1
|
Rademakers T, Sthijns MMJPE, Paulino da Silva Filho O, Joris V, Oosterveer J, Lam TW, van Doornmalen E, van Helden S, LaPointe VLS. Identification of Compounds Protecting Pancreatic Islets against Oxidative Stress using a 3D Pseudoislet Screening Platform. Adv Biol (Weinh) 2023; 7:e2300264. [PMID: 37566766 DOI: 10.1002/adbi.202300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Oxidative stress leads to a lower success rate of clinical islet transplantation. Here, FDA-approved compounds are screened for their potential to decrease oxidative stress and to protect or enhance pancreatic islet viability and function. Studies are performed on in vitro "pseudoislet" spheroids, which are pre-incubated with 1280 different compounds and subjected to oxidative stress. Cell viability and oxidative stress levels are determined using a high-throughput fluorescence microscopy pipeline. Initial screening on cell viability results in 59 candidates. The top ten candidates are subsequently screened for their potential to decrease induced oxidative stress, and eight compounds efficient reduction of induced oxidative stress in both alpha and beta cells by 25-50%. After further characterization, the compound sulfisoxazole is found to be the most capable of reducing oxidative stress, also at short pre-incubation times, which is validated in primary human islets, where low oxidative stress levels and islet function are maintained. This study shows an effective screening strategy with 3D cell aggregates based on cell viability and oxidative stress, which leads to the discovery of several compounds with antioxidant capacity. The top candidate, sulfisoxazole is effective after a 30 min pre-incubation, maintains baseline islet function, and may help alleviate oxidative stress in pancreatic islets.
Collapse
Affiliation(s)
- Timo Rademakers
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Mireille M J P E Sthijns
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
- Food Innovation and Health, Department of Human Biology, Maastricht University, Venlo, 5911 BV, the Netherlands
| | - Omar Paulino da Silva Filho
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Virginie Joris
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Jolien Oosterveer
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Tsang Wai Lam
- Pivot Park Screening Centre (PPSC), Oss, 5349 AB, the Netherlands
| | | | | | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| |
Collapse
|
2
|
Tabatabaie F, Franich R, Feltis B, Geso M. Oxidative Damage to Mitochondria Enhanced by Ionising Radiation and Gold Nanoparticles in Cancer Cells. Int J Mol Sci 2022; 23:ijms23136887. [PMID: 35805905 PMCID: PMC9266628 DOI: 10.3390/ijms23136887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 01/19/2023] Open
Abstract
Gold nanoparticles (AuNP) can increase the efficacy of radiation therapy by sensitising tumor cells to radiation damage. When used in combination with radiation, AuNPs enhance the rate of cell killing; hence, they may be of great value in radiotherapy. This study assessed the effects of radiation and AuNPs on mitochondrial reactive oxygen species (ROS) generation in cancer cells as an adjunct therapeutic target in addition to the DNA of the cell. Mitochondria are considered one of the primary sources of cellular ROS. High levels of ROS can result in an intracellular state of oxidative stress, leading to permanent cell damage. In this study, human melanoma and prostate cancer cell lines, with and without AuNPs, were irradiated with 6-Megavolt X-rays at doses of 0–8 Gy. Indicators of mitochondrial stress were quantified using two techniques, and were found to be significantly increased by the inclusion of AuNPs in both cell lines. Radiobiological damage to mitochondria was quantified via increased ROS activity. The ROS production by mitochondria in cells was enhanced by the inclusion of AuNPs, peaking at ~4 Gy and then decreasing at higher doses. This increased mitochondrial stress may lead to more effectively kill of AuNP-treated cells, further enhancing the applicability of functionally-guided nanoparticles.
Collapse
Affiliation(s)
- Farnaz Tabatabaie
- School of Sciences, RMIT University, Melbourne, VIC 3000, Australia;
| | - Rick Franich
- School of Sciences, RMIT University, Melbourne, VIC 3000, Australia;
- Correspondence: (R.F.); (M.G.); Tel.: +61-401-730-320 (R.F.); +61-3-9925-7991 (M.G.)
| | - Bryce Feltis
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| | - Moshi Geso
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
- Correspondence: (R.F.); (M.G.); Tel.: +61-401-730-320 (R.F.); +61-3-9925-7991 (M.G.)
| |
Collapse
|
3
|
Maglioni S, Schiavi A, Melcher M, Brinkmann V, Luo Z, Laromaine A, Raimundo N, Meyer JN, Distelmaier F, Ventura N. Neuroligin-mediated neurodevelopmental defects are induced by mitochondrial dysfunction and prevented by lutein in C. elegans. Nat Commun 2022; 13:2620. [PMID: 35551180 PMCID: PMC9098500 DOI: 10.1038/s41467-022-29972-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/09/2022] [Indexed: 12/02/2022] Open
Abstract
Complex-I-deficiency represents the most frequent pathogenetic cause of human mitochondriopathies. Therapeutic options for these neurodevelopmental life-threating disorders do not exist, partly due to the scarcity of appropriate model systems to study them. Caenorhabditis elegans is a genetically tractable model organism widely used to investigate neuronal pathologies. Here, we generate C. elegans models for mitochondriopathies and show that depletion of complex I subunits recapitulates biochemical, cellular and neurodevelopmental aspects of the human diseases. We exploit two models, nuo-5/NDUFS1- and lpd-5/NDUFS4-depleted animals, for a suppressor screening that identifies lutein for its ability to rescue animals’ neurodevelopmental deficits. We uncover overexpression of synaptic neuroligin as an evolutionarily conserved consequence of mitochondrial dysfunction, which we find to mediate an early cholinergic defect in C. elegans. We show lutein exerts its beneficial effects by restoring neuroligin expression independently from its antioxidant activity, thus pointing to a possible novel pathogenetic target for the human disease. Mitochondrial deficiency causes rare incurable disorders. Here, the authors use C. elegans to study these diseases and find that the natural compound lutein prevents neurodevelopmental deficits, thus pointing to a possible therapeutic target for the human diseases.
Collapse
Affiliation(s)
- Silvia Maglioni
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
| | - Alfonso Schiavi
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany.,Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Marlen Melcher
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Vanessa Brinkmann
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
| | - Zhongrui Luo
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, 17033, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328, USA
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Natascia Ventura
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany. .,Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany.
| |
Collapse
|
4
|
Wang YJ, Paneni F, Stein S, Matter CM. Modulating Sirtuin Biology and Nicotinamide Adenine Diphosphate Metabolism in Cardiovascular Disease-From Bench to Bedside. Front Physiol 2021; 12:755060. [PMID: 34712151 PMCID: PMC8546231 DOI: 10.3389/fphys.2021.755060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022] Open
Abstract
Sirtuins (SIRT1–7) comprise a family of highly conserved deacetylases with distribution in different subcellular compartments. Sirtuins deacetylate target proteins depending on one common substrate, nicotinamide adenine diphosphate (NAD+), thus linking their activities to the status of cellular energy metabolism. Sirtuins had been linked to extending life span and confer beneficial effects in a wide array of immune-metabolic and cardiovascular diseases. SIRT1, SIRT3, and SIRT6 have been shown to provide protective effects in various cardiovascular disease models, by decreasing inflammation, improving metabolic profiles or scavenging oxidative stress. Sirtuins may be activated collectively by increasing their co-substrate NAD+. By supplementing NAD+ precursors, NAD+ boosters confer pan-sirtuin activation with protective cardiometabolic effects in the experimental setting: they improve endothelial dysfunction, protect from experimental heart failure, hypertension and decrease progression of liver steatosis. Different precursor molecules were applied ranging from nicotinamide (NAM), nicotinamide mononucleotide (NMN) to nicotinamide riboside (NR). Notably, not all experimental results showed protective effects. Moreover, the results are not as striking in clinical studies as in the controlled experimental setting. Species differences, (lack of) genetic heterogeneity, different metabolic pathways, dosing, administration routes and disease contexts may account for these challenges in clinical translation. At the clinical scale, caloric restriction can reduce the risks of cardiovascular disease and raise NAD+ concentration and sirtuin expression. In addition, antidiabetic drugs such as metformin or SGLT2 inhibitors may confer cardiovascular protection, indirectly via sirtuin activation. Overall, additional mechanistic insight and clinical studies are needed to better understand the beneficial effects of sirtuin activation and NAD+ boosters from bench to bedside.
Collapse
Affiliation(s)
- Yu-Jen Wang
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital of Zurich, Zurich, Switzerland
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Naia L, Pinho CM, Dentoni G, Liu J, Leal NS, Ferreira DMS, Schreiner B, Filadi R, Fão L, Connolly NMC, Forsell P, Nordvall G, Shimozawa M, Greotti E, Basso E, Theurey P, Gioran A, Joselin A, Arsenian-Henriksson M, Nilsson P, Rego AC, Ruas JL, Park D, Bano D, Pizzo P, Prehn JHM, Ankarcrona M. Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling. BMC Biol 2021; 19:57. [PMID: 33761951 PMCID: PMC7989211 DOI: 10.1186/s12915-021-00979-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. RESULTS Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly, we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans expressing an expanded polyglutamine tract of the huntingtin protein. CONCLUSION We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases.
Collapse
Affiliation(s)
- Luana Naia
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Catarina M Pinho
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Giacomo Dentoni
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jianping Liu
- Department of Medicine-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nuno Santos Leal
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Duarte M S Ferreira
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bernadette Schreiner
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Lígia Fão
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Niamh M C Connolly
- Royal College of Surgeons in Ireland, Department of Physiology & Medical Physics Department, Dublin, Ireland
| | | | | | - Makoto Shimozawa
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Emy Basso
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Pierre Theurey
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Anna Gioran
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Alvin Joselin
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - Per Nilsson
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Institute of Biochemistry, University of Coimbra, Coimbra, Portugal
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - David Park
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Jochen H M Prehn
- Royal College of Surgeons in Ireland, Department of Physiology & Medical Physics Department, Dublin, Ireland
| | - Maria Ankarcrona
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Design and synthesis of nature-inspired chromenopyrroles as potential modulators of mitochondrial metabolism. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Goncalves IL, Tal S, Barki-Harrington L, Sapir A. Conserved statin-mediated activation of the p38-MAPK pathway protects Caenorhabditis elegans from the cholesterol-independent effects of statins. Mol Metab 2020; 39:101003. [PMID: 32339771 PMCID: PMC7240216 DOI: 10.1016/j.molmet.2020.101003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/12/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Statins are a group of medications that reduce cholesterol synthesis by inhibiting the activity of HMG-CoA reductase, a key enzyme in the mevalonate pathway. The clinical use of statins to lower excess cholesterol levels has revolutionized the cardiovascular field and increased the survival of millions, but some patients have adverse side effects. A growing body of data suggests that some of the beneficial and adverse effects of statins, including their anti-inflammatory, anti-tumorigenic, and myopathic activities, are cholesterol-independent. However, the underlying mechanisms for these effects of statins are not well defined. METHODS Because Caenorhabditis elegans (C. elegans) lacks the cholesterol synthesis branch of the mevalonate pathway, this organism is a powerful system to unveil the cholesterol-independent effects of statins. We used genetic and biochemical approaches in C. elegans and cultured macrophage-derived murine cells to study the cellular response to statins. RESULTS We found that statins activate a conserved p38-MAPK (p38) cascade and that the protein geranylgeranylation branch of the mevalonate pathway links the effect of statins to the activation of this p38 pathway. We propose that the blockade of geranylgeranylation impairs the function of specific small GTPases we identified as upstream regulators of the p38 pathway. Statin-mediated p38 activation in C. elegans results in the regulation of programs of innate immunity, stress, and metabolism. In agreement with this regulation, knockout of the p38 pathway results in the hypersensitivity of C. elegans to statins. Treating cultured mammalian cells with clinical doses of statins results in the activation of the same p38 pathway, which upregulates the COX-2 protein, a major regulator of innate immunity in mammals. CONCLUSIONS Statins activate an evolutionarily conserved p38 pathway to regulate metabolism and innate immunity. Our results highlight the cytoprotective role of p38 activation under statin treatment in vivo and propose that this activation underlies many of the critical cholesterol-independent effects of statins.
Collapse
Affiliation(s)
- Irina Langier Goncalves
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, 36006 Israel
| | - Sharon Tal
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Liza Barki-Harrington
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Amir Sapir
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, 36006 Israel.
| |
Collapse
|
8
|
Acetoacetate enhances oxidative metabolism and response to toxicants of cultured kidney cells. Toxicol Lett 2020; 323:19-24. [DOI: 10.1016/j.toxlet.2020.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 01/16/2023]
|
9
|
Ibhazehiebo K, Rho JM, Kurrasch DM. Metabolism-based drug discovery in zebrafish: An emerging strategy to uncover new anti-seizure therapies. Neuropharmacology 2020; 167:107988. [PMID: 32070912 DOI: 10.1016/j.neuropharm.2020.107988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
As one of the most common neurological disorders, epilepsy can occur throughout the lifespan and from a multiplicity of causes, including genetic mutations, inflammation, neurotrauma, or brain malformations. Although pharmacological agents are the mainstay of treatment for seizure control, an unyielding 30-40% of patients remain refractory to these medications and continue to experience spontaneous recurrent seizures with attendant life-long cognitive, behavioural, and mental health issues, as well as an increased risk for sudden unexpected death. Despite over eight decades of antiseizure drug (ASD) discovery and the approval of dozens of new medications, the percentage of this refractory population remains virtually unchanged, suggesting that drugs with new and unexpected mechanisms of action are needed. In this brief review, we discuss the need for new animal models of epilepsy, with a particular focus on the advantages and disadvantages of zebrafish. We also outline the evidence that epilepsy is characterized by derangements in mitochondrial function and introduce the rationale and promise of bioenergetics as a functional readout assay to uncover novel ASDs. We also consider limitations of a zebrafish metabolism-based drug screening approach. Our goal is to discuss the opportunities and challenges of further development of mitochondrial screening strategies for the development of novel ASDs. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Kingsley Ibhazehiebo
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jong M Rho
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Canada; Department of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital San Diego, California, USA
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada.
| |
Collapse
|
10
|
Jahn A, Scherer B, Fritz G, Honnen S. Statins Induce a DAF-16/Foxo-dependent Longevity Phenotype via JNK-1 through Mevalonate Depletion in C. elegans. Aging Dis 2020; 11:60-72. [PMID: 32010481 PMCID: PMC6961767 DOI: 10.14336/ad.2019.0416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/16/2019] [Indexed: 01/01/2023] Open
Abstract
Statins belong to the most pre-scribed cholesterol lowering drugs in western countries. Their competitive inhibition of the HMG-CoA reductase causes a reduction in the mevalonate pool, resulting in reduced cholesterol biosynthesis, impaired protein prenylation and glycosylation. Recently, a cohort study showed a decreased mortality rate in humans between age 78-90 going along with statin therapy, which is independent of blood cholesterol levels. As C. elegans harbors the mevalonate pathway, but is cholesterol-auxotroph, it is particularly suitable to study cholesterol-independent effects of statins on aging-associated phenotypes. Here, we show that low doses of lovastatin or a mild HMG-CoA reductase knockdown via hmgr-1(RNAi) in C. elegans substantially attenuate aging pigment accumulation, which is a well-established surrogate marker for biological age. Consistently, for two statins we found dosages, which prolonged the lifespan of C. elegans. Together with an observed reduced fertility, slower developmental timing and thermal stress resistance this complex of outcomes point to the involvement of DAF-16/hFOXO3a, the master regulator of stress resistance and longevity. Accordingly, prolonged low-dose statin exposure leads to an increased expression of jnk-1, a known activator of DAF-16. Moreover, the beneficial effects of statins on aging pigments and lifespan depend on DAF-16 and JNK-1, as shown in epistasis analyses. These effects can be reverted by mevalonate supplementation. In conclusion, we describe a lifespan extension in C. elegans, which is conferred via two well-conserved stress-related factors (JNK-1, DAF-16) and results from mevalonate depletion.
Collapse
Affiliation(s)
- Andreas Jahn
- Heinrich Heine University Dusseldorf, Medical Faculty, Institute of Toxicology, D-40225 Dusseldorf, Germany
| | - Bo Scherer
- Heinrich Heine University Dusseldorf, Medical Faculty, Institute of Toxicology, D-40225 Dusseldorf, Germany
| | - Gerhard Fritz
- Heinrich Heine University Dusseldorf, Medical Faculty, Institute of Toxicology, D-40225 Dusseldorf, Germany
| | - Sebastian Honnen
- Heinrich Heine University Dusseldorf, Medical Faculty, Institute of Toxicology, D-40225 Dusseldorf, Germany
| |
Collapse
|
11
|
Contreras-Baeza Y, Ceballo S, Arce-Molina R, Sandoval PY, Alegría K, Barros LF, San Martín A. MitoToxy assay: A novel cell-based method for the assessment of metabolic toxicity in a multiwell plate format using a lactate FRET nanosensor, Laconic. PLoS One 2019; 14:e0224527. [PMID: 31671132 PMCID: PMC6822764 DOI: 10.1371/journal.pone.0224527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial toxicity is a primary source of pre-clinical drug attrition, black box warning and post-market drug withdrawal. Methods that detect mitochondrial toxicity as early as possible during the drug development process are required. Here we introduce a new method for detecting mitochondrial toxicity based on MDA-MB-231 cells stably expressing the genetically encoded FRET lactate indicator, Laconic. The method takes advantage of the high cytosolic lactate accumulation observed during mitochondrial stress, regardless of the specific toxicity mechanism, explained by compensatory glycolytic activation. Using a standard multi-well plate reader, dose-response curve experiments allowed the sensitivity of the methodology to detect metabolic toxicity induced by classical mitochondrial toxicants. Suitability for high-throughput screening applications was evaluated resulting in a Z’-factor > 0.5 and CV% < 20 inter-assay variability. A pilot screening allowed sensitive detection of commercial drugs that were previously withdrawn from the market due to liver/cardiac toxicity issues, such as camptothecin, ciglitazone, troglitazone, rosiglitazone, and terfenadine, in ten minutes. We envisage that the availability of this technology, based on a fluorescent genetically encoded indicator, will allow direct assessment of mitochondrial metabolism, and will make the early detection of mitochondrial toxicity in the drug development process possible, saving time and resources.
Collapse
Affiliation(s)
| | | | - Robinson Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Universidad Austral de Chile (UACh), Valdivia, Chile
| | | | - Karin Alegría
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | | | | |
Collapse
|
12
|
Srinivasulu V, Schilf P, Ibrahim S, Khanfar MA, Sieburth SM, Omar H, Sebastian A, AlQawasmeh RA, O'Connor MJ, Al-Tel TH. Multidirectional desymmetrization of pluripotent building block en route to diastereoselective synthesis of complex nature-inspired scaffolds. Nat Commun 2018; 9:4989. [PMID: 30478283 PMCID: PMC6255838 DOI: 10.1038/s41467-018-07521-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022] Open
Abstract
Octahydroindolo[2,3-a]quinolizine ring system forms the basic framework comprised of more than 2000 distinct family members of natural products. Despite the potential applications of this privileged substructure in drug discovery, efficient, atom-economic and modular strategies for its assembly, is underdeveloped. Here we show a one-step build/couple/pair strategy that uniquely allows access to diverse octahydroindolo[2,3-a]quinolizine scaffolds with more than three contiguous chiral centers and broad distribution of molecular shapes via desymmetrization of the oxidative-dearomatization products of phenols. The cascade demonstrates excellent diastereoselectivity, and the enantioselectivity exceeded 99% when amino acids are used as chiral reagents. Furthermore, two diastereoselective reactions for the synthesis of oxocanes and piperazinones, is reported. Phenotypic screening of the octahydroindolo[2,3-a]quinolizine library identifies small molecule probes that selectively suppress mitochondrial membrane potential, ATP contents and elevate the ROS contents in hepatoma cells (Hepa1-6) without altering the immunological activation or reprogramming of T- and B-cells, a promising approach to cancer therapy.
Collapse
Affiliation(s)
- Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Paul Schilf
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160 23538, Lübeck, Germany
| | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160 23538, Lübeck, Germany.
| | | | - Scott McN Sieburth
- Department of Chemistry, Temple University, 201 Beury Hall, Philadelphia, PA, 19122, USA
| | - Hany Omar
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- College of Pharmacy, University of Sharjah, P.O. Box, 27272, Sharjah, UAE
- Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | | | | | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
- College of Pharmacy, University of Sharjah, P.O. Box, 27272, Sharjah, UAE.
| |
Collapse
|
13
|
Dahlmans D, Houzelle A, Andreux P, Wang X, Jörgensen JA, Moullan N, Daemen S, Kersten S, Auwerx J, Hoeks J. MicroRNA-382 silencing induces a mitonuclear protein imbalance and activates the mitochondrial unfolded protein response in muscle cells. J Cell Physiol 2018; 234:6601-6610. [PMID: 30417335 PMCID: PMC6344277 DOI: 10.1002/jcp.27401] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
Proper mitochondrial function plays a central role in cellular metabolism. Various diseases as well as aging are associated with diminished mitochondrial function. Previously, we identified 19 miRNAs putatively involved in the regulation of mitochondrial metabolism in skeletal muscle, a highly metabolically active tissue. In the current study, these 19 miRNAs were individually silenced in C2C12 myotubes using antisense oligonucleotides, followed by measurement of the expression of 27 genes known to play a major role in regulating mitochondrial metabolism. Based on the outcomes, we then focused on miR‐382‐5p and identified pathways affected by its silencing using microarrays, investigated protein expression, and studied cellular respiration. Silencing of miRNA‐382‐5p significantly increased the expression of several genes involved in mitochondrial dynamics and biogenesis. Conventional microarray analysis in C2C12 myotubes silenced for miRNA‐382‐5p revealed a collective downregulation of mitochondrial ribosomal proteins and respiratory chain proteins. This effect was accompanied by an imbalance between mitochondrial proteins encoded by the nuclear and mitochondrial DNA (1.35‐fold, p < 0.01) and an induction of HSP60 protein (1.31‐fold,
p < 0.05), indicating activation of the mitochondrial unfolded protein response (mtUPR). Furthermore, silencing of miR‐382‐5p reduced basal oxygen consumption rate by 14% (
p < 0.05) without affecting mitochondrial content, pointing towards a more efficient mitochondrial function as a result of improved mitochondrial quality control. Taken together, silencing of miR‐382‐5p induces a mitonuclear protein imbalance and activates the mtUPR in skeletal muscle, a phenomenon that was previously associated with improved longevity.
Collapse
Affiliation(s)
- Dennis Dahlmans
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Alexandre Houzelle
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Pénélope Andreux
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xu Wang
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johanna A Jörgensen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Norman Moullan
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sabine Daemen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Sander Kersten
- Division of Human Nutrition, Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, The Netherlands
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| |
Collapse
|
14
|
Abstract
Recent decades have seen a rapid increase in reported toxic effects of drugs and pollutants on mitochondria. Researchers have also documented many genetic differences leading to mitochondrial diseases, currently reported to affect ∼1 person in 4,300, creating a large number of potential gene-environment interactions in mitochondrial toxicity. We briefly review this history, and then highlight cutting-edge areas of mitochondrial research including the role of mitochondrial reactive oxygen species in signaling; increased understanding of fundamental biological processes involved in mitochondrial homeostasis (DNA maintenance and mutagenesis, mitochondrial stress response pathways, fusion and fission, autophagy and biogenesis, and exocytosis); systemic effects resulting from mitochondrial stresses in specific cell types; mitochondrial involvement in immune function; the growing evidence of long-term effects of mitochondrial toxicity; mitochondrial-epigenetic cross-talk; and newer approaches to test chemicals for mitochondrial toxicity. We also discuss the potential importance of hormetic effects of mitochondrial stressors. Finally, we comment on future areas of research we consider critical for mitochondrial toxicology, including increased integration of clinical, experimental laboratory, and epidemiological (human and wildlife) studies; improved understanding of biomarkers in the human population; and incorporation of other factors that affect mitochondria, such as diet, exercise, age, and nonchemical stressors.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, North Carolina 27708-0328
| | - Jessica H Hartman
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, North Carolina 27708-0328
| | - Danielle F Mello
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, North Carolina 27708-0328
| |
Collapse
|
15
|
Cornaglia M, Lehnert T, Gijs MAM. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans. LAB ON A CHIP 2017; 17:3736-3759. [PMID: 28840220 DOI: 10.1039/c7lc00509a] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In a typical high-throughput drug screening (HTS) process, up to millions of chemical compounds are applied to cells cultured in well plates, aiming to find molecules that exhibit a robust dose-response, as evidenced for example by a fluorescence signal. In high-content screening (HCS), one goes a step further by linking the tested compounds to phenotypic information, obtained, for instance, from microscopic cell images, thereby creating richer data sets that also require more advanced analysis methods. The nematode Caenorhabditis elegans came into the screening picture due to the wide availability of its mutants and human disease models, its relatively easy culture and short life cycle. Being a whole-organism model, it allows drug testing under physiological conditions at multi-tissue levels and provides additional observable phenotypes with respect to cell models, related, for instance, to development, aging, behavior or motility. Worm-based HTS studies in liquid environments on microwell plates have been demonstrated, while microfluidic devices allowed surpassing the performance of plates by enabling more versatile and accurate assays, precise and dynamic dosing of compounds, and readouts down to single-animal resolution. In this review, we discuss microfluidic devices for C. elegans analysis and related studies, published in the period from 2012 to 2017. After an introduction to the different screening approaches, we first focus on microfluidic systems with potential for screening applications. Various enabling technologies, e.g. electrophysiological on-chip recordings or laser axotomy, have been implemented, as well as techniques for reversible worm immobilization and high-resolution imaging, combined with algorithms for automated experimentation and analysis. Several devices for developmental or behavioral assays, and worm sorting based on different phenotypes, have been proposed too. In a subsequent section, we review the application of microfluidic-based systems for medium- and high-throughput screens, including neurobiology and neurodegeneration studies, aging and developmental assays, toxicity and pathogenesis screens, as well as behavioral and motility assays. A thorough analysis of this work reveals a trend towards microfluidic systems more and more capable of offering high-quality analyses of large worm populations, based on multi-phenotypic and/or longitudinal readouts, with clear potential for their application in larger HTS/HCS contexts.
Collapse
Affiliation(s)
- Matteo Cornaglia
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | | | | |
Collapse
|
16
|
Labbadia J, Brielmann RM, Neto MF, Lin YF, Haynes CM, Morimoto RI. Mitochondrial Stress Restores the Heat Shock Response and Prevents Proteostasis Collapse during Aging. Cell Rep 2017; 21:1481-1494. [PMID: 29117555 PMCID: PMC5726777 DOI: 10.1016/j.celrep.2017.10.038] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/18/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
In Caenorhabditis elegans, the programmed repression of the heat shock response (HSR) accompanies the transition to reproductive maturity, leaving cells vulnerable to environmental stress and protein aggregation with age. To identify the factors driving this event, we performed an unbiased genetic screen for suppressors of stress resistance and identified the mitochondrial electron transport chain (ETC) as a central regulator of the age-related decline of the HSR and cytosolic proteostasis. Mild downregulation of ETC activity, either by genetic modulation or exposure to mitochondria-targeted xenobiotics, maintained the HSR in adulthood by increasing HSF-1 binding and RNA polymerase II recruitment at HSF-1 target genes. This resulted in a robust restoration of cytoplasmic proteostasis and increased vitality later in life, without detrimental effects on fecundity. We propose that low levels of mitochondrial stress regulate cytoplasmic proteostasis and healthspan during aging by coordinating the long-term activity of HSF-1 with conditions preclusive to optimal fitness.
Collapse
Affiliation(s)
- Johnathan Labbadia
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| | - Renee M Brielmann
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Mario F Neto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Yi-Fan Lin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cole M Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
17
|
Nagai H, Satomi T, Abiru A, Miyamoto K, Nagasawa K, Maruyama M, Yamamoto S, Kikuchi K, Fuse H, Noda M, Tsujihata Y. Antihypertrophic Effects of Small Molecules that Maintain Mitochondrial ATP Levels Under Hypoxia. EBioMedicine 2017; 24:147-158. [PMID: 28942281 PMCID: PMC5652136 DOI: 10.1016/j.ebiom.2017.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/23/2022] Open
Abstract
Since impaired mitochondrial ATP production in cardiomyocytes is thought to lead to heart failure, a drug that protects mitochondria and improves ATP production under disease conditions would be an attractive treatment option. In this study, we identified small-molecule drugs, including the anti-parasitic agent, ivermectin, that maintain mitochondrial ATP levels under hypoxia in cardiomyocytes. Mechanistically, transcriptomic analysis and gene silencing experiments revealed that ivermectin increased mitochondrial ATP production by inducing Cox6a2, a subunit of the mitochondrial respiratory chain. Furthermore, ivermectin inhibited the hypertrophic response of human induced pluripotent stem cell-derived cardiomyocytes. Pharmacological inhibition of importin β, one of the targets of ivermectin, exhibited protection against mitochondrial ATP decline and cardiomyocyte hypertrophy. These findings indicate that maintaining mitochondrial ATP under hypoxia may prevent hypertrophy and improve cardiac function, providing therapeutic options for mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hiroaki Nagai
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan.
| | - Tomoko Satomi
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Akiko Abiru
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazumasa Miyamoto
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Koji Nagasawa
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Maruyama
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoshi Yamamoto
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Kuniko Kikuchi
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiromitsu Fuse
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Masakuni Noda
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshiyuki Tsujihata
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
18
|
Gao AW, Uit de Bos J, Sterken MG, Kammenga JE, Smith RL, Houtkooper RH. Forward and reverse genetics approaches to uncover metabolic aging pathways in Caenorhabditis elegans. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2697-2706. [PMID: 28919364 DOI: 10.1016/j.bbadis.2017.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023]
Abstract
The biological mechanisms of aging have been studied in depth and prominent findings in this field promote the development of new therapies for age-associated disorders. Various model organisms are used for research on aging; among these, the nematode Caenorhabditis elegans has been widely used and has provided valuable knowledge in determining the regulatory mechanisms driving the aging process. Many genes involved in lifespan regulation are associated with metabolic pathways and are influenced by genetic and environmental factors. In line with this, C. elegans provides a promising platform to study such gene by environment interactions, in either a reverse or forward genetics approach. In this review, we discuss longevity mechanisms related to metabolic networks that have been discovered in C. elegans. We also highlight the use of wild populations to study the complex genetic basis of natural variation for quantitative traits that mediate longevity.
Collapse
Affiliation(s)
- Arwen W Gao
- Laboratory Genetic Metabolic Diseases, Academic Medical Center of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jelmi Uit de Bos
- Laboratory Genetic Metabolic Diseases, Academic Medical Center of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Reuben L Smith
- Laboratory Genetic Metabolic Diseases, Academic Medical Center of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Dahlmans D, Houzelle A, Andreux P, Jörgensen JA, Wang X, de Windt LJ, Schrauwen P, Auwerx J, Hoeks J. An unbiased silencing screen in muscle cells identifies miR-320a, miR-150, miR-196b, and miR-34c as regulators of skeletal muscle mitochondrial metabolism. Mol Metab 2017; 6:1429-1442. [PMID: 29107290 PMCID: PMC5681243 DOI: 10.1016/j.molmet.2017.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/13/2017] [Accepted: 08/21/2017] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Strategies improving skeletal muscle mitochondrial capacity are commonly paralleled by improvements in (metabolic) health. We and others previously identified microRNAs regulating mitochondrial oxidative capacity, but data in skeletal muscle are limited. Therefore, the present study aimed to identify novel microRNAs regulating skeletal muscle mitochondrial metabolism. METHODS AND RESULTS We conducted an unbiased, hypothesis-free microRNA silencing screen in C2C12 myoblasts, using >700 specific microRNA inhibitors, and investigated a broad panel of mitochondrial markers. After subsequent validation in differentiated C2C12 myotubes, and exclusion of microRNAs without a human homologue or with an adverse effect on mitochondrial metabolism, 19 candidate microRNAs remained. Human clinical relevance of these microRNAs was investigated by measuring their expression in human skeletal muscle of subject groups displaying large variation in skeletal muscle mitochondrial capacity. CONCLUSION The results show that that microRNA-320a, microRNA-196b-3p, microRNA-150-5p, and microRNA-34c-3p are tightly related to in vivo skeletal muscle mitochondrial function in humans and identify these microRNAs as targets for improving mitochondrial metabolism.
Collapse
Affiliation(s)
- Dennis Dahlmans
- Department of Human Biology and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200MD, The Netherlands
| | - Alexandre Houzelle
- Department of Human Biology and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200MD, The Netherlands
| | - Pénélope Andreux
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Johanna A Jörgensen
- Department of Human Biology and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200MD, The Netherlands
| | - Xu Wang
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Leon J de Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6200MD, The Netherlands
| | - Patrick Schrauwen
- Department of Human Biology and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200MD, The Netherlands
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Joris Hoeks
- Department of Human Biology and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200MD, The Netherlands.
| |
Collapse
|
20
|
Fernández-Cárdenas LP, Villanueva-Chimal E, Salinas LS, José-Nuñez C, Tuena de Gómez Puyou M, Navarro RE. Caenorhabditis elegans ATPase inhibitor factor 1 (IF1) MAI-2 preserves the mitochondrial membrane potential (Δψm) and is important to induce germ cell apoptosis. PLoS One 2017; 12:e0181984. [PMID: 28829773 PMCID: PMC5568743 DOI: 10.1371/journal.pone.0181984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/10/2017] [Indexed: 01/08/2023] Open
Abstract
When the electrochemical proton gradient is disrupted in the mitochondria, IF1 (Inhibitor Factor-1) inhibits the reverse hydrolytic activity of the F1Fo-ATP synthase, thereby allowing cells to conserve ATP at the expense of losing the mitochondrial membrane potential (Δψm). The function of IF1 has been studied mainly in different cell lines, but these studies have generated contrasting results, which have not been helpful to understand the real role of this protein in a whole organism. In this work, we studied IF1 function in Caenorhabditis elegans to understand IF1´s role in vivo. C. elegans has two inhibitor proteins of the F1Fo-ATPase, MAI-1 and MAI-2. To determine their protein localization in C. elegans, we generated translational reporters and found that MAI-2 is expressed ubiquitously in the mitochondria; conversely, MAI-1 was found in the cytoplasm and nuclei of certain tissues. By CRISPR/Cas9 genome editing, we generated mai-2 mutant alleles. Here, we showed that mai-2 mutant animals have normal progeny, embryonic development and lifespan. Contrasting with the results previously obtained in cell lines, we found no evident defects in the mitochondrial network, dimer/monomer ATP synthase ratio, ATP concentration or respiration. Our results suggest that some of the roles previously attributed to IF1 in cell lines could not reflect the function of this protein in a whole organism and could be attributed to specific cell lines or methods used to silence, knockout or overexpress this protein. However, we did observe that animals lacking IF1 had an enhanced Δψm and lower physiological germ cell apoptosis. Importantly, we found that mai-2 mutant animals must be under stress to observe the role of IF1. Accordingly, we observed that mai-2 mutant animals were more sensitive to heat shock, oxidative stress and electron transport chain blockade. Furthermore, we observed that IF1 is important to induce germ cell apoptosis under certain types of stress. Here, we propose that MAI-2 might play a role in apoptosis by regulating Δψm. Additionally, we suggest that IF1 function is mainly observed under stress and that, under physiological conditions, this protein does not play an essential role.
Collapse
Affiliation(s)
- L. P. Fernández-Cárdenas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - E. Villanueva-Chimal
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - L. S. Salinas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - C. José-Nuñez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - M. Tuena de Gómez Puyou
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - R. E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
21
|
Preston S, Korhonen PK, Mouchiroud L, Cornaglia M, McGee SL, Young ND, Davis RA, Crawford S, Nowell C, Ansell BRE, Fisher GM, Andrews KT, Chang BCH, Gijs MAM, Sternberg PW, Auwerx J, Baell J, Hofmann A, Jabbar A, Gasser RB. Deguelin exerts potent nematocidal activity
via
the mitochondrial respiratory chain. FASEB J 2017; 31:4515-4532. [DOI: 10.1096/fj.201700288r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/12/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Sarah Preston
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Faculty of Science and TechnologyFederation UniversityBallaratVictoriaAustralia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Laurent Mouchiroud
- Laboratory of Integrative and Systems PhysiologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Matteo Cornaglia
- Laboratory of MicrosystemsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Sean L. McGee
- Metabolic Research UnitMetabolic Reprogramming LaboratorySchool of Medicine, Faculty of Health, Deakin UniversityWaurn PondsVictoriaAustralia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Rohan A. Davis
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Simon Crawford
- School of Biosciences, University of MelbourneParkvilleVictoriaAustralia
| | - Cameron Nowell
- Drug Discovery BiologyMonash University Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Brendan R. E. Ansell
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Gillian M. Fisher
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Katherine T. Andrews
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Bill C. H. Chang
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Yourgene BioscienceTaipeiTaiwan
| | - Martin A. M. Gijs
- Laboratory of MicrosystemsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Paul W. Sternberg
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Johan Auwerx
- Laboratory of Integrative and Systems PhysiologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Jonathan Baell
- Medicinal ChemistryMonash University Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
22
|
Quirós PM, Prado MA, Zamboni N, D'Amico D, Williams RW, Finley D, Gygi SP, Auwerx J. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J Cell Biol 2017; 216:2027-2045. [PMID: 28566324 PMCID: PMC5496626 DOI: 10.1083/jcb.201702058] [Citation(s) in RCA: 560] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial stress activates a mitonuclear response to safeguard and repair mitochondrial function and to adapt cellular metabolism to stress. Using a multiomics approach in mammalian cells treated with four types of mitochondrial stressors, we identify activating transcription factor 4 (ATF4) as the main regulator of the stress response. Surprisingly, canonical mitochondrial unfolded protein response genes mediated by ATF5 are not activated. Instead, ATF4 activates the expression of cytoprotective genes, which reprogram cellular metabolism through activation of the integrated stress response (ISR). Mitochondrial stress promotes a local proteostatic response by reducing mitochondrial ribosomal proteins, inhibiting mitochondrial translation, and coupling the activation of the ISR with the attenuation of mitochondrial function. Through a trans-expression quantitative trait locus analysis, we provide genetic evidence supporting a role for Fh1 in the control of Atf4 expression in mammals. Using gene expression data from mice and humans with mitochondrial diseases, we show that the ATF4 pathway is activated in vivo upon mitochondrial stress. Our data illustrate the value of a multiomics approach to characterize complex cellular networks and provide a versatile resource to identify new regulators of mitochondrial-related diseases.
Collapse
Affiliation(s)
- Pedro M Quirós
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Davide D'Amico
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Jiao Y, Preston S, Song H, Jabbar A, Liu Y, Baell J, Hofmann A, Hutchinson D, Wang T, Koehler AV, Fisher GM, Andrews KT, Laleu B, Palmer MJ, Burrows JN, Wells TNC, Wang Q, Gasser RB. Assessing the anthelmintic activity of pyrazole-5-carboxamide derivatives against Haemonchus contortus. Parasit Vectors 2017; 10:272. [PMID: 28569174 PMCID: PMC5452367 DOI: 10.1186/s13071-017-2191-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In this study, we tested five series of pyrazole-5-carboxamide compounds (n = 55) for activity against parasitic stages of the nematode Haemonchus contortus (barber's pole worm), one of the most pathogenic parasites of ruminants. METHODS In an optimised, whole-organism screening assay, using exsheathed third-stage (xL3) and fourth-stage (L4) larvae, we measured the inhibition of larval motility and development of H. contortus. RESULTS Amongst the 55 compounds, we identified two compounds (designated a-15 and a-17) that reproducibly inhibit xL3 motility as well as L4 motility and development, with IC50 values ranging between ~3.4 and 55.6 μM. We studied the effect of these two 'hit' compounds on mitochondrial function by measuring oxygen consumption. This assessment showed that xL3s exposed to each of these compounds consumed significantly less oxygen and had less mitochondrial activity than untreated xL3s, which was consistent with specific inhibition of complex I of the respiratory electron transport chain in arthropods. CONCLUSIONS The present findings provide a sound basis for future work, aimed at identifying the targets of compounds a-15 and a-17 and establishing the modes of action of these chemicals in H. contortus.
Collapse
Affiliation(s)
- Yaqing Jiao
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
- Faculty of Science and Technology, Federation University, Ballarat, VIC 3350 Australia
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
| | - Jonathan Baell
- Medicinal Chemistry, Monash University Institute of Pharmaceutical Sciences (MIPS), Monash University, Parkville, VIC 3052 Australia
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD 4111 Australia
| | - Dana Hutchinson
- Drug Discovery Biology, Monash University Institute of Pharmaceutical Sciences (MIPS), Monash University, Parkville, VIC 3052 Australia
| | - Tao Wang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Anson V. Koehler
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Gillian M. Fisher
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD 4111 Australia
| | - Katherine T. Andrews
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD 4111 Australia
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, CH-1215 Geneva, Switzerland
| | - Michael J. Palmer
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, CH-1215 Geneva, Switzerland
| | - Jeremy N. Burrows
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, CH-1215 Geneva, Switzerland
| | - Timothy N. C. Wells
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, CH-1215 Geneva, Switzerland
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| |
Collapse
|
24
|
Rendón-Nava D, Mendoza-Espinosa D, Negrón-Silva GE, Téllez-Arreola JL, Martínez-Torres A, Valdez-Calderón A, González-Montiel S. Chrysin functionalized NHC–Au(i) complexes: synthesis, characterization and effects on the nematode Caenorhabditis elegans. NEW J CHEM 2017. [DOI: 10.1039/c6nj03299k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The synthesis and biological effects on the nematodeCaenorhabditis elegansof chrysin functionalized Au(i)–NHC complexes are reported.
Collapse
Affiliation(s)
- David Rendón-Nava
- Departamento de Ciencias Básicas
- Universidad Autónoma Metropolitana-Azcapotzalco
- México D.F
- Mexico
| | - Daniel Mendoza-Espinosa
- Departamento de Ciencias Básicas
- Universidad Autónoma Metropolitana-Azcapotzalco
- México D.F
- Mexico
| | | | - José Luis Téllez-Arreola
- Laboratorio de Neurobiología Molecular y Celular
- Instituto de Neurobiología
- Universidad Nacional Autónoma de México
- Campus Juriquilla
- C.P. 76215 Juriquilla
| | - Ataúlfo Martínez-Torres
- Laboratorio de Neurobiología Molecular y Celular
- Instituto de Neurobiología
- Universidad Nacional Autónoma de México
- Campus Juriquilla
- C.P. 76215 Juriquilla
| | - Alejandro Valdez-Calderón
- Área Académica de Química
- Centro de Investigaciones Químicas
- Universidad Autónoma del Estado de Hidalgo
- Mexico
| | - Simplicio González-Montiel
- Área Académica de Química
- Centro de Investigaciones Químicas
- Universidad Autónoma del Estado de Hidalgo
- Mexico
| |
Collapse
|
25
|
Preston S, Jiao Y, Jabbar A, McGee SL, Laleu B, Willis P, Wells TNC, Gasser RB. Screening of the 'Pathogen Box' identifies an approved pesticide with major anthelmintic activity against the barber's pole worm. Int J Parasitol Drugs Drug Resist 2016; 6:329-334. [PMID: 27524698 PMCID: PMC5196485 DOI: 10.1016/j.ijpddr.2016.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 01/17/2023]
Abstract
There is a substantial need to develop new medicines against parasitic diseases via public-private partnerships. Based on high throughput phenotypic screens of largely protozoal pathogens and bacteria, the Medicines for Malaria Venture (MMV) has recently assembled an open-access 'Pathogen Box' containing 400 well-curated chemical compounds. In the present study, we tested these compounds for activity against parasitic stages of the nematode Haemonchus contortus (barber's pole worm). In an optimised, whole-organism screening assay, using exsheathed third-stage (xL3) and fourth-stage (L4) larvae, we measured the inhibition of larval motility, growth and development of H. contortus. We also studied the effect of the 'hit' compound on mitochondrial function by measuring oxygen consumption. Among the 400 Pathogen Box compounds, we identified one chemical, called tolfenpyrad (compound identification code: MMV688934) that reproducibly inhibits xL3 motility as well as L4 motility, growth and development, with IC50 values ranging between 0.02 and 3 μM. An assessment of mitochondrial function showed that xL3s treated with tolfenpyrad consumed significantly less oxygen than untreated xL3s, which was consistent with specific inhibition of complex I of the respiratory electron transport chain in arthropods. Given that tolfenpyrad was developed as a pesticide and has already been tested for absorption, distribution, excretion, biotransformation, toxicity and metabolism, it shows considerable promise for hit-to-lead optimisation and/or repurposing for use against H. contortus and other parasitic nematodes. Future work should assess its activity against hookworms and other pathogens that cause neglected tropical diseases.
Collapse
Affiliation(s)
- Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Yaqing Jiao
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Sean L McGee
- Metabolic Research Unit, Metabolic Reprogramming Laboratory, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, CH-1215, Geneva, Switzerland.
| | - Paul Willis
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, CH-1215, Geneva, Switzerland.
| | - Timothy N C Wells
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, CH-1215, Geneva, Switzerland.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
26
|
Miettinen TP, Björklund M. Cellular Allometry of Mitochondrial Functionality Establishes the Optimal Cell Size. Dev Cell 2016; 39:370-382. [PMID: 27720611 PMCID: PMC5104693 DOI: 10.1016/j.devcel.2016.09.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/27/2016] [Accepted: 09/02/2016] [Indexed: 01/31/2023]
Abstract
Eukaryotic cells attempt to maintain an optimal size, resulting in size homeostasis. While cellular content scales isometrically with cell size, allometric laws indicate that metabolism per mass unit should decline with increasing size. Here we use elutriation and single-cell flow cytometry to analyze mitochondrial scaling with cell size. While mitochondrial content increases linearly, mitochondrial membrane potential and oxidative phosphorylation are highest at intermediate cell sizes. Thus, mitochondrial content and functional scaling are uncoupled. The nonlinearity of mitochondrial functionality is cell size, not cell cycle, dependent, and it results in an optimal cell size whereby cellular fitness and proliferative capacity are maximized. While optimal cell size is controlled by growth factor signaling, its establishment and maintenance requires mitochondrial dynamics, which can be controlled by the mevalonate pathway. Thus, optimization of cellular fitness and functionality through mitochondria can explain the requirement for size control, as well as provide means for its maintenance. Mitochondrial functionality is highest in intermediate-sized cells in a population Mitochondrial membrane potential changes with cell size, not cell cycle Evidence for an optimal cell size, whereby functionality and fitness are maximized Mitochondrial dynamics and mevalonate pathway required for the optimal cell size
Collapse
Affiliation(s)
- Teemu P Miettinen
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mikael Björklund
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
27
|
Datta S, Sahdeo S, Gray JA, Morriseau C, Hammock BD, Cortopassi G. A high-throughput screen for mitochondrial function reveals known and novel mitochondrial toxicants in a library of environmental agents. Mitochondrion 2016; 31:79-83. [PMID: 27717841 DOI: 10.1016/j.mito.2016.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022]
Abstract
Mitochondrial toxicity is emerging as a major mechanism underlying serious human health consequences. This work performs a high-throughput screen (HTS) of 176 environmental chemicals for mitochondrial toxicity utilizing a previously reported biosensor platform. This established HTS confirmed known mitochondrial toxins and identified novel mitotochondrial uncouplers such as 2, 2'-Methylenebis(4-chlorophenol) and pentachlorophenol. It also identified a mitochondrial 'structure activity relationship' (SAR) in the sense that multiple environmental chlorophenols are mitochondrial inhibitors and uncouplers. This study demonstrates proof-of-concept that a mitochondrial HTS assay detects known and novel environmental mitotoxicants, and could be used to quickly evaluate human health risks from mitotoxicants in the environment.
Collapse
Affiliation(s)
- Sandipan Datta
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Sunil Sahdeo
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Jennifer A Gray
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Christophe Morriseau
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Gino Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
28
|
Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EA, Houtkooper RH. A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nat Protoc 2016; 11:1798-816. [PMID: 27583642 PMCID: PMC5040492 DOI: 10.1038/nprot.2016.106] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial dysfunction is at the core of many diseases ranging from inherited metabolic diseases to common conditions that are associated with aging. Although associations between aging and mitochondrial function have been identified using mammalian models, much of the mechanistic insight has emerged from Caenorhabditis elegans. Mitochondrial respiration is recognized as an indicator of mitochondrial health. The Seahorse XF96 respirometer represents the state-of-the-art platform for assessing respiration in cells, and we adapted the technique for applications involving C. elegans. Here we provide a detailed protocol to optimize and measure respiration in C. elegans with the XF96 respirometer, including the interpretation of parameters and results. The protocol takes ∼2 d to complete, excluding the time spent culturing C. elegans, and it includes (i) the preparation of C. elegans samples, (ii) selection and loading of compounds to be injected, (iii) preparation and execution of a run with the XF96 respirometer and (iv) postexperimental data analysis, including normalization. In addition, we compare our XF96 application with other existing techniques, including the eight-well Seahorse XFp. The main benefits of the XF96 include the limited number of worms required and the high throughput capacity due to the 96-well format.
Collapse
Affiliation(s)
- Mandy Koopman
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, Laboratory of Molecular Neurobiology of Ageing, Groningen, The Netherlands
| | - Helen Michels
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, Laboratory of Molecular Neurobiology of Ageing, Groningen, The Netherlands
| | - Beverley M. Dancy
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, United States
| | - Rashmi Kamble
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Laurent Mouchiroud
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Ellen A.A. Nollen
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, Laboratory of Molecular Neurobiology of Ageing, Groningen, The Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Hepatic Fgf21 Expression Is Repressed after Simvastatin Treatment in Mice. PLoS One 2016; 11:e0162024. [PMID: 27583452 PMCID: PMC5008788 DOI: 10.1371/journal.pone.0162024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/16/2016] [Indexed: 01/16/2023] Open
Abstract
Fibroblast growth factor 21 (Fgf21) is a hormone with emerging beneficial roles in glucose and lipid homeostasis. The interest in Fgf21 as a potential antidiabetic drug and the factors that regulate its production and secretion is growing. Statins are the most widely prescribed drug for the treatment of dyslipidemia. However, the function of statins is not limited to the lowering of cholesterol as they are associated with pleiotropic actions such as antioxidant, anti-inflammatory and cytoprotective effects. The recently described effect of statins on mitochondrial function and the induction of Fgf21 by mitochondrial stress prompted us to investigate the effect of statin treatment on Fgf21 expression in the liver. To this end, C57BL6J male mice and primary mouse hepatocytes were treated with simvastatin, and Fgf21 expression was subsequently assessed by immunoblotting and quantitative real-time PCR. Hepatic Fgf21 protein and mRNA and circulating levels of FGF21significantly decreased in mice that had received simvastatin in their food (0.1% w/w) for 1 week. This effect was also observed with simvastatin doses as low as 0.01% w/w for 1 week or following 2 intraperitoneal injections within a single day. The reduction in Fgf21 mRNA levels was further verified in primary mouse hepatocytes, indicating that the effect of simvastatin is cell autonomous. In conclusion, simvastatin treatment reduced the circulating and hepatic Fgf21 levels and this effect warrants further investigation with reference to its role in metabolism.
Collapse
|
30
|
Lin YF, Schulz AM, Pellegrino MW, Lu Y, Shaham S, Haynes CM. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 2016; 533:416-9. [PMID: 27135930 PMCID: PMC4873342 DOI: 10.1038/nature17989] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/08/2016] [Indexed: 12/19/2022]
Abstract
Mitochondrial genomes (mitochondrial DNA, mtDNA) encode essential oxidative phosphorylation (OXPHOS) components. Because hundreds of mtDNAs exist per cell, a deletion in a single mtDNA has little impact. However, if the deletion genome is enriched, OXPHOS declines, resulting in cellular dysfunction. For example, Kearns-Sayre syndrome is caused by a single heteroplasmic mtDNA deletion. More broadly, mtDNA deletion accumulation has been observed in individual muscle cells and dopaminergic neurons during ageing. It is unclear how mtDNA deletions are tolerated or how they are propagated in somatic cells. One mechanism by which cells respond to OXPHOS dysfunction is by activating the mitochondrial unfolded protein response (UPR(mt)), a transcriptional response mediated by the transcription factor ATFS-1 that promotes the recovery and regeneration of defective mitochondria. Here we investigate the role of ATFS-1 in the maintenance and propagation of a deleterious mtDNA in a heteroplasmic Caenorhabditis elegans strain that stably expresses wild-type mtDNA and mtDNA with a 3.1-kilobase deletion (∆mtDNA) lacking four essential genes. The heteroplasmic strain, which has 60% ∆mtDNA, displays modest mitochondrial dysfunction and constitutive UPR(mt) activation. ATFS-1 impairment reduced the ∆mtDNA nearly tenfold, decreasing the total percentage to 7%. We propose that in the context of mtDNA heteroplasmy, UPR(mt) activation caused by OXPHOS defects propagates or maintains the deleterious mtDNA in an attempt to recover OXPHOS activity by promoting mitochondrial biogenesis and dynamics.
Collapse
Affiliation(s)
- Yi-Fan Lin
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna M. Schulz
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark W. Pellegrino
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Cole M. Haynes
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- BCMB Allied Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA
| |
Collapse
|
31
|
Dancy BM, Brockway N, Ramadasan-Nair R, Yang Y, Sedensky MM, Morgan PG. Glutathione S-transferase mediates an ageing response to mitochondrial dysfunction. Mech Ageing Dev 2015; 153:14-21. [PMID: 26704446 DOI: 10.1016/j.mad.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 12/30/2022]
Abstract
To understand primary mitochondrial disease, we utilized a complex I-deficient Caenorhabditis elegans mutant, gas-1. These animals strongly upregulate the expression of gst-14 (encoding a glutathione S-transferase). Knockdown of gst-14 dramatically extends the lifespan of gas-1 and increases hydroxynonenal (HNE) modified mitochondrial proteins without improving complex I function. We observed no change in reactive oxygen species levels as measured by Mitosox staining, consistent with a potential role of GST-14 in HNE clearance. The upregulation of gst-14 in gas-1 animals is specific to the pharynx. These data suggest that an HNE-mediated response in the pharynx could be beneficial for lifespan extension in the context of complex I dysfunction in C. elegans. Thus, whereas HNE is typically considered damaging, our work is consistent with recent reports of its role in signaling, and that in this case, the signal is pro-longevity in a model of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Beverley M Dancy
- Center for Developmental Therapeutics, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA.
| | - Nicole Brockway
- Center for Developmental Therapeutics, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA.
| | - Renjini Ramadasan-Nair
- Center for Developmental Therapeutics, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA.
| | - Yoing Yang
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Margaret M Sedensky
- Center for Developmental Therapeutics, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA; Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, BB-1469, Seattle, WA 98195, USA.
| | - Philip G Morgan
- Center for Developmental Therapeutics, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA; Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, BB-1469, Seattle, WA 98195, USA.
| |
Collapse
|
32
|
Luz AL, Smith LL, Rooney JP, Meyer JN. Seahorse Xfe 24 Extracellular Flux Analyzer-Based Analysis of Cellular Respiration in Caenorhabditis elegans. CURRENT PROTOCOLS IN TOXICOLOGY 2015; 66:25.7.1-25.7.15. [PMID: 26523474 PMCID: PMC4632645 DOI: 10.1002/0471140856.tx2507s66] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria are critical for their role in ATP production as well as multiple nonenergetic functions, and mitochondrial dysfunction is causal in myriad human diseases. Less well appreciated is the fact that mitochondria integrate environmental and intercellular as well as intracellular signals to modulate function. Because mitochondria function in an organismal milieu, there is need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XF(e) 24 Extracellular Flux Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide (DCCD, ATP synthase inhibitor), carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, mitochondrial uncoupler), and sodium azide (cytochrome c oxidase inhibitor), we describe how to obtain in vivo measurements of the fundamental parameters [basal oxygen consumption rate (OCR), ATP-linked respiration, maximal OCR, spare respiratory capacity, and proton leak] of the mitochondrial respiratory chain in the model organism Caenorhabditis elegans.
Collapse
Affiliation(s)
- Anthony L Luz
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Latasha L Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - John P Rooney
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
33
|
Obeidat M, Fishbane N, Nie Y, Chen V, Hollander Z, Tebbutt SJ, Bossé Y, Ng RT, Miller BE, McManus B, Rennard S, Paré PD, Sin DD. The Effect of Statins on Blood Gene Expression in COPD. PLoS One 2015; 10:e0140022. [PMID: 26462087 PMCID: PMC4604084 DOI: 10.1371/journal.pone.0140022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/19/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND COPD is currently the fourth leading cause of death worldwide. Statins are lipid lowering agents with documented cardiovascular benefits. Observational studies have shown that statins may have a beneficial role in COPD. The impact of statins on blood gene expression from COPD patients is largely unknown. OBJECTIVE Identify blood gene signature associated with statin use in COPD patients, and the pathways underpinning this signature that could explain any potential benefits in COPD. METHODS Whole blood gene expression was measured on 168 statin users and 451 non-users from the ECLIPSE study using the Affymetrix Human Gene 1.1 ST microarray chips. Factor Analysis for Robust Microarray Summarization (FARMS) was used to process the expression data. Differential gene expression analysis was undertaken using the Linear Models for Microarray data (Limma) package adjusting for propensity score and surrogate variables. Similarity of the expression signal with published gene expression profiles was performed in ProfileChaser. RESULTS 25 genes were differentially expressed between statin users and non-users at an FDR of 10%, including LDLR, CXCR2, SC4MOL, FAM108A1, IFI35, FRYL, ABCG1, MYLIP, and DHCR24. The 25 genes were significantly enriched in cholesterol homeostasis and metabolism pathways. The resulting gene signature showed correlation with Huntington's disease, Parkinson's disease and acute myeloid leukemia gene signatures. CONCLUSION The blood gene signature of statins' use in COPD patients was enriched in cholesterol homeostasis pathways. Further studies are needed to delineate the role of these pathways in lung biology.
Collapse
Affiliation(s)
- Ma’en Obeidat
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
| | - Nick Fishbane
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
| | - Yunlong Nie
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
| | - Virginia Chen
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Zsuzsanna Hollander
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Scott J. Tebbutt
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Raymond T. Ng
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Bruce E. Miller
- Respiratory Therapy Area Unit, GlaxoSmithKline R&D, King of Prussia, Pennsylvania, United States of America
| | - Bruce McManus
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Stephen Rennard
- Division of Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Peter D. Paré
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Don D. Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Luz AL, Rooney JP, Kubik LL, Gonzalez CP, Song DH, Meyer JN. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes. PLoS One 2015; 10:e0130940. [PMID: 26106885 PMCID: PMC4480853 DOI: 10.1371/journal.pone.0130940] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/27/2015] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.
Collapse
Affiliation(s)
- Anthony L. Luz
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - John P. Rooney
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Laura L. Kubik
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Claudia P. Gonzalez
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Dong Hoon Song
- Simulation Group, Samsung SDI, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
35
|
Maglioni S, Arsalan N, Franchi L, Hurd A, Opipari AW, Glick GD, Ventura N. An automated phenotype-based microscopy screen to identify pro-longevity interventions acting through mitochondria in C. elegans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1469-78. [PMID: 25979236 DOI: 10.1016/j.bbabio.2015.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/17/2015] [Accepted: 05/05/2015] [Indexed: 01/22/2023]
Abstract
Mitochondria are multifunctional organelles that play a central role in cellular homeostasis. Severe mitochondrial dysfunction leads to life-threatening diseases in humans and accelerates the aging process. Surprisingly, moderate reduction of mitochondrial function in different species has anti-aging effects. High-throughput screenings in the nematode Caenorhabditis elegans lead to the identification of several pro-longevity genetic and pharmacological interventions. Large-scale screens, however, are manual, subjective, time consuming and costly. These limitations could be reduced by the identification of automatically quantifiable biomarkers of healthy aging. In this study we exploit the distinct and reproducible phenotypes described in C. elegans upon different levels of mitochondrial alteration to develop an automated high-content strategy to identify new potential pro-longevity interventions. Utilizing the microscopy platform Cellomics ArrayScan Reader, we optimize a workflow to automatically and reliably quantify the discrete phenotypic readouts associated with different degrees of silencing of mitochondrial respiratory chain regulatory proteins, and validate the approach with mitochondrial-targeting drugs known to extend lifespan in C. elegans. Finally, we report that a new mitochondrial ATPase modulator matches our screening phenotypic criteria and extends nematode's lifespan thus providing the proof of principle that our strategy could be exploited to identify novel mitochondrial-targeted drugs with pro-longevity activity. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
Affiliation(s)
- Silvia Maglioni
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty of the Heinrich Heine University, 40225 Duesseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Nayna Arsalan
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | | | | | | | - Natascia Ventura
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty of the Heinrich Heine University, 40225 Duesseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany.
| |
Collapse
|
36
|
Ryu D, Jo YS, Lo Sasso G, Stein S, Zhang H, Perino A, Lee JU, Zeviani M, Romand R, Hottiger MO, Schoonjans K, Auwerx J. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab 2014; 20:856-869. [PMID: 25200183 DOI: 10.1016/j.cmet.2014.08.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/30/2014] [Accepted: 07/29/2014] [Indexed: 01/01/2023]
Abstract
Mitochondrial activity is controlled by proteins encoded by both nuclear and mitochondrial DNA. Here, we identify Sirt7 as a crucial regulator of mitochondrial homeostasis. Sirt7 deficiency in mice induces multisystemic mitochondrial dysfunction, which is reflected by increased blood lactate levels, reduced exercise performance, cardiac dysfunction, hepatic microvesicular steatosis, and age-related hearing loss. This link between SIRT7 and mitochondrial function is translatable in humans, where SIRT7 overexpression rescues the mitochondrial functional defect in fibroblasts with a mutation in NDUFSI. These wide-ranging effects of SIRT7 on mitochondrial homeostasis are the consequence of the deacetylation of distinct lysine residues located in the hetero- and homodimerization domains of GABPβ1, a master regulator of nuclear-encoded mitochondrial genes. SIRT7-mediated deacetylation of GABPβ1 facilitates complex formation with GABPα and the transcriptional activation of the GABPα/GABPβ heterotetramer. Altogether, these data suggest that SIRT7 is a dynamic nuclear regulator of mitochondrial function through its impact on GABPβ1 function.
Collapse
Affiliation(s)
- Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Young Suk Jo
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Giuseppe Lo Sasso
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sokrates Stein
- Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hongbo Zhang
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alessia Perino
- Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jung Uee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Massimo Zeviani
- Unit of Molecular Neurogenetics, the Carlo Besta Institute of Neurology IRCCS, 20133 Milan, Italy; MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK
| | - Raymond Romand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 10142, 67404 Illkirch Cedex, France
| | - Michael O Hottiger
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, 8057 Zurich, Switzerland
| | - Kristina Schoonjans
- Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|