1
|
Kamada Y, Ueda Y, Matsuno E, Matsumoto R, Akita M, Takamatsu S, Miyoshi E. Core-fucose-specific Pholiota squarrosa lectin decreased hepatic inflammatory macrophage infiltration in steatohepatitis mice. Glycoconj J 2024; 41:267-278. [PMID: 39249179 DOI: 10.1007/s10719-024-10163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
Recent findings in glycobiology revealed direct evidence of the involvement of oligosaccharide changes in human diseases, including liver diseases. Fucosylation describes the attachment of a fucose residue to a glycan or glycolipid. We demonstrated that fucosylated proteins are useful serum biomarkers for nonalcoholic fatty liver disease. Among fucosyltransferases, expression of alpha-1, 6-fucosyltransferase (Fut8), which produces core fucose, is frequently elevated during the progression of human chronic liver diseases. Previously, we discovered core-fucose-specific Pholiota squarrosa lectin (PhoSL) from Japanese mushroom Sugitake. Lectins are bioactive compounds that bind to glycan specifically, and various kinds of lectin have a variety of biological functions. Using high-fat and high-cholesterol (HFHC)-fed steatohepatitic mice, we found that core fucosylation increases in hepatic inflammatory macrophages. Antibody drugs bind to specific antigens and block protein function. We hypothesized that, like antibody drugs, PhoSL could have inhibitory effects on glycoproteins involved in steatohepatitis progression. PhoSL administration dramatically decreased hepatic macrophage infiltration and liver fibrosis-related gene expression. Using mouse macrophage-like cell RAW264.7, we found that PhoSL enhanced core-fucose-mediated activation of macrophage cell death by blocking interferon-γ/signal transducer and activator of transcription 1 (STAT1) signaling. Core-fucose-mediated cell death is a mechanism for the anti-inflammatory effects and anti-fibrotic effects of PhoSL on activated macrophages in steatohepatitic liver. In addition, PhoSL provides an anti-fibrotic effect by blocking transforming growth factor-β/SMAD family member 3 signaling in hepatic stellate cells. In conclusion, we found core-fucose-specific PhoSL administration could suppress steatohepatitis progression by decreasing inflammatory macrophage infiltration and fibrotic signaling in hepatic stellate cells.
Collapse
Affiliation(s)
- Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| | - Yui Ueda
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Eriko Matsuno
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Riku Matsumoto
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Maaya Akita
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Blue EE, Huang SJ, Khan A, Golden-Grant K, Boyd B, Rosenthal EA, Gillentine MA, Fleming LR, Adams DR, Wolfe L, Allworth A, Bamshad MJ, Caruana NJ, Chanprasert S, Chen J, Dargie N, Doherty D, Friederich MW, Hisama FM, Horike-Pyne M, Lee JC, Donovan TE, Hock DH, Leppig KA, Miller DE, Mirzaa G, Ranchalis J, Raskind WH, Michel CR, Reisdorph R, Schwarze U, Sheppeard S, Strohbehn S, Stroud DA, Sybert VP, Wener MH, Stergachis AB, Lam CT, Jarvik GP, Dipple KM, Van Hove JL, Glass IA. Dual diagnosis of UQCRFS1-related mitochondrial complex III deficiency and recessive GJA8-related cataracts. RARE (AMSTERDAM, NETHERLANDS) 2024; 2:100040. [PMID: 39421685 PMCID: PMC11484756 DOI: 10.1016/j.rare.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biallelic pathogenic variants in UQCRFS1 underlie a rare form of isolated mitochondrial complex III deficiency associated with lactic acidosis and a distinctive scalp alopecia previously described in two unrelated probands. Here, we describe a participant in the Undiagnosed Diseases Network (UDN) with a dual diagnosis of two autosomal recessive disorders revealed by genome sequencing: UQCRFS1-related mitochondrial complex III deficiency and GJA8-related cataracts. Both pathogenic variants have been reported before: UQCRFS1 (NM_006003.3:c.215-1 G>C, p.Val72_Thr81del10) in a case with mitochondrial complex III deficiency and GJA8 (NM 005267.5:c.736 G>T, p.Glu246*) as a somatic change in aged cornea leading to decreased junctional coupling. A multi-modal approach combining enzyme assays and cellular proteomics analysis provided clear evidence of complex III respiratory chain dysfunction and low abundance of the Rieske iron-sulfur protein, validating the pathogenic effect of the UQCRFS1 variant. This report extends the genotypic and phenotypic spectrum for these two rare disorders and highlights the utility of deep phenotyping and genomics data to achieve diagnosis and insights into rare disease.
Collapse
Affiliation(s)
- Elizabeth E. Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
| | - Samuel J. Huang
- Department of Medical Genetics, Marshfield Clinic, Marshfield, WI 54449, USA
| | - Alyna Khan
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
| | - Katie Golden-Grant
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brenna Boyd
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elisabeth A. Rosenthal
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Leah R. Fleming
- Department of Genetics, Saint Luke’s Genetics and Metabolic Clinic, Boise, ID 83712, USA
| | - David R. Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lynne Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aimee Allworth
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Nikeisha J. Caruana
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Sirisak Chanprasert
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jingheng Chen
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
| | - Nitsuh Dargie
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Daniel Doherty
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Developmental Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Marisa W. Friederich
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Fuki M. Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Martha Horike-Pyne
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jessica C. Lee
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Tonia E. Donovan
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Daniella H. Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Kathleen A. Leppig
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Danny E. Miller
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ghayda Mirzaa
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Wendy H. Raskind
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Cole R. Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ulrike Schwarze
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sam Sheppeard
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Samuel Strohbehn
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - David A. Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Virginia P. Sybert
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mark H. Wener
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Rheumatology, University of Washington, Seattle, WA 98195, USA
| | | | - Andrew B. Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christina T. Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA
| | - Gail P. Jarvik
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katrina M. Dipple
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA
| | - Johan L.K. Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Ian A. Glass
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Wang QR, Yu X, Li Y, Zhu MZ. Correlations among serum alpha-(1,6)-fucosyltransferase and early symptoms associated with Parkinson's disease: A cross-sectional retrospective study. Brain Res Bull 2024; 212:110959. [PMID: 38643887 DOI: 10.1016/j.brainresbull.2024.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Alpha-(1,6)-fucosyltransferase (FUT8) has been found to play a role in modulating the central immune system and inflammatory responses. Limited studies have assessed the correlations between serum FUT8 levels and various non-motor symptoms associated with early Parkinson's disease (PD). Therefore, our research aims to investigate the associations between serum FUT8 levels and symptoms such as smell dysfunction, sleep duration, sleep problems, and MMSE scores in PD patients. FUT8 and neurofilament light chain (NfL) levels were measured using enzyme-linked immunosorbent assays (ELISA). We analyzed the correlations between serum FUT8 levels, NfL, and early symptoms of PD using Spearman's correlation, multiple linear regression, and logistic regression models. The expression of FUT8 in CSF samples from PD patients was significantly upregulated, with its protein levels in CSF being positively associated with serum levels. Furthermore, there were significant positive associations between serum FUT8 levels with NfL levels, smell dysfunction, short sleep duration, and long sleep duration. However, a significant inverse relationship was observed between FUT8 levels and MMSE scores. Additionally, we explored gender and age differences in the correlations of FUT8 levels and early symptoms in patients. This study reveals that increased FUT8 levels are positively correlated with a higher risk of early PD-associated symptoms. These findings suggest that serum FUT8 could serve as a promising biomarker for the early detection of PD.
Collapse
Affiliation(s)
- Qi-Rong Wang
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China
| | - Xue Yu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China
| | - Yang Li
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, China.
| | - Ming-Zhen Zhu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China.
| |
Collapse
|
4
|
Li GX, Chen L, Hsiao Y, Mannan R, Zhang Y, Luo J, Petralia F, Cho H, Hosseini N, Leprevost FDV, Calinawan A, Li Y, Anand S, Dagar A, Geffen Y, Kumar-Sinha C, Chugh S, Le A, Ponce S, Guo S, Zhang C, Schnaubelt M, Al Deen NN, Chen F, Caravan W, Houston A, Hopkins A, Newton CJ, Wang X, Polasky DA, Haynes S, Yu F, Jing X, Chen S, Robles AI, Mesri M, Thiagarajan M, An E, Getz GA, Linehan WM, Hostetter G, Jewell SD, Chan DW, Wang P, Omenn GS, Mehra R, Ricketts CJ, Ding L, Chinnaiyan AM, Cieslik MP, Dhanasekaran SM, Zhang H, Nesvizhskii AI. Comprehensive proteogenomic characterization of rare kidney tumors. Cell Rep Med 2024; 5:101547. [PMID: 38703764 PMCID: PMC11148773 DOI: 10.1016/j.xcrm.2024.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/29/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.
Collapse
Affiliation(s)
- Ginny Xiaohe Li
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yi Hsiao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Luo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hanbyul Cho
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noshad Hosseini
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Aniket Dagar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Seema Chugh
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sean Ponce
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Shenghao Guo
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Alex Hopkins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xiaoming Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah Haynes
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaojun Jing
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | | | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Gad A Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Ochoa-Rios S, Grauzam SE, Gregory R, Angel PM, Drake RR, Helke KL, Mehta AS. Spatial Omics Reveals that Cancer-Associated Glycan Changes Occur Early in Liver Disease Development in a Western Diet Mouse Model of MASLD. J Proteome Res 2024; 23:786-796. [PMID: 38206822 DOI: 10.1021/acs.jproteome.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disease and comprises different stages of liver damage; it is significantly associated with obese and overweight patients. Untreated MASLD can progress to life-threatening end-stage conditions, such as cirrhosis and liver cancer. N-Linked glycosylation is one of the most common post-translational modifications in the cell surface and secreted proteins. N-Linked glycan alterations have been established to be signatures of liver diseases. However, the N-linked glycan changes during the progression of MASLD to liver cancer are still unknown. Here, we induced different stages of MASLD in mice and liver-cancer-related phenotypes and elucidated the N-glycome profile during the progression of MASLD by quantitative and qualitative profiling in situ using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). Importantly, we identified specific N-glycan structures including fucosylated and highly branched N-linked glycans at very early stages of liver injury (steatosis), which in humans are associated with cancer development, establishing the importance of these modifications with disease progression. Finally, we report that N-linked glycan alterations can be observed in our models by MALDI-IMS before liver injury is identified by histological analysis. Overall, we propose these findings as promising biomarkers for the early diagnosis of liver injury in MASLD.
Collapse
Affiliation(s)
- Shaaron Ochoa-Rios
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Stéphane Elie Grauzam
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Rebecca Gregory
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
6
|
Liu X, Fu B, Chen J, Sun Z, Zheng D, Li Z, Gu B, Zhang Y, Lu H. High-throughput intact Glycopeptide quantification strategy with targeted-MS (HTiGQs-target) reveals site-specific IgG N-glycopeptides as biomarkers for hepatic disorder diagnosis and staging. Carbohydr Polym 2024; 325:121499. [PMID: 38008487 DOI: 10.1016/j.carbpol.2023.121499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/28/2023]
Abstract
Liver disease is one of the leading causes of global mortality, and identifying biomarkers for diagnosing the progression of liver diseases is crucial for improving its outcomes. Targeted mass spectrometry technology is a powerful tool with unique advantages for verifying biomarker candidates and clinical applications. It is particularly useful in validating protein biomarkers with post-translational modifications, eliminating the need for site-specific antibodies. Especially, targeted mass spectrometry technique is particularly critical for translation of glycoproteins into clinical applications as there are no site-specific antibodies for N-glycosylation. Nevertheless, its limitation in analyzing only one sample per run has become apparent when dealing with a large number of clinical samples. Herein, we developed a high-throughput intact N-glycopeptides quantification strategy with targeted-MS (HTiGQs-Target), which allows the validation of 20 samples per run with an average analysis time of only 3 min per sample. We applied HTiGQs-Target in a cohort of 461 serum samples (including 120 healthy controls (HC), 127 chronic hepatitis B (CHB) cases, 106 liver cirrhosis (LC) cases, and 108 hepatocellular carcinomas (HCC) cases) and found that a panel of 10 IgG N-glycopeptides have strong clinical utility in evaluating the severity of the liver disease.
Collapse
Affiliation(s)
- Xuejiao Liu
- Liver Cancer Institute of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Bin Fu
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Jierong Chen
- Laboratory Medicine of Guangdong Provincial People's Hospital and Guangdong, Academy of Medical Sciences, Guangzhou, Guangdong 510000, China
| | - Zhenyu Sun
- Liver Cancer Institute of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Dongdong Zheng
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Zhonghua Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bing Gu
- Laboratory Medicine of Guangdong Provincial People's Hospital and Guangdong, Academy of Medical Sciences, Guangzhou, Guangdong 510000, China.
| | - Ying Zhang
- Liver Cancer Institute of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.
| | - Haojie Lu
- Liver Cancer Institute of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Pan Q, Xie Y, Zhang Y, Guo X, Wang J, Liu M, Zhang XL. EGFR core fucosylation, induced by hepatitis C virus, promotes TRIM40-mediated-RIG-I ubiquitination and suppresses interferon-I antiviral defenses. Nat Commun 2024; 15:652. [PMID: 38253527 PMCID: PMC10803816 DOI: 10.1038/s41467-024-44960-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Aberrant N-glycosylation has been implicated in viral diseases. Alpha-(1,6)-fucosyltransferase (FUT8) is the sole enzyme responsible for core fucosylation of N-glycans during glycoprotein biosynthesis. Here we find that multiple viral envelope proteins, including Hepatitis C Virus (HCV)-E2, Vesicular stomatitis virus (VSV)-G, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-Spike and human immunodeficiency virus (HIV)-gp120, enhance FUT8 expression and core fucosylation. HCV-E2 manipulates host transcription factor SNAIL to induce FUT8 expression through EGFR-AKT-SNAIL activation. The aberrant increased-FUT8 expression promotes TRIM40-mediated RIG-I K48-ubiquitination and suppresses the antiviral interferon (IFN)-I response through core fucosylated-EGFR-JAK1-STAT3-RIG-I signaling. FUT8 inhibitor 2FF, N-glycosylation site-specific mutation (Q352AT) of EGFR, and tissue-targeted Fut8 silencing significantly increase antiviral IFN-I responses and suppress RNA viral replication, suggesting that core fucosylation mediated by FUT8 is critical for antiviral innate immunity. These findings reveal an immune evasion mechanism in which virus-induced FUT8 suppresses endogenous RIG-I-mediated antiviral defenses by enhancing core fucosylated EGFR-mediated activation.
Collapse
Grants
- This work was supported by grants from the National Natural Science Foundation of China (82230078, 22077097, 91740120, 82272978, 21572173 and 21721005), National Outstanding Youth Foundation of China (81025008), National Key R&D Program of China (2022YFA1303500, 2018YFA0507603), Medical Science Advancement Program (Basical Medical Sciences) of Wuhan University (TFJC 2018002.), Key R&D Program of Hubei Province (2020BCB020), the Hubei Province’s Outstanding Medical Academic Leader Program (523-276003), the Innovative Group Project of Hubei Health Committee (WJ2021C002), the Foundational Research Funds for the Central University of China (2042022dx0003, 2042023kf1011) and Natural Science Foundation Project of Hubei Province (2021CFB484), Natural Science Foundation Project of Hubei Province (2021CFB484 to M.L).
- This work was supported by grants from the Natural Science Foundation of Hubei Province (2021CFB484), National Natural Science Foundation of China 82272978
Collapse
Affiliation(s)
- Qiu Pan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Yan Xie
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Ying Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Xinqi Guo
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Jing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Min Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
- Department of Allergy, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
8
|
Rostami Abookheili A, Asadi J, Khosravi A, Gorji A. Fucosyltransferase 3 and 8 promote the metastatic capacity of cancer stem-like cells via CD15s and E-cadherin in esophageal cancer. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:985-995. [PMID: 38911244 PMCID: PMC11193496 DOI: 10.22038/ijbms.2024.74726.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/30/2023] [Indexed: 06/25/2024]
Abstract
Objectives Esophageal cancer stem cells (ECSCs) have been identified as the subset of cells within esophageal squamous cell carcinoma that possess tumorigenic, invasive, and metastatic properties. One important aspect of cancer metastasis is the binding of sialyl-Lewis X (CD15s) with E- or P-selectin, which facilitates the adhesion and migration of cancer cells to distant sites. This study was conducted to investigate the impact of fucosylation processes on the metastatic behavior of ECSCs. Materials and Methods The esophageal cancer cell line (KYSE-30) was cultured and divided into control and 2F-peracetyl fucose (2F-PerAcFuc) treated groups. Spheres were harvested from these cultures. Cell invasion assay and qPCR were conducted to examine migration and marker expression in both groups. Cancer cell line-derived xenografts were established in nude mice to validate findings in vivo. Results Our results initially indicated that the addition of 2F-PerAcFuc, an inhibitor of fucosylation, resulted in the down-regulation of the Fut3/CD15s pathway in both cancer stem-like cells and the xenograft model. Measurements of subcutaneous xenograft tumor volume revealed a significant decrease in tumor size among nude mice after treatment with 2F-PerAcFuc. Additionally, a reduction in Fut8/E-cadherin levels was observed in the xenograft model of nude mice. Furthermore, the administration of 2F-PerAcFuc lowered the levels of fucosylated glycoconjugates in nude mice. Conclusion Our data suggest that inhibition of fucosyltransferase 3 and 8 can reduce the metastatic capacity of cancer stem-like cells by down-regulating CD15s and E-cadherin in a mouse model of esophageal cancer.
Collapse
Affiliation(s)
- Aliakbar Rostami Abookheili
- Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
- Shefa Neuroscience Research Center, Khatam Al-anbia Hospital, Tehran, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayyoob Khosravi
- Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Al-anbia Hospital, Tehran, Iran
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
9
|
Xu X, Fukuda T, Takai J, Morii S, Sun Y, Liu J, Ohno S, Isaji T, Yamaguchi Y, Nakano M, Moriguchi T, Gu J. Exogenous l-fucose attenuates neuroinflammation induced by lipopolysaccharide. J Biol Chem 2024; 300:105513. [PMID: 38042483 PMCID: PMC10772726 DOI: 10.1016/j.jbc.2023.105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.
Collapse
Affiliation(s)
- Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jun Takai
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
10
|
Zhang NZ, Zhao LF, Zhang Q, Fang H, Song WL, Li WZ, Ge YS, Gao P. Core fucosylation and its roles in gastrointestinal glycoimmunology. World J Gastrointest Oncol 2023; 15:1119-1134. [PMID: 37546555 PMCID: PMC10401475 DOI: 10.4251/wjgo.v15.i7.1119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Glycosylation is a common post-translational modification in eukaryotic cells. It is involved in the production of many biologically active glycoproteins and the regulation of protein structure and function. Core fucosylation plays a vital role in the immune response. Most immune system molecules are core fucosylated glycoproteins such as complements, cluster differentiation antigens, immunoglobulins, cytokines, major histocompatibility complex molecules, adhesion molecules, and immune molecule synthesis-related transcription factors. These core fucosylated glycoproteins play important roles in antigen recognition and clearance, cell adhesion, lymphocyte activation, apoptosis, signal transduction, and endocytosis. Core fucosylation is dominated by fucosyltransferase 8 (Fut8), which catalyzes the addition of α-1,6-fucose to the innermost GlcNAc residue of N-glycans. Fut8 is involved in humoral, cellular, and mucosal immunity. Tumor immunology is associated with aberrant core fucosylation. Here, we summarize the roles and potential modulatory mechanisms of Fut8 in various immune processes of the gastrointestinal system.
Collapse
Affiliation(s)
- Nian-Zhu Zhang
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Li-Fen Zhao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Qian Zhang
- Department of Cell Therapy, Shanghai Tianze Yuntai Biomedical Co., Ltd., Shanghai 200100, China
| | - Hui Fang
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-0005, Ibaraki, Japan
| | - Wan-Li Song
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Zhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu-Song Ge
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Peng Gao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| |
Collapse
|
11
|
Yue Z, Yu Y, Gao B, Wang D, Sun H, Feng Y, Ma Z, Xie X. Advances in protein glycosylation and its role in tissue repair and regeneration. Glycoconj J 2023; 40:355-373. [PMID: 37097318 DOI: 10.1007/s10719-023-10117-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
After tissue damage, a series of molecular and cellular events are initiated to promote tissue repair and regeneration to restore its original structure and function. These events include inter-cell communication, cell proliferation, cell migration, extracellular matrix differentiation, and other critical biological processes. Glycosylation is the crucial conservative and universal post-translational modification in all eukaryotic cells [1], with influential roles in intercellular recognition, regulation, signaling, immune response, cellular transformation, and disease development. Studies have shown that abnormally glycosylation of proteins is a well-recognized feature of cancer cells, and specific glycan structures are considered markers of tumor development. There are many studies on gene expression and regulation during tissue repair and regeneration. Still, there needs to be more knowledge of complex carbohydrates' effects on tissue repair and regeneration, such as glycosylation. Here, we present a review of studies investigating protein glycosylation in the tissue repair and regeneration process.
Collapse
Affiliation(s)
- Zhongyu Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yajie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Boyuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Du Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Hongxiao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yue Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zihan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
| |
Collapse
|
12
|
Antonarelli G, Pieri V, Porta FM, Fusco N, Finocchiaro G, Curigliano G, Criscitiello C. Targeting Post-Translational Modifications to Improve Combinatorial Therapies in Breast Cancer: The Role of Fucosylation. Cells 2023; 12:cells12060840. [PMID: 36980181 PMCID: PMC10047715 DOI: 10.3390/cells12060840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Various tumors rely on post-translational modifications (PTMs) to promote invasiveness and angiogenesis and to reprogram cellular energetics to abate anti-cancer immunity. Among PTMs, fucosylation is a particular type of glycosylation that has been linked to different aspects of immune and hormonal physiological functions as well as hijacked by many types of tumors. Multiple tumors, including breast cancer, have been linked to dismal prognoses and increased metastatic potential due to fucosylation of the glycan core, namely core-fucosylation. Pre-clinical studies have examined the molecular mechanisms regulating core-fucosylation in breast cancer models, its negative prognostic value across multiple disease stages, and the activity of in vivo pharmacological inhibition, instructing combinatorial therapies and translation into clinical practice. Throughout this review, we describe the role of fucosylation in solid tumors, with a particular focus on breast cancer, as well as physiologic conditions on the immune system and hormones, providing a view into its potential as a biomarker for predicating or predicting cancer outcomes, as well as a potential clinical actionability as a biomarker.
Collapse
Affiliation(s)
- Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| | - Valentina Pieri
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesca Maria Porta
- Division of Pathology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
- School of Pathology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
- Division of Pathology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
| | | | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| |
Collapse
|
13
|
Lester DK, Burton C, Gardner A, Innamarato P, Kodumudi K, Liu Q, Adhikari E, Ming Q, Williamson DB, Frederick DT, Sharova T, White MG, Markowitz J, Cao B, Nguyen J, Johnson J, Beatty M, Mockabee-Macias A, Mercurio M, Watson G, Chen PL, McCarthy S, MoranSegura C, Messina J, Thomas KL, Darville L, Izumi V, Koomen JM, Pilon-Thomas SA, Ruffell B, Luca VC, Haltiwanger RS, Wang X, Wargo JA, Boland GM, Lau EK. Fucosylation of HLA-DRB1 regulates CD4 + T cell-mediated anti-melanoma immunity and enhances immunotherapy efficacy. NATURE CANCER 2023; 4:222-239. [PMID: 36690875 PMCID: PMC9970875 DOI: 10.1038/s43018-022-00506-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023]
Abstract
Immunotherapy efficacy is limited in melanoma, and combinations of immunotherapies with other modalities have yielded limited improvements but also adverse events requiring cessation of treatment. In addition to ineffective patient stratification, efficacy is impaired by paucity of intratumoral immune cells (itICs); thus, effective strategies to safely increase itICs are needed. We report that dietary administration of L-fucose induces fucosylation and cell surface enrichment of the major histocompatibility complex (MHC)-II protein HLA-DRB1 in melanoma cells, triggering CD4+ T cell-mediated increases in itICs and anti-tumor immunity, enhancing immune checkpoint blockade responses. Melanoma fucosylation and fucosylated HLA-DRB1 associate with intratumoral T cell abundance and anti-programmed cell death protein 1 (PD1) responder status in patient melanoma specimens, suggesting the potential use of melanoma fucosylation as a strategy for stratifying patients for immunotherapies. Our findings demonstrate that fucosylation is a key mediator of anti-tumor immunity and, importantly, suggest that L-fucose is a powerful agent for safely increasing itICs and immunotherapy efficacy in melanoma.
Collapse
Affiliation(s)
- Daniel K Lester
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chase Burton
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alycia Gardner
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Patrick Innamarato
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Krithika Kodumudi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Qian Liu
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Emma Adhikari
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Qianqian Ming
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Daniel B Williamson
- Complex Carbohydrate Research Center, the University of Georgia, Athens, GA, USA
| | | | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Michael G White
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph Markowitz
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Biwei Cao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan Nguyen
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Joseph Johnson
- Department of Analytic Microscopy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew Beatty
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrea Mockabee-Macias
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew Mercurio
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gregory Watson
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Pei-Ling Chen
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Susan McCarthy
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carlos MoranSegura
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jane Messina
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kerry L Thomas
- Department of Diagnostic Imaging, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lancia Darville
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Victoria Izumi
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - John M Koomen
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shari A Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Vincent C Luca
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, the University of Georgia, Athens, GA, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Massachusetts General Hospital, Boston, MA, USA
| | - Eric K Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
14
|
Liu Z, Tu M, Shi J, Zhou H, Meng G, Gu J, Wang Y. Inhibition of fucosylation by 2-fluorofucose attenuated acetaminophen-induced liver injury via its anti-inflammation and anti-oxidative stress effects. Front Pharmacol 2022; 13:939317. [PMID: 36120347 PMCID: PMC9475176 DOI: 10.3389/fphar.2022.939317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Fucosylation is a common glycan terminal modification, which has been reported to be inhibited by 2-fluorofucose (2FF) both in vivo and in vitro. The present study aimed to investigate the effect of 2FF on acetaminophen (APAP)-induced acute liver injury, and further clarified the possible mechanisms. In the present study, inhibition of fucosylation by 2FF relieved APAP-induced acute liver injury in vivo. Pretreatment with 2FF remarkably suppressed APAP-induced oxidative stress and mitochondria damage. 2FF markedly enhanced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and simultaneously promoted the expression of downstream proteins including HO-1 and NQO1. Furthermore, pretreatment with 2FF significantly suppressed the expression of inflammation-associated proteins, such as COX2 and iNOS. The data from lectin blot assay revealed that the alteration of α1,6-fucosylation was involved in APAP-induced acute liver injury. The second part of this study further confirmed that the enhancements to antioxidant capacity of 2FF pretreatment and α1,6-fucose deficiency were related to Nrf2/keap1 and NF-κB signaling pathways in HepG2 cells. Taken together, the current study suggested that 2FF might have a potential therapeutic effect for APAP-induced acute liver injury.
Collapse
Affiliation(s)
- Zhaoguo Liu
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Mengjue Tu
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Jianan Shi
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Hong Zhou
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
- *Correspondence: Jianguo Gu, ; Yuqin Wang,
| | - Yuqin Wang
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
- *Correspondence: Jianguo Gu, ; Yuqin Wang,
| |
Collapse
|
15
|
Tu CF, Li FA, Li LH, Yang RB. Quantitative glycoproteomics analysis identifies novel FUT8 targets and signaling networks critical for breast cancer cell invasiveness. Breast Cancer Res 2022; 24:21. [PMID: 35303925 PMCID: PMC8932202 DOI: 10.1186/s13058-022-01513-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We recently showed that fucosyltransferase 8 (FUT8)-mediated core fucosylation of transforming growth factor-β receptor enhances its signaling and promotes breast cancer invasion and metastasis. However, the complete FUT8 target glycoproteins and their downstream signaling networks critical for breast cancer progression remain largely unknown. METHOD We performed quantitative glycoproteomics with two highly invasive breast cancer cell lines to unravel a comprehensive list of core-fucosylated glycoproteins by comparison to parental wild-type and FUT8-knockout counterpart cells. In addition, ingenuity pathway analysis (IPA) was performed to highlight the most enriched biological functions and signaling pathways mediated by FUT8 targets. Novel FUT8 target glycoproteins with biological interest were functionally studied and validated by using LCA (Lens culinaris agglutinin) blotting and LC-MS/MS (liquid chromatography-tandem mass spectrometry) analysis. RESULTS Loss-of-function studies demonstrated that FUT8 knockout suppressed the invasiveness of highly aggressive breast carcinoma cells. Quantitative glycoproteomics identified 140 common target glycoproteins. Ingenuity pathway analysis (IPA) of these target proteins gave a global and novel perspective on signaling networks essential for breast cancer cell migration and invasion. In addition, we showed that core fucosylation of integrin αvβ5 or IL6ST might be crucial for breast cancer cell adhesion to vitronectin or enhanced cellular signaling to interleukin 6 and oncostatin M, two cytokines implicated in the breast cancer epithelial-mesenchymal transition and metastasis. CONCLUSIONS Our report reveals a comprehensive list of core-fucosylated target proteins and provides novel insights into signaling networks crucial for breast cancer progression. These findings will assist in deciphering the complex molecular mechanisms and developing diagnostic or therapeutic approaches targeting these signaling pathways in breast cancer metastasis.
Collapse
Affiliation(s)
- Cheng-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 115201, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 115201, Taiwan
| | - Ling-Hui Li
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 115201, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 115201, Taiwan. .,Biomedical Translation Research Center, Academia Sinica, Taipei, 115202, Taiwan. .,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
16
|
Saitou A, Hasegawa Y, Fujitani N, Ariki S, Uehara Y, Hashimoto U, Saito A, Kuronuma K, Matsumoto K, Chiba H, Takahashi M. N
‐glycosylation regulates MET processing and signaling. Cancer Sci 2022; 113:1292-1304. [PMID: 35092134 PMCID: PMC8990287 DOI: 10.1111/cas.15278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
MET, the receptor for the hepatocyte growth factor (HGF), is strongly associated with resistance to tyrosine kinase inhibitors, key drugs that are used in the therapy of non–small cell lung cancer. MET contains 11 potential N‐glycosylation sites, but the site‐specific roles of these N‐glycans have not been elucidated. We report herein that these N‐glycans regulate the proteolytic processing of MET and HGF‐induced MET signaling, and that this regulation is site specific. Inhibitors of N‐glycosylation were found to suppress the processing and trafficking of endogenous MET in H1975 and EBC‐1 lung cancer cells and exogenous MET in CHO‐K1 cells. We purified the recombinant extracellular domain of human MET and determined the site‐specific N‐glycan structures and occupancy using mass spectrometry. The results indicated that most sites were fully glycosylated and that the dominant population was the complex type. To examine the effects of the deletion of N‐glycans of MET, we prepared endogenous MET knockout Flp‐In CHO cells and transfected them with a series of N‐glycan–deletion mutants of MET. The results showed that several N‐glycans are implicated in the processing of MET. The findings also suggested that the N‐glycans of the SEMA domain of MET positively regulate HGF signaling, and the N‐glycans of the region other than the SEMA domain negatively regulate HGF signaling. Processing, cell surface expression, and signaling were significantly suppressed in the case of the all‐N‐glycan–deletion mutant. The overall findings suggest that N‐glycans of MET affect the status and the function of the receptor in a site‐specific manner.
Collapse
Affiliation(s)
- Atsushi Saitou
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Yoshihiro Hasegawa
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Naoki Fujitani
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
| | - Shigeru Ariki
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
- Department of Chemistry Center for Medical Education Sapporo Medical University Japan
| | - Yasuaki Uehara
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Ukichiro Hashimoto
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
| | - Atsushi Saito
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation Cancer Research Institute and WPI‐Nano Life Science Institute (WPI‐NanoLSI) Kanazawa University Kanazawa Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine Sapporo Japan
| | - Motoko Takahashi
- Department of Biochemistry Sapporo Medical University School of Medicine Sapporo Japan
| |
Collapse
|
17
|
Wei KC, Lin YC, Chen CH, Chu YH, Huang CY, Liao WC, Liu CH. Fucosyltransferase 8 modulates receptor tyrosine kinase activation and temozolomide resistance in glioblastoma cells. Am J Cancer Res 2021; 11:5472-5484. [PMID: 34873473 PMCID: PMC8640827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023] Open
Abstract
Alteration of extracellular glycosylation is a hallmark of malignant characteristics. In this study, we revealed that fucosyltransferase 8 (FUT8), an enzyme that mediates the core fucosylation of N-linked glycosylation, is an important regulator of malignant characteristics in human glioma that acts by modifying the activities of both the HGF receptor (MET) and epidermal growth factor receptor (EGFR). mRNA and protein expression levels of FUT8 were frequently upregulated in gliomas, and these events were showed positive correlations with advanced tumor grade, recurrence, and decreased overall survival. Silencing FUT8 expression in glioma cells suppressed cell growth, migration, and invasion, whereas overexpression of FUT8 was sufficient to enhance these phenotypes. Mechanistic investigations revealed that FUT8 was involved in the alteration of fucosylation status that was attached to MET and EGFR, changing MET responses after HGF stimulation, as well as in the transactivation of EGFR. Importantly, altering FUT8 expression or using the fucosylation inhibitor 2F-peracetyl-fucose sensitized the efficacy of of temozolomide (TMZ) therapy. Collectively, these results suggested that FUT8 dysregulation contributed to the malignant behaviors of glioma cells and provide novel insights into the significance of fucosylation in receptor tyrosine kinase activity and TMZ resistance.
Collapse
Affiliation(s)
- Kuo-Chen Wei
- School of Medicine, Chang Gung UniversityTaoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical CenterTaoyuan, Taiwan
- Department of Neurosurgery, New Taipei Municipal Tucheng HospitalNew Taipei City, Taiwan
- Neuroscience Research Center, Chang Gung Memorial HospitalLinkou, Taiwan
| | - You-Cheng Lin
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
| | - Chia-Hua Chen
- Molecular Medicine Research Center, Chang Gung UniversityTaoyuan, Taiwan
| | - Yin-Hung Chu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, New Taipei Municipal Tucheng HospitalNew Taipei City, Taiwan
- Neuroscience Research Center, Chang Gung Memorial HospitalLinkou, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
- Department of Medical Education, Chung Shan Medical University HospitalTaichung, Taiwan
| | - Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
- Department of Medical Education, Chung Shan Medical University HospitalTaichung, Taiwan
| |
Collapse
|
18
|
Kakisaka K, Suzuki Y, Abe H, Eto H, Kanazawa J, Takikawa Y. Serum alpha-fetoprotein increases prior to fibrosis resolution in a patient with acute liver failure. Clin J Gastroenterol 2021; 14:1470-1475. [PMID: 34212265 DOI: 10.1007/s12328-021-01467-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022]
Abstract
A 78-year-old woman who was diagnosed with acute liver failure due to an undetermined cause presented with liver atrophy. Coagulopathy was normalized at 35 days of hospitalization, although atrophy in the liver persisted. During the observation period, alpha-fetoprotein (AFP) bi-modally increased at 36 and 377 days. Around the second peak of AFP, the liver volume was regained within the normal range. Fucosylated AFP was found at the first peak but not at the second peak. Cytokines/chemokines were simultaneously evaluated, and the results were evaluated using PANTHER ( http://www.pantherdb.org/ ). Although transaminase and prothrombin time were within the normal range, cytokines/chemokines associated with angiogenesis and inflammation increased prior to the second peak of AFP. Our study suggests that the first peak of AFP occurs in response to acute insult, while the second peak may be associated with the resolution of liver fibrosis. The present case provides new insights into the mechanism of AFP elevation.
Collapse
Affiliation(s)
- Keisuke Kakisaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 1-1-1 Idaidori, Yahaba, Morioka, Iwate, 0283694, Japan.
| | - Yuji Suzuki
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 1-1-1 Idaidori, Yahaba, Morioka, Iwate, 0283694, Japan
| | - Hiroaki Abe
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 1-1-1 Idaidori, Yahaba, Morioka, Iwate, 0283694, Japan
| | - Hisashi Eto
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 1-1-1 Idaidori, Yahaba, Morioka, Iwate, 0283694, Japan
| | - Jo Kanazawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 1-1-1 Idaidori, Yahaba, Morioka, Iwate, 0283694, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 1-1-1 Idaidori, Yahaba, Morioka, Iwate, 0283694, Japan
| |
Collapse
|
19
|
Wang W, Yu Y, Liu H, Zheng H, Jia L, Zhang J, Wang X, Yang Y, Chen F. Protein Core Fucosylation Regulates Planarian Head Regeneration via Neoblast Proliferation. Front Cell Dev Biol 2021; 9:625823. [PMID: 34336817 PMCID: PMC8322617 DOI: 10.3389/fcell.2021.625823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
Protein glycosylation is an important posttranslational modification that plays a crucial role in cellular function. However, its biological roles in tissue regeneration remain interesting and primarily ambiguous. In this study, we profiled protein glycosylation during head regeneration in planarian Dugesia japonica using a lectin microarray. We found that 6 kinds of lectins showed increased signals and 16 kinds showed decreased signals. Interestingly, we found that protein core fucosylation, manifested by Lens culinaris agglutinin (LCA) staining, was significantly upregulated during planarian head regeneration. Lectin histochemistry indicated that the LCA signal was intensified within the wound and blastemal areas. Furthermore, we found that treatment with a fucosylation inhibitor, 2F-peracetyl-fucose, significantly retarded planarian head regeneration, while supplement with L-fucose could improve DjFut8 expression and stimulate planarian head regeneration. In addition, 53 glycoproteins that bound to LCA were selectively isolated by LCA-magnetic particle conjugates and identified by LC-MS/MS, including the neoblast markers DjpiwiA, DjpiwiB, DjvlgA, and DjvlgB. Overall, our study provides direct evidence for the involvement of protein core fucosylation in planarian regeneration.
Collapse
Affiliation(s)
- Wenjun Wang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuan Yu
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Hongbo Liu
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Hanxue Zheng
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Liyuan Jia
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Jing Zhang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Xue Wang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Fulin Chen
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
20
|
Role of Glycans on Key Cell Surface Receptors That Regulate Cell Proliferation and Cell Death. Cells 2021; 10:cells10051252. [PMID: 34069424 PMCID: PMC8159107 DOI: 10.3390/cells10051252] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cells undergo proliferation and apoptosis, migration and differentiation via a number of cell surface receptors, most of which are heavily glycosylated. This review discusses receptor glycosylation and the known roles of glycans on the functions of receptors expressed in diverse cell types. We included growth factor receptors that have an intracellular tyrosine kinase domain, growth factor receptors that have a serine/threonine kinase domain, and cell-death-inducing receptors. N- and O-glycans have a wide range of functions including roles in receptor conformation, ligand binding, oligomerization, and activation of signaling cascades. A better understanding of these functions will enable control of cell survival and cell death in diseases such as cancer and in immune responses.
Collapse
|
21
|
Ng BG, Dastsooz H, Silawi M, Habibzadeh P, Jahan SB, Fard MAF, Halliday BJ, Raymond K, Ruzhnikov MRZ, Tabatabaei Z, Taghipour-Sheshdeh A, Brimble E, Robertson SP, Faghihi MA, Freeze HH. Expanding the molecular and clinical phenotypes of FUT8-CDG. J Inherit Metab Dis 2020; 43:871-879. [PMID: 32049367 PMCID: PMC7359201 DOI: 10.1002/jimd.12221] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Abstract
Pathogenic variants in the Golgi localised alpha 1,6 fucosyltransferase, FUT8, cause a rare inherited metabolic disorder known as FUT8-CDG. To date, only three affected individuals have been reported presenting with a constellation of symptoms including intrauterine growth restriction, severe delays in growth and development, other neurological impairments, significantly shortened limbs, respiratory complications, and shortened lifespan. Here, we report an additional four unrelated affected individuals homozygous for novel pathogenic variants in FUT8. Analysis of serum N-glycans revealed a complete lack of core fucosylation, an important diagnostic biomarker of FUT8-CDG. Our data expands both the molecular and clinical phenotypes of FUT8-CDG and highlights the importance of identifying a reliable biomarker for confirming potentially pathogenic variants.
Collapse
Affiliation(s)
- Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Hassan Dastsooz
- Department of Life Sciences and Systems Biology, Italian Institute for Genomic Medicine (IIGM), University of Turin, Turin, Italy
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Silawi
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parham Habibzadeh
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima B. Jahan
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad A. F. Fard
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin J. Halliday
- Department of Women’s and Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Maura R. Z. Ruzhnikov
- Department of Neurology and Neurological Sciences, Stanford Medicine, Stanford, California
- Division of Medical Genetics, Department of Pediatrics, Stanford Medicine, Stanford, California
| | - Zahra Tabatabaei
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Elise Brimble
- Department of Neurology and Neurological Sciences, Stanford Medicine, Stanford, California
| | - Stephen P. Robertson
- Department of Women’s and Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Mohammad A. Faghihi
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|
22
|
Höti N, Lih TS, Pan J, Zhou Y, Yang G, Deng A, Chen L, Dong M, Yang RB, Tu CF, Haffner MC, Kay Li Q, Zhang H. A Comprehensive Analysis of FUT8 Overexpressing Prostate Cancer Cells Reveals the Role of EGFR in Castration Resistance. Cancers (Basel) 2020; 12:cancers12020468. [PMID: 32085441 PMCID: PMC7072180 DOI: 10.3390/cancers12020468] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 01/12/2023] Open
Abstract
The emergence of castration-resistance is one of the major challenges in the management of patients with advanced prostate cancer. Although the spectrum of systemic therapies that are available for use alongside androgen deprivation for treatment of castration-resistant prostate cancer (CRPC) is expanding, none of these regimens are curative. Therefore, it is imperative to apply systems approaches to identify and understand the mechanisms that contribute to the development of CRPC. Using comprehensive proteomic approaches, we show that a glycosylation-related enzyme, alpha (1,6) fucosyltransferase (FUT8), which is upregulated in CRPC, might be responsible for resistance to androgen deprivation. Mechanistically, we demonstrated that overexpression of FUT8 resulted in upregulation of the cell surface epidermal growth factor receptor (EGFR) and corresponding downstream signaling, leading to increased cell survival in androgen-depleted conditions. We studied the coregulatory mechanisms of EGFR and FUT8 expression in CRPC xenograft models and found that castration induced FUT8 overexpression associated with increased expression of EGFR. Taken together, our findings suggest a crucial role played by FUT8 as a mediator in switching prostate cancer cells from nuclear receptor signaling (androgen receptor) to the cell surface receptor (EGFR) mechanisms in escaping castration-induced cell death. These findings have clinical implication in understanding the role of FUT8 as a master regulator of cell surface receptors in cancer-resistant phenotypes.
Collapse
Affiliation(s)
- Naseruddin Höti
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
- Correspondence: ; Tel.: (410)-502-8149; Fax: (443)-287-6388
| | - Tung-Shing Lih
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Jianbo Pan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Yangying Zhou
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Ganglong Yang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Ashely Deng
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Lijun Chen
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Mingmimg Dong
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (R.-B.Y.); (C.-F.T.)
| | - Cheng-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (R.-B.Y.); (C.-F.T.)
| | - Michael C. Haffner
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| |
Collapse
|
23
|
Analysis of Hepatocellular Carcinoma Tissue for Biomarker Discovery. MOLECULAR AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/978-3-030-21540-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Ma T, Wang Y, Jia L, Shu J, Yu H, Du H, Yang J, Liang Y, Chen M, Li Z. Increased expression of core-fucosylated glycans in human lung squamous cell carcinoma. RSC Adv 2019; 9:22064-22073. [PMID: 35518855 PMCID: PMC9066710 DOI: 10.1039/c9ra04341a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most frequent cancer and the leading cause of cancer around the world. As one of the major types of lung cancer, lung squamous cell carcinoma (LUSC) is closely associated with smoking and shows poor sensitivity to therapy and prognosis. Although alteration of glycopatterns are reliable indicators of cancer, little is known about the alterations of protein glycosylation related to LUSC. In this study, we compared the differential expression levels of glycopatterns in seven pairs of LUSC tissues and normal pericarcinomatous tissues (PCTs) using lectin microarrays. Fluorescence-based lectin histochemistry and lectin blotting were utilized to validate and assess the expression and distribution of certain glycans in LUSC tissues and PCTs. And we further analyzed their total N-linked glycans using MALDI-TOF/TOF-MS to provide more information about the aberrant glycopatterns. The results showed that the expression level of the core fucosylation recognized by Pisum sativum agglutinin (PSA) and Lens culinaris agglutinin (LCA) was significantly increased in LUSC tissues compared with PCTs. There were 10 and 15 fucosylated N-linked glycans that were detected in PCTs and LUSC tissues respectively, 10 fucosylated N-glycans were common, while five fucosylated N-glycans were unique to LUSC tissues. And the abundance of the fucosylated N-glycans was increased from 40.9% (PCTs) to 48.3% (LUSC). These finding is helpful to elucidate the molecular mechanisms underlying the lung diseases and develop new treatment strategies. The expression level of fucosylated and core fucosylated N-linked glycans increased in lung squamous cell carcinoma tissues.![]()
Collapse
|
25
|
Nakayama K, Wakamatsu K, Fujii H, Shinzaki S, Takamatsu S, Kitazume S, Kamada Y, Takehara T, Taniguchi N, Miyoshi E. Core fucose is essential glycosylation for CD14-dependent Toll-like receptor 4 and Toll-like receptor 2 signalling in macrophages. J Biochem 2018; 165:227-237. [DOI: 10.1093/jb/mvy098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Kana Wakamatsu
- Department of Molecular Biochemistry and Clinical Investigation
| | - Hironobu Fujii
- Department of Molecular Biochemistry and Clinical Investigation
| | - Shinichiro Shinzaki
- Department of Molecular Biochemistry and Clinical Investigation
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Shinobu Kitazume
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN, Saitama, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry and Clinical Investigation
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation
| |
Collapse
|
26
|
West CA, Wang M, Herrera H, Liang H, Black A, Angel PM, Drake RR, Mehta AS. N-Linked Glycan Branching and Fucosylation Are Increased Directly in Hcc Tissue As Determined through in Situ Glycan Imaging. J Proteome Res 2018; 17:3454-3462. [PMID: 30110170 DOI: 10.1021/acs.jproteome.8b00323] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatocellular carcinoma (HCC) remains as the fifth most common cancer in the world and accounts for more than 700,000 deaths annually. Changes in serum glycosylation have long been associated with this cancer but the source of that material is unknown and direct glycan analysis of HCC tissues has been limited. Our laboratory previously developed a method of in situ tissue based N-linked glycan imaging that bypasses the need for microdissection and solubilization of tissue prior to analysis. We used this methodology in the analysis of 138 HCC tissue samples and compared the N-linked glycans in cancer tissue with either adjacent untransformed or tissue from patients with liver cirrhosis but no cancer. Ten glycans were found significantly elevated in HCC tissues as compared to cirrhotic or adjacent tissue. These glycans fell into two major classes, those with increased levels of fucosylation and those with increased levels of branching with or without any fucose modifications. In addition, increased levels of fucosylated glycoforms were associated with a reduction in survival time. This work supports the hypothesis that the increased levels of fucosylated N-linked glycans in HCC serum are produced directly from the cancer tissue.
Collapse
Affiliation(s)
- Connor A West
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Mengjun Wang
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Harmin Herrera
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine , Department of Microbiology and Immunology , 2900 Queen Lane , Philadelphia , Pennsylvania 19129 , United States
| | - Hongyan Liang
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Alyson Black
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Peggi M Angel
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Richard R Drake
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Anand S Mehta
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| |
Collapse
|
27
|
Okada M, Chikuma S, Kondo T, Hibino S, Machiyama H, Yokosuka T, Nakano M, Yoshimura A. Blockage of Core Fucosylation Reduces Cell-Surface Expression of PD-1 and Promotes Anti-tumor Immune Responses of T Cells. Cell Rep 2018; 20:1017-1028. [PMID: 28768188 DOI: 10.1016/j.celrep.2017.07.027] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/15/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
Programmed cell death 1 (PD-1) is highly expressed on exhausted T cells and inhibits T cell activation. Antibodies that block the interaction between PD-1 and its ligand prevent this inhibitory signal and reverse T cell dysfunction, providing beneficial anti-tumor responses in a substantial number of patients. Mechanisms for the induction and maintenance of high PD-1 expression on exhausted T cells have not been fully understood. Utilizing a genome-wide loss-of-function screening method based on the CRISPR-Cas9 system, we identified genes involved in the core fucosylation pathway as positive regulators of cell-surface PD-1 expression. Inhibition of Fut8, a core fucosyltransferase, by genetic ablation or pharmacologic inhibition reduced cell-surface expression of PD-1 and enhanced T cell activation, leading to more efficient tumor eradication. Taken together, our findings suggest that blocking core fucosylation of PD-1 can be a promising strategy for improving anti-tumor immune responses.
Collapse
Affiliation(s)
- Masahiro Okada
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taisuke Kondo
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sana Hibino
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroaki Machiyama
- Department of Immunology, Tokyo Medical University, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Tadashi Yokosuka
- Department of Immunology, Tokyo Medical University, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Miyako Nakano
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8530, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
28
|
Ferreira IG, Pucci M, Venturi G, Malagolini N, Chiricolo M, Dall'Olio F. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling. Int J Mol Sci 2018; 19:ijms19020580. [PMID: 29462882 PMCID: PMC5855802 DOI: 10.3390/ijms19020580] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1) by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2) through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3) by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.
Collapse
Affiliation(s)
- Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
29
|
Tu CF, Wu MY, Lin YC, Kannagi R, Yang RB. FUT8 promotes breast cancer cell invasiveness by remodeling TGF-β receptor core fucosylation. Breast Cancer Res 2017; 19:111. [PMID: 28982386 PMCID: PMC5629780 DOI: 10.1186/s13058-017-0904-8] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/22/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Core fucosylation (addition of fucose in α-1,6-linkage to core N-acetylglucosamine of N-glycans) catalyzed by fucosyltransferase 8 (FUT8) is critical for signaling receptors involved in many physiological and pathological processes such as cell growth, adhesion, and tumor metastasis. Transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition (EMT) regulates the invasion and metastasis of breast tumors. However, whether receptor core fucosylation affects TGF-β signaling during breast cancer progression remains largely unknown. METHOD In this study, gene expression profiling and western blot were used to validate the EMT-associated expression of FUT8. Lentivirus-mediated gain-of-function study, short hairpin RNA (shRNA) or CRISPR/Cas9-mediated loss-of-function studies and pharmacological inhibition of FUT8 were used to elucidate the molecular function of FUT8 during TGF-β-induced EMT in breast carcinoma cells. In addition, lectin blot, luciferase assay, and in vitro ligand binding assay were employed to demonstrate the involvement of FUT8 in the TGF-β1 signaling pathway. The role of FUT8 in breast cancer migration, invasion, and metastasis was confirmed using an in vitro transwell assay and mammary fat pad xenograft in vivo tumor model. RESULTS Gene expression profiling analysis revealed that FUT8 is upregulated in TGF-β-induced EMT; the process was associated with the migratory and invasive abilities of several breast carcinoma cell lines. Gain-of-function and loss-of-function studies demonstrated that FUT8 overexpression stimulated the EMT process, whereas FUT8 knockdown suppressed the invasiveness of highly aggressive breast carcinoma cells. Furthermore, TGF-β receptor complexes might be core fucosylated by FUT8 to facilitate TGF-β binding and enhance downstream signaling. Importantly, FUT8 inhibition suppressed the invasive ability of highly metastatic breast cancer cells and impaired their lung metastasis. CONCLUSIONS Our results reveal a positive feedback mechanism of FUT8-mediated receptor core fucosylation that promotes TGF-β signaling and EMT, thus stimulating breast cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Cheng-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Meng-Ying Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yuh-Charn Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan. .,Institute of Pharmacology, National Yang-Ming University, Taipei, 11221, Taiwan. .,Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
30
|
Zhang S, Cao X, Gao Q, Liu Y. Protein glycosylation in viral hepatitis-related HCC: Characterization of heterogeneity, biological roles, and clinical implications. Cancer Lett 2017; 406:64-70. [DOI: 10.1016/j.canlet.2017.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022]
|
31
|
Zhou Y, Fukuda T, Hang Q, Hou S, Isaji T, Kameyama A, Gu J. Inhibition of fucosylation by 2-fluorofucose suppresses human liver cancer HepG2 cell proliferation and migration as well as tumor formation. Sci Rep 2017; 7:11563. [PMID: 28912543 PMCID: PMC5599613 DOI: 10.1038/s41598-017-11911-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022] Open
Abstract
Core fucosylation is one of the most important glycosylation events in the progression of liver cancer. For this study, we used an easily handled L-fucose analog, 2-fluoro-L-fucose (2FF), which interferes with the normal synthesis of GDP-fucose, and verified its potential roles in regulating core fucosylation and cell behavior in the HepG2 liver cancer cell line. Results obtained from lectin blot and flow cytometry analysis clearly showed that 2FF treatment dramatically inhibited core fucosylation, which was also confirmed via mass spectrometry analysis. Cell proliferation and integrin-mediated cell migration were significantly suppressed in cells treated with 2FF. We further analyzed cell colony formation in soft agar and tumor xenograft efficacy, and found that both were greatly suppressed in the 2FF-treated cells, compared with the control cells. Moreover, the treatment with 2FF decreased the core fucosylation levels of membrane glycoproteins such as EGF receptor and integrin β1, which in turn suppressed downstream signals that included phospho-EGFR, -AKT, -ERK, and -FAK. These results clearly described the roles of 2FF and the importance of core fucosylation in liver cancer progression, suggesting 2FF shows promise for use in the treatment of hepatoma.
Collapse
Affiliation(s)
- Ying Zhou
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sicong Hou
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Akihiko Kameyama
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
32
|
Hsiao CT, Cheng HW, Huang CM, Li HR, Ou MH, Huang JR, Khoo KH, Yu HW, Chen YQ, Wang YK, Chiou A, Kuo JC. Fibronectin in cell adhesion and migration via N-glycosylation. Oncotarget 2017; 8:70653-70668. [PMID: 29050309 PMCID: PMC5642584 DOI: 10.18632/oncotarget.19969] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
Directed cell migration is an important step in effective wound healing and requires the dynamic control of the formation of cell-extracellular matrix interactions. Plasma fibronectin is an extracellular matrix glycoprotein present in blood plasma that plays crucial roles in modulating cellular adhesion and migration and thereby helping to mediate all steps of wound healing. In order to seek safe sources of plasma fibronectin for its practical use in wound dressing, we isolated fibronectin from human (homo) and porcine plasma and demonstrated that both have a similar ability as a suitable substrate for the stimulation of cell adhesion and for directing cell migration. In addition, we also defined the N-glycosylation sites and N-glycans present on homo and porcine plasma fibronectin. These N-glycosylation modifications of the plasma fibronectin synergistically support the integrin-mediated signals to bring about mediating cellular adhesion and directed cell migration. This study not only determines the important function of N-glycans in both homo and porcine plasma fibronectin-mediated cell adhesion and directed cell migration, but also reveals the potential applications of porcine plasma fibronectin if it was applied as a material for clinical wound healing and tissue repair.
Collapse
Affiliation(s)
- Cheng-Te Hsiao
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Hung-Wei Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chi-Ming Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Hao-Ru Li
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Meng-Hsin Ou
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Helen Wenshin Yu
- Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yin-Quan Chen
- Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan 70101, Taiwan
| | - Arthur Chiou
- Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei 11221, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan.,Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei 11221, Taiwan.,Proteomics Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
33
|
Sun W, Tang H, Gao L, Sun X, Liu J, Wang W, Wu T, Lin H. Mechanisms of pulmonary fibrosis induced by core fucosylation in pericytes. Int J Biochem Cell Biol 2017; 88:44-54. [PMID: 28483669 DOI: 10.1016/j.biocel.2017.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/03/2023]
Abstract
Pulmonary fibrosis is a common outcome of a variety of pulmonary interstitial diseases, and myofibroblasts are the main culprit for this process. Recent studies have found that pericytes are one of the major sources of myofibroblasts; the transformation of which involves a complex process of activation of TGF-β/Smad2/3 and PDGFβ/Erk signaling pathways. We have reported that the transforming growth factor-β receptor and platelet-derived growth factor-β receptor (TGF-βR I and PDGFβR, respectively) are modified by glycosylation. Thus, we hope to regulate the above-mentioned signal pathways through core fucosylation (CF) catalyzed by α-1,6-fucosyltransferase (FUT8). Previous work has confirmed that TGF-β1 can induce the transformation of pericytes into myofibroblasts, while FUT8siRNA can inhibit such transformation. In the present study, we used an adenovirus packaging FUT8 shRNA to infect a bleomycin-induced pulmonary fibrosis mouse model and determined the effect of CF on pulmonary fibrosis by analyzing the mechanism of CF-mediated pericyte transformation. Our findings may shed new light on the mechanism of pulmonary interstitial fibrosis and provide a novel therapeutic target for clinical applications.
Collapse
Affiliation(s)
- Wei Sun
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - HaiYing Tang
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - Lili Gao
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - Xiuna Sun
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - Jia Liu
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - WeiDong Wang
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China
| | - Taihua Wu
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China.
| | - Hongli Lin
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, 222# Zhongshan Road, Dalian, Liaoning 116011, PR China.
| |
Collapse
|
34
|
Mueller TM, Yates SD, Haroutunian V, Meador-Woodruff JH. Altered fucosyltransferase expression in the superior temporal gyrus of elderly patients with schizophrenia. Schizophr Res 2017; 182:66-73. [PMID: 27773385 PMCID: PMC5376218 DOI: 10.1016/j.schres.2016.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 12/24/2022]
Abstract
Glycosylation is a post-translational modification that is an essential element in cell signaling and neurodevelopmental pathway regulation. Glycan attachment can influence the tertiary structure and molecular interactions of glycosylated substrates, adding an additional layer of regulatory complexity to functional mechanisms underlying central cell biological processes. One type of enzyme-mediated glycan attachment, fucosylation, can mediate glycoprotein and glycolipid cell surface expression, trafficking, secretion, and quality control to modulate a variety of inter- and intracellular signaling cascades. Building on prior reports of glycosylation abnormalities and evidence of dysregulated glycosylation enzyme expression in schizophrenia, we examined the protein expression of 5 key fucose-modifying enzymes: GDP-fucose:protein O-fucosyltransferase 1 (POFUT1), GDP-fucose:protein O-fucosyltransferase 2 (POFUT2), fucosyltransferase 8 (FUT8), fucosyltransferase 11 (FUT11), and plasma α-l-fucosidase (FUCA2) in postmortem superior temporal gyrus of schizophrenia (N=16) and comparison (N=14) subjects. We also used the fucose binding protein, Aleuria aurantia lectin (AAL), to assess α-1,6-fucosylated N-glycoprotein abundance in the same subjects. In schizophrenia, we found increased expression of POFUT2, a fucosyltransferase uniquely responsible for O-fucosylation of thrombospondin-like repeat domains that is involved in a non-canonical endoplasmic reticulum quality control pathway. We also found decreased expression of FUT8 in schizophrenia. Given that FUT8 is the only α-1,6-fucosyltransferase expressed in mammals, the concurrent decrease in AAL binding in schizophrenia, particularly evident for N-glycoproteins in the ~52-58kDa and ~60-70kDa molecular mass ranges, likely reflects a consequence of abnormal FUT8 expression in the disorder. Dysregulated FUT8 and POFUT2 expression could potentially explain a variety of molecular abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Toni M. Mueller
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA,Corresponding author: Toni M. Mueller, PhD, CIRC 593A, 1719 6th Ave South, Birmingham, AL 35233, USA, Tel: +1 205 996 6164, Fax: + 1 205 975 4879,
| | - Stefani D. Yates
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY USA
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
35
|
Xiang T, Yang G, Liu X, Zhou Y, Fu Z, Lu F, Gu J, Taniguchi N, Tan Z, Chen X, Xie Y, Guan F, Zhang XL. Alteration of N-glycan expression profile and glycan pattern of glycoproteins in human hepatoma cells after HCV infection. Biochim Biophys Acta Gen Subj 2017; 1861:1036-1045. [PMID: 28229927 DOI: 10.1016/j.bbagen.2017.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection causes chronic liver diseases, liver fibrosis and even hepatocellular carcinoma (HCC). However little is known about any information of N-glycan pattern in human liver cell after HCV infection. METHODS The altered profiles of N-glycans in HCV-infected Huh7.5.1 cell were analyzed by using mass spectrometry. Then, lectin microarray, lectin pull-down assay, reverse transcription-quantitative real time PCR (RT-qPCR) and western-blotting were used to identify the altered N-glycosylated proteins and glycosyltransferases. RESULTS Compared to uninfected cells, significantly elevated levels of fucosylated, sialylated and complex N-glycans were found in HCV infected cells. Furthermore, Lens culinaris agglutinin (LCA)-binding glycoconjugates were increased most. Then, the LCA-agarose was used to precipitate the specific glycosylated proteins and identify that fucosylated modified annexin A2 (ANXA2) and heat shock protein 90 beta family member 1 (HSP90B1) was greatly increased in HCV-infected cells. However, the total ANXA2 and HSP90B1 protein levels remained unchanged. Additionally, we screened the mRNA expressions of 47 types of different glycosyltransferases and found that α1,6-fucosyltransferase 8 (FUT8) was the most up-regulated and contributed to strengthen the LCA binding capability to fucosylated modified ANXA2 and HSP90B1 after HCV infection. CONCLUSIONS HCV infection caused the altered N-glycans profiles, increased expressions of FUT8, fucosylated ANXA2 and HSP90B1 as well as enhanced LCA binding to Huh7.5.1. GENERAL SIGNIFICANCE Our results may lay the foundation for clarifying the role of N-glycans and facilitate the development of novel diagnostic biomarkers and therapeutic targets based on the increased FUT8, fucosylated ANXA2 and HSP90B1 after HCV infection.
Collapse
Affiliation(s)
- Tian Xiang
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ganglong Yang
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyu Liu
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yidan Zhou
- University of Illinois at Urbana-Champaign, School of Molecular and Cellular Biology, Department of Microbiology, IL 61801, USA
| | - Zhongxiao Fu
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Fangfang Lu
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Naoyuki Taniguchi
- Systems Glycobiology Group, Global Research Cluster, RIKEN and RIKEN-Max Planck Joint Research Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zengqi Tan
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xi Chen
- Wuhan Institute of Biotechnology, Medical Research Institute of Wuhan University, Wuhan 430071, China
| | - Yan Xie
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Feng Guan
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
36
|
Hirano M, Totani K, Fukuda T, Gu J, Suzuki A. N-Glycoform-dependent interactions of megalin with its ligands. Biochim Biophys Acta Gen Subj 2017; 1861:3106-3118. [DOI: 10.1016/j.bbagen.2016.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/30/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022]
|
37
|
Xu X, Liu Z, Wang J, Ling Q, Xie H, Guo H, Wei X, Zhou L, Zheng S. miRNA profiles in livers with different mass deficits after partial hepatectomy and miR-106b~25 cluster accelerating hepatocyte proliferation in rats. Sci Rep 2016; 6:31267. [PMID: 27507706 PMCID: PMC4978973 DOI: 10.1038/srep31267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Partial hepatectomy (PH) promotes the reentry of quiescent hepatocytes into cell cycle for regrowth. miRNA profiles in livers with different mass deficits after PH have not been investigated and miRNAs implicated in liver regeneration remain unclear. We generated miRNA profiles from normal and remnant livers at 6, 12, 24, and 36 hours after 1/3 or 2/3PH using microarrays. Compared with normal livers, the proportion of altered miRNAs decreased with time after 1/3PH, but increased after 2/3PH. Most of altered miRNAs between 1/3 and 2/3PH exhibited similar up- or down-regulation, but lower expression magnitude for 1/3PH. Among differentially expressed miRNAs between 2/3PH with robust DNA replication and 1/3PH with a minimal replicative response, we identified miR-101a, miR-92a, miR-25, miR-93 and miR-106b as key regulators of cell cycle. In 2/3PH model, overexpression of miR-106b~25 cluster tended to accelerate liver regeneration, while inhibition of miR-106b~25 cluster markedly repressed regenerative response and delayed recovery of liver function. Mechanistically, RB1 and KAT2B with cell cycle arrest activity were identified as novel targets of miR-106b/93 and miR-25, respectively. Overall, we featured miRNA profiles and dynamics after 1/3 and 2/3PH, and identified miR-106b~25 cluster as being involved in timely cell cycle entry of hepatocytes after PH.
Collapse
Affiliation(s)
- Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhikun Liu
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguo Wang
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, China
| | - Qi Ling
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Xie
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, China
| | - Haijun Guo
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, China
| | - Xuyong Wei
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, China
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
38
|
Mehta A, Comunale MA, Rawat S, Casciano JC, Lamontagne J, Herrera H, Ramanathan A, Betesh L, Wang M, Norton P, Steel LF, Bouchard MJ. Intrinsic hepatocyte dedifferentiation is accompanied by upregulation of mesenchymal markers, protein sialylation and core alpha 1,6 linked fucosylation. Sci Rep 2016; 6:27965. [PMID: 27328854 PMCID: PMC4916422 DOI: 10.1038/srep27965] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/25/2016] [Indexed: 12/13/2022] Open
Abstract
Alterations in N-linked glycosylation have long been associated with cancer but for the most part, the reasons why have remained poorly understood. Here we show that increased core fucosylation is associated with de-differentiation of primary hepatocytes and with the appearance of markers indicative of a transition of cells from an epithelial to a mesenchymal state. This increase in core fucosylation was associated with increased levels of two enzymes involved in α-1,6 linked fucosylation, GDP-mannose 4, 6-dehydratase (Gmds) and to a lesser extent fucosyltransferase 8 (Fut8). In addition, the activation of cancer-associated cellular signaling pathways in primary rat hepatocytes can increase core fucosylation and induce additional glycoform alterations on hepatocyte proteins. Specifically, we show that increased levels of protein sialylation and α-1,6-linked core fucosylation are observed following activation of the β-catenin pathway. Activation of the Akt signaling pathway or induction of hypoxia also results in increased levels of fucosylation and sialylation. We believe that this knowledge will help in the better understanding of the genetic factors associated with altered glycosylation and may allow for the development of more clinically relevant biomarkers.
Collapse
Affiliation(s)
- Anand Mehta
- Drexel University College of Medicine, Department of Microbiology and Immunology, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | - Mary Ann Comunale
- Drexel University College of Medicine, Department of Microbiology and Immunology, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | - Siddhartha Rawat
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Molecular and Cellular Biology and Genetics Graduate Program, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jessica C Casciano
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Molecular and Cellular Biology and Genetics Graduate Program, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jason Lamontagne
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Microbiology and Immunology Graduate Program, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Harmin Herrera
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Microbiology and Immunology Graduate Program, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Aarti Ramanathan
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Microbiology and Immunology Graduate Program, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Lucy Betesh
- Drexel University College of Medicine, Department of Microbiology and Immunology, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | - Mengjun Wang
- Drexel University College of Medicine, Department of Microbiology and Immunology, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | - Pamela Norton
- Drexel University College of Medicine, Department of Microbiology and Immunology, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | - Laura F Steel
- Drexel University College of Medicine, Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Michael J Bouchard
- Drexel University College of Medicine, Department of Biochemistry and Molecular Biology, 245 N. 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
39
|
Fujii H, Shinzaki S, Iijima H, Wakamatsu K, Iwamoto C, Sobajima T, Kuwahara R, Hiyama S, Hayashi Y, Takamatsu S, Uozumi N, Kamada Y, Tsujii M, Taniguchi N, Takehara T, Miyoshi E. Core Fucosylation on T Cells, Required for Activation of T-Cell Receptor Signaling and Induction of Colitis in Mice, Is Increased in Patients With Inflammatory Bowel Disease. Gastroenterology 2016; 150:1620-1632. [PMID: 26965517 DOI: 10.1053/j.gastro.2016.03.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Attachment of a fucose molecule to the innermost N-glycan in a glycoprotein (core fucosylation) regulates the activity of many growth factor receptors and adhesion molecules. The process is catalyzed by α1-6 fucosyltransferase (FUT8) and required for immune regulation, but it is not clear whether this process is dysregulated during disease pathogenesis. We investigated whether core fucosylation regulates T-cell activation and induction of colitis in mice, and is altered in patients with inflammatory bowel disease (IBD). METHODS Biopsy samples were collected from inflamed and noninflamed regions of intestine from patients (8 with Crohn's disease, 4 with ulcerative colitis, and 4 without IBD [controls]) at Osaka University Hospital. Colitis was induced in FUT8-deficient (Fut8(-/-)) mice and Fut8(+/+) littermates by administration of trinitrobenzene sulfonic acid. Intestinal tissues were collected and analyzed histologically. Immune cells were collected and analyzed by lectin flow cytometry, immunofluorescence, and reverse-transcription polymerase chain reaction, as well as for production of cytokines and levels of T-cell receptor (TCR) in lipid raft fractions. T-cell function was analyzed by intraperitoneal injection of CD4(+)CD62L(+) naïve T cells into RAG2-deficient mice. RESULTS Levels of core fucosylation were increased on T cells from mice with colitis, compared with mice without colitis, as well as on inflamed mucosa from patients with IBD, compared with their noninflamed tissues or tissues from control patients. Fut8(-/-) mice developed less-severe colitis than Fut8(+/+) mice, and T cells from Fut8(-/-) mice produced lower levels of T-helper 1 and 2 cytokines. Adoptive transfer of Fut8(-/-) T cells to RAG2-deficient mice reduced the severity of colitis. Compared with CD4(+) T cells from Fut8(+/+) mice, those from Fut8(-/-) mice expressed similar levels of TCR and CD28, but these proteins did not contain core fucosylation. TCR complexes formed on CD4(+) T cells from Fut8(-/-) mice did not signal properly after activation and were not transported to lipid rafts. CONCLUSIONS Core fucosylation of the TCR is required for T-cell signaling and production of inflammatory cytokines and induction of colitis in mice. Levels of TCR core fucosylation are increased on T cells from intestinal tissues of patients with IBD; this process might be blocked as a therapeutic strategy.
Collapse
Affiliation(s)
- Hironobu Fujii
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kana Wakamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chizuru Iwamoto
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoaki Sobajima
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryusuke Kuwahara
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Satoshi Hiyama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naofumi Uozumi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiko Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
40
|
Enzymes for N-Glycan Branching and Their Genetic and Nongenetic Regulation in Cancer. Biomolecules 2016; 6:biom6020025. [PMID: 27136596 PMCID: PMC4919920 DOI: 10.3390/biom6020025] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
N-glycan, a fundamental and versatile protein modification in mammals, plays critical roles in various physiological and pathological events including cancer progression. The formation of N-glycan branches catalyzed by specific N-acetylglucosaminyltransferases [GnT-III, GnT-IVs, GnT-V, GnT-IX (Vb)] and a fucosyltransferase, Fut8, provides functionally diverse N-glycosylated proteins. Aberrations of these branches are often found in cancer cells and are profoundly involved in cancer growth, invasion and metastasis. In this review, we focus on the GlcNAc and fucose branches of N-glycans and describe how their expression is dysregulated in cancer by genetic and nongenetic mechanisms including epigenetics and nucleotide sugar metabolisms. We also survey the roles that these N-glycans play in cancer progression and therapeutics. Finally, we discuss possible applications of our knowledge on basic glycobiology to the development of medicine and biomarkers for cancer therapy.
Collapse
|