomaterials (e.g., alginate), and enzymatically cross-linkable proteins (e.g., fibrin), as well as their mixtures with collagen type I and hyaluronic acid. Upon rapid crosslinking, biomaterial and skin cell-laden sheets of consistent thickness, width and composition were obtained. Sheets deposited onto horizontal, agarose-coated surfaces were used for physical and in vitro characterization. Proof-of-principle demonstrations for the in situ formation of biomaterial sheets in murine and porcine excisional wound models illustrate the capacity of depositing onto inclined and compliant wound surfaces that are subject to respiratory motion. We expect the presented work will enable the in situ delivery of a wide range of different cells, biomaterials, and tissue adhesives, as well as the in situ fabrication of spatially organized biomaterials, tissues, and biohybrid structures.
Collapse
Affiliation(s)
- Navid Hakimi
- Department of Mechanical and Industrial Engineering, University of Toronto 5 King’s College Road, Toronto, Ontario M5S3G8, Canada
| | - Richard Cheng
- Institute of Biomaterials and Biomedical Engineering, University of Toronto 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Lian Leng
- Department of Mechanical and Industrial Engineering, University of Toronto 5 King’s College Road, Toronto, Ontario M5S3G8, Canada
| | - Mohammad Sotoudehfar
- Department of Mechanical and Industrial Engineering, University of Toronto 5 King’s College Road, Toronto, Ontario M5S3G8, Canada
| | - Phoenix Qing Ba
- Department of Mechanical and Industrial Engineering, University of Toronto 5 King’s College Road, Toronto, Ontario M5S3G8, Canada
| | - Nazihah Bakhtyar
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre and Sunnybrook Research Institute, 2075 Bayview Ave, Room D704, Toronto, Ontario M4N 3M5, Canada
| | - Saeid Amini-Nik
- Department of Surgery, Department of Immunology, Division of Plastic Surgery and General Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Marc G. Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre and Sunnybrook Research Institute, 2075 Bayview Ave, Room D704, Toronto, Ontario M4N 3M5, Canada
- Department of Surgery, Department of Immunology, Division of Plastic Surgery and General Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, Ontario M5S 1A8, Canada
| | - Axel Günther
- Department of Mechanical and Industrial Engineering, University of Toronto 5 King’s College Road, Toronto, Ontario M5S3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
17
|
Osouli-Bostanabad K, Adibkia K. Made-on-demand, complex and personalized 3D-printed drug products. BIOIMPACTS : BI 2018; 8:77-79. [PMID: 29977828 PMCID: PMC6026524 DOI: 10.15171/bi.2018.09] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023]
Abstract
Layer-by-layer fabrication of three dimensional (3D) objects from digital models is called 3D printing. This technology established just about three decades ago at the confluence of materials science, chemistry, robotics, and optics researches to ease the fabrication of UV-cured resin prototypes. The 3D technology was rapidly considered as a standard instrument in the aerospace, automotive, and consumer goods production factories. Nowadays, research interests in the 3D printed products have been raised and achieved ever-increasing traction in the pharmaceutical industry; so that, the first 3D printed drug product was approved by FDA in August 2015. This editorial summarizes the competitive advantages of the 3D printing for the made-on-demand, personalized and complex products, manufacturing of which establish opportunities for enhancing the accessibility, effectiveness, and safety of drugs.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
[Prospective: How will renal, prostatic and urothelial tumours be treated in 10 years?]. Nephrol Ther 2017; 13 Suppl 1:S115-S125. [PMID: 28577732 DOI: 10.1016/j.nephro.2017.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 12/13/2022]
Abstract
Forward thinking does not seek to predict the future, to unveil it as if it were already in existence, rather, its aim is to help us to construct it. Although today's epidemiological and therapeutic situations for urogenital tumours can evolve over the next 10 years, diagnostic and therapeutic methods, as well as the treatment and implementation of innovations, are already rapidly changing. Rather than reducing our prospective thinking to the therapeutic treatment of cancer only, we will aim at proposing a global sanitary vision that includes diagnosis, therapies, prevention, routine utilisation of technomedicine, genomics and even nanomedicine. This journey into the near future of tomorrow's cancerology holds the promise of being better adapted to the evolution of the medical thinking process. Imagining the way we will be treating renal, prostatic and urothelial tumours in 10 years' time is as much an introspection into our present day treatment system as a projection into its hoped for future evolution.
Collapse
|
19
|
Maguire P, Rutherford D, Macias-Montero M, Mahony C, Kelsey C, Tweedie M, Pérez-Martin F, McQuaid H, Diver D, Mariotti D. Continuous In-Flight Synthesis for On-Demand Delivery of Ligand-Free Colloidal Gold Nanoparticles. NANO LETTERS 2017; 17:1336-1343. [PMID: 28139927 DOI: 10.1021/acs.nanolett.6b03440] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate an entirely new method of nanoparticle chemical synthesis based on liquid droplet irradiation with ultralow (<0.1 eV) energy electrons. While nanoparticle formation via high energy radiolysis or transmission electron microscopy-based electron bombardment is well-understood, we have developed a source of electrons with energies close to thermal which leads to a number of important and unique benefits. The charged species, including the growing nanoparticles, are held in an ultrathin surface reaction zone which enables extremely rapid precursor reduction. In a proof-of-principle demonstration, we obtain small-diameter Au nanoparticles (∼4 nm) with tight control of polydispersity, in under 150 μs. The precursor was almost completely reduced in this period, and the resultant nanoparticles were water-soluble and free of surfactant or additional ligand chemistry. Nanoparticle synthesis rates within the droplets were many orders of magnitude greater than equivalent rates reported for radiolysis, electron beam irradiation, or colloidal chemical synthesis where reaction times vary from seconds to hours. In our device, a stream of precursor loaded microdroplets, ∼15 μm in diameter, were transported rapidly through a cold atmospheric pressure plasma with a high charge concentration. A high electron flux, electron and nanoparticle confinement at the surface of the droplet, and the picoliter reactor volume are thought to be responsible for the remarkable enhancement in nanoparticle synthesis rates. While this approach exhibits considerable potential for scale-up of synthesis rates, it also offers the more immediate prospect of continuous on-demand delivery of high-quality nanomaterials directly to their point of use by avoiding the necessity of collection, recovery, and purification. A range of new applications can be envisaged, from theranostics and biomedical imaging in tissue to inline catalyst production for pollution remediation in automobiles.
Collapse
Affiliation(s)
- Paul Maguire
- NIBEC, University of Ulster , Belfast, BT37 0QB, Northern Ireland
| | - David Rutherford
- NIBEC, University of Ulster , Belfast, BT37 0QB, Northern Ireland
| | | | - Charles Mahony
- NIBEC, University of Ulster , Belfast, BT37 0QB, Northern Ireland
| | - Colin Kelsey
- NIBEC, University of Ulster , Belfast, BT37 0QB, Northern Ireland
| | - Mark Tweedie
- NIBEC, University of Ulster , Belfast, BT37 0QB, Northern Ireland
| | | | - Harold McQuaid
- NIBEC, University of Ulster , Belfast, BT37 0QB, Northern Ireland
| | - Declan Diver
- SUPA, School of Physics and Astronomy, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Davide Mariotti
- NIBEC, University of Ulster , Belfast, BT37 0QB, Northern Ireland
| |
Collapse
|
20
|
Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev 2017; 108:39-50. [PMID: 27001902 DOI: 10.1016/j.addr.2016.03.001] [Citation(s) in RCA: 380] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 12/17/2022]
Abstract
FDA recently approved a 3D-printed drug product in August 2015, which is indicative of a new chapter for pharmaceutical manufacturing. This review article summarizes progress with 3D printed drug products and discusses process development for solid oral dosage forms. 3D printing is a layer-by-layer process capable of producing 3D drug products from digital designs. Traditional pharmaceutical processes, such as tablet compression, have been used for decades with established regulatory pathways. These processes are well understood, but antiquated in terms of process capability and manufacturing flexibility. 3D printing, as a platform technology, has competitive advantages for complex products, personalized products, and products made on-demand. These advantages create opportunities for improving the safety, efficacy, and accessibility of medicines. Although 3D printing differs from traditional manufacturing processes for solid oral dosage forms, risk-based process development is feasible. This review highlights how product and process understanding can facilitate the development of a control strategy for different 3D printing methods. Overall, the authors believe that the recent approval of a 3D printed drug product will stimulate continual innovation in pharmaceutical manufacturing technology. FDA encourages the development of advanced manufacturing technologies, including 3D-printing, using science- and risk-based approaches.
Collapse
|
21
|
Choi JR, Hu J, Feng S, Wan Abas WAB, Pingguan-Murphy B, Xu F. Sensitive biomolecule detection in lateral flow assay with a portable temperature-humidity control device. Biosens Bioelectron 2015; 79:98-107. [PMID: 26700582 DOI: 10.1016/j.bios.2015.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 12/30/2022]
Abstract
Lateral flow assays (LFAs) have currently attracted broad interest for point-of-care (POC) diagnostics, but their application has been restricted by poor quantification and limited sensitivity. While the former has been currently solved to some extent by the development of handheld or smartphone-based readers, the latter has not been addressed fully, particularly the potential influences of environmental conditions (e.g., temperature and relative humidity (RH)), which have not yet received serious attention. The present study reports the use of a portable temperature-humidity control device to provide an optimum environmental requirement for sensitivity improvement in LFAs, followed by quantification by using a smartphone. We found that a RH beyond 60% with temperatures of 55-60°C and 37-40°C produced optimum nucleic acid hybridization and antigen-antibody interaction in LFAs, respectively representing a 10-fold and 3-fold signal enhancement over ambient conditions (25°C, 60% RH). We envision that in the future the portable device could be coupled with a fully integrated paper-based sample-to-answer biosensor for sensitive detection of various target analytes in POC settings.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jie Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shangsheng Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory for Multifunctional Materials and Structures (LMMS), School of Aerospace, Xi'an Jiaotong University, Xi'an, PR China; State Key Laboratory of Mechanical Structure Strength and Vibration, School of Aerospace, Xi'an Jiaotong University, Xi'an, PR China
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
22
|
Dossi N, Terzi F, Piccin E, Toniolo R, Bontempelli G. Rapid Prototyping of Sensors and Conductive Elements by Day-to-Day Writing Tools and Emerging Manufacturing Technologies. ELECTROANAL 2015. [DOI: 10.1002/elan.201500361] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Bandodkar AJ, Jia W, Ramírez J, Wang J. Biocompatible enzymatic roller pens for direct writing of biocatalytic materials: "do-it-yourself" electrochemical biosensors. Adv Healthc Mater 2015; 4:1215-24. [PMID: 25721554 DOI: 10.1002/adhm.201400808] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/16/2015] [Indexed: 01/13/2023]
Abstract
The development of enzymatic-ink-based roller pens for direct drawing of biocatalytic sensors, in general, and for realizing renewable glucose sensor strips, in particular, is described. The resulting enzymatic-ink pen allows facile fabrication of high-quality inexpensive electrochemical biosensors of any design by the user on a wide variety of surfaces having complex textures with minimal user training. Unlike prefabricated sensors, this approach empowers the end user with the ability of "on-demand" and "on-site" designing and fabricating of biocatalytic sensors to suit their specific requirement. The resulting devices are thus referred to as "do-it-yourself" sensors. The bio-active pens produce highly reproducible biocatalytic traces with minimal edge roughness. The composition of the new enzymatic inks has been optimized for ensuring good biocatalytic activity, electrical conductivity, biocompati-bility, reproducible writing, and surface adherence. The resulting inks are characterized using spectroscopic, viscometric, electrochemical, thermal and microscopic techniques. Applicability to renewable blood glucose testing, epidermal glucose monitoring, and on-leaf phenol detection are demonstrated in connection to glucose oxidase and tyrosinase-based carbon inks. The "do-it-yourself" renewable glucose sensor strips offer a "fresh," reproducible, low-cost biocatalytic sensor surface for each blood test. The ability to directly draw biocatalytic conducting traces even on unconventional surfaces opens up new avenues in various sensing applications in low-resource settings and holds great promise for diverse healthcare, environmental, and defense domains.
Collapse
Affiliation(s)
- Amay J. Bandodkar
- Department of NanoEngineering; University of California; San Diego La Jolla CA 92093 USA
| | - Wenzhao Jia
- Department of NanoEngineering; University of California; San Diego La Jolla CA 92093 USA
| | - Julian Ramírez
- Department of NanoEngineering; University of California; San Diego La Jolla CA 92093 USA
| | - Joseph Wang
- Department of NanoEngineering; University of California; San Diego La Jolla CA 92093 USA
| |
Collapse
|
24
|
You M, Zhong J, Hong Y, Duan Z, Lin M, Xu F. Inkjet printing of upconversion nanoparticles for anti-counterfeit applications. NANOSCALE 2015; 7:4423-31. [PMID: 25613526 DOI: 10.1039/c4nr06944g] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Patterning of upconversion luminescent materials has been widely used for anti-counterfeit and security applications, where the preferred method should be easy, fast, multicolor, high-throughput and designable. However, conventional patterning methods are complex and inflexible. Here, we report a digital and flexible inkjet printing based approach for producing high-resolution and high-luminescence anti-counterfeit patterns. We successfully printed different multicolor luminescent patterns by inkjet printing of upconversion nanoparticles with controlled and uniform luminescence intensity through optimizing the inks and substrates. Combined with another downconversion luminescent material, we achieved two different patterns in the same area, which show up separately under excitation by different wavelength laser sources. The developed technology is promising to use one single substrate for carrying abundant information by printing multilayer patterns composed of luminescent materials with different excitation light sources.
Collapse
Affiliation(s)
- Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.
| | | | | | | | | | | |
Collapse
|
25
|
Yun H, Kim K, Lee WG. Effect of a dual inlet channel on cell loading in microfluidics. BIOMICROFLUIDICS 2014; 8:066501. [PMID: 25553201 PMCID: PMC4235624 DOI: 10.1063/1.4901929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
Unwanted sedimentation and attachment of a number of cells onto the bottom channel often occur on relatively large-scale inlets of conventional microfluidic channels as a result of gravity and fluid shear. Phenomena such as sedimentation have become recognized problems that can be overcome by performing microfluidic experiments properly, such as by calculating a meaningful output efficiency with respect to real input. Here, we present a dual-inlet design method for reducing cell loss at the inlet of channels by adding a new " upstream inlet " to a single main inlet design. The simple addition of an upstream inlet can create a vertically layered sheath flow prior to the main inlet for cell loading. The bottom layer flow plays a critical role in preventing the cells from attaching to the bottom of the channel entrance, resulting in a low possibility of cell sedimentation at the main channel entrance. To provide proof-of-concept validation, we applied our design to a microfabricated flow cytometer system (μFCS) and compared the cell counting efficiency of the proposed μFCS with that of the previous single-inlet μFCS and conventional FCS. We used human white blood cells and fluorescent microspheres to quantitatively evaluate the rate of cell sedimentation in the main inlet and to measure fluorescence sensitivity at the detection zone of the flow cytometer microchip. Generating a sheath flow as the bottom layer was meaningfully used to reduce the depth of field as well as the relative deviation of targets in the z-direction (compared to the x-y flow plane), leading to an increased counting sensitivity of fluorescent detection signals. Counting results using fluorescent microspheres showed both a 40% reduction in the rate of sedimentation and a 2-fold higher sensitivity in comparison with the single-inlet μFCS. The results of CD4(+) T-cell counting also showed that the proposed design results in a 25% decrease in the rate of cell sedimentation and a 28% increase in sensitivity when compared to the single-inlet μFCS. This method is simple and easy to use in design, yet requires no additional time or cost in fabrication. Furthermore, we expect that this approach could potentially be helpful for calculating exact cell loading and counting efficiency for a small input number of cells, such as primary cells and rare cells, in microfluidic channel applications.
Collapse
Affiliation(s)
- Hoyoung Yun
- School of Mechanical and Aerospace Engineering, Seoul National University , South Korea
| | - Kisoo Kim
- Department of Mechanical Engineering, Kyung Hee University , South Korea
| | - Won Gu Lee
- Department of Mechanical Engineering, Kyung Hee University , South Korea
| |
Collapse
|
26
|
Qi H, Huang G, Han YL, Lin W, Li X, Wang S, Lu TJ, Xu F. In vitro spatially organizing the differentiation in individual multicellular stem cell aggregates. Crit Rev Biotechnol 2014; 36:20-31. [PMID: 25025275 DOI: 10.3109/07388551.2014.922917] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With significant potential as a robust source to produce specific somatic cells for regenerative medicine, stem cells have attracted increasing attention from both academia and government. In vivo, stem cell differentiation is a process under complicated regulations to precisely build tissue with unique spatial structures. Since multicellular spheroidal aggregates of stem cells, commonly called as embryoid bodies (EBs), are considered to be capable of recapitulating the events in early stage of embryonic development, a variety of methods have been developed to form EBs in vitro for studying differentiation of embryonic stem cells. The regulation of stem cell differentiation is crucial in directing stem cells to build tissue with the correct spatial architecture for specific functions. However, stem cells within the three-dimensional multicellular aggregates undergo differentiation in a less unpredictable and spatially controlled manner in vitro than in vivo. Recently, various microengineering technologies have been developed to manipulate stem cells in vitro in a spatially controlled manner. Herein, we take the spotlight on these technologies and researches that bring us the new potential for manipulation of stem cells for specific purposes.
Collapse
Affiliation(s)
- Hao Qi
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China .,c Department of Medical Genome Sciences , Graduate School of Frontier Sciences, University of Tokyo , Kashiwa , Chiba , Japan
| | - Guoyou Huang
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Yu Long Han
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Wang Lin
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Xiujun Li
- d Department of Chemistry , University of Texas at EI Paso , EI Paso , TX , USA , and
| | - Shuqi Wang
- e Brigham Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Tian Jian Lu
- b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Feng Xu
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| |
Collapse
|