1
|
Line J, Saville E, Meng X, Naisbitt D. Why drug exposure is frequently associated with T-cell mediated cutaneous hypersensitivity reactions. FRONTIERS IN TOXICOLOGY 2023; 5:1268107. [PMID: 37795379 PMCID: PMC10546197 DOI: 10.3389/ftox.2023.1268107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
Cutaneous hypersensitivity reactions represent the most common manifestation of drug allergy seen in the clinic, with 25% of all adverse drug reactions appearing in the skin. The severity of cutaneous eruptions can vastly differ depending on the cellular mechanisms involved from a minor, self-resolving maculopapular rash to major, life-threatening pathologies such as the T-cell mediated bullous eruptions, i.e., Stevens Johnson syndrome/toxic epidermal necrolysis. It remains a significant question as to why these reactions are so frequently associated with the skin and what factors polarise these reactions towards more serious disease states. The barrier function which the skin performs means it is constantly subject to a barrage of danger signals, creating an environment that favors elicitation. Therefore, a critical question is what drives the expansion of cutaneous lymphocyte antigen positive, skin homing, T-cell sub-populations in draining lymph nodes. One answer could be the heterologous immunity hypothesis whereby tissue resident memory T-cells that express T-cell receptors (TCRs) for pathogen derived antigens cross-react with drug antigen. A significant amount of research has been conducted on skin immunity in the context of contact allergy and the role of tissue specific antigen presenting cells in presenting drug antigen to T-cells, but it is unclear how this relates to epitopes derived from circulation. Studies have shown that the skin is a metabolically active organ, capable of generating reactive drug metabolites. However, we know that drug antigens are displayed systemically so what factors permit tolerance in one part of the body, but reactivity in the skin. Most adverse drug reactions are mild, and skin eruptions tend to be visible to the patient, whereas minor organ injury such as transient transaminase elevation is often not apparent. Systemic hypersensitivity reactions tend to have early cutaneous manifestations, the progression of which is halted by early diagnosis and treatment. It is apparent that the preference for cutaneous involvement of drug hypersensitivity reactions is multi-faceted, therefore this review aims to abridge the findings from literature on the current state of the field and provide insight into the cellular and metabolic mechanisms which may contribute to severe cutaneous adverse reactions.
Collapse
Affiliation(s)
| | | | | | - Dean Naisbitt
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Zhang S, Cheng Z, Yang M, Guo Z, Zhao L, Baqar M, Lu Y, Wang L, Sun H. Percutaneous Penetration of Liquid Crystal Monomers (LCMs) by In Vitro Three-Dimensional Human Skin Equivalents: Possible Mechanisms and Implications for Human Dermal Exposure Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4454-4463. [PMID: 36867107 DOI: 10.1021/acs.est.2c07844] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid crystal monomers (LCMs) are indispensable materials in liquid crystal displays, which have been recognized as emerging persistent, bioaccumulative, and toxic organic pollutants. Occupational and nonoccupational exposure risk assessment suggested that dermal exposure is the primary exposure route for LCMs. However, the bioavailability and possible mechanisms of dermal exposure to LCMs via skin absorption and penetration remain unclear. Herein, we used EpiKutis 3D-Human Skin Equivalents (3D-HSE) to quantitatively assess the percutaneous penetration of nine LCMs, which were detected in e-waste dismantling workers' hand wipes with high detection frequencies. LCMs with higher log Kow and greater molecular weight (MW) were more difficult to penetrate through the skin. Molecular docking results showed that ABCG2 (an efflux transporter) may be responsible for percutaneous penetration of LCMs. These results suggest that passive diffusion and active efflux transport may be involved in the penetration of LCMs across the skin barrier. Furthermore, the occupational dermal exposure risks evaluated based on the dermal absorption factor suggested the underestimation of the continuous LCMs' health risks via dermal previously.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ming Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zijin Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Ragnarsdóttir O, Abdallah MAE, Harrad S. Dermal uptake: An important pathway of human exposure to perfluoroalkyl substances? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119478. [PMID: 35588958 DOI: 10.1016/j.envpol.2022.119478] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been produced and used in a broad range of products since the 1950s. This class, comprising of thousands of chemicals, have been used in many different products ranging from firefighting foam to personal care products and clothes. Even at relatively low levels of exposure, PFAS have been linked to various health effects in humans such as lower birth weight, increased serum cholesterol levels, and reduced antibody response to vaccination. Human biomonitoring data demonstrates ubiquitous exposure to PFAS across all age groups. This has been attributed to PFAS-contaminated water and dietary intake, as well as inadvertent ingestion of indoor dust for adults and toddlers. In utero exposure and breast milk have been indicated as important exposure pathways for foetuses and nursing infants. More recently, PFAS have been identified in a wide range of products, many of which come in contact with skin (e.g., cosmetics and fabrics). Despite this, few studies have evaluated dermal uptake as a possible route for human exposure and little is known about the dermal absorption potential of different PFAS. This article critically investigates the current state-of-knowledge on human exposure to PFAS, highlighting the lack of dermal exposure data. Additionally, the different approaches for dermal uptake assessment studies are discussed and the available literature on human dermal absorption of PFAS is critically reviewed and compared to other halogenated contaminants, e.g., brominated flame retardants and its implications for dermal exposure to PFAS. Finally, the urgent need for dermal permeation and uptake studies for a wide range of PFAS and their precursors is highlighted and recommendations for future research to advance the current understanding of human dermal exposure to PFAS are discussed.
Collapse
Affiliation(s)
- Oddný Ragnarsdóttir
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | | | - Stuart Harrad
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
4
|
Liu G, Li D, Zhang L, Xu Q, Zhuang D, Liu P, Hu L, Deng H, Sun J, Wang S, Zheng B, Guo J, Wu X. Phenformin Down-Regulates c-Myc Expression to Suppress the Expression of Pro-Inflammatory Cytokines in Keratinocytes. Cells 2022; 11:cells11152429. [PMID: 35954273 PMCID: PMC9368166 DOI: 10.3390/cells11152429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
The treatment of many skin inflammation diseases, such as psoriasis and atopic dermatitis, is still a challenge and inflammation plays important roles in multiple stages of skin tumor development, including initiation, promotion and metastasis. Phenformin, a biguanide drug, has been shown to play a more efficient anti-tumor function than another well-known biguanide drug, metformin, which has been reported to control the expression of pro-inflammatory cytokines; however, little is known about the effects of phenformin on skin inflammation. This study used a mouse acute inflammation model, ex vivo skin organ cultures and in vitro human primary keratinocyte cultures to demonstrate that phenformin can suppress acute skin inflammatory responses induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in vivo and significantly suppresses the pro-inflammatory cytokines IL-1β, IL-6 and IL-8 in human primary keratinocytes in vitro. The suppression of pro-inflammatory cytokine expression by phenformin was not directly through regulation of the MAPK or NF-κB pathways, but by controlling the expression of c-Myc in human keratinocytes. We demonstrated that the overexpression of c-Myc can induce pro-inflammatory cytokine expression and counteract the suppressive effect of phenformin on cytokine expression in keratinocytes. In contrast, the down-regulation of c-Myc produces effects similar to phenformin, both in cytokine expression by keratinocytes in vitro and in skin inflammation in vivo. Finally, we showed that phenformin, as an AMPK activator, down-regulates the expression of c-Myc through regulation of the AMPK/mTOR pathways. In summary, phenformin inhibits the expression of pro-inflammatory cytokines in keratinocytes through the down-regulation of c-Myc expression to play an anti-inflammation function in the skin.
Collapse
Affiliation(s)
- Guanyi Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Dingyang Li
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Liwei Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Qiuping Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Dexuan Zhuang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Panpan Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Pediatrics Dentistry, Department of Preventive Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Ling Hu
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Huiting Deng
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Jianfeng Sun
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Jing Guo
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
- Correspondence: (J.G.); (X.W.)
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
- Correspondence: (J.G.); (X.W.)
| |
Collapse
|
5
|
Imai H, Hashimoto S, Ninomiya R, Luo J, Wakuda H, Otani N, Inoue G, Amagishi H, Uemura N. Pharmacokinetics of lanoconazole in human skin after repeated topical application. J Dermatol 2022; 49:1118-1123. [PMID: 35811383 DOI: 10.1111/1346-8138.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 11/27/2022]
Abstract
Drug disposition after topical application to the skin has not been fully elucidated, especially after repeated application. We conducted a clinical trial to evaluate the pharmacokinetics in the stratum corneum of healthy adults after repeated application of lanoconazole cream as a model drug. We applied 25 mg of 1% lanoconazole cream onto the pre-specified areas on the participants' back once daily for 5 days. The stratum corneum was sampled twice on each study day using a standardized tape-stripping method, and the amount of lanoconazole contained in the samples was quantified using the tandem mass spectrometry method. The obtained data were used to evaluate lanoconazole pharmacokinetics in the stratum corneum. The amount of lanoconazole in the stratum corneum after once daily repeated administration reached a steady state on day 3, and it was eliminated from the stratum corneum with a half-life of approximately 11 h after discontinuing application.
Collapse
Affiliation(s)
- Hiromitsu Imai
- Clinical Pharmacology Center, Oita University Hospital, Oita, Japan.,Department of Medical Ethics, Faculty of Medicine, Oita University, Oita, Japan
| | - Satoru Hashimoto
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Oita, Japan
| | - Ryo Ninomiya
- Department of Anatomy, Faculty of Medicine, Oita University, Oita, Japan
| | - Jingna Luo
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Oita, Japan
| | - Hirokazu Wakuda
- Clinical Pharmacology Center, Oita University Hospital, Oita, Japan
| | - Naoyuki Otani
- Clinical Pharmacology Center, Oita University Hospital, Oita, Japan.,Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Oita, Japan
| | - Genta Inoue
- Pharmaceutical Development Laboratory, Kyoto R&D Center, Maruho Co., Ltd., Osaka, Japan
| | - Hiroaki Amagishi
- Pharmaceutical Development Laboratory, Kyoto R&D Center, Maruho Co., Ltd., Osaka, Japan
| | - Naoto Uemura
- Clinical Pharmacology Center, Oita University Hospital, Oita, Japan.,Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
6
|
Li G, Zhang P, Sun W, Ren C, Wang L. Bridging-BPs: a novel approach to predict potential drug-target interactions based on a bridging heterogeneous graph and BPs2vec. Brief Bioinform 2022; 23:6509044. [PMID: 35037024 DOI: 10.1093/bib/bbab557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 12/05/2021] [Indexed: 11/12/2022] Open
Abstract
Predicting drug-target interactions (DTIs) is a convenient strategy for drug discovery. Although various computational methods have been put forward in recent years, DTIs prediction is still a challenging task. In this paper, based on indirect prior information (we term them as mediators), we proposed a new model, called Bridging-BPs (bridging paths), for DTIs prediction. Specifically, we regarded linkage process between mediators and DTs (drugs and proteins) as 'bridging' and source (drug)-mediators-destination (protein) as bridging paths. By integrating various bridging paths, we constructed a bridging heterogeneous graph for DTIs. After that, an improved graph-embedding algorithm-BPs2vec-was designed to capture deep topological features underlying the bridging graph, thereby obtaining the low-dimensional node vector representations. Then, the vector representations were fed into a Random Forest classifier to train and score the probability, outputting the final classification results for potential DTIs. Under 5-fold cross validation, our method obtained AUPR of 88.97% and AUC of 88.63%, suggesting that Bridging-BPs could effectively mine the link relationships hidden in indirect prior information and it significantly improved the accuracy and robustness of DTIs prediction without direct prior information. Finally, we confirmed the practical prediction ability of Bridging-BPs by case studies.
Collapse
Affiliation(s)
- Guodong Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weicheng Sun
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengjuan Ren
- School of Computer Software Convergence Engineering, Kunsan National University, Kunsan, 54150, Korea
| | - Lei Wang
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Science, Nanning, 530007, China
| |
Collapse
|
7
|
Jala A, Ponneganti S, Vishnubhatla DS, Bhuvanam G, Mekala PR, Varghese B, Radhakrishnanand P, Adela R, Murty US, Borkar RM. Transporter-mediated drug-drug interactions: advancement in models, analytical tools, and regulatory perspective. Drug Metab Rev 2021; 53:285-320. [PMID: 33980079 DOI: 10.1080/03602532.2021.1928687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
Drug-drug interactions mediated by transporters are a serious clinical concern hence a tremendous amount of work has been done on the characterization of the transporter-mediated proteins in humans and animals. The underlying mechanism for the transporter-mediated drug-drug interaction is the induction or inhibition of the transporter which is involved in the cellular uptake and efflux of drugs. Transporter of the brain, liver, kidney, and intestine are major determinants that alter the absorption, distribution, metabolism, excretion profile of drugs, and considerably influence the pharmacokinetic profile of drugs. As a consequence, transporter proteins may affect the therapeutic activity and safety of drugs. However, mounting evidence suggests that many drugs change the activity and/or expression of the transporter protein. Accordingly, evaluation of drug interaction during the drug development process is an integral part of risk assessment and regulatory requirements. Therefore, this review will highlight the clinical significance of the transporter, their role in disease, possible cause underlying the drug-drug interactions using analytical tools, and update on the regulatory requirement. The recent in-silico approaches which emphasize the advancement in the discovery of drug-drug interactions are also highlighted in this review. Besides, we discuss several endogenous biomarkers that have shown to act as substrates for many transporters, which could be potent determinants to find the drug-drug interactions mediated by transporters. Transporter-mediated drug-drug interactions are taken into consideration in the drug approval process therefore we also provided the extrapolated decision trees from in-vitro to in-vivo, which may trigger the follow-up to clinical studies.
Collapse
Affiliation(s)
- Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Srikanth Ponneganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Devi Swetha Vishnubhatla
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Gayathri Bhuvanam
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Prithvi Raju Mekala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Pullapanthula Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | | | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| |
Collapse
|
8
|
Safety Testing of Cosmetic Products: Overview of Established Methods and New Approach Methodologies (NAMs). COSMETICS 2021. [DOI: 10.3390/cosmetics8020050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cosmetic products need to have a proven efficacy combined with a comprehensive toxicological assessment. Before the current Cosmetic regulation N°1223/2009, the 7th Amendment to the European Cosmetics Directive has banned animal testing for cosmetic products and for cosmetic ingredients in 2004 and 2009, respectively. An increasing number of alternatives to animal testing has been developed and validated for safety and efficacy testing of cosmetic products and cosmetic ingredients. For example, 2D cell culture models derived from human skin can be used to evaluate anti-inflammatory properties, or to predict skin sensitization potential; 3D human skin equivalent models are used to evaluate skin irritation potential; and excised human skin is used as the gold standard for the evaluation of dermal absorption. The aim of this manuscript is to give an overview of the main in vitro and ex vivo alternative models used in the safety testing of cosmetic products with a focus on regulatory requirements, genotoxicity potential, skin sensitization potential, skin and eye irritation, endocrine properties, and dermal absorption. Advantages and limitations of each model in safety testing of cosmetic products are discussed and novel technologies capable of addressing these limitations are presented.
Collapse
|
9
|
Nielsen MMK, Aryal E, Safari E, Mojsoska B, Jenssen H, Prabhala BK. Current State of SLC and ABC Transporters in the Skin and Their Relation to Sweat Metabolites and Skin Diseases. Proteomes 2021; 9:proteomes9020023. [PMID: 34065737 PMCID: PMC8163169 DOI: 10.3390/proteomes9020023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023] Open
Abstract
With a relatively large surface area (2 m2) and 15% of total body mass, the skin forms the largest organ of the human body. The main functions of the skin include regulation of body temperature by insulation or sweating, regulation of the nervous system, regulation of water content, and protection against external injury. To perform these critical functions, the skin encodes genes for transporters responsible for the cellular trafficking of essential nutrients and metabolites to maintain cellular hemostasis. However, the knowledge on the expression, regulation, and function of these transporters is very limited and needs more work to elucidate how these transporters play a role both in disease progression and in healing. Furthermore, SLC and ABC transporters are understudied, and even less studied in skin. There are sparse reports on relation between transporters in skin and sweat metabolites. This mini review focuses on the current state of SLC and ABC transporters in the skin and their relation to sweat metabolites and skin diseases.
Collapse
Affiliation(s)
- Marcus M. K. Nielsen
- Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.M.K.N.); (E.A.)
| | - Eva Aryal
- Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.M.K.N.); (E.A.)
| | - Elnaz Safari
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran;
| | - Biljana Mojsoska
- Institute of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark; (B.M.); (H.J.)
| | - Håvard Jenssen
- Institute of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark; (B.M.); (H.J.)
| | - Bala Krishna Prabhala
- Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.M.K.N.); (E.A.)
- Correspondence:
| |
Collapse
|
10
|
Couto N, Newton JRA, Russo C, Karunakaran E, Achour B, Al-Majdoub ZM, Sidaway J, Rostami-Hodjegan A, Clench MR, Barber J. Label-Free Quantitative Proteomics and Substrate-Based Mass Spectrometry Imaging of Xenobiotic Metabolizing Enzymes in Ex Vivo Human Skin and a Human Living Skin Equivalent Model. Drug Metab Dispos 2021; 49:39-52. [PMID: 33139459 DOI: 10.1124/dmd.120.000168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/08/2020] [Indexed: 01/15/2023] Open
Abstract
We report for the first time label-free quantification of xenobiotic metabolizing enzymes (XME), transporters, redox enzymes, proteases, and nucleases in six human skin explants and a three-dimensional living skin equivalent model from LabSkin. We aimed to evaluate the suitability of LabSkin as an alternative to animal testing for the development of topical formulations. More than 2000 proteins were identified and quantified from total cellular protein. Alcohol dehydrogenase 1C, the most abundant phase I XME in human skin, and glutathione S-transferase pi 1, the most abundant phase II XME in human skin, were present in similar abundance in LabSkin. Several esterases were quantified and esterase activity was confirmed in LabSkin using substrate-based mass spectrometry imaging. No cytochrome P450 (P450) activity was observed for the substrates tested, in agreement with the proteomics data, where the cognate P450s were absent in both human skin and LabSkin. Label-free protein quantification allowed insights into other related processes such as redox homeostasis and proteolysis. For example, the most abundant antioxidant enzymes were thioredoxin and peroxiredoxin-1. This systematic determination of functional equivalence between human skin and LabSkin is a key step toward the construction of a representative human in vitro skin model, which can be used as an alternative to current animal-based tests for chemical safety and for predicting dosage of topically administered drugs. SIGNIFICANCE STATEMENT: The use of label-free quantitative mass spectrometry to elucidate the abundance of xenobiotic metabolizing enzymes, transporters, redox enzymes, proteases, and nucleases in human skin enhance our understanding of the skin physiology and biotransformation of topical drugs and cosmetics. This will help to develop mathematical models to predict drug metabolism in human skin and to develop more robust in vitro engineered human skin tissue as alternatives to animal testing.
Collapse
Affiliation(s)
- Narciso Couto
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Jillian R A Newton
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Cristina Russo
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Brahim Achour
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Zubida M Al-Majdoub
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - James Sidaway
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Amin Rostami-Hodjegan
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Malcolm R Clench
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Jill Barber
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| |
Collapse
|
11
|
Fasolato C, Giantulli S, Capocefalo A, Toumia Y, Notariello D, Mazzarda F, Silvestri I, Postorino P, Domenici F. Antifolate SERS-active nanovectors: quantitative drug nanostructuring and selective cell targeting for effective theranostics. NANOSCALE 2019; 11:15224-15233. [PMID: 31385577 DOI: 10.1039/c9nr01075k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the frontiers of nanomedicine is the rational design of theranostic nanovectors. These are nanosized materials combining diagnostic and therapeutic capabilities, i.e. capable of tracking cancer cells and tissues in complex environments, and of selectively acting against them. We herein report on the preparation and application of antifolate plasmonic nanovectors, made of functionalized gold nanoparticles conjugated with the folic acid competitors aminopterin and methotrexate. Due to the overexpression of folate binding proteins on many types of cancer cells, these nanosystems can be exploited for selective cancer cell targeting. The strong surface enhanced Raman scattering (SERS) signature of these nanovectors acts as a diagnostic tool, not only for tracing their presence in biological samples, but also, through a careful spectral analysis, to precisely quantify the amount of drug loaded on a single nanoparticle, and therefore delivered to the cells. Meanwhile, the therapeutic action is implemented based on the strong toxicity of antifolate drugs. Remarkably, supplying the drug in the nanostructured form, rather than as a free molecule, enhances its specific toxicity. The selectivity of the antifolate nanovectors can be optimized by the design of a hybrid folate/antifolate coloaded nanovector for the specific targeting of folate receptor α, which is overexpressed on numerous cancer cell types.
Collapse
Affiliation(s)
- Claudia Fasolato
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Clerbaux LA, Paini A, Lumen A, Osman-Ponchet H, Worth AP, Fardel O. Membrane transporter data to support kinetically-informed chemical risk assessment using non-animal methods: Scientific and regulatory perspectives. ENVIRONMENT INTERNATIONAL 2019; 126:659-671. [PMID: 30856453 PMCID: PMC6441651 DOI: 10.1016/j.envint.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/10/2019] [Accepted: 03/01/2019] [Indexed: 06/01/2023]
Abstract
Humans are continuously exposed to low levels of thousands of industrial chemicals, most of which are poorly characterised in terms of their potential toxicity. The new paradigm in chemical risk assessment (CRA) aims to rely on animal-free testing, with kinetics being a key determinant of toxicity when moving from traditional animal studies to integrated in vitro-in silico approaches. In a kinetically informed CRA, membrane transporters, which have been intensively studied during drug development, are an essential piece of information. However, how existing knowledge on transporters gained in the drug field can be applied to CRA is not yet fully understood. This review outlines the opportunities, challenges and existing tools for investigating chemical-transporter interactions in kinetically informed CRA without animal studies. Various environmental chemicals acting as substrates, inhibitors or modulators of transporter activity or expression have been shown to impact TK, just as drugs do. However, because pollutant concentrations are often lower in humans than drugs and because exposure levels and internal chemical doses are not usually known in contrast to drugs, new approaches are required to translate transporter data and reasoning from the drug sector to CRA. Here, the generation of in vitro chemical-transporter interaction data and the development of transporter databases and classification systems trained on chemical datasets (and not only drugs) are proposed. Furtheremore, improving the use of human biomonitoring data to evaluate the in vitro-in silico transporter-related predicted values and developing means to assess uncertainties could also lead to increase confidence of scientists and regulators in animal-free CRA. Finally, a systematic characterisation of the transportome (quantitative monitoring of transporter abundance, activity and maintenance over time) would reinforce confidence in the use of experimental transporter/barrier systems as well as in established cell-based toxicological assays currently used for CRA.
Collapse
Affiliation(s)
| | - Alicia Paini
- European Commission, Joint Research Centre, Ispra, Italy.
| | - Annie Lumen
- National Center for Toxicological Research, US Food and Drug Administration (FDA), Jefferson, AR, USA
| | | | - Andrew P Worth
- European Commission, Joint Research Centre, Ispra, Italy
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environment et travail), UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
13
|
Seo EJ, Klauck SM, Efferth T, Panossian A. Adaptogens in chemobrain (Part I): Plant extracts attenuate cancer chemotherapy-induced cognitive impairment - Transcriptome-wide microarray profiles of neuroglia cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:80-91. [PMID: 30668446 DOI: 10.1016/j.phymed.2018.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer chemotherapy-induced cognitive impairments are presumably associated with undesirable effects of chemotherapy on physiological functions of brain cells. Adaptogens are natural compounds or plant extracts increasing an organism's adaptability and survival in stress. They exhibited neuroprotective effects and increased cognitive functions in clinical studies in human beings. HYPOTHESIS We hypothesized that selected adaptogenic plant extracts attenuate or prevent cancer chemotherapy-induced cognitive impairments. AIM We assessed the effects of selected adaptogenic herbal extracts on FEC (fixed combination 5-fluorouracil, epirubicin and cyclophosphamide) induced changes in transcriptome-wide RNA microarray profiles of neuroglia cells. The aim of the study was to predict potential effects of andrographolide, Andrographis herb, Eleutherococcus root genuine extracts, their fixed combination (AE) and the combination of Rhodiola roots, Schisandra berries and Eleutherococcus roots (RSE) on cellular and physiological, mostly cognitive functions. METHODS Gene expression profiling was performed by transcriptome-wide mRNA microarray in the human T98G neuroglia cells after treatment with adaptogens. Interactive pathways downstream analysis was performed with data sets of significantly up- or down-regulated genes and predicted effects on cellular functions and diseases were identified by Ingenuity IPA database software. RESULTS FEC deregulated 67 genes involved in decrease of neuronal development, 37 genes involved in development of the sensory system, 12 genes in extension of axons, and 3 genes in migration of neurons. Co-incubation with Andrographis paniculata (AP) suppressed FEC-induced deregulation of a large number of genes involved in predicted activation of neuronal death and inhibition of neurogenesis, and 16 genes related to inhibition of several functions in the nervous system. Co-incubation with AE suppressed FEC-induced deregulation of a number of genes involved in predicted inhibition of axon extension, migration of T98G neuroglia cells, conduction of nerves and other genes related to regulations of some other functions in the nervous system. CONCLUSION Application of cytostatic drugs in combination with apoptogenic plant extracts induced significant changes in transcriptome-wide mRNA microarray profiles of neuroglial cells. These changes indicate on potential beneficial effects on neuronal functions associated with mild cognitive impairments in cancer chemotherapy.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460 Heidelberg 69120, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| | - Alexander Panossian
- EuroPharma USA Inc., 955 Challenger Dr., Green Bay, Wisconsin 54311 United States; Phytomed AB, Vaxtorp, Sweden.
| |
Collapse
|
14
|
Zhan J, Liang Y, Liu D, Ma X, Li P, Liu C, Liu X, Wang P, Zhou Z. Antibiotics may increase triazine herbicide exposure risk via disturbing gut microbiota. MICROBIOME 2018; 6:224. [PMID: 30545405 PMCID: PMC6291969 DOI: 10.1186/s40168-018-0602-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/25/2018] [Indexed: 05/30/2023]
Abstract
BACKGROUND Antibiotics are commonly used worldwide, and pesticide is a kind of xenobiotic to which humans are frequently exposed. The interactive impact of antibiotics on pesticides has rarely been studied. We aim to investigate the effects of antibiotics on the pesticide exposure risk and whether gut microbiota altered by antibiotics has an influence on pesticide bioavailability. Furthermore, we explored the mechanisms of gut microbiota affecting the fate of pesticides in the host. RESULTS The oral bioavailability of triazine herbicides significantly increased in the rats treated with ampicillin or antibiotic cocktails. The antibiotic-altered gut microbiota directly influenced the increased pesticide bioavailability through downregulating hepatic metabolic enzyme gene expression and upregulating intestinal absorption-related proteins. CONCLUSIONS Antibiotics could increase the pesticide bioavailability and thereby may increase the pesticide exposure risk. The antibiotic-altered gut microbiota that could alter the hepatic metabolic enzyme gene expression and intestinal absorption-related proteome was a critical cause of the increased bioavailability. This study revealed an undiscovered potential health impact of antibiotics and reminded people to consider the co-exposed xenobiotics when taking antibiotics.
Collapse
Affiliation(s)
- Jing Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Yiran Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Xiaoran Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Chang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China.
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
15
|
Takechi T, Hirota T, Sakai T, Maeda N, Kobayashi D, Ieiri I. Interindividual Differences in the Expression of ATP-Binding Cassette and Solute Carrier Family Transporters in Human Skin: DNA Methylation Regulates Transcriptional Activity of the Human ABCC3 Gene. Drug Metab Dispos 2018; 46:628-635. [PMID: 29437875 DOI: 10.1124/dmd.117.079061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/30/2018] [Indexed: 01/01/2023] Open
Abstract
The identification of drug transporters expressed in human skin and interindividual differences in gene expression is important for understanding the role of drug transporters in human skin. In the present study, we evaluated the expression of ATP-binding cassette (ABC) and solute carrier (SLC) transporters using human skin tissues. In skin samples, ABCC3 was expressed at the highest levels, followed by SLCO3A1, SLC22A3, SLC16A7, ABCA2, ABCC1, and SLCO2B1. Among the quantitated transporters, ABCC3 accounted for 20.0% of the total mean transporter mRNA content. The expression of ABCC3 mRNA showed large interindividual variability (9.5-fold). None of the single nucleotide polymorphisms tested (-1767G>A, -1328G>A, -1213C>G, -897delC, -260T>A, and -211C>T) in the promoter region of the ABCC3 gene showed a significant change in ABCC3 mRNA levels. ABCC3 expression levels negatively correlated with the methylation status of the CpG island (CGI) located approximately 10 kilobase pairs upstream of ABCC3 (Rs: -0.323, P < 0.05). The reporter gene assay revealed a significant increase in transcriptional activity in the presence of CGI. ABCC3 mRNA was upregulated in HaCaT cells by the demethylating agent 5-aza-2'-deoxycytidine. Furthermore, the deletion of the region surrounding CGI using the clustered regularly interspaced short palindromic repeat/Cas9 system resulted in significantly lower ABCC3 mRNA levels than those in control clones in HaCaT cells. Herein, we demonstrated large interindividual differences in the expression of drug transporters in human skin. CGI may function as an enhancer of the transcription of ABCC3, and methylation levels in CGI contribute to the variability of ABCC3 expression in human skin.
Collapse
Affiliation(s)
- Tomoki Takechi
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (T.T., T.H., T.S., N.M., I.I.); Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan (T.T.); and Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (D.K.)
| | - Takeshi Hirota
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (T.T., T.H., T.S., N.M., I.I.); Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan (T.T.); and Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (D.K.)
| | - Tatsuya Sakai
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (T.T., T.H., T.S., N.M., I.I.); Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan (T.T.); and Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (D.K.)
| | - Natsumi Maeda
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (T.T., T.H., T.S., N.M., I.I.); Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan (T.T.); and Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (D.K.)
| | - Daisuke Kobayashi
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (T.T., T.H., T.S., N.M., I.I.); Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan (T.T.); and Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (D.K.)
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (T.T., T.H., T.S., N.M., I.I.); Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan (T.T.); and Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (D.K.)
| |
Collapse
|
16
|
Wang J, Papanicolau-Sengos A, Chintala S, Wei L, Liu B, Hu Q, Miles KM, Conroy JM, Glenn ST, Costantini M, Magi-Galluzzi C, Signoretti S, Choueiri T, Gallucci M, Sentinelli S, Fazio VM, Poeta ML, Liu S, Morrison C, Pili R. Collecting duct carcinoma of the kidney is associated with CDKN2A deletion and SLC family gene up-regulation. Oncotarget 2017; 7:29901-15. [PMID: 27144525 PMCID: PMC5058651 DOI: 10.18632/oncotarget.9093] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/16/2016] [Indexed: 01/17/2023] Open
Abstract
The genetic landscape and molecular features of collecting duct carcinoma (CDC) of the kidney remain largely unknown. Herein, we performed whole exome sequencing (WES) and transcriptome sequencing (RNASeq) on 7 CDC samples (CDC1 −7). Among the 7 samples, 4 samples with matched non-tumor tissue were used for copy number analysis by SNP array data. No recurrent somatic SNVs were observed except for MLL, which was found to be mutated (p.V297I and p.F407C) in 2 samples. We identified somatic SNVs in 14 other cancer census genes including: ATM, CREBBP, PRDM1, CBFB, FBXW7, IKZF1, KDR, KRAS, NACA, NF2, NUP98, SS18, TP53, and ZNF521. SNP array data identified a CDKN2A homozygous deletion in 3 samples and SNV analysis showed a non-sense mutation of the CDKN2A gene with unknown somatic status. To estimate the recurrent rate of CDKN2A abnormalities, we performed FISH screening of additional samples and confirmed the frequent loss (62.5%) of CDKN2A expression. Since cisplatin based therapy is the common treatment option for CDC, we investigated the expression of solute carrier (SLC) family transporters and found 45% alteration. In addition, SLC7A11 (cystine transporter, xCT), a cisplatin resistance associated gene, was found to be overexpressed in 4 out of 5 (80%) cases of CDC tumors tested, as compared to matched non-tumor tissue. In summary, our study provides a comprehensive genomic analysis of CDC and identifies potential pathways suitable for targeted therapies.
Collapse
Affiliation(s)
- Jianmin Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Antonios Papanicolau-Sengos
- Department of Pathology and Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sreenivasulu Chintala
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, USA.,Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Lei Wei
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Biao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Qiang Hu
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kiersten Marie Miles
- Department of Pathology and Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jeffrey M Conroy
- Department of Pathology and Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sean T Glenn
- Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Manuela Costantini
- Department of Urology, Regina Elena National Cancer Institute of Rome, Rome, Italy.,Laboratory of Genetic and Clinical Pathology, University Campus BioMedico of Rome, Rome, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Sabina Signoretti
- Department of Pathology and Kidney Cancer Program, Dana Farber, Boston, MA, USA
| | - Toni Choueiri
- Department of Pathology and Kidney Cancer Program, Dana Farber, Boston, MA, USA
| | - Michele Gallucci
- Department of Urology, Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Steno Sentinelli
- Department of Urology, Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Vito M Fazio
- Laboratory of Genetic and Clinical Pathology, University Campus BioMedico of Rome, Rome, Italy
| | - Maria Luana Poeta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Carl Morrison
- Department of Pathology and Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Roberto Pili
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, USA.,Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
17
|
Fujiwara R, Mitsugi R, Uemura A, Itoh T, Tukey RH. Severe Neonatal Hyperbilirubinemia in Crigler-Najjar Syndrome Model Mice Can Be Reversed With Zinc Protoporphyrin. Hepatol Commun 2017; 1:792-802. [PMID: 29399656 PMCID: PMC5678921 DOI: 10.1002/hep4.1082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurotoxic bilirubin is solely conjugated by UDP-glucuronosyltransferase (UGT) 1A1. Due to an inadequate function of UGT1A1, human neonates develop mild to severe physiological hyperbilirubinemia. Accumulation of bilirubin in the brain leads to the onset of irreversible brain damage called kernicterus. Breastfeeding is one of the most significant factors that increase the risk of developing kernicterus in infants. Why does the most natural way of feeding increase the risk of brain damage or even death? This question leads to the hypothesis that breast milk-induced neonatal hyperbilirubinemia might bring certain benefits to the body. One of the barriers to answering the above question is the lack of animal models that display mild to severe neonatal hyperbilirubinemia. A mouse model that develops neonatal hyperbilirubinemia was previously developed by a knockout of the Ugt1 locus. Deletion of Ugt1a1 results in neonatal lethality from bilirubin neurotoxicity. Bilirubin is the end product of heme catabolism in which heme oxygenase-I is largely involved. When zinc protoporphyrin, an inhibitor of heme oxygenase I, was administered to newborn Ugt1-/- mice, serum bilirubin levels dropped dramatically, rescuing the mice from bilirubin-induced neonatal lethality. Zinc protoporphyrin-treated Ugt1-/- mice developed normally as adults capable of reproducing, but their newborns showed even more severe hyperbilirubinemia. Microarray analysis of the hyperbilirubinemic livers indicated that a number of genes associated with nucleotide, transport, and immune response were significantly down-regulated in a serum bilirubin level-dependent manner. Conclusion: Our study provides an opportunity to advance the development of effective therapeutics to effectively and rapidly prevent bilirubin-induced toxicity. Neonatal hyperbilirubinemia has various impacts on the body that could be driven by the antioxidant property of bilirubin.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Biochemistry and Pharmacy, University of Tubingen, Tubingen, Germany.,Department of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Ryo Mitsugi
- Department of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Asuka Uemura
- Department of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Tomoo Itoh
- Department of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, CA
| |
Collapse
|
18
|
Han KM, Ahn SY, Seo H, Yun J, Cha HJ, Shin JS, Kim YH, Kim H, Park HK, Lee YM. Bosentan and Rifampin Interactions Modulate Influx Transporter and Cytochrome P450 Expression and Activities in Primary Human Hepatocytes. Biomol Ther (Seoul) 2017; 25:288-295. [PMID: 28173639 PMCID: PMC5424639 DOI: 10.4062/biomolther.2016.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 11/10/2022] Open
Abstract
The incidence of polypharmacy-which can result in drug-drug interactions-has increased in recent years. Drug-metabolizing enzymes and drug transporters are important polypharmacy modulators. In this study, the effects of bosentan and rifampin on the expression and activities of organic anion-transporting peptide (OATP) and cytochrome P450 (CYP450) 2C9 and CYP3A4 were investigated in vitro. HEK293 cells and primary human hepatocytes overexpressing the target genes were treated with bosentan and various concentrations of rifampin, which decreased the uptake activities of OATP transporters in a dose-dependent manner. In primary human hepatocytes, CYP2C9 and CYP3A4 gene expression and activities decreased upon treatment with 20 μM bosentan+200 μM rifampin. Rifampin also reduced gene expression of OATP1B1, OATP1B3, and OATP2B1 transporter, and inhibited bosentan influx in human hepatocytes at increasing concentrations. These results confirm rifampin- and bosentan-induced interactions between OATP transporters and CYP450.
Collapse
Affiliation(s)
- Kyoung-Moon Han
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Sun-Young Ahn
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hyewon Seo
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Jaesuk Yun
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hye Jin Cha
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Ji-Soon Shin
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Young-Hoon Kim
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hyungsoo Kim
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hye-Kyung Park
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
19
|
Mitsugi R, Sumida K, Fujie Y, Tukey RH, Itoh T, Fujiwara R. Acyl-glucuronide as a Possible Cause of Trovafloxacin-Induced Liver Toxicity: Induction of Chemokine (C-X-C Motif) Ligand 2 by Trovafloxacin Acyl-glucuronide. Biol Pharm Bull 2017; 39:1604-1610. [PMID: 27725437 DOI: 10.1248/bpb.b16-00195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trovafloxacin is an antibiotic that was withdrawn from the market relatively soon after its release due to the risk of hepatotoxicity. Trovafloxacin is mainly metabolized to its acyl-glucuronide by uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) 1A1. In this study, we examined whether the acyl-glucuronide is involved in the development of hepatotoxicity. A UGT1A1-induced cell model was developed and the toxicity of trovafloxacin acyl-glucuronide was evaluated. The UGT1A1-induced cell model was developed by treating HepG2 cells with chrysin for 48 h. Chemokine (C-X-C motif) ligand 2, a cytokine involved in drug-induced liver injury, was uniquely induced by trovafloxacin in the UGT1A1-induced HepG2 cells. Induction of UGT1A1 resulted in a decrease in cell viability. An in vivo animal study further demonstrated the importance of UGT1A1 in the trovafloxacin-induced liver toxicity. Although the complete mechanism of trovafloxacin-induced liver injury is still unknown, trovafloxacin acyl-glucuronide can be involved in the development of toxic reactions in vitro and in vivo.
Collapse
Affiliation(s)
- Ryo Mitsugi
- Department of Pharmaceutics, School of Pharmacy, Kitasato University
| | | | | | | | | | | |
Collapse
|
20
|
Knudsen GA, Hughes MF, Sanders JM, Hall SM, Birnbaum LS. Estimation of human percutaneous bioavailability for two novel brominated flame retardants, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP). Toxicol Appl Pharmacol 2016; 311:117-127. [PMID: 27732871 DOI: 10.1016/j.taap.2016.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 01/07/2023]
Abstract
2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) are novel brominated flame retardants used in consumer products. A parallelogram approach was used to predict human dermal absorption and flux for EH-TBB and BEH-TEBP. [14C]-EH-TBB or [14C]-BEH-TEBP was applied to human or rat skin at 100nmol/cm2 using a flow-through system. Intact rats received analogous dermal doses. Treated skin was washed and tape-stripped to remove "unabsorbed" [14C]-radioactivity after continuous exposure (24h). "Absorbed" was quantified using dermally retained [14C]-radioactivity; "penetrated" was calculated based on [14C]-radioactivity in media (in vitro) or excreta+tissues (in vivo). Human skin absorbed EH-TBB (24±1%) while 0.2±0.1% penetrated skin. Rat skin absorbed more (51±10%) and was more permeable (2±0.5%) to EH-TBB in vitro; maximal EH-TBB flux was 11±7 and 102±24pmol-eq/cm2/h for human and rat skin, respectively. In vivo, 27±5% was absorbed and 13% reached systemic circulation after 24h (maximum flux was 464±65pmol-eq/cm2/h). BEH-TEBP in vitro penetrance was minimal (<0.01%) for rat or human skin. BEH-TEBP absorption was 12±11% for human skin and 41±3% for rat skin. In vivo, total absorption was 27±9%; 1.2% reached systemic circulation. In vitro maximal BEH-TEBP flux was 0.3±0.2 and 1±0.3pmol-eq/cm2/h for human and rat skin; in vivo maximum flux for rat skin was 16±7pmol-eq/cm2/h. EH-TBB was metabolized in rat and human skin to tetrabromobenzoic acid. BEH-TEBP-derived [14C]-radioactivity in the perfusion media could not be characterized. <1% of the dose of EH-TBB and BEH-TEHP is estimated to reach the systemic circulation following human dermal exposure under the conditions tested. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE 2-Ethylhexyl 2,3,4,5-tetrabromobenzoate (PubChem CID: 71316600; CAS No. 183658-27-7 FW: 549.92g/mol logPest: 7.73-8.75 (12)) Abdallah et al., 2015a. Other published abbreviations for 2-ethylhexyl-2,3,4,5-tetrabromobenzoate are TBB EHTeBB or EHTBB Abdallah and Harrad, 2011. bis(2-ethylhexyl) tetrabromophthalate (PubChem CID: 117291; CAS No. 26040-51-7 FW: 706.14g/mol logPest: 9.48-11.95 (12)). Other published abbreviations for bis(2-ethylhexyl)tetrabromophthalate are TeBrDEPH TBPH or BEHTBP.
Collapse
Affiliation(s)
- Gabriel A Knudsen
- NCI Laboratory of Toxicology and Toxicokinetics, 111 T W Alexander Dr., Research Triangle Park, NC, USA.
| | - Michael F Hughes
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - J Michael Sanders
- NCI Laboratory of Toxicology and Toxicokinetics, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| | - Samantha M Hall
- NCI Laboratory of Toxicology and Toxicokinetics, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| | - Linda S Birnbaum
- NCI Laboratory of Toxicology and Toxicokinetics, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| |
Collapse
|
21
|
Fasolato C, Giantulli S, Silvestri I, Mazzarda F, Toumia Y, Ripanti F, Mura F, Luongo F, Costantini F, Bordi F, Postorino P, Domenici F. Folate-based single cell screening using surface enhanced Raman microimaging. NANOSCALE 2016; 8:17304-17313. [PMID: 27714135 DOI: 10.1039/c6nr05057c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recent progress in nanotechnology and its application to biomedical settings have generated great advantages in dealing with early cancer diagnosis. The identification of the specific properties of cancer cells, such as the expression of particular plasma membrane molecular receptors, has become crucial in revealing the presence and in assessing the stage of development of the disease. Here we report a single cell screening approach based on Surface Enhanced Raman Scattering (SERS) microimaging. We fabricated a SERS-labelled nanovector based on the biofunctionalization of gold nanoparticles with folic acid. After treating the cells with the nanovector, we were able to distinguish three different cell populations from different cell lines (cancer HeLa and PC-3, and normal HaCaT lines), suitably chosen for their different expressions of folate binding proteins. The nanovector, indeed, binds much more efficiently on cancer cell lines than on normal ones, resulting in a higher SERS signal measured on cancer cells. These results pave the way for applications in single cell diagnostics and, potentially, in theranostics.
Collapse
Affiliation(s)
- C Fasolato
- Dipartimento di Fisica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy. and Center for Life Nanoscience, Istituto Italiano di Tecnologia, V.le Regina Elena 291, Rome, Italy
| | - S Giantulli
- Dipartimento di Medicina Molecolare, Università Sapienza, P.le Aldo Moro 5, Rome, Italy
| | - I Silvestri
- Dipartimento di Medicina Molecolare, Università Sapienza, P.le Aldo Moro 5, Rome, Italy
| | - F Mazzarda
- Dipartimento di Fisica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy.
| | - Y Toumia
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| | - F Ripanti
- Dipartimento di Fisica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy.
| | - F Mura
- Dipartimento di Chimica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy
| | - F Luongo
- Dipartimento di Fisica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy.
| | - F Costantini
- Dipartimento di Chimica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy
| | - F Bordi
- Dipartimento di Fisica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy. and CNR-ISC UOS Roma, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | - P Postorino
- Dipartimento di Fisica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy.
| | - F Domenici
- Dipartimento di Fisica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy. and Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| |
Collapse
|
22
|
Knudsen GA, Hughes MF, McIntosh KL, Sanders JM, Birnbaum LS. Estimation of tetrabromobisphenol A (TBBPA) percutaneous uptake in humans using the parallelogram method. Toxicol Appl Pharmacol 2015; 289:323-9. [PMID: 26387765 DOI: 10.1016/j.taap.2015.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022]
Abstract
Tetrabromobisphenol A (TBBPA) is currently the world's highest production volume brominated flame retardant. Humans are frequently exposed to TBBPA by the dermal route. In the present study, a parallelogram approach was used to make predictions of internal dose in exposed humans. Human and rat skin samples received 100 nmol of TBBPA/cm(2) skin and absorption and penetrance were determined using a flow-through in vitro system. TBBPA-derived [(14)C]-radioactivity was determined at 6h intervals in the media and at 24h post-dosing in the skin. The human skin and media contained an average of 3.4% and 0.2% of the total dose at the terminal time point, respectively, while the rat skin and media contained 9.3% and 3.5%, respectively. In the intact rat, 14% of a dermally-administered dose of ~100 nmol/cm(2) remained in the skin at the dosing site, with an additional 8% reaching systemic circulation by 24h post-dosing. Relative absorption and penetrance were less (10% total) at 24h following dermal administration of a ten-fold higher dose (~1000 nmol/cm(2)) to rats. However, by 72 h, 70% of this dose was either absorbed into the dosing-site skin or had reached systemic circulation. It is clear from these results that TBBPA can be absorbed by the skin and dermal contact with TBBPA may represent a small but important route of exposure. Together, these in vitro data in human and rat skin and in vivo data from rats may be used to predict TBBPA absorption in humans following dermal exposure. Based on this parallelogram calculation, up to 6% of dermally applied TBBPA may be bioavailable to humans exposed to TBBPA.
Collapse
Affiliation(s)
- Gabriel A Knudsen
- NCI at NIEHS, 111 T W Alexander Dr., Research Triangle Park, NC, USA.
| | - Michael F Hughes
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - J Michael Sanders
- NCI at NIEHS, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| | - Linda S Birnbaum
- NCI at NIEHS, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| |
Collapse
|