1
|
Duan Y, Liu Z, Huang X, Xu L, Wang X, Liu H, Xie Z. Mitigating genetic instability caused by the excision activity of the phiC31 integrase in Streptomyces. Appl Environ Microbiol 2025; 91:e0181224. [PMID: 39704534 DOI: 10.1128/aem.01812-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Over the past three decades, the integrase (Int) from Streptomyces phage phiC31 has become a valuable genome engineering tool across various species. phiC31 Int was thought to mediate unidirectional site-specific integration (attP × attB to attL and attR) in the absence of the phage-encoded recombination directionality factor (RDF). However, we have shown in this study that Int can also catalyze reverse excision (attL × attR to attP and attB) at low frequencies in Streptomyces lividans and Escherichia coli, causing genetic instability in engineered strains. To address this issue, we developed a two-plasmid co-conjugation (TPC) system. This system consists of an attP-containing integration vector and an Int expression suicide plasmid, both carrying oriT to facilitate efficient conjugation transfer from E. coli to Streptomyces. Using the TPC system, genetically stable integrants free of Int can be generated quickly and easily. The indigoidine-producing strains generated by the TPC system exhibited higher genetic stability and production efficiency compared to the indigoidine-producing strain generated by the conventional integration system, further demonstrating the utility of the TPC system in the field of biotechnology. We anticipate that the strategies presented here will be widely adopted for stable genetic engineering of industrial microbes using phage integrase-based integration systems.IMPORTANCELarge serine recombinases (LSRs), including the bacteriophage phiC31 integrase, were previously thought to allow only unidirectional site-specific integration (attP × attB to attL and attR). Our study is the first to show that the phiC31 integrase can also catalyze a low-efficiency reverse excision reaction in Streptomyces and E. coli without the involvement of the phage-encoded recombination directionality factor (RDF). The genetic instability caused by the low in vivo excisionase activity of the phiC31 integrase is a major challenge for biotechnological applications. Our study addresses this issue by developing a two-plasmid co-conjugation (TPC) system that facilitates the construction of Int-deficient genomic engineering strains. The Int-deficient integrants produced by this TPC system exhibit strong genetic stability for introduced genes and maintain stable production traits even in the absence of selection pressure, making them highly valuable for industrial applications.
Collapse
Affiliation(s)
- Yadan Duan
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhangliang Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaofang Huang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Lu Xu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xianxue Wang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
2
|
Krysenko S. Current Approaches for Genetic Manipulation of Streptomyces spp.-Key Bacteria for Biotechnology and Environment. BIOTECH 2025; 14:3. [PMID: 39846552 PMCID: PMC11755657 DOI: 10.3390/biotech14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
Organisms from the genus Streptomyces feature actinobacteria with complex developmental cycles and a great ability to produce a variety of natural products. These soil bacteria produce more than 2/3 of antibiotics used in medicine, and a large variety of bioactive compounds for industrial, medical and agricultural use. Although Streptomyces spp. have been studied for decades, the engineering of these bacteria remains challenging, and the available genetic tools are rather limited. Furthermore, most biosynthetic gene clusters in these bacteria are silent and require strategies to activate them and exploit their production potential. In order to explore, understand and manipulate the capabilities of Streptomyces spp. as a key bacterial for biotechnology, synthetic biology strategies emerged as a valuable component of Streptomyces research. Recent advancements in strategies for genetic manipulation of Streptomyces involving proposals of a large variety of synthetic components for the genetic toolbox, as well as new approaches for genome mining, assembly of genetic constructs and their delivery into the cell, allowed facilitation of the turnaround time of strain engineering and efficient production of new natural products at an industrial scale, but still have strain- and design-dependent limitations. A new perspective offered recently by technical advances in DNA sequencing, analysis and editing proposed strategies to overcome strain- and construct-specific difficulties in the engineering of Streptomyces. In this review, challenges and recent developments of approaches for Streptomyces engineering are discussed, an overview of novel synthetic biology strategies is provided and examples of successful application of new technologies in molecular genetic engineering of Streptomyces are highlighted.
Collapse
Affiliation(s)
- Sergii Krysenko
- Valent BioSciences, Biorational Research Center, 1910 Innovation Way, Suite 100, Libertyville, IL 60048, USA
| |
Collapse
|
3
|
Xie F, Zhao H, Liu J, Yang X, Neuber M, Agrawal AA, Kaur A, Herrmann J, Kalinina OV, Wei X, Müller R, Fu C. Autologous DNA mobilization and multiplication expedite natural products discovery from bacteria. Science 2024; 386:eabq7333. [PMID: 39666857 DOI: 10.1126/science.abq7333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/10/2024] [Indexed: 12/14/2024]
Abstract
The transmission of antibiotic-resistance genes, comprising mobilization and relocation events, orchestrates the dissemination of antimicrobial resistance. Inspired by this evolutionarily successful paradigm, we developed ACTIMOT, a CRISPR-Cas9-based approach to unlock the vast chemical diversity concealed within bacterial genomes. ACTIMOT enables the efficient mobilization and relocation of large DNA fragments from the chromosome to replicative plasmids within the same bacterial cell. ACTIMOT circumvents the limitations of traditional molecular cloning methods involving handling and replicating large pieces of genomic DNA. Using ACTIMOT, we mobilized and activated four cryptic biosynthetic gene clusters from Streptomyces, leading to the discovery of 39 compounds across four distinct classes. This work highlights the potential of ACTIMOT for accelerating the exploration of biosynthetic pathways and the discovery of natural products.
Collapse
Affiliation(s)
- Feng Xie
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Haowen Zhao
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Jiaqi Liu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Xiaoli Yang
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Neuber
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Amay Ajaykumar Agrawal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Amninder Kaur
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- PharmaScienceHub, Saarbrücken, Germany
- Faculty of Medicine, Saarland University, Homburg, Germany
| | - Xiaoyi Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| |
Collapse
|
4
|
Chen YN, Cui YZ, Chen XR, Wang JY, Li BZ, Yuan YJ. Direct cloning strategies for large genomic fragments: A review. Biotechnol Adv 2024; 79:108494. [PMID: 39637950 DOI: 10.1016/j.biotechadv.2024.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/08/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Mining large-scale functional regions of the genome helps to understand the essence of cellular life. The rapid accumulation of genomic information provides a wealth of material for genomic functional, evolutionary, and structural research. DNA cloning technology is an important tool for understanding, analyzing, and manipulating the genetic code of organisms. As synthetic biologists engineer greater and broader genetic pathways and expand their research into new organisms, efficient tools capable of manipulating large-scale DNA will offer momentum to the ability to design, modify, and construct engineering life. In this review, we discuss the recent advances in the field of direct cloning of large genomic fragments, particularly of 50-150 kb genomic fragments. We specifically introduce the technological advances in the targeted release and capture steps of these cloning strategies. Additionally, the applications of large fragment cloning in functional genomics and natural product mining are also summarized. Finally, we further discuss the challenges and prospects for these technologies in the future.
Collapse
Affiliation(s)
- Ya-Nan Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Xiang-Rong Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Jun-Yi Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| |
Collapse
|
5
|
Kurylenko O, Palusczak A, Luzhetskyy A, Rebets Y. An Improved Transformation-Associated Recombination Cloning Approach for Direct Capturing of Natural Product Biosynthetic Gene Clusters. Microb Biotechnol 2024; 17:e70067. [PMID: 39651843 PMCID: PMC11626649 DOI: 10.1111/1751-7915.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024] Open
Abstract
The phylum Actinomycetota and genus Streptomyces in particular are the major source for discovery of natural products with diverse chemical structures and a variety of biological activities. Genes encoding biosynthetic pathways for bacterial natural products are grouped together into biosynthetic gene clusters (BGCs). The size of a typical actinobacterial BGC may range from 10 kb to 200 kb, which makes their cloning for heterologous expression a challenging task. Various DNA cloning and assembly methods have been established for capturing BGCs. Among them, the transformation-associated recombination (TAR) in Saccharomyces cerevisiae remains one of the most cost-effective, accessible, customisable and precise approaches. However, the drawback of TAR cloning is a need for intensive screening of clones in order to identify one carrying the BGC. In this study, we report a further development of the TAR cloning approach by introducing the direct selection of colonies with BGC of interest based on the yeast killer phenomenon. For this, a new TAR cloning vector system was constructed and the strategy was validated by successful cloning of chelocardin (35 kb) BGC from Amycolatopsis sulphurea and daptomycin BGC (67 kb) from Streptomyces filamentosus. Both BGCs were functionally expressed in a heterologous host, resulting in the production of the corresponding antibiotics. The proposed approach could be widely applied for precise direct cloning of BGCs from the representatives of phylum Actinomycetota and easily adopted for other bacteria.
Collapse
Affiliation(s)
- Olena Kurylenko
- Explogen LLCLvivUkraine
- German‐Ukrainian Core of Excellence in Natural Products Research (CENtR)LvivUkraine
| | - Anja Palusczak
- Pharmazeutische BiotechnologieUniversität des SaarlandesSaarbrückenGermany
| | - Andriy Luzhetskyy
- Pharmazeutische BiotechnologieUniversität des SaarlandesSaarbrückenGermany
| | - Yuriy Rebets
- Explogen LLCLvivUkraine
- German‐Ukrainian Core of Excellence in Natural Products Research (CENtR)LvivUkraine
| |
Collapse
|
6
|
MacDonald AI, Baksh A, Holland A, Shin H, Rice PA, Stark WM, Olorunniji FJ. Variable orthogonality of serine integrase interactions within the ϕC31 family. Sci Rep 2024; 14:26280. [PMID: 39487291 PMCID: PMC11530663 DOI: 10.1038/s41598-024-77570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
Serine integrases are phage- (or mobile element-) encoded enzymes that catalyse site-specific recombination reactions between a short DNA sequence on the phage genome (attP) and a corresponding host genome sequence (attB), thereby integrating the phage DNA into the host genome. Each integrase has its unique pair of attP and attB sites, a feature that allows them to be used as orthogonal tools for genome modification applications. In the presence of a second protein, the Recombination Directionality Factor (RDF), integrase catalyses the reverse excisive reaction, generating new recombination sites, attR and attL. In addition to promoting attR x attL reaction, the RDF inhibits attP x attB recombination. This feature makes the directionality of integrase reactions programmable, allowing them to be useful for building synthetic biology devices. In this report, we describe the degree of orthogonality of both integrative and excisive reactions for three related integrases (ϕC31, ϕBT1, and TG1) and their RDFs. Among these, TG1 integrase is the most active, showing near complete recombination in both attP x attB and attR x attL reactions, and the most directional in the presence of its RDF. Our findings show that there is varying orthogonality among these three integrases - RDF pairs. ϕC31 integrase was the least selective, with all three RDFs activating it for attR x attL recombination. Similarly, ϕC31 RDF was the least effective among the three RDFs in promoting the excisive activities of the integrases, including its cognate ϕC31 integrase. ϕBT1 and TG1 RDFs were noticeably more effective than ϕC31 RDF at inhibiting attP x attB recombination by their respective integrases, making them more suitable for building reversible genetic switches. AlphaFold-Multimer predicts very similar structural interactions between each cognate integrase - RDF pair. The binding surface on the RDF is much more conserved than the binding surface on the integrase, an indication that specificity is determined more by the integrase than the RDF. Overall, the observed weak integrase/RDF orthogonality across the three enzymes emphasizes the need for identifying and characterizing more integrase - RDF pairs. Additionally, the ability of a particular integrase's preferred reaction direction to be controlled to varying degrees by non-cognate RDFs provides a path to tunable, non-binary genetic switches.
Collapse
Affiliation(s)
- Alasdair I MacDonald
- School of Molecular Biosciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Aron Baksh
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, L3 3AF, Liverpool, UK
| | - Alexandria Holland
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, L3 3AF, Liverpool, UK
| | - Heewhan Shin
- Department of Biochemistry and Molecular Biology, The University of Chicago, 60637, Chicago, IL, USA
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, 60637, Chicago, IL, USA
| | - W Marshall Stark
- School of Molecular Biosciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Femi J Olorunniji
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, L3 3AF, Liverpool, UK.
| |
Collapse
|
7
|
Guo Y, Cai G, Li H, Lin Z, Shi S, Jin J, Liu Z. A CRISPR-Cas9-Mediated Large-Fragment Assembly Method for Cloning Genomes and Biosynthetic Gene Cluster. Microorganisms 2024; 12:1462. [PMID: 39065230 PMCID: PMC11279360 DOI: 10.3390/microorganisms12071462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The ability to clone large DNA fragments from genomes is valuable for both basic and applied research, such as the construction of synthetic genomes, and the expression of biosynthetic gene clusters (BGCs) for natural product discovery. Here, we report a fast and efficient platform for the direct capture of genome DNAs, by combining CRISPR and Gibson assembly. We demonstrate this method with the ability of cloning large DNA fragments ranging from 30 to 77 kb from various host genomes, achieving a near 100% cloning fidelity for DNA fragments below 50 kb. We next demonstrate this method by the cloning of a 40 kb fragment from Streptomyces ceruleus A3(2), which is rich in BGCs for natural products; and used this method cloning the 40 kb fengycin synthetic gene cluster from B. subtilis 168, encoding for a class of peptides with bioactivity. This method provides efficient and simple opportunities for assembling large DNA constructs from distant sources.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China (S.S.)
| | - Zihe Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China (S.S.)
| |
Collapse
|
8
|
MacDonald AI, Baksh A, Holland A, Shin H, Rice PA, Stark WM, Olorunniji FJ. Variable orthogonality of RDF - large serine integrase interactions within the ϕC31 family. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587898. [PMID: 38617232 PMCID: PMC11014563 DOI: 10.1101/2024.04.03.587898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Large serine integrases are phage- (or mobile element-) encoded enzymes that catalyse site-specific recombination reactions between a short DNA sequence on the phage genome (attP) and a corresponding host genome sequence (attB), thereby integrating the phage DNA into the host genome. Each integrase has its unique pair of attP and attB sites, a feature that allows them to be used as orthogonal tools for genome modification applications. In the presence of a second protein, the Recombination Directionality Factor (RDF), integrase catalyses the reverse, excisive reaction, generating new recombination sites, attR and attL. In addition to promoting attR x attL reaction, the RDF inhibits attP x attB recombination. This feature makes the directionality of integrase reactions programmable, allowing them to be useful for building synthetic biology devices. In this report, we describe the degree of orthogonality of both integrative and excisive reactions for three related integrases (ϕC31, ϕBT1, and TG1) and their RDFs. Among these, TG1 integrase is the most active, showing near complete recombination in both attP x attB and attR x attL reactions, and the most directional in the presence of its RDF. Our findings show that there is varying orthogonality among these three integrases - RDF pairs: ϕC31 integrase was the least selective, with all three RDFs activating it for attR x attL recombination. Similarly, ϕC31 RDF was the least effective among the three RDFs in promoting the excisive activities of the integrases, including its cognate ϕC31 integrase. ϕBT1 and TG1 RDFs were noticeably more effective than ϕC31 RDF at inhibiting attP x attB recombination by their respective integrases, making them more suitable for building reversible genetic switches. AlphaFold-Multimer predicts very similar structural interactions between each cognate integrase - RDF pair. The binding surface on RDF is much more conserved than the binding surface on integrase, an indication that specificity is determined more by the integrase than the RDF. Overall, the observed weak integrase/RDF orthogonality across the three enzymes emphasizes the need for identifying and characterizing more integrase - RDF pairs. Additionally, the ability of a particular integrase's preferred reaction direction to be controlled to varying degrees by non-cognate RDFs provides a path to tunable, non-binary genetic switches.
Collapse
Affiliation(s)
- Alasdair I. MacDonald
- School of Molecular Biosciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, U.K
| | - Aron Baksh
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Alex Holland
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Heewhan Shin
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Phoebe A. Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - W. Marshall Stark
- School of Molecular Biosciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, U.K
| | - Femi J. Olorunniji
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| |
Collapse
|
9
|
Xia L, Wen J. Available strategies for improving the biosynthesis of surfactin: a review. Crit Rev Biotechnol 2023; 43:1111-1128. [PMID: 36001039 DOI: 10.1080/07388551.2022.2095252] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
Surfactin is an excellent biosurfactant with a wide range of application prospects in many industrial fields. However, its low productivity and high cost have largely limited its commercial applications. In this review, the pathways for surfactin synthesis in Bacillus strains are summarized and discussed. Further, the latest strategies for improving surfactin production, including: medium optimization, genome engineering methods (rational genetic engineering, genome reduction, and genome shuffling), heterologous synthesis, and the use of synthetic biology combined with metabolic engineering approaches to construct high-quality artificial cells for surfactin production using xylose, are described. Finally, the prospects for improving surfactin synthesis are discussed in detail.
Collapse
Affiliation(s)
- Li Xia
- Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
- National Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, People's Republic of China
- Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
- National Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, People's Republic of China
- Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
10
|
Tian Y, Li D, Wang K, Wei B, Zhang J, Li J. An efficient method for targeted cloning of large DNA fragments from Streptomyces. Appl Microbiol Biotechnol 2023; 107:5749-5760. [PMID: 37486353 DOI: 10.1007/s00253-023-12685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Cloning of large DNA fragments from microorganisms becomes increasingly important but remains seriously challenging due to the complexity and diversity of genetic background. In particular, the methods with high precision and efficiency are in great need for obtaining intact biosynthetic gene clusters (BGCs) of microbial natural products. Here, we report a new strategy for targeted cloning of large DNA fragments (TCLD) from different bacteria. Using this method, precise cloning of desired E. coli chromosomal fragments up to 201 kb was achieved with 53% positive rate. Moreover, its application in cloning of large BGCs with high G + C content and multiple repetitive sequences was also demonstrated, including the 98 kb tylosin BGC (tyl), 128 kb daptomycin BGC (dpt), and 127 kb salinomycin BGC (sal). Subsequently, heterologous expression of the cloned tyl BGC in Streptomyces coelicolor M1146 led to the production of tylosins in the resulting recombinant strains. And also, its introduction into Streptomyces fradiae ATCC 19609, a native producer of tylosin, effectively increased tylosin yield to 230%. Hence, TCLD is a powerful tool for cloning large BGCs and would facilitate the discovery of bioactive substances from microbial resources. KEY POINTS: • TCLD is an efficient method for cloning large DNA fragments. • Repeat sequence-mediated intra-molecular cyclization improves the cloning efficiency. • TCLD combined with scarless editing allows unlimited modifications on BGCs.
Collapse
Affiliation(s)
- Yuqing Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoting Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jine Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
11
|
Xu Z, Park TJ, Cao H. Advances in mining and expressing microbial biosynthetic gene clusters. Crit Rev Microbiol 2023; 49:18-37. [PMID: 35166616 DOI: 10.1080/1040841x.2022.2036099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Natural products (NPs) especially the secondary metabolites originated from microbes exhibit great importance in biomedical, industrial and agricultural applications. However, mining biosynthetic gene clusters (BGCs) to produce novel NPs has been hindered owing that a large population of environmental microbes are unculturable. In the past decade, strategies to explore BGCs directly from (meta)genomes have been established along with the fast development of high-throughput sequencing technologies and the powerful bioinformatics data-processing tools, which greatly expedited the exploitations of novel BGCs from unculturable microbes including the extremophilic microbes. In this review, we firstly summarized the popular bioinformatics tools and databases available to mine novel BGCs from (meta)genomes based on either pure cultures or pristine environmental samples. Noticeably, approaches rooted from machine learning and deep learning with focuses on the prediction of ribosomally synthesized and post-translationally modified peptides (RiPPs) were dramatically increased in recent years. Moreover, synthetic biology techniques to express the novel BGCs in culturable native microbes or heterologous hosts were introduced. This working pipeline including the discovery and biosynthesis of novel NPs will greatly advance the exploitations of the abundant but unexplored microbial BGCs.
Collapse
Affiliation(s)
- Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Tae-Jin Park
- HME Healthcare Co., Ltd, Suwon-si, Republic of Korea
| | - Huiluo Cao
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Hu X, Shi Y, Jiang B, Fu J, Li X, Li S, Sun G, Ren W, Hu X, You X, Liu Z, Han X, Zhang T, Hong B, Wu L. Iterative Methylation Leads to 3-Methylchuangxinmycin Production in Actinoplanes tsinanensis CPCC 200056. JOURNAL OF NATURAL PRODUCTS 2023; 86:1-7. [PMID: 36649560 DOI: 10.1021/acs.jnatprod.2c00360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A new congener of chuangxinmycin (CM) was identified from Actinoplanes tsinanensis CPCC 200056. Its structure was determined as 3-methylchuangxinmycin (MCM) by 1D and 2D NMR. MCM could be generated in vivo from CM by heterologous expression of the vitamin B12-dependent radical SAM enzyme CxnA/A1 responsible for methylation of 3-demethylchuangxinmycin (DCM) in CM biosynthesis, indicating that CxnA/A1 could perform iterative methylation for MCM production. In vitro assays revealed significant activities of CM, DCM, and MCM against Mycobacterium tuberculosis H37Rv and clinically isolated isoniazid/rifampin-resistant M. tuberculosis, suggesting that CM and its derivatives may have potential for antituberculosis drug development.
Collapse
Affiliation(s)
- Xiaomin Hu
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yuanyuan Shi
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Bingya Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jie Fu
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xingxing Li
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shufen Li
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Guizhi Sun
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Weicong Ren
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xinxin Hu
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xuefu You
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Xingli Han
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Linzhuan Wu
- NHC Key Laboratory of Biotechnology of Antibiotics, and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
13
|
Liu Y, Feng J, Pan H, Zhang X, Zhang Y. Genetically engineered bacterium: Principles, practices, and prospects. Front Microbiol 2022; 13:997587. [PMID: 36312915 PMCID: PMC9606703 DOI: 10.3389/fmicb.2022.997587] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Advances in synthetic biology and the clinical application of bacteriotherapy enable the use of genetically engineered bacteria (GEB) to combat various diseases. GEB act as a small 'machine factory' in the intestine or other tissues to continuously produce heterologous proteins or molecular compounds and, thus, diagnose or cure disease or work as an adjuvant reagent for disease treatment by regulating the immune system. Although the achievements of GEBs in the treatment or adjuvant therapy of diseases are promising, the practical implementation of this new therapeutic modality remains a grand challenge, especially at the initial stage. In this review, we introduce the development of GEBs and their advantages in disease management, summarize the latest research advances in microbial genetic techniques, and discuss their administration routes, performance indicators and the limitations of GEBs used as platforms for disease management. We also present several examples of GEB applications in the treatment of cancers and metabolic diseases and further highlight their great potential for clinical application in the near future.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Hangcheng Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Patel JR, Oh J, Wang S, Crawford JM, Isaacs FJ. Cross-kingdom expression of synthetic genetic elements promotes discovery of metabolites in the human microbiome. Cell 2022; 185:1487-1505.e14. [PMID: 35366417 PMCID: PMC10619838 DOI: 10.1016/j.cell.2022.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Small molecules encoded by biosynthetic pathways mediate cross-species interactions and harbor untapped potential, which has provided valuable compounds for medicine and biotechnology. Since studying biosynthetic gene clusters in their native context is often difficult, alternative efforts rely on heterologous expression, which is limited by host-specific metabolic capacity and regulation. Here, we describe a computational-experimental technology to redesign genes and their regulatory regions with hybrid elements for cross-species expression in Gram-negative and -positive bacteria and eukaryotes, decoupling biosynthetic capacity from host-range constraints to activate silenced pathways. These synthetic genetic elements enabled the discovery of a class of microbiome-derived nucleotide metabolites-tyrocitabines-from Lactobacillus iners. Tyrocitabines feature a remarkable orthoester-phosphate, inhibit translational activity, and invoke unexpected biosynthetic machinery, including a class of "Amadori synthases" and "abortive" tRNA synthetases. Our approach establishes a general strategy for the redesign, expression, mobilization, and characterization of genetic elements in diverse organisms and communities.
Collapse
Affiliation(s)
- Jaymin R Patel
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, CT, USA; Systems Biology Institute, Yale University, West Haven, CT, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Joonseok Oh
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA; Department of Chemistry, Yale University, New Haven, CT, USA
| | - Shenqi Wang
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, CT, USA; Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Jason M Crawford
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA; Department of Chemistry, Yale University, New Haven, CT, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
| | - Farren J Isaacs
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, CT, USA; Systems Biology Institute, Yale University, West Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Lyu ZY, Bu QT, Fang JL, Zhu CY, Xu WF, Ma L, Gao WL, Chen XA, Li YQ. Improving the Yield and Quality of Daptomycin in Streptomyces roseosporus by Multilevel Metabolic Engineering. Front Microbiol 2022; 13:872397. [PMID: 35509317 PMCID: PMC9058172 DOI: 10.3389/fmicb.2022.872397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic with a significant antibacterial action against antibiotic-resistant Gram-positive bacteria. Despite numerous attempts to enhance daptomycin yield throughout the years, the production remains unsatisfactory. This study reports the application of multilevel metabolic engineering strategies in Streptomyces roseosporus to reconstruct high-quality daptomycin overproducing strain L2797-VHb, including precursor engineering (i.e., refactoring kynurenine pathway), regulatory pathway reconstruction (i.e., knocking out negative regulatory genes arpA and phaR), byproduct engineering (i.e., removing pigment), multicopy biosynthetic gene cluster (BGC), and fermentation process engineering (i.e., enhancing O2 supply). The daptomycin titer of L2797-VHb arrived at 113 mg/l with 565% higher comparing the starting strain L2790 (17 mg/l) in shake flasks and was further increased to 786 mg/l in 15 L fermenter. This multilevel metabolic engineering method not only effectively increases daptomycin production, but can also be applied to enhance antibiotic production in other industrial strains.
Collapse
Affiliation(s)
- Zhong-Yuan Lyu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Qing-Ting Bu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Jiao-Le Fang
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Chen-Yang Zhu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Wei-Feng Xu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Lie Ma
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Wen-Li Gao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Xin-Ai Chen
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
- *Correspondence: Yong-Quan Li,
| |
Collapse
|
16
|
Hwang S, Lee Y, Kim JH, Kim G, Kim H, Kim W, Cho S, Palsson BO, Cho BK. Streptomyces as Microbial Chassis for Heterologous Protein Expression. Front Bioeng Biotechnol 2022; 9:804295. [PMID: 34993191 PMCID: PMC8724576 DOI: 10.3389/fbioe.2021.804295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Heterologous production of recombinant proteins is gaining increasing interest in biotechnology with respect to productivity, scalability, and wide applicability. The members of genus Streptomyces have been proposed as remarkable hosts for heterologous production due to their versatile nature of expressing various secondary metabolite biosynthetic gene clusters and secretory enzymes. However, there are several issues that limit their use, including low yield, difficulty in genetic manipulation, and their complex cellular features. In this review, we summarize rational engineering approaches to optimizing the heterologous production of secondary metabolites and recombinant proteins in Streptomyces species in terms of genetic tool development and chassis construction. Further perspectives on the development of optimal Streptomyces chassis by the design-build-test-learn cycle in systems are suggested, which may increase the availability of secondary metabolites and recombinant proteins.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gahyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyeseong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Research Center, KAIST Institutes, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
17
|
Wang X, Fu Y, Wang M, Niu G. Synthetic Cellobiose-Inducible Regulatory Systems Allow Tight and Dynamic Controls of Gene Expression in Streptomyces. ACS Synth Biol 2021; 10:1956-1965. [PMID: 34347449 DOI: 10.1021/acssynbio.1c00152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Precise control of microbial gene expression is crucial for synthetic biotechnological applications. This is particularly true for the bacterial genus Streptomyces, major producers of diverse natural products including many antibiotics. Although a plethora of genetic tools have been developed for Streptomyces, there is still an urgent need for effective gene induction systems. We herein created two novel cellobiose-inducible regulatory systems referred to as Cel-RS1 and Cel-RS2. The regulatory systems are based upon the well-characterized repressor/operator pair CebR/cebO from Streptomyces scabies and the well-defined constitutive kasO* promoter. Both Cel-RS1 and Cel-RS2 exhibit a high level of induced reporter activity and virtually no leaky expression in three model Streptomyces species, which are commonly used as surrogate hosts for expression of natural product biosynthetic gene clusters. Cel-RS2 has been proven successful for programmable control of gene expression and controllable production of specialized metabolites in multiple Streptomyces species. The strategy can be used to expand the toolkit of inducible regulatory systems that will be broadly applicable to various Streptomyces.
Collapse
Affiliation(s)
- Xia Wang
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yudie Fu
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Meiyan Wang
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
18
|
Wang W, Zheng G, Lu Y. Recent Advances in Strategies for the Cloning of Natural Product Biosynthetic Gene Clusters. Front Bioeng Biotechnol 2021; 9:692797. [PMID: 34327194 PMCID: PMC8314000 DOI: 10.3389/fbioe.2021.692797] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial natural products (NPs) are a major source of pharmacological agents. Most NPs are synthesized from specific biosynthetic gene clusters (BGCs). With the rapid increase of sequenced microbial genomes, large numbers of NP BGCs have been discovered, regarded as a treasure trove of novel bioactive compounds. However, many NP BGCs are silent in native hosts under laboratory conditions. In order to explore their therapeutic potential, a main route is to activate these silent NP BGCs in heterologous hosts. To this end, the first step is to accurately and efficiently capture these BGCs. In the past decades, a large number of effective technologies for cloning NP BGCs have been established, which has greatly promoted drug discovery research. Herein, we describe recent advances in strategies for BGC cloning, with a focus on the preparation of high-molecular-weight DNA fragment, selection and optimization of vectors used for carrying large-size DNA, and methods for assembling targeted DNA fragment and appropriate vector. The future direction into novel, universal, and high-efficiency methods for cloning NP BGCs is also prospected.
Collapse
Affiliation(s)
- Wenfang Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guosong Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, China.,Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
19
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
20
|
The Design-Build-Test-Learn cycle for metabolic engineering of Streptomycetes. Essays Biochem 2021; 65:261-275. [PMID: 33956071 DOI: 10.1042/ebc20200132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Streptomycetes are producers of a wide range of specialized metabolites of great medicinal and industrial importance, such as antibiotics, antifungals, or pesticides. Having been the drivers of the golden age of antibiotics in the 1950s and 1960s, technological advancements over the last two decades have revealed that very little of their biosynthetic potential has been exploited so far. Given the great need for new antibiotics due to the emerging antimicrobial resistance crisis, as well as the urgent need for sustainable biobased production of complex molecules, there is a great renewed interest in exploring and engineering the biosynthetic potential of streptomycetes. Here, we describe the Design-Build-Test-Learn (DBTL) cycle for metabolic engineering experiments in streptomycetes and how it can be used for the discovery and production of novel specialized metabolites.
Collapse
|
21
|
Alam K, Hao J, Zhang Y, Li A. Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. Biotechnol Adv 2021; 49:107759. [PMID: 33930523 DOI: 10.1016/j.biotechadv.2021.107759] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Microbial-derived natural products (NPs) and their derivative products are of great importance and used widely in many fields, especially in pharmaceutical industries. However, there is an immediate need to establish innovative approaches, strategies, and techniques to discover new NPs with novel or enhanced biological properties, due to the less productivity and higher cost on traditional drug discovery pipelines from natural bioresources. Revealing of untapped microbial cryptic biosynthetic gene clusters (BGCs) using DNA sequencing technology and bioinformatics tools makes genome mining possible for NP discovery from microorganisms. Meanwhile, new approaches and strategies in the area of synthetic biology offer great potentials for generation of new NPs by engineering or creating synthetic systems with improved and desired functions. Development of approaches, strategies and tools in synthetic biology can facilitate not only exploration and enhancement in supply, and also in the structural diversification of NPs. Here, we discussed recent advances in synthetic biology-inspired strategies, including bioinformatics and genetic engineering tools and approaches for identification, cloning, editing/refactoring of candidate biosynthetic pathways, construction of heterologous expression hosts, fitness optimization between target pathways and hosts and detection of NP production.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
22
|
Liu Z, Zhao Y, Huang C, Luo Y. Recent Advances in Silent Gene Cluster Activation in Streptomyces. Front Bioeng Biotechnol 2021; 9:632230. [PMID: 33681170 PMCID: PMC7930741 DOI: 10.3389/fbioe.2021.632230] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Natural products (NPs) are critical sources of drug molecules for decades. About two-thirds of natural antibiotics are produced by Streptomyces. Streptomyces have a large number of secondary metabolite biosynthetic gene clusters (SM-BGCs) that may encode NPs. However, most of these BGCs are silent under standard laboratory conditions. Hence, activation of these silent BGCs is essential to current natural products discovery research. In this review, we described the commonly used strategies for silent BGC activation in Streptomyces from two aspects. One focused on the strategies applied in heterologous host, including methods to clone and reconstruct BGCs along with advances in chassis engineering; the other focused on methods applied in native host which includes engineering of promoters, regulatory factors, and ribosomes. With the metabolic network being elucidated more comprehensively and methods optimized more high-thoroughly, the discovery of NPs will be greatly accelerated.
Collapse
Affiliation(s)
- Zhenyu Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yatong Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chaoqun Huang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yunzi Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
23
|
Recent Advances in the Heterologous Biosynthesis of Natural Products from Streptomyces. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Streptomyces is a significant source of natural products that are used as therapeutic antibiotics, anticancer and antitumor agents, pesticides, and dyes. Recently, with the advances in metabolite analysis, many new secondary metabolites have been characterized. Moreover, genome mining approaches demonstrate that many silent and cryptic biosynthetic gene clusters (BGCs) and many secondary metabolites are produced in very low amounts under laboratory conditions. One strain many compounds (OSMAC), overexpression/deletion of regulatory genes, ribosome engineering, and promoter replacement have been utilized to activate or enhance the production titer of target compounds. Hence, the heterologous expression of BGCs by transferring to a suitable production platform has been successfully employed for the detection, characterization, and yield quantity production of many secondary metabolites. In this review, we introduce the systematic approach for the heterologous production of secondary metabolites from Streptomyces in Streptomyces and other hosts, the genome analysis tools, the host selection, and the development of genetic control elements for heterologous expression and the production of secondary metabolites.
Collapse
|
24
|
Pikl Š, Carrillo Rincón AF, Slemc L, Goranovič D, Avbelj M, Gjuračić K, Sucipto H, Stare K, Baebler Š, Šala M, Guo M, Luzhetskyy A, Petković H, Magdevska V. Multiple copies of the oxytetracycline gene cluster in selected Streptomyces rimosus strains can provide significantly increased titers. Microb Cell Fact 2021; 20:47. [PMID: 33596911 PMCID: PMC7890619 DOI: 10.1186/s12934-021-01522-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/19/2021] [Indexed: 11/23/2022] Open
Abstract
Background Natural products are a valuable source of biologically active compounds that have applications in medicine and agriculture. One disadvantage with natural products is the slow, time-consuming strain improvement regimes that are necessary to ensure sufficient quantities of target compounds for commercial production. Although great efforts have been invested in strain selection methods, many of these technologies have not been improved in decades, which might pose a serious threat to the economic and industrial viability of such important bioprocesses. Results In recent years, introduction of extra copies of an entire biosynthetic pathway that encodes a target product in a single microbial host has become a technically feasible approach. However, this often results in minor to moderate increases in target titers. Strain stability and process reproducibility are the other critical factors in the industrial setting. Industrial Streptomyces rimosus strains for production of oxytetracycline are one of the most economically efficient strains ever developed, and thus these represent a very good industrial case. To evaluate the applicability of amplification of an entire gene cluster in a single host strain, we developed and evaluated various gene tools to introduce multiple copies of the entire oxytetracycline gene cluster into three different Streptomyces rimosus strains: wild-type, and medium and high oxytetracycline-producing strains. We evaluated the production levels of these engineered S. rimosus strains with extra copies of the oxytetracycline gene cluster and their stability, and the oxytetracycline gene cluster expression profiles; we also identified the chromosomal integration sites. Conclusions This study shows that stable and reproducible increases in target secondary metabolite titers can be achieved in wild-type and in high oxytetracycline-producing strains, which always reflects the metabolic background of each independent S. rimosus strain. Although this approach is technically very demanding and requires systematic effort, when combined with modern strain selection methods, it might constitute a very valuable approach in industrial process development.
Collapse
Affiliation(s)
- Špela Pikl
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Lucija Slemc
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Martina Avbelj
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Hilda Sucipto
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany.,Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Katja Stare
- National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Špela Baebler
- National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Martin Šala
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Andriy Luzhetskyy
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany.,Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | | |
Collapse
|
25
|
Molecular mechanism of mureidomycin biosynthesis activated by introduction of an exogenous regulatory gene ssaA into Streptomyces roseosporus. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1949-1963. [PMID: 33580428 PMCID: PMC7880210 DOI: 10.1007/s11427-020-1892-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 12/04/2022]
Abstract
Mureidomycins (MRDs), a group of unique uridyl-peptide antibiotics, exhibit antibacterial activity against the highly refractory pathogen Pseudomonas aeruginosa. Our previous study showed that the cryptic MRD biosynthetic gene cluster (BGC) mrd in Streptomyces roseosporus NRRL 15998 could not be activated by its endogenous regulator 02995 but activated by an exogenous activator SsaA from sansanmycin’s BGC ssa of Streptomyces sp. strain SS. Here we report the molecular mechanism for this inexplicable regulation. EMSAs and footprinting experiments revealed that SsaA could directly bind to a 14-nt palindrome sequence of 5′-CTGRCNNNNGTCAG-3′ within six promoter regions of mrd. Disruption of three representative target genes (SSGG-02981, SSGG-02987 and SSGG-02994) showed that the target genes directly controlled by SsaA were essential for MRD production. The regulatory function was further investigated by replacing six regions of SSGG-02995 with those of ssaA. Surprisingly, only the replacement of 343–450 nt fragment encoding the 115–150 amino acids (AA) of SsaA could activate MRD biosynthesis. Further bioinformatics analysis showed that the 115–150 AA situated between two conserved domains of SsaA. Our findings significantly demonstrate that constitutive expression of a homologous exogenous regulatory gene is an effective strategy to awaken cryptic biosynthetic pathways in Streptomyces.
Collapse
|
26
|
Ma Z, Hu Y, Liao Z, Xu J, Xu X, Bechthold A, Yu X. Cloning and Overexpression of the Toy Cluster for Titer Improvement of Toyocamycin in Streptomyces diastatochromogenes. Front Microbiol 2020; 11:2074. [PMID: 32983052 PMCID: PMC7492574 DOI: 10.3389/fmicb.2020.02074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
The nucleoside antibiotic toyocamycin (TM) is a potential fungicide that can control plant diseases, and it has become an attractive target for research. Streptomyces diastatochromogenes 1628, a TM-producing strain, was isolated by our laboratory and was considered to be a potent industrial producer of TM. Recently, the putative TM biosynthetic gene cluster (toy cluster) in S. diastatochromogenes 1628 was found by genome sequencing. In this study, the role of toy cluster for TM biosynthesis in S. diastatochromogenes 1628 was investigated by heterologous expression, deletion, and complementation. The extract of the recombinant strain S. albusJ1074-TC harboring a copy of toy cluster produced TM as shown by HPLC analysis. The Δcluster mutant completely lost its ability to produce TM. TM production in the complemented strain was restored to a level comparable to that of the wild-type strain. These results confirmed that the toy cluster is responsible for TM biosynthesis. Moreover, the introduction of an extra copy of the toy cluster into S. diastatochromogenes 1628 led to onefold increase in TM production (312.9 mg/l vs. 152.1 mg/l) as well as the transcription of all toy genes. The toy gene cluster was engineered in which the native promoter of toyA gene, toyM gene, toyBD operon, and toyEI operon was, respectively, replaced by permE∗ or SPL57. To further improve TM production, the engineered toy gene cluster was, respectively, introduced and overexpressed in S. diastatochromogenes 1628 to generate recombinant strains S. diastatochromogenes 1628-EC and 1628-SC. After 84 h, S. diastatochromogenes 1628-EC and 1628-SC produced 456.5 mg/l and 638.9 mg/l TM, respectively, which is an increase of 2- and 3.2-fold compared with the wild-type strain.
Collapse
Affiliation(s)
- Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yefeng Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhijun Liao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jie Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xianhao Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
27
|
Lin Z, Nielsen J, Liu Z. Bioprospecting Through Cloning of Whole Natural Product Biosynthetic Gene Clusters. Front Bioeng Biotechnol 2020; 8:526. [PMID: 32582659 PMCID: PMC7290108 DOI: 10.3389/fbioe.2020.00526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of penicillin, natural products and their derivatives have been a valuable resource for drug discovery. With recent development of genome mining approaches in the post-genome era, a great number of natural product biosynthetic gene clusters (BGCs) have been identified and these can potentially be exploited for the discovery of novel natural products that can find application as pharmaceuticals. Since many BGCs are silent or do not express in native hosts under laboratory conditions, heterologous expression of BGCs in genetically tractable hosts becomes an attractive route to activate these BGCs to discover the corresponding products. Here, we highlight recent achievements in cloning and discovery of natural product biosynthetic pathways via intact BGC capturing, and discuss the prospects of high-throughput and multiplexed cloning of rational-designed gene clusters in the future.
Collapse
Affiliation(s)
- Zhenquan Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,BioInnovation Institute, Copenhagen, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
28
|
Tao W, Chen L, Zhao C, Wu J, Yan D, Deng Z, Sun Y. In Vitro Packaging Mediated One-Step Targeted Cloning of Natural Product Pathway. ACS Synth Biol 2019; 8:1991-1997. [PMID: 31487454 DOI: 10.1021/acssynbio.9b00248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Direct cloning of natural product pathways for efficient refactoring and heterologous expression has become an important strategy for microbial natural product research and discovery, especially for those kept silent or poorly expressed in the original strains. Accordingly, the development of convenient and efficient cloning approaches is becoming increasingly necessary. Here we presented an in vitro packaging mediated cloning approach that combines CRISPR/Cas9 system with in vitro λ packaging system, for targeted cloning of natural product pathways. In such a scheme, pathways of Tü3010 (27.4 kb) and sisomicin (40.7 kb) were respectively cloned, and stuR was further depicted to positively regulate Tü3010 production. In vitro packaging mediated approach not only enables to activate cryptic pathways, but also facilitates refactoring or interrogating the pathways in conjunction with various gene editing systems. This approach features an expedited, convenient, and generic manner, and it is conceivable that it may be widely adopted for targeted cloning of the natural product pathways.
Collapse
Affiliation(s)
- Weixin Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Li Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Chunhua Zhao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Jing Wu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People’s Republic of China
| | - Dazhong Yan
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People’s Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| |
Collapse
|
29
|
Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 2019; 36:1313-1332. [PMID: 31197291 PMCID: PMC6750982 DOI: 10.1039/c9np00025a] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2005 up to 2019Natural products are of paramount importance in human medicine. Not only are most antibacterial and anticancer drugs derived directly from or inspired by natural products, many other branches of medicine, such as immunology, neurology, and cardiology, have similarly benefited from natural product-based drugs. Typically, the genetic material required to synthesize a microbial specialized product is arranged in a multigene biosynthetic gene cluster (BGC), which codes for proteins associated with molecule construction, regulation, and transport. The ability to connect natural product compounds to BGCs and vice versa, along with ever-increasing knowledge of biosynthetic machineries, has spawned the field of genomics-guided natural product genome mining for the rational discovery of new chemical entities. One significant challenge in the field of natural product genome mining is how to rapidly link orphan biosynthetic genes to their associated chemical products. This review highlights state-of-the-art genetic platforms to identify, interrogate, and engineer BGCs from diverse microbial sources, which can be broken into three stages: (1) cloning and isolation of genomic loci, (2) heterologous expression in a host organism, and (3) genetic manipulation of cloned pathways. In the future, we envision natural product genome mining will be rapidly accelerated by de novo DNA synthesis and refactoring of whole biosynthetic pathways in combination with systematic heterologous expression methodologies.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
30
|
Schaffert L, März C, Burkhardt L, Droste J, Brandt D, Busche T, Rosen W, Schneiker-Bekel S, Persicke M, Pühler A, Kalinowski J. Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110. Microb Cell Fact 2019; 18:114. [PMID: 31253141 PMCID: PMC6599336 DOI: 10.1186/s12934-019-1162-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/19/2019] [Indexed: 02/05/2023] Open
Abstract
Background Actinoplanes sp. SE50/110 is a natural producer of acarbose. It has been extensively studied in the last decades, which has led to the comprehensive analysis of the whole genome, transcriptome and proteome. First genetic and microbial techniques have been successfully established allowing targeted genome editing by CRISPR/Cas9 and conjugal transfer. Still, a suitable system for the overexpression of singular genes does not exist for Actinoplanes sp. SE50/110. Here, we discuss, test and analyze different strategies by the example of the acarbose biosynthesis gene acbC. Results The integrative φC31-based vector pSET152 was chosen for the development of an expression system, as for the replicative pSG5-based vector pKC1139 unwanted vector integration by homologous recombination was observed. Since simple gene duplication by pSET152 integration under control of native promoters appeared to be insufficient for overexpression, a promoter screening experiment was carried out. We analyzed promoter strengths of five native and seven heterologous promoters using transcriptional fusion with the gusA gene and glucuronidase assays as well as reverse transcription quantitative PCR (RT-qPCR). Additionally, we mapped transcription starts and identified the promoter sequence motifs by 5′-RNAseq experiments. Promoters with medium to strong expression were included into the pSET152-system, leading to an overexpression of the acbC gene. AcbC catalyzes the first step of acarbose biosynthesis and connects primary to secondary metabolism. By overexpression, the acarbose formation was not enhanced, but slightly reduced in case of strongest overexpression. We assume either disturbance of substrate channeling or a negative feed-back inhibition by one of the intermediates, which accumulates in the acbC-overexpression mutant. According to LC–MS-analysis, we conclude, that this intermediate is valienol-7P. This points to a bottleneck in later steps of acarbose biosynthesis. Conclusion Development of an overexpression system for Actinoplanes sp. SE50/110 is an important step for future metabolic engineering. This system will help altering transcript amounts of singular genes, that can be used to unclench metabolic bottlenecks and to redirect metabolic resources. Furthermore, an essential tool is provided, that can be transferred to other subspecies of Actinoplanes and industrially relevant derivatives. Electronic supplementary material The online version of this article (10.1186/s12934-019-1162-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lena Schaffert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Camilla März
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Lisa Burkhardt
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Julian Droste
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - David Brandt
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Winfried Rosen
- Product Supply, Bayer AG, Friedrich Ebert Str. 217-475, 42117, Wuppertal, Germany
| | - Susanne Schneiker-Bekel
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.,Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Alfred Pühler
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.
| |
Collapse
|
31
|
Enhancement of neomycin production by engineering the entire biosynthetic gene cluster and feeding key precursors in Streptomyces fradiae CGMCC 4.576. Appl Microbiol Biotechnol 2019; 103:2263-2275. [DOI: 10.1007/s00253-018-09597-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/20/2023]
|
32
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019. [DOI: 10.1039/c8np00091c [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
33
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019; 36:1412-1436. [DOI: 10.1039/c8np00091c] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
34
|
Heterologous expression-facilitated natural products' discovery in actinomycetes. J Ind Microbiol Biotechnol 2018; 46:415-431. [PMID: 30446891 DOI: 10.1007/s10295-018-2097-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/21/2018] [Indexed: 12/22/2022]
Abstract
Actinomycetes produce many of the drugs essential for human and animal health as well as crop protection. Genome sequencing projects launched over the past two decades reveal dozens of cryptic natural product biosynthetic gene clusters in each actinomycete genome that are not expressed under regular laboratory conditions. This so-called 'chemical dark matter' represents a potentially rich untapped resource for drug discovery in the genomic era. Through improved understanding of natural product biosynthetic logic coupled with the development of bioinformatic and genetic tools, we are increasingly able to access this 'dark matter' using a wide variety of strategies with downstream potential application in drug development. In this review, we discuss recent research progress in the field of cloning of natural product biosynthetic gene clusters and their heterologous expression in validating the potential of this methodology to drive next-generation drug discovery.
Collapse
|
35
|
Wei J, He L, Niu G. Regulation of antibiotic biosynthesis in actinomycetes: Perspectives and challenges. Synth Syst Biotechnol 2018; 3:229-235. [PMID: 30417136 PMCID: PMC6215055 DOI: 10.1016/j.synbio.2018.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023] Open
Abstract
Actinomycetes are the main sources of antibiotics. The onset and level of production of each antibiotic is subject to complex control by multi-level regulators. These regulators exert their functions at hierarchical levels. At the lower level, cluster-situated regulators (CSRs) directly control the transcription of neighboring genes within the gene cluster. Higher-level pleiotropic and global regulators exert their functions mainly through modulating the transcription of CSRs. Advances in understanding of the regulation of antibiotic biosynthesis in actinomycetes have inspired us to engineer these regulators for strain improvement and antibiotic discovery.
Collapse
Affiliation(s)
- Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Lang He
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
36
|
de Frias UA, Pereira GKB, Guazzaroni ME, Silva-Rocha R. Boosting Secondary Metabolite Production and Discovery through the Engineering of Novel Microbial Biosensors. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7021826. [PMID: 30079350 PMCID: PMC6069586 DOI: 10.1155/2018/7021826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/11/2018] [Indexed: 01/05/2023]
Abstract
Bacteria are a source of a large number of secondary metabolites with several biomedical and biotechnological applications. In recent years, there has been tremendous progress in the development of novel synthetic biology approaches both to increase the production rate of secondary metabolites of interest in native producers and to mine and reconstruct novel biosynthetic gene clusters in heterologous hosts. Here, we present the recent advances toward the engineering of novel microbial biosensors to detect the synthesis of secondary metabolites in bacteria and in the development of synthetic promoters and expression systems aiming at the construction of microbial cell factories for the production of these compounds. We place special focus on the potential of Gram-negative bacteria as a source of biosynthetic gene clusters and hosts for pathway assembly, on the construction and characterization of novel promoters for native hosts, and on the use of computer-aided design of novel pathways and expression systems for secondary metabolite production. Finally, we discuss some of the potentials and limitations of the approaches that are currently being developed and we highlight new directions that could be addressed in the field.
Collapse
Affiliation(s)
| | | | - María-Eugenia Guazzaroni
- Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael Silva-Rocha
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
37
|
Winn M, Francis D, Micklefield J. De novo Biosynthesis of “Non-Natural” Thaxtomin Phytotoxins. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Winn
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Daniel Francis
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Jason Micklefield
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
38
|
Winn M, Francis D, Micklefield J. De novo Biosynthesis of "Non-Natural" Thaxtomin Phytotoxins. Angew Chem Int Ed Engl 2018; 57:6830-6833. [PMID: 29603527 PMCID: PMC6001691 DOI: 10.1002/anie.201801525] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 02/04/2023]
Abstract
Thaxtomins are diketopiperazine phytotoxins produced by Streptomyces scabies and other actinobacterial plant pathogens that inhibit cellulose biosynthesis in plants. Due to their potent bioactivity and novel mode of action there has been considerable interest in developing thaxtomins as herbicides for crop protection. To address the need for more stable derivatives, we have developed a new approach for structural diversification of thaxtomins. Genes encoding the thaxtomin NRPS from S. scabies, along with genes encoding a promiscuous tryptophan synthase (TrpS) from Salmonella typhimurium, were assembled in a heterologous host Streptomyces albus. Upon feeding indole derivatives to the engineered S. albus strain, tryptophan intermediates with alternative substituents are biosynthesized and incorporated by the NRPS to deliver a series of thaxtomins with different functionalities in place of the nitro group. The approach described herein, demonstrates how genes from different pathways and different bacterial origins can be combined in a heterologous host to create a de novo biosynthetic pathway to "non-natural" product target compounds.
Collapse
Affiliation(s)
- Michael Winn
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Daniel Francis
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Jason Micklefield
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
39
|
Tocchetti A, Donadio S, Sosio M. Large inserts for big data: artificial chromosomes in the genomic era. FEMS Microbiol Lett 2018; 365:4935161. [DOI: 10.1093/femsle/fny064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
| | - Stefano Donadio
- Naicons Srl, 20139 Milano, Italy
- Ktedogen Srl, Via Ortles 22/4, 20139 Milano, Italy
| | - Margherita Sosio
- Naicons Srl, 20139 Milano, Italy
- Ktedogen Srl, Via Ortles 22/4, 20139 Milano, Italy
| |
Collapse
|
40
|
Choi SS, Katsuyama Y, Bai L, Deng Z, Ohnishi Y, Kim ES. Genome engineering for microbial natural product discovery. Curr Opin Microbiol 2018; 45:53-60. [PMID: 29510374 DOI: 10.1016/j.mib.2018.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 11/16/2022]
Abstract
The discovery and development of microbial natural products (MNPs) have played pivotal roles in the fields of human medicine and its related biotechnology sectors over the past several decades. The post-genomic era has witnessed the development of microbial genome mining approaches to isolate previously unsuspected MNP biosynthetic gene clusters (BGCs) hidden in the genome, followed by various BGC awakening techniques to visualize compound production. Additional microbial genome engineering techniques have allowed higher MNP production titers, which could complement a traditional culture-based MNP chasing approach. Here, we describe recent developments in the MNP research paradigm, including microbial genome mining, NP BGC activation, and NP overproducing cell factory design.
Collapse
Affiliation(s)
- Si-Sun Choi
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
41
|
Biosynthesis of antibiotic chuangxinmycin from Actinoplanes tsinanensis. Acta Pharm Sin B 2018; 8:283-294. [PMID: 29719789 PMCID: PMC5925218 DOI: 10.1016/j.apsb.2017.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
Chuangxinmycin is an antibiotic isolated from Actinoplanes tsinanensis CPCC 200056 in the 1970s with a novel indole-dihydrothiopyran heterocyclic skeleton. Chuangxinmycin showed in vitro antibacterial activity and in vivo efficacy in mouse infection models as well as preliminary clinical trials. But the biosynthetic pathway of chuangxinmycin has been obscure since its discovery. Herein, we report the identification of a stretch of DNA from the genome of A. tsinanensis CPCC 200056 that encodes genes for biosynthesis of chuangxinmycin by bioinformatics analysis. The designated cxn cluster was then confirmed to be responsible for chuangxinmycin biosynthesis by direct cloning and heterologous expressing in Streptomyces coelicolor M1146. The cytochrome P450 CxnD was verified to be involved in the dihydrothiopyran ring closure reaction by the identification of seco-chuangxinmycin in S. coelicolor M1146 harboring the cxn gene cluster with an inactivated cxnD. Based on these results, a plausible biosynthetic pathway for chuangxinmycin biosynthesis was proposed, by hijacking the primary sulfur transfer system for sulfur incorporation. The identification of the biosynthetic gene cluster of chuangxinmycin paves the way for elucidating the detail biochemical machinery for chuangxinmycin biosynthesis, and provides the basis for the generation of novel chuangxinmycin derivatives by means of combinatorial biosynthesis and synthetic biology.
Collapse
|
42
|
Loureiro C, Medema MH, van der Oost J, Sipkema D. Exploration and exploitation of the environment for novel specialized metabolites. Curr Opin Biotechnol 2018; 50:206-213. [PMID: 29454184 DOI: 10.1016/j.copbio.2018.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 11/26/2022]
Abstract
Microorganisms are Nature's little engineers of a remarkable array of bioactive small molecules that represent most of our new drugs. The wealth of genomic and metagenomic sequence data generated in the last decade has shown that the majority of novel biosynthetic gene clusters (BGCs) is identified from cultivation-independent studies, which has led to a strong expansion of the number of microbial taxa known to harbour BGCs. The large size and repeat sequences of BGCs remain a bioinformatic challenge, but newly developed software tools have been created to overcome these issues and are paramount to identify and select the most promising BGCs for further research and exploitation. Although heterologous expression of BGCs has been the greatest challenge until now, a growing number of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS)-encoding gene clusters have been cloned and expressed in bacteria and fungi based on techniques that mostly rely on homologous recombination. Finally, combining ecological insights with state-of-the-art computation and molecular methodologies will allow for further comprehension and exploitation of microbial specialized metabolites.
Collapse
Affiliation(s)
- Catarina Loureiro
- Wageningen University & Research, Laboratory of Microbiology, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marnix H Medema
- Wageningen University & Research, Bioinformatics Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - John van der Oost
- Wageningen University & Research, Laboratory of Microbiology, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Detmer Sipkema
- Wageningen University & Research, Laboratory of Microbiology, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
43
|
Li L, Jiang W, Lu Y. New strategies and approaches for engineering biosynthetic gene clusters of microbial natural products. Biotechnol Adv 2017; 35:936-949. [DOI: 10.1016/j.biotechadv.2017.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 12/11/2022]
|
44
|
Improved PKS Gene Expression With Strong Endogenous Promoter Resulted in Geldanamycin Yield Increase. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/03/2017] [Indexed: 12/29/2022]
|
45
|
Reconstruction of a hybrid nucleoside antibiotic gene cluster based on scarless modification of large DNA fragments. SCIENCE CHINA-LIFE SCIENCES 2017; 60:968-979. [DOI: 10.1007/s11427-017-9119-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
|
46
|
Döhlemann J, Wagner M, Happel C, Carrillo M, Sobetzko P, Erb TJ, Thanbichler M, Becker A. A Family of Single Copy repABC-Type Shuttle Vectors Stably Maintained in the Alpha-Proteobacterium Sinorhizobium meliloti. ACS Synth Biol 2017; 6:968-984. [PMID: 28264559 PMCID: PMC7610768 DOI: 10.1021/acssynbio.6b00320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
A considerable
share of bacterial species maintains segmented genomes.
Plant symbiotic α-proteobacterial rhizobia contain up to six repABC-type replicons in addition to the primary chromosome.
These low or unit-copy replicons, classified as secondary chromosomes,
chromids, or megaplasmids, are exclusively found in α-proteobacteria.
Replication and faithful partitioning of these replicons to the daughter
cells is mediated by the repABC region. The importance
of α-rhizobial symbiotic nitrogen fixation for sustainable agriculture
and Agrobacterium-mediated plant transformation as
a tool in plant sciences has increasingly moved biological engineering
of these organisms into focus. Plasmids are ideal DNA-carrying vectors
for these engineering efforts. On the basis of repABC regions collected from α-rhizobial secondary replicons, and
origins of replication derived from traditional cloning vectors, we
devised the versatile family of pABC shuttle vectors propagating in Sinorhizobium meliloti, related members of the Rhizobiales, and Escherichia coli. A modular plasmid library
providing the elemental parts for pABC vector assembly was founded.
The standardized design of these vectors involves five basic modules:
(1) repABC cassette, (2) plasmid-derived origin of
replication, (3) RK2/RP4 mobilization site (optional), (4) antibiotic
resistance gene, and (5) multiple cloning site flanked by transcription
terminators. In S. meliloti, pABC vectors showed
high propagation stability and unit-copy number. We demonstrated stable
coexistence of three pABC vectors in addition to the two indigenous
megaplasmids in S. meliloti, suggesting combinability
of multiple compatible pABC plasmids. We further devised an in vivo cloning strategy involving Cre/lox-mediated translocation of large DNA fragments to an autonomously
replicating repABC-based vector, followed by conjugation-mediated
transfer either to compatible rhizobia or E. coli.
Collapse
Affiliation(s)
- Johannes Döhlemann
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Marcel Wagner
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Carina Happel
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Martina Carrillo
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
| | - Tobias J. Erb
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Martin Thanbichler
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| |
Collapse
|
47
|
Nah HJ, Pyeon HR, Kang SH, Choi SS, Kim ES. Cloning and Heterologous Expression of a Large-sized Natural Product Biosynthetic Gene Cluster in Streptomyces Species. Front Microbiol 2017; 8:394. [PMID: 28360891 PMCID: PMC5350119 DOI: 10.3389/fmicb.2017.00394] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Actinomycetes family including Streptomyces species have been a major source for the discovery of novel natural products (NPs) in the last several decades thanks to their structural novelty, diversity and complexity. Moreover, recent genome mining approach has provided an attractive tool to screen potentially valuable NP biosynthetic gene clusters (BGCs) present in the actinomycetes genomes. Since many of these NP BGCs are silent or cryptic in the original actinomycetes, various techniques have been employed to activate these NP BGCs. Heterologous expression of BGCs has become a useful strategy to produce, reactivate, improve, and modify the pathways of NPs present at minute quantities in the original actinomycetes isolates. However, cloning and efficient overexpression of an entire NP BGC, often as large as over 100 kb, remain challenging due to the ineffectiveness of current genetic systems in manipulating large NP BGCs. This mini review describes examples of actinomycetes NP production through BGC heterologous expression systems as well as recent strategies specialized for the large-sized NP BGCs in Streptomyces heterologous hosts.
Collapse
Affiliation(s)
- Hee-Ju Nah
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Hye-Rim Pyeon
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Seung-Hoon Kang
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Si-Sun Choi
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University Incheon, South Korea
| |
Collapse
|
48
|
Recent advances in genetic modification systems for Actinobacteria. Appl Microbiol Biotechnol 2017; 101:2217-2226. [PMID: 28184986 DOI: 10.1007/s00253-017-8156-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 01/08/2023]
Abstract
Actinobacteria are extremely important to human health, agriculture, and forests. Because of the vast differences of the characteristics of Actinobacteria, a lot of genetic tools have been developed for efficiently manipulating the genetics. Although there are a lot of successful examples of engineering Actinobacteria, they are still more difficult to be genetically manipulated than other model microorganisms such as Saccharomyces cerevisiae, Escherichia coli, and Bacillus subtilis etc. due to the diverse genomics and biochemical machinery. Here, we review the methods to introduce heterologous DNA into Actinobacteria and the available genetic modification tools. The trends and problems existing in engineering Actinobacteria are also covered.
Collapse
|
49
|
Wang X, Tang B, Ye Y, Mao Y, Lei X, Zhao G, Ding X. Bxb1 integrase serves as a highly efficient DNA recombinase in rapid metabolite pathway assembly. Acta Biochim Biophys Sin (Shanghai) 2017; 49:44-50. [PMID: 27864282 DOI: 10.1093/abbs/gmw115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/24/2016] [Indexed: 11/13/2022] Open
Abstract
Phage-encoded serine integrases are widely used in genetic engineering. They also have the potential to serve as efficient DNA assemblers, demonstrated by the method of site-specific recombination-based tandem assembly (SSRTA) that can combine biological parts into devices, pathways, and systems. Here, four serine integrases, ϕBT1, TG1, ϕRv1, and Bxb1, were investigated to ascertain their in vitro DNA assembly activities. Bxb1 integrase displayed the highest efficiency to obtain final products. Thus, we conclude that Bxb1 integrase is an excellent choice for DNA assembly in vitro Using this enzyme and its recognition sites, BioBrick standards were designed that are compatible with the SSRTA method for module addition. A rapid and efficient procedure was developed for the assembly of a multigene metabolic pathway in one step, directly from non-cutting plasmids containing the gene fragments. This technique is easy and convenient, and would be of interest to the synthetic biology community.
Collapse
Affiliation(s)
- Xianwei Wang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Biao Tang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yu Ye
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Yayi Mao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaolai Lei
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guoping Zhao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Xiaoming Ding
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
50
|
Abstract
About 2,500 papers dated 2014–2016 were recovered by searching the PubMed database for
Streptomyces, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of
Streptomyces with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall
Streptomyces biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria) respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for
Streptomyces developmental biology,
Streptomyces venezuelae, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of chromosome immunoprecipitation sequencing (ChIP-seq) analysis and other methods based on “next-generation sequencing” has been the finding that 21% of
Streptomyces mRNA species lack leader sequences and conventional ribosome binding sites. Further technical advances now emerging should lead to continued acceleration of knowledge, and more effective exploitation, of these astonishing and critically important organisms.
Collapse
Affiliation(s)
- Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| |
Collapse
|