1
|
Kumaraswamy S, Huang Y. Molecular Interactions Between Plants and Aphids: Recent Advances and Future Perspectives. INSECTS 2024; 15:935. [PMID: 39769537 PMCID: PMC11677212 DOI: 10.3390/insects15120935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Aphids are small, notorious insect pests that negatively impact plant health and agricultural productivity through direct damage, such as sap-sucking, and indirectly as vectors of plant viruses. Plants respond to aphid feeding with a variety of molecular mechanisms to mitigate damage. These responses are diverse and highly dynamic, functioning either independently or in combination. Understanding plant-aphid interactions is crucial for revealing the full range of plant defenses against aphids. When aphids infest, plants detect the damage via specific receptor proteins, initiating a signaling cascade that activates defense mechanisms. These defenses include a complex interaction of phytohormones that trigger defense pathways, secondary metabolites that deter aphid feeding and reproduction, lectins and protease inhibitors that disrupt aphid physiology, and elicitors that activate further defense responses. Meanwhile, aphids counteract plant defenses with salivary effectors and proteins that suppress plant defenses, aiding in their successful colonization. This review offers a detailed overview of the molecular mechanisms involved in plant-aphid interactions, emphasizing both established and emerging plant defense strategies. Its uniqueness lies in synthesizing the recent progress made in plant defense responses to aphids, along with aphids' countermeasures to evade such defenses. By consolidating current knowledge, this review provides key insights for developing sustainable strategies to achieve crop protection and minimize dependence on chemical pesticides.
Collapse
Affiliation(s)
- Sunil Kumaraswamy
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Yinghua Huang
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA;
- Plant Science Research Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 1301 N. Western Road, Stillwater, OK 74075, USA
| |
Collapse
|
2
|
Gebrekidan AG, Zhang Y, Chen J. A Comprehensive Transcriptomic and Proteomics Analysis of Candidate Secretory Proteins in Rose Grain Aphid, Metopolophium dirhodum (Walker). Curr Issues Mol Biol 2024; 46:13383-13404. [PMID: 39727926 PMCID: PMC11727172 DOI: 10.3390/cimb46120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
The Rose grain aphid, a notable agricultural pest, releases saliva while feeding. Yet, there is a need for a comprehensive understanding of the specific identity and role of secretory proteins released during probing and feeding. Therefore, a combined transcriptomic and proteomic approach was employed in this study to identify putative secretory proteins. The transcriptomic sequencing result led to the assembly of 18,030 unigenes out of 31,344 transcripts. Among these, 705 potential secretory proteins were predicted and functionally annotated against publicly accessible protein databases. Notably, a substantial proportion of secretory genes (71.5%, 69.08%, and 60.85%) were predicted to encode known proteins in Nr, Pfam, and Swiss-Prot databases, respectively. Conversely, 27.37% and 0.99% of gene transcripts were predicted to encode known proteins with unspecified functions in the Nr and Swiss-Prot databases, respectively. Meanwhile, the proteomic analysis result identified, 15 salivary proteins. Interestingly, most salivary proteins (i.e., 60% of the proteins) showed close similarity to A. craccivora, while 46.67% showed close similarity to A. glycines, M. sacchari and S. flava. However, to verify the expression of these secretory genes and characterize the biological function of salivary proteins further investigation should be geared towards gene expression and functional analysis.
Collapse
Affiliation(s)
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100875, China;
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100875, China;
| |
Collapse
|
3
|
Cao MH, Zou MM, Liu LL, Dong SJ, Huang MQ, Zheng JH, Li RN, Cui JD, Peng L. Sast1-mediated manifold effects inhibit Plutella xylostella fertility. PEST MANAGEMENT SCIENCE 2024; 80:2596-2609. [PMID: 38252701 DOI: 10.1002/ps.7966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Plutella xylostella (Linnaeus) is a destructive pest of cruciferous crops due to its strong reproductive capacity and extensive resistance to pesticides. Seminal fluid proteins (SFPs) are the main effective factors that determine the reproductive physiology and behaviour of both sexes. Although an increasing number of SFPs have been identified, the effects of astacins in SFPs on agricultural pests have not yet been reported. Here, we elucidated the mechanisms by which Sast1 (seminal astacin 1) regulates the fertility of Plutella xylostella (L.). RESULTS PxSast1 was specifically expressed in the testis and accesssory gland. CRISPR/Cas9-induced PxSast1 knockout successfully constructed two homozygous mutant strains. Sast1 impaired the fertility of P. xylostella by separately regulating the reproductive capacity of males and females. Loss of PxSast1, on the one hand, significantly decreased the ability of males to mate and fertilize, mainly manifested as shortened mating duration, reduced mating competitiveness and decreased eupyrene sperm production; on the other hand, it significantly inhibited the expression of chorion genes in females, resulting in oogenesis deficits. Simultaneously, for mated females, the differentially expressed genes in signalling pathways related to oogenesis and chorion formation were significantly enriched after PxSast1 knockout. CONCLUSION These analyses of the functions of PxSast1 as the regulator of spermatogenesis and oogenesis establish its importance in the fertility process of P. xylostella, as well as its potential as a promising target for genetic regulation-based pest control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min-Hui Cao
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Li Liu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shi-Jie Dong
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meng-Qi Huang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun-Hao Zheng
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruo-Nan Li
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin-Dong Cui
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Ma X, Yin Z, Li H, Guo J. Roles of herbivorous insects salivary proteins. Heliyon 2024; 10:e29201. [PMID: 38601688 PMCID: PMC11004886 DOI: 10.1016/j.heliyon.2024.e29201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
The intricate relationship between herbivorous insects and plants has evolved over millions of years, central to this dynamic interaction are salivary proteins (SPs), which mediate key processes ranging from nutrient acquisition to plant defense manipulation. SPs, sourced from salivary glands, intestinal regurgitation or acquired through horizontal gene transfer, exhibit remarkable functional versatility, influencing insect development, behavior, and adhesion mechanisms. Moreover, SPs play pivotal roles in modulating plant defenses, to induce or inhibit plant defenses as elicitors or effectors. In this review, we delve into the multifaceted roles of SPs in herbivorous insects, highlighting their diverse impacts on insect physiology and plant responses. Through a comprehensive exploration of SP functions, this review aims to deepen our understanding of plant-insect interactions and foster advancements in both fundamental research and practical applications in plant-insect interactions.
Collapse
Affiliation(s)
- Xinyi Ma
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Zhiyong Yin
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| |
Collapse
|
5
|
Pavithran S, Murugan M, Mannu J, Yogendra K, Balasubramani V, Sanivarapu H, Harish S, Natesan S. Identification of salivary proteins of the cowpea aphid Aphis craccivora by transcriptome and LC-MS/MS analyses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104060. [PMID: 38123026 DOI: 10.1016/j.ibmb.2023.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Aphid salivary proteins mediate the interaction between aphids and their host plants. Moreover, these proteins facilitate digestion, detoxification of secondary metabolites, as well as activation and suppression of plant defenses. The cowpea aphid, Aphis craccivora, is an important sucking pest of leguminous crops worldwide. Although aphid saliva plays an important role in aphid plant interactions, knowledge of the cowpea aphid salivary proteins is limited. In this study, we performed transcriptomic and LC-MS/MS analyses to identify the proteins present in the salivary glands and saliva of A. craccivora. A total of 1,08,275 assembled transcripts were identified in the salivary glands of aphids. Of all these assembled transcripts, 53,714 (49.11%) and 53,577 (49.48%) transcripts showed high similarity to known proteins in the Nr and UniProt databases, respectively. A total of 2159 proteins were predicted as secretory proteins from the salivary gland transcriptome dataset, which contain digestive enzymes, detoxification enzymes, previously known effectors and elicitors, and potential proteins whose functions have yet to be determined. The proteomic analysis of aphid saliva resulted in the identification of 171 proteins. Tissue-specific expression of selected genes using RT-PCR showed that three genes were expressed only in the salivary glands. Overall, our results provide a comprehensive repertoire of cowpea aphid salivary proteins from the salivary gland and saliva, which will be a good resource for future effector functional studies and might also be useful for sustainable aphid management.
Collapse
Affiliation(s)
- Shanmugasundram Pavithran
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Venkatasamy Balasubramani
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Hemalatha Sanivarapu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Sankarasubramanian Harish
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Senthil Natesan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
6
|
Wang H, Shi S, Hua W. Advances of herbivore-secreted elicitors and effectors in plant-insect interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1176048. [PMID: 37404545 PMCID: PMC10317074 DOI: 10.3389/fpls.2023.1176048] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 07/06/2023]
Abstract
Diverse molecular processes regulate the interactions between insect herbivores and their host plants. When plants are exposed to insects, elicitors induce plant defenses, and complex physiological and biochemical processes are triggered, such as the activation of the jasmonic acid (JA) and salicylic acid (SA) pathways, Ca2+ flux, reactive oxygen species (ROS) burst, mitogen-activated protein kinase (MAPK) activation, and other responses. For better adaptation, insects secrete a large number of effectors to interfere with plant defenses on multiple levels. In plants, resistance (R) proteins have evolved to recognize effectors and trigger stronger defense responses. However, only a few effectors recognized by R proteins have been identified until now. Multi-omics approaches for high-throughput elicitor/effector identification and functional characterization have been developed. In this review, we mainly highlight the recent advances in the identification of the elicitors and effectors secreted by insects and their target proteins in plants and discuss their underlying molecular mechanisms, which will provide new inspiration for controlling these insect pests.
Collapse
Affiliation(s)
- Huiying Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
7
|
Deshoux M, Monsion B, Pichon E, Jiménez J, Moreno A, Cayrol B, Thébaud G, Mugford ST, Hogenhout SA, Blanc S, Fereres A, Uzest M. Role of Acrostyle Cuticular Proteins in the Retention of an Aphid Salivary Effector. Int J Mol Sci 2022; 23:ijms232315337. [PMID: 36499662 PMCID: PMC9736059 DOI: 10.3390/ijms232315337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
To avoid the activation of plant defenses and ensure sustained feeding, aphids are assumed to use their mouthparts to deliver effectors into plant cells. A recent study has shown that effectors detected near feeding sites are differentially distributed in plant tissues. However, the precise process of effector delivery into specific plant compartments is unknown. The acrostyle, a cuticular organ located at the tip of maxillary stylets that transiently binds plant viruses via its stylin proteins, may participate in this specific delivery process. Here, we demonstrate that Mp10, a saliva effector released into the plant cytoplasm during aphid probing, binds to the acrostyles of Acyrthosiphon pisum and Myzus persicae. The effector probably interacts with Stylin-03 as a lowered Mp10-binding to the acrostyle was observed upon RNAi-mediated reduction in Stylin-03 production. In addition, Stylin-03 and Stylin-01 RNAi aphids exhibited changes in their feeding behavior as evidenced by electrical penetration graph experiments showing longer aphid probing behaviors associated with watery saliva release into the cytoplasm of plant cells. Taken together, these data demonstrate that the acrostyle also has effector binding capacity and supports its role in the delivery of aphid effectors into plant cells.
Collapse
Affiliation(s)
- Maëlle Deshoux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Baptiste Monsion
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Elodie Pichon
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Jaime Jiménez
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano 115dpdo, 28806 Madrid, Spain
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano 115dpdo, 28806 Madrid, Spain
| | - Bastien Cayrol
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Gaël Thébaud
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Sam T. Mugford
- John Innes Centre, Department of Crop Genetics, Norwich NR4 7UH, UK
| | | | - Stéphane Blanc
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Alberto Fereres
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano 115dpdo, 28806 Madrid, Spain
- Correspondence: (A.F.); (M.U.)
| | - Marilyne Uzest
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
- Correspondence: (A.F.); (M.U.)
| |
Collapse
|
8
|
Devaux CA, Camoin-Jau L. An update on angiotensin-converting enzyme 2 structure/functions, polymorphism, and duplicitous nature in the pathophysiology of coronavirus disease 2019: Implications for vascular and coagulation disease associated with severe acute respiratory syndrome coronavirus infection. Front Microbiol 2022; 13:1042200. [PMID: 36519165 PMCID: PMC9742611 DOI: 10.3389/fmicb.2022.1042200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 08/01/2023] Open
Abstract
It has been known for many years that the angiotensin-converting enzyme 2 (ACE2) is a cell surface enzyme involved in the regulation of blood pressure. More recently, it was proven that the severe acute respiratory syndrome coronavirus (SARS-CoV-2) interacts with ACE2 to enter susceptible human cells. This functional duality of ACE2 tends to explain why this molecule plays such an important role in the clinical manifestations of coronavirus disease 2019 (COVID-19). At the very start of the pandemic, a publication from our Institute (entitled "ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome"), was one of the first reviews linking COVID-19 to the duplicitous nature of ACE2. However, even given that COVID-19 pathophysiology may be driven by an imbalance in the renin-angiotensin system (RAS), we were still far from understanding the complexity of the mechanisms which are controlled by ACE2 in different cell types. To gain insight into the physiopathology of SARS-CoV-2 infection, it is essential to consider the polymorphism and expression levels of the ACE2 gene (including its alternative isoforms). Over the past 2 years, an impressive amount of new results have come to shed light on the role of ACE2 in the pathophysiology of COVID-19, requiring us to update our analysis. Genetic linkage studies have been reported that highlight a relationship between ACE2 genetic variants and the risk of developing hypertension. Currently, many research efforts are being undertaken to understand the links between ACE2 polymorphism and the severity of COVID-19. In this review, we update the state of knowledge on the polymorphism of ACE2 and its consequences on the susceptibility of individuals to SARS-CoV-2. We also discuss the link between the increase of angiotensin II levels among SARS-CoV-2-infected patients and the development of a cytokine storm associated microvascular injury and obstructive thrombo-inflammatory syndrome, which represent the primary causes of severe forms of COVID-19 and lethality. Finally, we summarize the therapeutic strategies aimed at preventing the severe forms of COVID-19 that target ACE2. Changing paradigms may help improve patients' therapy.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Center National de la Recherche Scientifique, Marseille, France
| | - Laurence Camoin-Jau
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Laboratoire d’Hématologie, Hôpital de La Timone, APHM, Boulevard Jean-Moulin, Marseille, France
| |
Collapse
|
9
|
Egan BM, Scharf A, Pohl F, Kornfeld K. Control of aging by the renin–angiotensin system: a review of C. elegans, Drosophila, and mammals. Front Pharmacol 2022; 13:938650. [PMID: 36188619 PMCID: PMC9518657 DOI: 10.3389/fphar.2022.938650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
The free-living, non-parasitic nematode Caenorhabditis elegans is a premier model organism for the study of aging and longevity due to its short lifespan, powerful genetic tools, and conservation of fundamental mechanisms with mammals. Approximately 70 percent of human genes have homologs in C. elegans, including many that encode proteins in pathways that influence aging. Numerous genetic pathways have been identified in C. elegans that affect lifespan, including the dietary restriction pathway, the insulin/insulin-like growth factor (IGF) signaling pathway, and the disruption of components of the mitochondrial electron transport chain. C. elegans is also a powerful system for performing drug screens, and many lifespan-extending compounds have been reported; notably, several FDA-approved medications extend the lifespan in C. elegans, raising the possibility that they can also extend the lifespan in humans. The renin–angiotensin system (RAS) in mammals is an endocrine system that regulates blood pressure and a paracrine system that acts in a wide range of tissues to control physiological processes; it is a popular target for drugs that reduce blood pressure, including angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs). Emerging evidence indicates that this system influences aging. In C. elegans, decreasing the activity of the ACE homolog acn-1 or treatment with the ACE-inhibitor Captopril significantly extends the lifespan. In Drosophila, treatment with ACE inhibitors extends the lifespan. In rodents, manipulating the RAS with genetic or pharmacological interventions can extend the lifespan. In humans, polymorphisms in the ACE gene are associated with extreme longevity. These results suggest the RAS plays a conserved role in controlling longevity. Here, we review studies of the RAS and aging, emphasizing the potential of C. elegans as a model for understanding the mechanism of lifespan control.
Collapse
Affiliation(s)
- Brian M. Egan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrea Scharf
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, United States
| | - Franziska Pohl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Kerry Kornfeld,
| |
Collapse
|
10
|
Nicolis VF, Burger NFV, Botha AM. Whole-body transcriptome mining for candidate effectors from Diuraphis noxia. BMC Genomics 2022; 23:493. [PMID: 35799109 PMCID: PMC9264610 DOI: 10.1186/s12864-022-08712-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Proteins within aphid saliva play a crucial role as the molecular interface between aphids and their host plants. These salivary effectors modulate plant responses to favour aphid feeding and facilitate infestation. The identification of effectors from economically important pest species is central in understanding the molecular events during the aphid-plant interaction. The Russian wheat aphid (Diuraphis noxia, Kurdjumov) is one such pest that causes devastating losses to wheat and barley yields worldwide. Despite the severe threat to food security posed by D. noxia, the non-model nature of this pest and its host has hindered progress towards understanding this interaction. In this study, in the absence of a salivary gland transcriptome, whole-body transcriptomics data was mined to generate a candidate effector catalogue for D. noxia. Results Mining the transcriptome identified 725 transcripts encoding putatively secreted proteins amongst which were transcripts specific to D. noxia. Six of the seven examined D. noxia putative effectors, termed DnE’s (Diuraphis noxia effectors) exhibited salivary gland-specific expression. A comparative analysis between whole-body D. noxia transcriptome data versus the head and body transcriptomes from three other aphid species allowed us to define a catalogue of transcripts putatively upregulated in D. noxia head tissue. Five of these were selected for RT-qPCR confirmation, and were found to corroborate the differential expression predictions, with a further three confirmed to be highly expressed in D. noxia salivary gland tissue. Conclusions Determining a putative effector catalogue for D. noxia from whole-transcriptome data, particularly the identification of salivary-specific sequences potentially unique to D. noxia, provide the basis for future functional characterisation studies to gain further insight into this aphid-plant interaction. Furthermore, due to a lack of publicly available aphid salivary gland transcriptome data, the capacity to use comparative transcriptomics to compile a list of putative effector candidates from whole-body transcriptomics data will further the study of effectors in various aphid species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08712-4.
Collapse
Affiliation(s)
- Vittorio F Nicolis
- Genetics Department, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - N Francois V Burger
- Genetics Department, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Anna-Maria Botha
- Genetics Department, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
11
|
Ray S, Casteel CL. Effector-mediated plant-virus-vector interactions. THE PLANT CELL 2022; 34:1514-1531. [PMID: 35277714 PMCID: PMC9048964 DOI: 10.1093/plcell/koac058] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/14/2022] [Indexed: 05/30/2023]
Abstract
Hemipterans (such as aphids, whiteflies, and leafhoppers) are some of the most devastating insect pests due to the numerous plant pathogens they transmit as vectors, which are primarily viral. Over the past decade, tremendous progress has been made in broadening our understanding of plant-virus-vector interactions, yet on the molecular level, viruses and vectors have typically been studied in isolation of each other until recently. From that work, it is clear that both hemipteran vectors and viruses use effectors to manipulate host physiology and successfully colonize a plant and that co-evolutionary dynamics have resulted in effective host immune responses, as well as diverse mechanisms of counterattack by both challengers. In this review, we focus on advances in effector-mediated plant-virus-vector interactions and the underlying mechanisms. We propose that molecular synergisms in vector-virus interactions occur in cases where both the virus and vector benefit from the interaction (mutualism). To support this view, we show that mutualisms are common in virus-vector interactions and that virus and vector effectors target conserved mechanisms of plant immunity, including plant transcription factors, and plant protein degradation pathways. Finally, we outline ways to identify true effector synergisms in the future and propose future research directions concerning the roles effectors play in plant-virus-vector interactions.
Collapse
Affiliation(s)
- Swayamjit Ray
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, New York 14850, USA
| | | |
Collapse
|
12
|
Santos-Ortega Y, Flynt A. Double-Strand RNA (dsRNA) Delivery Methods in Insects: Diaphorina citri. Methods Mol Biol 2022; 2360:253-277. [PMID: 34495520 PMCID: PMC8959005 DOI: 10.1007/978-1-0716-1633-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNAi is a gene-silencing mechanism conserved in the vast majority of eukaryotes. It is widely used to study gene function in animals due to the ease of eliciting gene knockdown. Beyond research applications, RNAi technology based on exogenous dsRNA is a promising candidate for next generation insect pest control. An advantage of using RNAi is that design of dsRNA essentially requires only the sequence of the target gene. The greatest challenge, however, is dsRNA delivery for large-scale insect control. Delivery methods that have widely been used are oral, injection, or via soaking. Unfortunately, each insect presents its own challenges owing to the differences in the presence of dsRNA degrading enzymes, cellular uptake efficiency, expression of core RNAi machinery, the nature of the target gene, the concentration and persistence of the dsRNA, as well as the particular way of feeding of each insect, which together cause variations in the efficiency of RNAi. In this chapter, a protocol for the synthetic production of dsRNA is described along with three methods for delivery that have been successful in one of the more problematic insects, Diaphorina citri.
Collapse
Affiliation(s)
- Yulica Santos-Ortega
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Alex Flynt
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
13
|
ACE2 and ACE: structure-based insights into mechanism, regulation and receptor recognition by SARS-CoV. Clin Sci (Lond) 2020; 134:2851-2871. [PMID: 33146371 PMCID: PMC7642307 DOI: 10.1042/cs20200899] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022]
Abstract
Angiotensin converting enzyme (ACE) is well-known for its role in blood pressure regulation via the renin–angiotensin aldosterone system (RAAS) but also functions in fertility, immunity, haematopoiesis and diseases such as obesity, fibrosis and Alzheimer’s dementia. Like ACE, the human homologue ACE2 is also involved in blood pressure regulation and cleaves a range of substrates involved in different physiological processes. Importantly, it is the functional receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 responsible for the 2020, coronavirus infectious disease 2019 (COVID-19) pandemic. Understanding the interaction between SARS-CoV-2 and ACE2 is crucial for the design of therapies to combat this disease. This review provides a comparative analysis of methodologies and findings to describe how structural biology techniques like X-ray crystallography and cryo-electron microscopy have enabled remarkable discoveries into the structure–function relationship of ACE and ACE2. This, in turn, has enabled the development of ACE inhibitors for the treatment of cardiovascular disease and candidate therapies for the treatment of COVID-19. However, despite these advances the function of ACE homologues in non-human organisms is not yet fully understood. ACE homologues have been discovered in the tissues, body fluids and venom of species from diverse lineages and are known to have important functions in fertility, envenoming and insect–host defence mechanisms. We, therefore, further highlight the need for structural insight into insect and venom ACE homologues for the potential development of novel anti-venoms and insecticides.
Collapse
|
14
|
Jekayinoluwa T, Tripathi L, Tripathi JN, Ntui VO, Obiero G, Muge E, Dale J. RNAi technology for management of banana bunchy top disease. Food Energy Secur 2020; 9:e247. [PMID: 33381301 PMCID: PMC7757248 DOI: 10.1002/fes3.247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
Banana bunchy top disease (BBTD) is one of the world's most destructive viral diseases of banana and plantain, causing up to 100% yield loss in severe cases. The disease is vectored by banana aphids (Pentalonia nigronervosa) and carried long distances through the movement of infected plant materials. The banana aphids harboring banana bunchy top virus (BBTV) present in banana producing regions are the sole vector and the most efficient method of transmitting the virus to the healthy plants. Controlling the spread of BBTD has been very challenging since no known banana germplasm is immune to BBTV. The disease can be managed with the use of virus-free planting material and roguing. However, once BBTD is established in the field, it is very difficult to eradicate or manage it. Therefore, a more sustainable way of controlling the disease is developing host plant resistance against the virus and the vector. Biotechnological strategies via RNA interference (RNAi) could be used to target the banana aphid as well as BBTV to reduce virus-associated yield losses of banana and plantain, which feed over 500 million people around the world. This review discusses the status of BBTD and perspectives on effective RNAi technologies for controlling BBTV and the vector, banana aphid, transmitting the virus as sustainable management of the disease.
Collapse
Affiliation(s)
- Temitope Jekayinoluwa
- International Institute of Tropical AgricultureNairobiKenya
- Center for Biotechnology and BioinformaticsUniversity of NairobiNairobiKenya
| | - Leena Tripathi
- International Institute of Tropical AgricultureNairobiKenya
| | | | | | - George Obiero
- Center for Biotechnology and BioinformaticsUniversity of NairobiNairobiKenya
| | - Edward Muge
- Department of BiochemistryUniversity of NairobiNairobiKenya
| | - James Dale
- Queensland University of TechnologyBrisbaneQldAustralia
| |
Collapse
|
15
|
Serteyn L, Quaghebeur C, Ongena M, Cabrera N, Barrera A, Molina-Montenegro MA, Francis F, Ramírez CC. Induced Systemic Resistance by a Plant Growth-Promoting Rhizobacterium Impacts Development and Feeding Behavior of Aphids. INSECTS 2020; 11:insects11040234. [PMID: 32276327 PMCID: PMC7240704 DOI: 10.3390/insects11040234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/04/2023]
Abstract
The effects of microorganisms on plant-insect interactions have usually been underestimated. While plant growth-promoting rhizobacteria (PGPR) are known to induce plant defenses, endosymbiotic bacteria hosted by herbivorous insects are often beneficial to the host. Here, we aimed to assess whether PGPR-induced defenses in broad bean plants impact the pea aphid, depending on its genotype and the presence of endosymbionts. We estimated aphid reproduction, quantified defense- and growth-related phytohormones by GC-MS, and measured different plant growth and physiology parameters, after PGPR treatment. In addition, we recorded the feeding behavior of aphids by electropenetrography. We found that the PGPR treatment of broad bean plants reduced the reproduction of one of the pea aphid clones. We highlighted a phenomenon of PGPR-induced plant defense priming, but no noticeable plant growth promotion. The main changes in aphid probing behavior were related to salivation events into phloem sieve elements. We suggest that the endosymbiont Hamiltonella defensa played a key role in plant-insect interactions, possibly helping aphids to counteract plant-induced resistance and allowing them to develop normally on PGPR-treated plants. Our results imply that plant- and aphid-associated microorganisms add greater complexity to the outcomes of aphid-plant interactions.
Collapse
Affiliation(s)
- Laurent Serteyn
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium; (C.Q.); (F.F.)
- Correspondence: (L.S.); (C.C.R.); Tel.: +3-281-622-235 (L.S.); +5-671-220-0289 (C.C.R.)
| | - Céleste Quaghebeur
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium; (C.Q.); (F.F.)
| | - Marc Ongena
- Microbial Processes and Interactions Research Unit, Gembloux Agro-Bio Tech, University of Liege, B-5030 Gembloux, Belgium;
| | - Nuri Cabrera
- Laboratorio Interacciones Insecto-Planta, Instituto de Ciencias Biológicas, Universidad de Talca, 1141 Talca, Chile;
| | - Andrea Barrera
- Laboratorio de Ecología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, 1141 Talca, Chile; (A.B.); (M.A.M.-M.)
| | - Marco A. Molina-Montenegro
- Laboratorio de Ecología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, 1141 Talca, Chile; (A.B.); (M.A.M.-M.)
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, 1281 Coquimbo, Chile
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium; (C.Q.); (F.F.)
| | - Claudio C. Ramírez
- Laboratorio Interacciones Insecto-Planta, Instituto de Ciencias Biológicas, Universidad de Talca, 1141 Talca, Chile;
- Correspondence: (L.S.); (C.C.R.); Tel.: +3-281-622-235 (L.S.); +5-671-220-0289 (C.C.R.)
| |
Collapse
|
16
|
Gene silencing of Diaphorina citri candidate effectors promotes changes in feeding behaviors. Sci Rep 2020; 10:5992. [PMID: 32265528 PMCID: PMC7138822 DOI: 10.1038/s41598-020-62856-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
Insect effectors are mainly secreted by salivary glands, modulate plant physiology and favor the establishment and transmission of pathogens. Feeding is the principal vehicle of transmission of Candidatus Liberibacter asiaticus (Ca. Las) by the Asian citrus psyllid (ACP), Diaphorina citri. This study aimed to predict putative ACP effectors that may act on the Huanglongbing (HLB) pathosystem. Bioinformatics analysis led to the identification of 131 candidate effectors. Gene expression investigations were performed to select genes that were overexpressed in the ACP head and modulated by Ca. Las. To evaluate the actions of candidate effectors on D. citri feeding, six effectors were selected for gene silencing bioassays. Double-stranded RNAs (dsRNAs) of the target genes were delivered to D. citri adults via artificial diets for five days. RNAi silencing caused a reduction in the ACP lifespan and decreased the salivary sheath size and honeydew production. Moreover, after dsRNA delivery of the target genes using artificial diet, the feeding behaviors of the insects were evaluated on young leaves from citrus seedlings. These analyses proved that knockdown of D. citri effectors also interfered with ACP feeding abilities in planta, causing a decrease in honeydew production and reducing ACP survival. Electrical penetration graph (EPG) analysis confirmed the actions of the effectors on D. citri feeding behaviors. These results indicate that gene silencing of D. citri effectors may cause changes in D. citri feeding behaviors and could potentially be used for ACP control.
Collapse
|
17
|
Sparks ME, Bansal R, Benoit JB, Blackburn MB, Chao H, Chen M, Cheng S, Childers C, Dinh H, Doddapaneni HV, Dugan S, Elpidina EN, Farrow DW, Friedrich M, Gibbs RA, Hall B, Han Y, Hardy RW, Holmes CJ, Hughes DST, Ioannidis P, Cheatle Jarvela AM, Johnston JS, Jones JW, Kronmiller BA, Kung F, Lee SL, Martynov AG, Masterson P, Maumus F, Munoz-Torres M, Murali SC, Murphy TD, Muzny DM, Nelson DR, Oppert B, Panfilio KA, Paula DP, Pick L, Poelchau MF, Qu J, Reding K, Rhoades JH, Rhodes A, Richards S, Richter R, Robertson HM, Rosendale AJ, Tu ZJ, Velamuri AS, Waterhouse RM, Weirauch MT, Wells JT, Werren JH, Worley KC, Zdobnov EM, Gundersen-Rindal DE. Brown marmorated stink bug, Halyomorpha halys (Stål), genome: putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pest. BMC Genomics 2020; 21:227. [PMID: 32171258 PMCID: PMC7071726 DOI: 10.1186/s12864-020-6510-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.
Collapse
Affiliation(s)
- Michael E Sparks
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA.
| | - Raman Bansal
- USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Michael B Blackburn
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA
| | - Hsu Chao
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mengyao Chen
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Sammy Cheng
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | | | - Huyen Dinh
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shannon Dugan
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119911, Russia
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Richard A Gibbs
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brantley Hall
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yi Han
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard W Hardy
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Daniel S T Hughes
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
- Present address: Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Crete, Greece
| | | | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Brent A Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - Faith Kung
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Sandra L Lee
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alexander G Martynov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Monica Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Shwetha C Murali
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Donna M Muzny
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Brenda Oppert
- USDA-ARS Center for Grain and Animal Health Research, Manhattan, KS, 66502, USA
| | - Kristen A Panfilio
- Developmental Biology, Institute for Zoology: University of Cologne, 50674, Cologne, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, United Kingdom
| | - Débora Pires Paula
- EMBRAPA Genetic Resources and Biotechnology, Brasília, DF, 70770-901, Brazil
| | - Leslie Pick
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | | | - Jiaxin Qu
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Katie Reding
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Joshua H Rhoades
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA
| | - Adelaide Rhodes
- Larner College of Medicine, The University of Vermont, Burlington, VT, 05452, USA
| | - Stephen Richards
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Present address: Earth BioGenome Project, University of California, Davis, Davis, CA, 95616, USA
| | - Rose Richter
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Zhijian Jake Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Arun S Velamuri
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Division of Biomedical Informatics, and Division of Developmental Biology, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jackson T Wells
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Kim C Worley
- Department of Human and Molecular Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | | |
Collapse
|
18
|
Matsumoto Y, Hattori M. Characterization of multicopper oxidase genes in the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae), with focus on salivary gland-specific genes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21602. [PMID: 31328822 DOI: 10.1002/arch.21602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multicopper oxidase (MCO) enzymes are present ubiquitously and act on diverse substrates. Recently, the presence of multiple MCO genes has been described in many insects. Based on sialotranscriptome data, we identified and comprehensively characterized six MCO genes: NcLac1S, 1G, and 2-5 in the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae). NcLac1S and NcLac1G belong to the MCO1 ortholog of other insects. NcLac2 forms a clade with MCO2s involved in the sclerotization and pigmentation of the cuticle. NcLac3 and NcLac4 form a clade with NlMCO3 -5 of the hemipteran Nilaparvata luges. NcLac5 forms a clade with MCORPs (MCO-related proteins) that lack amino acid residues normally highly conserved in copper-coordinated MCOs. NcLac1S and NcLac3 were specifically expressed in the salivary glands; whereas NcLac5 was primarily expressed in the salivary glands. Only NcLac3 protein is considered to have laccase activity in the salivary glands and salivary sheaths ejected by the insect. NcLac1G expression was relatively high in the testis. NcLac2 and NcLac4 were specifically expressed in the integument and in Malpighian tubules, respectively. Knockdown by RNA interference (RNAi) of either NcLac2 and NcLac5 in nymphs caused high mortality. All NcLac2-knockdown nymphs showed depigmentation and soft cuticle, and eventually died, as did other MCO2-knockdown insects. DsNcLac5-injected nymphs (third, fourth, and fifth-instar) showed high mortality, but injection into adults had no effect on survival or number of eggs deposited, suggesting that NcLac5 is not essential for survival after molting (eclosion). NcLac5 could be a promising target gene for control of N. cincticeps.
Collapse
Affiliation(s)
- Yukiko Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Makoto Hattori
- Ex. Insect-Plant Interaction Research Unit, National Institute Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
19
|
Neupane S, Purintun JM, Mathew FM, Varenhorst AJ, Nepal MP. Molecular Basis of Soybean Resistance to Soybean Aphids and Soybean Cyst Nematodes. PLANTS 2019; 8:plants8100374. [PMID: 31561499 PMCID: PMC6843664 DOI: 10.3390/plants8100374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/25/2023]
Abstract
Soybean aphid (SBA; Aphis glycines Matsumura) and soybean cyst nematode (SCN; Heterodera glycines Ichninohe) are major pests of the soybean (Glycine max [L.] Merr.). Substantial progress has been made in identifying the genetic basis of limiting these pests in both model and non-model plant systems. Classical linkage mapping and genome-wide association studies (GWAS) have identified major and minor quantitative trait loci (QTLs) in soybean. Studies on interactions of SBA and SCN effectors with host proteins have identified molecular cues in various signaling pathways, including those involved in plant disease resistance and phytohormone regulations. In this paper, we review the molecular basis of soybean resistance to SBA and SCN, and we provide a synthesis of recent studies of soybean QTLs/genes that could mitigate the effects of virulent SBA and SCN populations. We also review relevant studies of aphid–nematode interactions, particularly in the soybean–SBA–SCN system.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Jordan M Purintun
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Febina M Mathew
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Adam J Varenhorst
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
20
|
Wang X, Wang W, Zhang W, Li J, Cui F, Qiao L. Immune function of an angiotensin-converting enzyme against Rice stripe virus infection in a vector insect. Virology 2019; 533:137-144. [PMID: 31247402 PMCID: PMC7127076 DOI: 10.1016/j.virol.2019.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/18/2022]
Abstract
Angiotensin-converting enzyme (ACE) plays diverse roles in the animal kingdom. However, whether ACE plays an immune function against viral infection in vector insects is unclear. In this study, an ACE gene (LsACE) from the small brown planthopper was found to respond to Rice stripe virus (RSV) infection. The enzymatic activities of LsACE were characterized at different pH and temperature. Twenty planthopper proteins were found to interact with LsACE. RSV infection significantly upregulated LsACE expression in the testicle and fat body. When the expression of LsACE in viruliferous planthoppers was inhibited, the RNA level of the RSV SP gene was upregulated 2-fold in planthoppers, and all RSV genes showed higher RNA levels in the rice plants consumed by these planthoppers, leading to a higher viral infection rate and disease rating index. These results indicate that LsACE plays a role in the immune response against RSV transmission by planthoppers.
Collapse
Affiliation(s)
- Xue Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzhong Zhang
- Department of Cardiology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, Shandong, 266001, China
| | - Jing Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Luqin Qiao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
21
|
Yuan E, Yan H, Gao J, Guo H, Ge F, Sun Y. Increases in Genistein in Medicago sativa Confer Resistance against the Pisum Host Race of Acyrthosiphon pisum. INSECTS 2019; 10:E97. [PMID: 30939761 PMCID: PMC6523617 DOI: 10.3390/insects10040097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 11/27/2022]
Abstract
Interspecific interaction with host plants have important consequences for the host race formation of herbivorous insects. Plant secondary metabolites, particularly those that are involved in host races specializing on plants, warrant the theory of host specialization. Acyrthosiphon pisum comprises various host races that adapt to different Fabaceae plants, which provides an ideal system for determining the behavioral and physiological mechanisms underlying host-adaptive diversification. The current study evaluated the effects of host transfer on population fitness, feeding behavior and the transcriptome-wide gene expression of the two host races of A. pisum, one of which was originally from Medicago sativa and the other from Pisum sativum. The results showed that the Pisum host race of A. pisum had a lower population abundance and feeding efficiency than the Medicago host race in terms of a longer penetration time and shorter duration times of phloem ingestion when fed on M. sativa. In contrast, few differences were found in the population abundance and feeding behavior of A. pisum between the two host races when fed on P. sativum. Meanwhile, of the nine candidate phenolic compounds, only genistein was significantly affected by aphid infestation; higher levels of genistein were detected in M. sativa after feeding by the Pisum host race, but these levels were reduced relative to uninfested controls after feeding by the Medicago host race, which suggested that genistein may be involved in the specialization of the aphid host race on M. sativa. Further exogenous application of genistein in artificial diets showed that the increase in genistein reduced the survival rate of the Pisum host race but had little effect on that of the Medicago host race. The transcriptomic profiles indicated that the transcripts of six genes with functions related to detoxification were up-regulated in the Pisum host race relative to the Medicago host race of A. pisum. These results suggested that the inducible plant phenolics and associated metabolic process in aphids resulted in their differential adaptations to their Fabaceae host.
Collapse
Affiliation(s)
- Erliang Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongyu Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jing Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
22
|
Chaudhary R, Peng HC, He J, MacWilliams J, Teixeira M, Tsuchiya T, Chesnais Q, Mudgett MB, Kaloshian I. Aphid effector Me10 interacts with tomato TFT7, a 14-3-3 isoform involved in aphid resistance. THE NEW PHYTOLOGIST 2019; 221:1518-1528. [PMID: 30357852 DOI: 10.1111/nph.15475] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/31/2018] [Indexed: 05/08/2023]
Abstract
We demonstrated previously that expression of Macrosiphum euphorbiae salivary protein Me10 enhanced aphid reproduction on its host tomato (Solanum lycopersicum). However, the mechanism of action of Me10 remained elusive. To confirm the secretion of Me10 by the aphid into plant tissues, we produced Me10 polyclonal antibodies. To identify the plant targets of Me10, we developed a tomato immune induced complementary DNA yeast two-hybrid library and screened it with Me10 as bait. Immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays were performed to validate one of the interactions in planta, and virus-induced gene silencing was used for functional characterization in tomato. We demonstrated that Me10 is secreted into the plant tissues and interacts with tomato 14-3-3 isoform 7 (TFT7) in yeast. Immunoprecipitation assays confirmed that Me10 and its homologue in Aphis gossypii, Ag10k, interact with TFT7 in planta. Further, BiFC revealed that Me10 interaction with TFT7 occurs in the plant cell cytoplasm. While silencing of TFT7 in tomato leaves did not affect tomato susceptibility to M. euphorbiae, it enhanced longevity and fecundity of A. gossypii, the non-host aphid. Our results suggest the model whereby TFT7 plays a role in aphid resistance in tomato and effectors of the Me10/Ag10k family interfere with TFT7 function during aphid infestation.
Collapse
Affiliation(s)
- Ritu Chaudhary
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Hsuan-Chieh Peng
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Jiangman He
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Jacob MacWilliams
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Marcella Teixeira
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Tokuji Tsuchiya
- College of Bioresource Sciences, Nihon University, Kanagawa, 252-0880, Japan
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA, 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
23
|
Widana Gamage SMK, Rotenberg D, Schneweis DJ, Tsai CW, Dietzgen RG. Transcriptome-wide responses of adult melon thrips (Thrips palmi) associated with capsicum chlorosis virus infection. PLoS One 2018; 13:e0208538. [PMID: 30532222 PMCID: PMC6286046 DOI: 10.1371/journal.pone.0208538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/18/2018] [Indexed: 11/18/2022] Open
Abstract
Thrips palmi is a widely distributed major agricultural pest in the tropics and subtropics, causing significant losses in cucurbit and solanaceous crops through feeding damage and transmission of tospoviruses. Thrips palmi is a vector of capsicum chlorosis virus (CaCV) in Australia. The present understanding of transmission biology and potential effects of CaCV on T. palmi is limited. To gain insights into molecular responses to CaCV infection, we performed RNA-Seq to identify thrips transcripts that are differentially-abundant during virus infection of adults. De-novo assembly of the transcriptome generated from whole bodies of T. palmi adults generated 166,445 contigs, of which ~24% contained a predicted open reading frame. We identified 1,389 differentially-expressed (DE) transcripts, with comparable numbers up- (708) and down-regulated (681) in virus-exposed thrips compared to non-exposed thrips. Approximately 59% of these DE transcripts had significant matches to NCBI non-redundant proteins (Blastx) and Blast2GO identified provisional functional categories among the up-regulated transcripts in virus-exposed thrips including innate immune response-related genes, salivary gland and/or gut-associated genes and vitellogenin genes. The majority of the immune-related proteins are known to serve functions in lysosome activity and melanisation in insects. Most of the up-regulated oral and extra-oral digestion-associated genes appear to be involved in digestion of proteins, lipids and plant cell wall components which may indirectly enhance the likelihood or frequency of virus transmission or may be involved in the regulation of host defence responses. Most of the down-regulated transcripts fell into the gene ontology functional category of 'structural constituent of cuticle'. Comparison to DE genes responsive to tomato spotted wilt virus in Frankliniella occidentalis indicates conservation of some thrips molecular responses to infection by different tospoviruses. This study assembled the first transcriptome in the genus Thrips and provides important data to broaden our understanding of networks of molecular interactions between thrips and tospoviruses.
Collapse
Affiliation(s)
- Shirani M. K. Widana Gamage
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, Australia
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States of America
| | - Derek J. Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
24
|
Jiang S, Dai Y, Lu Y, Fan S, Liu Y, Bodlah MA, Parajulee MN, Chen F. Molecular Evidence for the Fitness of Cotton Aphid, Aphis gossypii in Response to Elevated CO 2 From the Perspective of Feeding Behavior Analysis. Front Physiol 2018; 9:1444. [PMID: 30483140 PMCID: PMC6240613 DOI: 10.3389/fphys.2018.01444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/24/2018] [Indexed: 11/30/2022] Open
Abstract
Rising atmospheric carbon dioxide (CO2) concentration is likely to influence insect-plant interactions. Aphid, as a typical phloem-feeding herbivorous insect, has shown consistently more positive responses in fitness to elevated CO2 concentrations than those seen in leaf-chewing insects. But, little is known about the mechanism of this performance. In this study, the foliar soluble constituents of cotton and the life history of the cotton aphid Aphis gossypii and its mean relative growth rate (MRGR) and feeding behavior were measured, as well as the relative transcript levels of target genes related appetite, salivary proteins, molting hormone (MH), and juvenile hormone, to investigate the fitness of A. gossypii in response to elevated CO2 (800 ppm vs. 400 ppm). The results indicated that elevated CO2 significantly stimulated the increase in concentrations of soluble proteins in the leaf and sucrose in seedlings. Significant increases in adult longevity, lifespan, fecundity, and MRGR of A. gossypii were found under elevated CO2 in contrast to ambient CO2. Furthermore, the feeding behavior of A. gossypii was significantly affected by elevated CO2, including significant shortening of the time of stylet penetration to phloem position and significant decrease in the mean frequency of xylem phase. It is presumed that the fitness of A. gossypii can be enhanced, resulting from the increases in nutrient sources and potential increase in the duration of phloem ingestion under elevated CO2 in contrast to ambient CO2. In addition, the qPCR results also demonstrated that the genes related to appetite and salivary proteins were significantly upregulated, whereas, the genes related to MH were significantly downregulated under elevated CO2 in contrast to ambient CO2, this is in accordance with the performance of A. gossypii in response to elevated CO2. In conclusion, rise in atmospheric CO2 concentration can enhance the fitness of A. gossypii by increasing their ingestion of higher quantity and higher quality of host plant tissues and by simultaneously upregulating the transcript expression of the genes related to appetite and salivary proteins, and then this may increase the control risk of A. gossypii under conditions of climate change in the future.
Collapse
Affiliation(s)
- Shoulin Jiang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Personnel Department, Qingdao Agricultural University, Qingdao, China
| | - Yang Dai
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yongqing Lu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuqin Fan
- Qidong Agricultural Commission, Qidong, China
| | - Yanmin Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Adnan Bodlah
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Megha N. Parajulee
- Texas A&M University AgriLife Research and Extension Center, Lubbock, TX, United States
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Boulain H, Legeai F, Guy E, Morlière S, Douglas NE, Oh J, Murugan M, Smith M, Jaquiéry J, Peccoud J, White FF, Carolan JC, Simon JC, Sugio A. Fast Evolution and Lineage-Specific Gene Family Expansions of Aphid Salivary Effectors Driven by Interactions with Host-Plants. Genome Biol Evol 2018; 10:1554-1572. [PMID: 29788052 PMCID: PMC6012102 DOI: 10.1093/gbe/evy097] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 12/31/2022] Open
Abstract
Effector proteins play crucial roles in plant-parasite interactions by suppressing plant defenses and hijacking plant physiological responses to facilitate parasite invasion and propagation. Although effector proteins have been characterized in many microbial plant pathogens, their nature and role in adaptation to host plants are largely unknown in insect herbivores. Aphids rely on salivary effector proteins injected into the host plants to promote phloem sap uptake. Therefore, gaining insight into the repertoire and evolution of aphid effectors is key to unveiling the mechanisms responsible for aphid virulence and host plant specialization. With this aim in mind, we assembled catalogues of putative effectors in the legume specialist aphid, Acyrthosiphon pisum, using transcriptomics and proteomics approaches. We identified 3,603 candidate effector genes predicted to be expressed in A. pisum salivary glands (SGs), and 740 of which displayed up-regulated expression in SGs in comparison to the alimentary tract. A search for orthologs in 17 arthropod genomes revealed that SG-up-regulated effector candidates of A. pisum are enriched in aphid-specific genes and tend to evolve faster compared with the whole gene set. We also found that a large fraction of proteins detected in the A. pisum saliva belonged to three gene families, of which certain members show evidence consistent with positive selection. Overall, this comprehensive analysis suggests that the large repertoire of effector candidates in A. pisum constitutes a source of novelties promoting plant adaptation to legumes.
Collapse
Affiliation(s)
- Hélène Boulain
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Fabrice Legeai
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France.,Inria/IRISA GenScale, Campus de Beaulieu, Rennes, France
| | - Endrick Guy
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Stéphanie Morlière
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Nadine E Douglas
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Jonghee Oh
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas
| | - Marimuthu Murugan
- Community Science College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Michael Smith
- Department of Entomology, Kansas State University, Manhattan, Kansas
| | - Julie Jaquiéry
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Jean Peccoud
- UMR CNRS 7267 Ecologie et Biologie des Interactions, équipe Ecologie Evolution Symbiose, Université de Poitiers, Poitiers, France
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, Florida
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jean-Christophe Simon
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Akiko Sugio
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| |
Collapse
|
26
|
Matsumoto Y, Hattori M. The green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae), salivary protein NcSP75 is a key effector for successful phloem ingestion. PLoS One 2018; 13:e0202492. [PMID: 30183736 PMCID: PMC6124752 DOI: 10.1371/journal.pone.0202492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 08/03/2018] [Indexed: 11/19/2022] Open
Abstract
Nephotettix cincticeps, a prevalent rice pest, injects gelling and watery saliva into plant tissues during the sucking process. Certain components within the saliva are believed to interact with plant cellular constituents and play important roles in overcoming host plant defense responses. Based on our previous analysis of the salivary gland transcriptome and secreted saliva proteome of N. cincticeps, in this study, we analyzed the biological functions of salivary protein, NcSP75 (N. cincticepssalivary protein 75 kD). NcSP75, a salivary glands-specific gene, showed low similarities to any previously reported sequences. Knockdown of NcSP75 by RNA interference (RNAi) reduced the longevity of treated nymphs to approximately half of the longevity of controls and caused severe developmental retardation. Furthermore, the knockdown of NcSP75 decreased the survival rate of adults, and reduced the number of deposited eggs and hatched nymphs. Thus, the adverse effects caused by the knockdown of NcSP75 were observed throughout the lifetime of N. cincticeps, when feeding on rice plants. In contrast, no reduction was observed in the survival rate of the knockdown of NcSP75 adults fed on an artificial diet. Electrical penetration graph measurements taken from adult females feeding on rice plants showed a significantly shorter duration of phloem ingestion associated with the knockdown of NcSP75 than the knockdown of the enhanced green fluorescent protein (EGFP). Furthermore, the total sugar content of the honeydew was lower when NcSP75 was knocked down. These results suggest that the NcSP75 protein contribute to successful and sustainable ingestion from the sieve elements of rice plants. The NcSP75 protein of N. cincticeps can, accordingly, be considered as a key effector for establishing compatible interaction with rice plants and could be a potential target for controlling this species.
Collapse
Affiliation(s)
- Yukiko Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Makoto Hattori
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba, Ibaraki, Japan
| |
Collapse
|
27
|
Gosal SS, Wani SH. RNAi for Resistance Against Biotic Stresses in Crop Plants. BIOTECHNOLOGIES OF CROP IMPROVEMENT, VOLUME 2 2018. [PMCID: PMC7123769 DOI: 10.1007/978-3-319-90650-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA interference (RNAi)-based gene silencing has become one of the most successful strategies in not only identifying gene function but also in improving agronomical traits of crops by silencing genes of different pathogens/pests and also plant genes for improvement of desired trait. The conserved nature of RNAi pathway across different organisms increases its applicability in various basic and applied fields. Here we attempt to summarize the knowledge generated on the fundamental mechanisms of RNAi over the years, with emphasis on insects and plant-parasitic nematodes (PPNs). This chapter also reviews the rich history of RNAi research, gene regulation by small RNAs across different organisms, and application potential of RNAi for generating transgenic plants resistant to major pests. But, there are some limitations too which restrict wider applications of this technology to its full potential. Further refinement of this technology in terms of resolving these shortcomings constitutes one of the thrust areas in present RNAi research. Nevertheless, its application especially in breeding agricultural crops resistant against biotic stresses will certainly offer the possible solutions for some of the breeding objectives which are otherwise unattainable.
Collapse
Affiliation(s)
- Satbir Singh Gosal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir India
| |
Collapse
|
28
|
Lee HR, Lee S, Park S, van Kleeff PJM, Schuurink RC, Ryu CM. Transient Expression of Whitefly Effectors in Nicotiana benthamiana Leaves Activates Systemic Immunity Against the Leaf Pathogen Pseudomonas syringae and Soil-Borne Pathogen Ralstonia solanacearum. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
29
|
Yates AD, Michel A. Mechanisms of aphid adaptation to host plant resistance. CURRENT OPINION IN INSECT SCIENCE 2018; 26:41-49. [PMID: 29764659 DOI: 10.1016/j.cois.2018.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 05/27/2023]
Abstract
Host-plant resistant (HPR) crops can play a major role in preventing insect damage, but their durability is limited due to insect adaptation. Research in basal plant resistance provides a framework to investigate adaptation against HPR. Resistance and adaptation are predicted to follow the gene-for-gene and zigzag models of plant defense. These models also highlight the importance of insect effectors, which are small molecules that modulate host plant defense signaling. We highlight research in insect adaptation to plant resistance, and then draw parallels to virulence adaptation. We focus on virulent biotype evolution within the Aphididae, since this group has the highest number of described virulent biotypes. Understanding how virulence occurs will lead to more durable insect management strategies and enhance food production and security.
Collapse
Affiliation(s)
- Ashley D Yates
- Center for Applied Plant Sciences, and The Ohio State Center for Soybean Research, USA
| | - Andy Michel
- Center for Applied Plant Sciences, and The Ohio State Center for Soybean Research, USA; Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH, USA.
| |
Collapse
|
30
|
Zhang Y, Fan J, Sun J, Francis F, Chen J. Transcriptome analysis of the salivary glands of the grain aphid, Sitobion avenae. Sci Rep 2017; 7:15911. [PMID: 29162876 PMCID: PMC5698471 DOI: 10.1038/s41598-017-16092-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/07/2017] [Indexed: 01/10/2023] Open
Abstract
Aphid saliva plays important roles in aphid-host interactions, such as assisting aphid digestion, detoxification, activating or suppressing plant defenses. The grain aphid, Sitobion avenae, is one of the most devastating pests of cereals worldwide. In this study, we performed the transcriptome analysis of salivary glands of S. avenae. A total of 33,079 assembled unigenes were identified in the salivary glands of aphids. Of the all obtained unigenes, 15,833(47.86%) and 10,829(32.73%) unigenes showed high similarity to known proteins in Nr and Swiss-Prot databases respectively. 526 unigenes were predicted to encode secretory proteins, including some digestive and detoxifying enzymes and potential effectors. The RT-PCR and RT-qPCR results showed that all of the 15 most highly expressed putative secretory proteins specifically expressed in salivary glands. Interestingly, 11 of the 15 most highly expressed putative secretory proteins were still not matched to function-known proteins. We also detected the expression of 9 interested putative secretory proteins in aphid different tissues, including some digestive and detoxifying enzymes, effectors and Ca2+ binding proteins. The results showed that only glutathione-S-transferase 1 was specifically expressed in salivary glands. These findings provide a further insight into the identification of potential effectors involving in aphid-cereals interactions.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, B-5030, Belgium
| | - Jia Fan
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Jingrui Sun
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, B-5030, Belgium.
| | - Julian Chen
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China.
| |
Collapse
|
31
|
Nagaoka S, Kawasaki S, Kawasaki H, Kamei K. The angiotensin converting enzyme (ACE) inhibitor, captopril disrupts the motility activation of sperm from the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:18-28. [PMID: 28964767 DOI: 10.1016/j.jinsphys.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Angiotensin I-converting enzyme (also known as peptidyl dicarboxypeptidase A, ACE, and EC 3.4.15.1), which is found in a wide range of organisms, cleaves C-terminal dipeptides from relatively short oligopeptides. Mammalian ACE plays an important role in the regulation of blood pressure. However, the precise physiological functions of insect ACE homologs have not been understood. As part of our effort to elucidate new physiological roles of insect ACE, we herein report a soluble ACE protein in male reproductive secretions from the silkmoth, Bombyx mori. Seminal vesicle sperm are quiescent in vitro, but vigorous motility is activated by treatment with either a glandula (g.) prostatica homogenate or trypsin in vitro. When seminal vesicle sperm were pre-incubated with captopril, a strong and specific inhibitor of mammalian ACE, and then stimulated to initiate motility by the addition of the g. prostatica homogenate or trypsin, the overall level of acquired motility was reduced in an inhibitor-concentration-dependent manner. In the course of this project, we detected ACE-related carboxypeptidase activity that was inhibited by captopril in both the vesicular (v.) seminalis of the noncopulative male reproductive tract and in the spermatophore that forms in the female bursa copulatrix at the time of mating, just as in an earlier report on the tomato moth, Lacanobia oleracea, which belongs to a different lepidopteran species (Ekbote et al., 2003a). Two distinct genes encoding ACE-like proteins were identified by analysis of B. mori cDNA, and were named BmAcer and BmAcer2, respectively [the former was previously reported by Quan et al. (2001) and the latter was first isolated in this paper]. RT-qPCR and Western blot analyses indicated that the BmAcer2 was predominantly produced in v. seminalis and transferred to the spermatophore during copulation, while the BmAcer was not detected in the adult male reproductive organs. A recombinant protein of BmAcer2 (devoid of a signal peptide) that was expressed in Escherichia coli cells exhibited captopril-sensitive carboxypeptidase activities. Our findings show that the BmAcre2 gene encodes a secreted ACE protein included in the Bombyx seminal plasma. In particular, the silkworm ACE protein in the seminal fluid might be involved in the signaling pathway that leads to the activation and regulation of sperm motility.
Collapse
Affiliation(s)
- Sumiharu Nagaoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Saori Kawasaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Kawasaki
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Tochigi 321-8505, Japan
| | - Kaeko Kamei
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
32
|
Yan HY, Mita K, Zhao X, Tanaka Y, Moriyama M, Wang H, Iwanaga M, Kawasaki H. The angiotensin-converting enzyme (ACE) gene family of Bombyx mori. Gene 2017; 608:58-65. [DOI: 10.1016/j.gene.2017.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/09/2016] [Accepted: 01/19/2017] [Indexed: 01/07/2023]
|
33
|
Lu S, Li J, Wang X, Song D, Bai R, Shi Y, Gu Q, Kuo YW, Falk BW, Yan F. A Semipersistent Plant Virus Differentially Manipulates Feeding Behaviors of Different Sexes and Biotypes of Its Whitefly Vector. Viruses 2017; 9:E4. [PMID: 28098749 PMCID: PMC5294973 DOI: 10.3390/v9010004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
It is known that plant viruses can change the performance of their vectors. However, there have been no reports on whether or how a semipersistent plant virus manipulates the feeding behaviors of its whitefly vectors. Cucurbit chlorotic yellows virus (CCYV) (genus Crinivirus, family Closteroviridae) is an emergent plant virus in many Asian countries and is transmitted specifically by B and Q biotypes of tobacco whitefly, Bemisia tabaci (Gennadius), in a semipersistent manner. In the present study, we used electrical penetration graph (EPG) technique to investigate the effect of CCYV on the feeding behaviors of B. tabaci. The results showed that CCYV altered feeding behaviors of both biotypes and sexes of B. tabaci with different degrees. CCYV had stronger effects on feeding behaviors of Q biotype than those of B biotype, by increasing duration of phloem salivation and sap ingestion, and could differentially manipulate feeding behaviors of males and females in both biotype whiteflies, with more phloem ingestion in Q biotype males and more non-phloem probing in B biotype males than their respective females. With regard to feeding behaviors related to virus transmission, these results indicated that, when carrying CCYV, B. tabaci Q biotype plays more roles than B biotype, and males make greater contribution than females.
Collapse
Affiliation(s)
- Shaohua Lu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xueli Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Danyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Rune Bai
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 410100, China.
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, CA 95616-8600, USA.
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, CA 95616-8600, USA.
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
34
|
RNA Interference in Insect Vectors for Plant Viruses. Viruses 2016; 8:v8120329. [PMID: 27973446 PMCID: PMC5192390 DOI: 10.3390/v8120329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.
Collapse
|
35
|
Duressa TF, Boonen K, Huybrechts R. A quantitative peptidomics approach to unravel immunological functions of angiotensin converting enzyme in Locusta migratoria. Gen Comp Endocrinol 2016; 235:120-129. [PMID: 27320038 DOI: 10.1016/j.ygcen.2016.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 01/15/2023]
Abstract
Locusta migratoria angiotensin converting enzyme (LmACE) is encoded by multiple exons displaying variable number of genomic duplications. Treatments of lipopolysaccharide (LPS) as well as peptidoglycan but not β-1-3 glucan resulted in enhanced expression of angiotensin converting enzyme in hemocytes of Locusta migratoria. No such effect was observed in fat body cells. Differential peptidomics using locust plasma samples post infection with LPS in combination with both an LmACE transcript knockdown by RNAi and a functional knockdown using captopril allowed the identification of 5 circulating LPS induced peptides which only appear in the hemolymph of locust having full LmACE functionality. As these peptides originate from larger precursor proteins such as locust hemocyanin-like protein, having known antimicrobial properties, the obtained results suggest a possible direct or indirect role of LmACE in the release of these peptides from their precursors. Additionally, this experimental setup confirmed the role of LmACE in the clearance of multiple peptides from the hemolymph.
Collapse
Affiliation(s)
- Tewodros Firdissa Duressa
- Insect Physiology and Molecular Ethology, Biology Department, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | - Kurt Boonen
- Functional Genomics and Proteomics, Biology Department, KU Leuven, B-3000 Leuven, Belgium.
| | - Roger Huybrechts
- Insect Physiology and Molecular Ethology, Biology Department, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| |
Collapse
|
36
|
Yu XD, Liu ZC, Huang SL, Chen ZQ, Sun YW, Duan PF, Ma YZ, Xia LQ. RNAi-mediated plant protection against aphids. PEST MANAGEMENT SCIENCE 2016; 72:1090-8. [PMID: 26888776 DOI: 10.1002/ps.4258] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/21/2015] [Accepted: 02/15/2016] [Indexed: 05/10/2023]
Abstract
Aphids (Aphididae) are major agricultural pests that cause significant yield losses of crop plants each year by inflicting damage both through the direct effects of feeding and by vectoring harmful plant viruses. Expression of double-stranded RNA (dsRNA) directed against suitable insect target genes in transgenic plants has been shown to give protection against pests through plant-mediated RNA interference (RNAi). Thus, as a potential alternative and effective strategy for insect pest management in agricultural practice, plant-mediated RNAi for aphid control has received close attention in recent years. In this review, the mechanism of RNAi in insects and the so far explored effective RNAi target genes in aphids, their potential applications in the development of transgenic plants for aphid control and the major challenges in this regard are reviewed, and the future prospects of using plant-mediated RNAi for aphid control are discussed. This review is intended to be a helpful insight into the generation of aphid-resistant plants through plant-mediated RNAi strategy. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiu-Dao Yu
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zong-Cai Liu
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, China
| | - Si-Liang Huang
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, China
| | - Zhi-Qin Chen
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, China
| | - Yong-Wei Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng-Fei Duan
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan, China
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lan-Qin Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
37
|
Kaloshian I, Walling LL. Hemipteran and dipteran pests: Effectors and plant host immune regulators. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:350-61. [PMID: 26467026 DOI: 10.1111/jipb.12438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/09/2015] [Indexed: 05/08/2023]
Abstract
Hemipteran and dipteran insects have behavioral, cellular and chemical strategies for evading or coping with the host plant defenses making these insects particularly destructive pests worldwide. A critical component of a host plant's defense to herbivory is innate immunity. Here we review the status of our understanding of the receptors that contribute to perception of hemipteran and dipteran pests and highlight the gaps in our knowledge in these early events in immune signaling. We also highlight recent advances in identification of the effectors that activate pattern-triggered immunity and those involved in effector-triggered immunity.
Collapse
Affiliation(s)
- Isgouhi Kaloshian
- Institute of Integrative Genome Biology and Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
- Department of Nematology, University of California, Riverside, California 92521, USA
| | - Linda L Walling
- Institute of Integrative Genome Biology and Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| |
Collapse
|
38
|
Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia sericata Medical Maggots. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8285428. [PMID: 27119084 PMCID: PMC4826915 DOI: 10.1155/2016/8285428] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/07/2016] [Indexed: 01/01/2023]
Abstract
Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions.
Collapse
|
39
|
Lu H, Yang P, Xu Y, Luo L, Zhu J, Cui N, Kang L, Cui F. Performances of survival, feeding behavior, and gene expression in aphids reveal their different fitness to host alteration. Sci Rep 2016; 6:19344. [PMID: 26758247 PMCID: PMC4725932 DOI: 10.1038/srep19344] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/13/2015] [Indexed: 12/27/2022] Open
Abstract
Insect populations feeding on different plant species are under selection pressure to adapt to these differences. A study integrating elements of the ecology, behavior, and gene expression of aphids on different host plants has not yet been well-explored. The present study explores the relationship between host fitness and survival, feeding behavior, and salivary gland gene expression of a pea (Pisum sativum) host race of Acyrthosiphon pisum feeding on a common host Vicia faba and on three genetically-related hosts (Vicia villosa, Medicago truncatula, and Medicago sativa). Life table data indicated that aphids on non-favored hosts exhibited small size, low reproduction rate, slow population increase and individual development, and long lifespan. Electrical penetration graph results showed that the aphids spent significantly less time in passive ingestion of phloem sap on all non-preferred host plants before acclimation. After a period of acclimation on M. truncatula and V. villosa, pea host race individuals showed improved feeding behavior. No individuals of the pea host race completed its life history on M. sativa. Interestingly, the number of host-specific differentially-expressed salivary gland genes was negatively correlated with the fitness of aphids on this host plant. This study provided important cues in host plant specialization in aphids.
Collapse
Affiliation(s)
- Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects &Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Plant Protection College, Shandong Agricultural University, Tai'an, Shandong, China
| | - Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yongyu Xu
- Plant Protection College, Shandong Agricultural University, Tai'an, Shandong, China
| | - Lan Luo
- State Key Laboratory of Integrated Management of Pest Insects &Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Junjie Zhu
- State Key Laboratory of Integrated Management of Pest Insects &Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Na Cui
- State Key Laboratory of Integrated Management of Pest Insects &Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects &Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects &Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Guy E, Boulain H, Aigu Y, Le Pennec C, Chawki K, Morlière S, Schädel K, Kunert G, Simon JC, Sugio A. Optimization of Agroinfiltration in Pisum sativum Provides a New Tool for Studying the Salivary Protein Functions in the Pea Aphid Complex. FRONTIERS IN PLANT SCIENCE 2016; 7:1171. [PMID: 27555856 PMCID: PMC4977312 DOI: 10.3389/fpls.2016.01171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/20/2016] [Indexed: 05/06/2023]
Abstract
Aphids are piercing-sucking insect pests and feed on phloem sap. During feeding, aphids inject a battery of salivary proteins into host plant. Some of these proteins function like effectors of microbial pathogens and influence the outcome of plant-aphid interactions. The pea aphid (Acyrthosiphon pisum) is the model aphid and encompasses multiple biotypes each specialized to one or a few legume species, providing an opportunity to investigate the underlying mechanisms of the compatibility between plants and aphid biotypes. We aim to identify the aphid factors that determine the compatibility with host plants, hence involved in the host plant specialization process, and hypothesize that salivary proteins are one of those factors. Agrobacterium-mediated transient gene expression is a powerful tool to perform functional analyses of effector (salivary) proteins in plants. However, the tool was not established for the legume species that A. pisum feeds on. Thus, we decided to optimize the method for legume plants to facilitate the functional analyses of A. pisum salivary proteins. We screened a range of cultivars of pea (Pisum sativum) and alfalfa (Medicago sativa). None of the M. sativa cultivars was suitable for agroinfiltration under the tested conditions; however, we established a protocol for efficient transient gene expression in two cultivars of P. sativum, ZP1109 and ZP1130, using A. tumefaciens AGL-1 strain and the pEAQ-HT-DEST1 vector. We confirmed that the genes are expressed from 3 to 10 days post-infiltration and that aphid lines of the pea adapted biotype fed and reproduced on these two cultivars while lines of alfalfa and clover biotypes did not. Thus, the pea biotype recognizes these two cultivars as typical pea plants. By using a combination of ZP1109 and an A. pisum line, we defined an agroinfiltration procedure to examine the effect of in planta expression of selected salivary proteins on A. pisum fitness and demonstrated that transient expression of one candidate salivary gene increased the fecundity of the aphids. This result confirms that the agroinfiltration can be used to perform functional analyses of salivary proteins in P. sativum and consequently to study the molecular mechanisms underlying host specialization in the pea aphid complex.
Collapse
Affiliation(s)
- Endrick Guy
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
| | - Hélène Boulain
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
| | - Yoann Aigu
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
| | - Charlotte Le Pennec
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
| | - Khaoula Chawki
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
| | - Stéphanie Morlière
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
| | - Kristina Schädel
- Department of Biochemistry, Max Planck Institute for Chemical EcologyJena, Germany
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical EcologyJena, Germany
| | - Jean-Christophe Simon
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
| | - Akiko Sugio
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
- *Correspondence: Akiko Sugio,
| |
Collapse
|
41
|
van Bel AJE, Will T. Functional Evaluation of Proteins in Watery and Gel Saliva of Aphids. FRONTIERS IN PLANT SCIENCE 2016; 7:1840. [PMID: 28018380 PMCID: PMC5156713 DOI: 10.3389/fpls.2016.01840] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/22/2016] [Indexed: 05/20/2023]
Abstract
Gel and watery saliva are regarded as key players in aphid-pIant interactions. The salivary composition seems to be influenced by the variable environment encountered by the stylet tip. Milieu sensing has been postulated to provide information needed for proper stylet navigation and for the required switches between gel and watery saliva secretion during stylet progress. Both the chemical and physical factors involved in sensing of the stylet's environment are discussed. To investigate the salivary proteome, proteins were collected from dissected gland extracts or artificial diets in a range of studies. We discuss the advantages and disadvantages of either collection method. Several proteins were identified by functional assays or by use of proteomic tools, while most of their functions still remain unknown. These studies disclosed the presence of at least two proteins carrying numerous sulfhydryl groups that may act as the structural backbone of the salivary sheath. Furthermore, cell-wall degrading proteins such a pectinases, pectin methylesterases, polygalacturonases, and cellulases as well as diverse Ca2+-binding proteins (e.g., regucalcin, ARMET proteins) were detected. Suppression of the plant defense may be a common goal of salivary proteins. Salivary proteases are likely involved in the breakdown of sieve-element proteins to invalidate plant defense or to increase the availability of organic N compounds. Salivary polyphenoloxidases, peroxidases and oxidoreductases were suggested to detoxify, e.g., plant phenols. During the last years, an increasing number of salivary proteins have been categorized under the term 'effector'. Effectors may act in the suppression (C002 or MIF cytokine) or the induction (e.g., Mp10 or Mp 42) of plant defense, respectively. A remarkable component of watery saliva seems the protein GroEL that originates from Buchnera aphidicola, the obligate symbiont of aphids and probably reflects an excretory product that induces plant defense responses. Furthermore, chitin fragments in the saliva may trigger defense reactions (e.g., callose deposition). The functions of identified proteins and protein classes are discussed with regard to physical and chemical characteristics of apoplasmic and symplasmic plant compartments.
Collapse
Affiliation(s)
- Aart J. E. van Bel
- Institute of General Botany, Justus-Liebig-UniversityGiessen, Germany
- *Correspondence: Aart J. E. van Bel,
| | - Torsten Will
- Institute of Phytopathology, Justus-Liebig-UniversityGiessen, Germany
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius-Kühn InstituteQuedlinburg, Germany
| |
Collapse
|