1
|
Guo C, Wu Y, Wang Q, Li X, Deng T, Xia X, Li L, Li H, Lin C, Zhu C, Liu F. Super-resolution imaging lysosome vesicles and establishing a gallbladder-visualizable zebrafish model via a fluorescence probe. Talanta 2024; 279:126656. [PMID: 39098243 DOI: 10.1016/j.talanta.2024.126656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Advanced probes for imaging viscous lipids microenvironment in vitro and in vivo are desirable for the study of membranous organelles and lipids traffic. Herein, a reaction-based dihydroquinoline probe (DCQ) was prepared via linking a diethylamino coumarin fluorophore with a N-methylquinoline moiety. DCQ is stable in low viscous aqueous mediums and exhibits green fluorescence, which undergoes fast autoxidation in high viscous mediums to form a fluorescent product with deep-red to near-infrared (NIR) emission, rendering the ability for dual-color imaging. Living cell imaging indicated that DCQ can effectively stain lysosomal membranes with deep-red fluorescence. Super-resolution imaging of lysosome vesicles has been achieved by DCQ and stimulated emission depletion (STED) microscopy. In addition, DCQ realizes multiple organs imaging in zebrafish, whose dual-color emission can perfectly discriminate zebrafish's yolk sac, digestive tract and gallbladder. Most importantly, DCQ has been successfully used to establish a gallbladder-visualizable zebrafish model for the evaluation of drug stress.
Collapse
Affiliation(s)
- Chengxi Guo
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yufang Wu
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiling Wang
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoqi Li
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tao Deng
- School of Medicine, Foshan University, Foshan, 528000, China
| | - Xiaotong Xia
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lei Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Huan Li
- Lingnan Medical Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Fang Liu
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Tantipanjaporn A, Kung KYK, Deng JR, Wong MK. Modular synthesis of pentacyclic-fused pyranoquinoliziniums as organelle-selective fluorescent probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124524. [PMID: 38824759 DOI: 10.1016/j.saa.2024.124524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
On basis of their unique chemical and photophysical properties, and excellent biological activities, quinoliziniums have been widely used in various research fields. Herein, modular synthetic strategies for efficient synthesis of novel fluorescent quinoliziniums by using one-pot and stepwise rhodium(III)-catalyzed C-H annulations were developed. In the one-pot synthesis, the reaction between 2-aryl-4-quinolones (1) and 1,2-diarylalkynes (2) proceeded in a chemo- and regioselective manner to give quinolinone-fused isoquinolines (3) and pentacyclic-fused pyranoquinoliziniums (4). The structural diversity of pentacyclic-fused pyranoquinoliziniums (4) was expanded by the stepwise synthesis from 3 and 2, allowing the strategic incorporation of electron-donating (OMe and OH) and electron-withdrawing (Cl) substituents on the top and bottom parts of the pyranoquinoliziniums (4). These newly synthesized pyranoquinoliziniums (4) exhibited tunable absorptions (455-532 nm), emissions (520-610 nm), fluorescence lifetime (0.3-5.6 ns), large Stokes shifts (up to 120 nm), and excellent fluorescence quantum yields (up to 0.73) upon adjusting the different substituents. The the unique arrangement of N and O atoms and extended π-conjugation of 4 could cause the relocation of HOMO comparing with our previous quinoliziniums. Importantly, pyranoquinoliziniums (4a-4g and 4i) targeted the mitochondria, while 4h was localized in lysosome. Due to the remarkable photophysical properties and the potential for organelle targeting of the novel class of quinoliziniums, they could be further applied for biological, chemical and material applications.
Collapse
Affiliation(s)
- Ajcharapan Tantipanjaporn
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ka-Yan Karen Kung
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jie-Ren Deng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
3
|
Ye YX, Pan JC, Wang HC, Zhang XT, Zhu HL, Liu XH. Advances in small-molecule fluorescent probes for the study of apoptosis. Chem Soc Rev 2024; 53:9133-9189. [PMID: 39129564 DOI: 10.1039/d4cs00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Apoptosis, as type I cell death, is an active death process strictly controlled by multiple genes, and plays a significant role in regulating various activities. Mounting research indicates that the unique modality of cell apoptosis is directly or indirectly related to different diseases including cancer, autoimmune diseases, viral diseases, neurodegenerative diseases, etc. However, the underlying mechanisms of cell apoptosis are complicated and not fully clarified yet, possibly due to the lack of effective chemical tools for the nondestructive and real-time visualization of apoptosis in complex biological systems. In the past 15 years, various small-molecule fluorescent probes (SMFPs) for imaging apoptosis in vitro and in vivo have attracted broad interest in related disease diagnostics and therapeutics. In this review, we aim to highlight the recent developments of SMFPs based on enzyme activity, plasma membranes, reactive oxygen species, reactive sulfur species, microenvironments and others during cell apoptosis. In particular, we generalize the mechanisms commonly used to design SMFPs for studying apoptosis. In addition, we discuss the limitations of reported probes, and emphasize the potential challenges and prospects in the future. We believe that this review will provide a comprehensive summary and challenging direction for the development of SMFPs in apoptosis related fields.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Xing-Tao Zhang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
4
|
Mukherjee A, Kar S, Das S, Bera T, Mondal A, Sengupta A, Guha S. Design of an Acidic pH-Activated NIR Fluorescent Convertible Rhodamine-Hemicyanine Probe-Peptide Conjugate for Living Cancer Cell Active Targeted Selective Tracking of Lysosomes. Chemistry 2024; 30:e202402146. [PMID: 38923172 DOI: 10.1002/chem.202402146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
We have synthesized an acidic pH-activatable dual targeting ratiometric fluorescent probe-peptide conjugate using the SPPS protocol on Rink amide AM resin. Living carcinoma cell specific active targeting, successive cell penetration, and selective staining of lysosomes are accomplished. Real-time monitoring of lysosomes, 3D, and multicolor cancer cell imaging are also attained. The de novo design consists of the integration of multifunctionality into a single molecular scaffold, e. g., RGDS peptide residue to target cancer cell surface overexpressed receptor αVβ3 integrin, live-cell penetrating organic unsymmetrical rhodamine-hemicyanine chromophore comprising a lysosome targeting morpholine group, and an acidic pH openable spiro-lactam ring for a visible-to-NIR switchable ratiometric response. Water-soluble fluorescent probe-peptide conjugate exhibits intramolecular spirolactamization at basic pH through Arg amide N. The visible spirolactam state predominantly exists at physiological and basic pH and can be switched to the highly conjugated NIR open amide state (λem=735 nm) through spiro-lactam ring opening triggered by acidic pH with a huge bathochromic shift (Δλabs=336 nm, ΔλFL=265 nm). Moreover, pH-sensitive ratiometric optical switching is achieved. This in situ acidic cancer cell lysosome activatable multifunctional fluorophore-peptide conjugate shows augmented molar absorptivity, enhanced quantum yield, and improved fluorescence lifetime at acidic lysosomal pH; negligible cytotoxicity; and dual targeted ratiometric imaging capability of living cancer cell selective lysosomes with a pKa value of 5.1.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| | - Samiran Kar
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| | - Shreya Das
- Department of Life Science and Biotechnology, Jadavpur University, 700032, Kolkata, India
| | - Tapas Bera
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| | - Aniruddha Mondal
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| | - Arunima Sengupta
- Department of Life Science and Biotechnology, Jadavpur University, 700032, Kolkata, India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| |
Collapse
|
5
|
Korotkova D, Borisyuk A, Guihur A, Bardyn M, Kuttler F, Reymond L, Schuhmacher M, Amen T. Fluorescent fatty acid conjugates for live cell imaging of peroxisomes. Nat Commun 2024; 15:4314. [PMID: 38773129 PMCID: PMC11109271 DOI: 10.1038/s41467-024-48679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/09/2024] [Indexed: 05/23/2024] Open
Abstract
Peroxisomes are eukaryotic organelles that are essential for multiple metabolic pathways, including fatty acid oxidation, degradation of amino acids, and biosynthesis of ether lipids. Consequently, peroxisome dysfunction leads to pediatric-onset neurodegenerative conditions, including Peroxisome Biogenesis Disorders (PBD). Due to the dynamic, tissue-specific, and context-dependent nature of their biogenesis and function, live cell imaging of peroxisomes is essential for studying peroxisome regulation, as well as for the diagnosis of PBD-linked abnormalities. However, the peroxisomal imaging toolkit is lacking in many respects, with no reporters for substrate import, nor cell-permeable probes that could stain dysfunctional peroxisomes. Here we report that the BODIPY-C12 fluorescent fatty acid probe stains functional and dysfunctional peroxisomes in live mammalian cells. We then go on to improve BODIPY-C12, generating peroxisome-specific reagents, PeroxiSPY650 and PeroxiSPY555. These probes combine high peroxisome specificity, bright fluorescence in the red and far-red spectrum, and fast non-cytotoxic staining, making them ideal tools for live cell, whole organism, or tissue imaging of peroxisomes. Finally, we demonstrate that PeroxiSPY enables diagnosis of peroxisome abnormalities in the PBD CRISPR/Cas9 cell models and patient-derived cell lines.
Collapse
Affiliation(s)
- Daria Korotkova
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anya Borisyuk
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Manon Bardyn
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fabien Kuttler
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luc Reymond
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Milena Schuhmacher
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Triana Amen
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
6
|
Kumar MS, S V, Dolai M, Nag A, Bylappa Y, Das AK. Viscosity-sensitive and AIE-active bimodal fluorescent probe for the selective detection of OCl - and Cu 2+: a dual sensing approach via DFT and biological studies using green gram seeds. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:676-685. [PMID: 38189149 DOI: 10.1039/d3ay01971c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A novel dual-mode viscosity-sensitive and AIE-active fluorescent chemosensor based on the naphthalene coupled pyrene (NCP) moiety was designed and synthesized for the selective detection of OCl- and Cu2+. In non-viscous media, NCP exhibited weak fluorescence; however, with an increase in viscosity using various proportions of glycerol, the fluorescence intensity was enhanced to 461 nm with a 6-fold increase in fluorescence quantum yields, which could be utilized for the quantitative determination of viscosity. Interestingly, NCP exhibited novel AIE characteristics in terms of size and growth in H2O-CH3CN mixtures with high water contents and different volume percentage of water, which was investigated using fluorescence, DLS study and SEM analysis. Interestingly, this probe can also be effectively employed as a dual-mode fluorescent probe for light up fluorescent detection of OCl- and Cu2+ at different emission wavelengths of 439 nm and 457 nm via chemodosimetric and chelation pathways, respectively. The fast-sensing ability of NCP towards OCl- was shown by a low detection limit of 0.546 μM and the binding affinity of NCP with Cu2+ was proved by a low detection limit of 3.97 μM and a high binding constant of 1.66 × 103 M-1. The sensing mechanism of NCP towards OCl- and Cu2+ was verified by UV-vis spectroscopy, fluorescence analysis, 1H-NMR analysis, mass spectroscopy, DFT study and Job plot analysis. For practical applications, the binding of NCP with OCl- and Cu2+ was determined using a dipstick method and a cell imaging study in a physiological medium using green gram seeds.
Collapse
Affiliation(s)
- Malavika S Kumar
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.
| | - Vishnu S
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur 721404, W.B., India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Yatheesharadhya Bylappa
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Avijit Kumar Das
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.
| |
Collapse
|
7
|
Yan X, Chen X, Shan Z, Bi L. Engineering Exosomes to Specifically Target the Mitochondria of Brain Cells. ACS OMEGA 2023; 8:48984-48993. [PMID: 38162779 PMCID: PMC10753542 DOI: 10.1021/acsomega.3c06617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Mitochondrial dysfunction is associated with various health conditions, including cardiovascular and neurodegenerative diseases. Mitochondrial-targeting therapy aims to restore or enhance mitochondrial function to treat or alleviate these conditions. Exosomes, small vesicles that cells secrete, containing a variety of biomolecules, are critical in cell-to-cell communication and have been studied as potential therapeutic agents. Exosome-based therapy has the potential to treat both cardiovascular and neurodegenerative diseases. Combining these two approaches involves using exosomes as carriers to transport mitochondrial-targeting agents to dysfunctional or damaged mitochondria within target cells. This article presents a new technique for engineering brain-derived exosomes that target mitochondria and has demonstrated promise in initial tests with primary neuron cells and healthy rats. This promising development represents a significant step forward in treating these debilitating conditions.
Collapse
Affiliation(s)
- Xin Yan
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Xinqian Chen
- Department
of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Zhiying Shan
- Department
of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Lanrong Bi
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| |
Collapse
|
8
|
Yan X, Chen X, Shan Z, Bi L. Design, Synthesis, and Biological Evaluation of Novel Mitochondria-targeting Exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547719. [PMID: 37461660 PMCID: PMC10349970 DOI: 10.1101/2023.07.04.547719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Mitochondrial dysfunction is implicated in both brain tumors and neurodegenerative diseases, leading to various cellular abnormalities that can promote tumor growth and resistance to thera-pies, as well as impaired energy production and compromised neuronal function. Developing targeted therapies aimed at restoring mitochondrial function and improving overall cellular health could potentially be a promising approach to treating these conditions. Brain-derived exosomes (BR-EVs) have emerged as potential drug delivery vessels for neurological conditions. Herein, we report a new method for creating mitochondria-targeting exosomes and test its application in vitro and in vivo.
Collapse
|
9
|
Mukherjee A, Saha PC, Kar S, Guha P, Das RS, Bera T, Guha S. Acidic pH-Triggered Live-Cell Lysosome Specific Tracking, Ratiometric pH Sensing, and Multicolor Imaging by Visible to NIR Switchable Cy-7 Dyes. Chembiochem 2023; 24:e202200641. [PMID: 36459158 DOI: 10.1002/cbic.202200641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
We have demonstrated an efficient synthetic route with crystal structures for the construction of acidic pH-triggered visible-to-NIR interchangeable ratiometric fluorescent pH sensors. This bioresponsive probe exhibits pH-sensitive reversible absorption/emission features, low cytotoxicity, a huge 322 nm bathochromic spectral shift with augmented quantum yield from neutral to acidic pH, high sensitivity and selective targeting ability of live-cell lysosomes with ideal pKa , off-to-on narrow NIR absorption/fluorescence signals with high molar absorption coefficient at acidic lysosomal lumen, and in-situ live-cell pH-activated ratiometric imaging of lysosomal pH. Selective staining and ratiometric pH imaging in human carcinoma live-cell lysosomes were monitored by dual-channel confocal laser scanning microscope using a pH-activatable organic fluorescent dye comprising a morpholine moiety for lysosome targeting and an acidic pH openable oxazolidine ring. Moreover, real-time tracking of lysosomes, 3D, and multicolor live-cell imaging have been achieved using the synthesized pH-activatable probe.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata, 700032, India
| | - Pranab Chandra Saha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata, 700032, India
| | - Samiran Kar
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata, 700032, India
| | - Pampa Guha
- Department of Chemistry, City College, 102/1 Raja Rammohan Sarani, Kolkata, 700009, India
| | - Rabi Sankar Das
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata, 700032, India
| | - Tapas Bera
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata, 700032, India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
10
|
Moreno-Echeverri AM, Susnik E, Vanhecke D, Taladriz-Blanco P, Balog S, Petri-Fink A, Rothen-Rutishauser B. Pitfalls in methods to study colocalization of nanoparticles in mouse macrophage lysosomes. J Nanobiotechnology 2022; 20:464. [PMID: 36309696 PMCID: PMC9618187 DOI: 10.1186/s12951-022-01670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background In the field of nanoscience there is an increasing interest to follow dynamics of nanoparticles (NP) in cells with an emphasis on endo-lysosomal pathways and long-term NP fate. During our research on this topic, we encountered several pitfalls, which can bias the experimental outcome. We address some of these pitfalls and suggest possible solutions. The accuracy of fluorescence microscopy methods has an important role in obtaining insights into NP interactions with lysosomes at the single cell level including quantification of NP uptake in a specific cell type. Methods Here we use J774A.1 cells as a model for professional phagocytes. We expose them to fluorescently-labelled amorphous silica NP with different sizes and quantify the colocalization of fluorescently-labelled NP with lysosomes over time. We focus on confocal laser scanning microscopy (CLSM) to obtain 3D spatial information and follow live cell imaging to study NP colocalization with lysosomes. Results We evaluate different experimental parameters that can bias the colocalization coefficients (i.e., Pearson’s and Manders’), such as the interference of phenol red in the cell culture medium with the fluorescence intensity and image post-processing (effect of spatial resolution, optical slice thickness, pixel saturation and bit depth). Additionally, we determine the correlation coefficients for NP entering the lysosomes under four different experimental set-ups. First, we found out that not only Pearson’s, but also Manders’ correlation coefficient should be considered in lysosome-NP colocalization studies; second, there is a difference in NP colocalization when using NP of different sizes and fluorescence dyes and last, the correlation coefficients might change depending on live-cell and fixed-cell imaging set-up. Conclusions The results summarize detailed steps and recommendations for the experimental design, staining, sample preparation and imaging to improve the reproducibility of colocalization studies between the NP and lysosomes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01670-9.
Collapse
|
11
|
Das RS, Mukherjee A, Kar S, Bera T, Das S, Sengupta A, Guha S. Construction of Red Fluorescent Dual Targeting Mechanically Interlocked Molecules for Live Cancer Cell Specific Lysosomal Staining and Multicolor Cellular Imaging. Org Lett 2022; 24:5907-5912. [PMID: 35925778 DOI: 10.1021/acs.orglett.2c02114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have designed and synthesized red fluorescent mechanically interlocked molecules with dual targeting functionality for live cancer cell specific active targeting followed by selective internalization and imaging of malignant lysosomes along with real-time tracking, 3D, and multicolor cellular imaging applications.
Collapse
Affiliation(s)
- Rabi Sankar Das
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Samiran Kar
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Tapas Bera
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Shreya Das
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Arunima Sengupta
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
12
|
Li YX, Xie DT, Yang YX, Chen Z, Guo WY, Yang WC. Development of Small-Molecule Fluorescent Probes Targeting Enzymes. Molecules 2022; 27:molecules27144501. [PMID: 35889374 PMCID: PMC9324355 DOI: 10.3390/molecules27144501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
As biological catalysts, enzymes are vital in controlling numerous metabolic reactions. The regulation of enzymes in living cells and the amount present are indicators of the metabolic status of cell, whether in normal condition or disease. The small-molecule fluorescent probes are of interest because of their high sensitivity and selectivity, as well as their potential for automated detection. Fluorescent probes have been useful in targeting particular enzymes of interest such as proteases and caspases. However, it is difficult to develop an ideal fluorescent probe for versatile purposes. In the future, the design and synthesis of enzyme-targeting fluorescent probes will focus more on improving the selectivity, sensitivity, penetration ability and to couple the fluorescent probes with other available imaging molecules/technologies.
Collapse
Affiliation(s)
- Yuan-Xiang Li
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China; (Y.-X.L.); (D.-T.X.); (Y.-X.Y.)
| | - Dong-Tai Xie
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China; (Y.-X.L.); (D.-T.X.); (Y.-X.Y.)
| | - Ya-Xi Yang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China; (Y.-X.L.); (D.-T.X.); (Y.-X.Y.)
| | - Zhao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China; (Z.C.); (W.-Y.G.)
| | - Wu-Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China; (Z.C.); (W.-Y.G.)
| | - Wen-Chao Yang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China; (Y.-X.L.); (D.-T.X.); (Y.-X.Y.)
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China; (Z.C.); (W.-Y.G.)
- Correspondence: ; Tel.: +86-27-67867706; Fax: +86-27-67867141
| |
Collapse
|
13
|
Xing Y, Wei X, Wang MM, Liu Y, Sui Z, Wang X, Zhang Y, Fei YH, Jiang Y, Lu C, Zhang P, Chen R, Liu N, Wu M, Ding L, Wang Y, Guo F, Cao JL, Qi J, Wang W. Stimulating TRPM7 suppresses cancer cell proliferation and metastasis by inhibiting autophagy. Cancer Lett 2022; 525:179-197. [PMID: 34752845 DOI: 10.1016/j.canlet.2021.10.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/15/2022]
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitous cation channel possessing kinase activity. TRPM7 mediates a variety of physiological responses by conducting flow of cations such as Ca2+, Mg2+, and Zn2+. Here, we show that the activation of TRPM7 channel stimulated by chemical agonists of TRPM7, Clozapine or Naltriben, inhibited autophagy via mediating Zn2+ release to the cytosol, presumably from the intracellular Zn2+-accumulating vesicles where TRPM7 localizes. Zn2+ release following the activation of TRPM7 disrupted the fusion between autophagosomes and lysosomes by disturbing the interaction between Sxt17 and VAMP8 which determines fusion status of autophagosomes and lysosomes. Ultimately, the disrupted fusion resulting from stimulation of TRPM7 channels arrested autophagy. Functionally, we demonstrate that the autophagy inhibition mediated by TRPM7 triggered cell death and suppressed metastasis of cancer cells in vitro, more importantly, restricted tumor growth and metastasis in vivo, by evoking apoptosis, cell cycle arrest, and reactive oxygen species (ROS) elevation. These findings represent a strategy for stimulating TRPM7 to combat cancer.
Collapse
Affiliation(s)
- Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Xiangqing Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226006, China
| | - Meng-Meng Wang
- Department of Otolaryngology and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110122, China
| | - Yucheng Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Zhongheng Sui
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Xinyan Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Yuan-Hui Fei
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Yi Jiang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Chen Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Peng Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Rong Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Nan Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Mengmei Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Lin Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Yuqing Wang
- Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka, Kyusyu 8128582, Japan
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China.
| | - Jiansong Qi
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China; Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
14
|
Mu YL, Pan L, Lu Q, Xing S, Liu KY, Zhang X. A bifunctional sensitive fluorescence probe based on pyrene for the detection of pH and viscosity in lysosome. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120228. [PMID: 34388430 DOI: 10.1016/j.saa.2021.120228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Lysosome is one of the important organelles in intracellular transport. It plays a significant role in the physiological process. The lysosomal microenvironment affects the functions of lysosome. When the original acidic environment of lysozyme is destroyed or the fluid viscosity increases gradually, various diseases are easily induced. However, most fluorescent probes can only locate in cells. The fewer probes of subcellular organelles were found and their functions are often single. So, it is of great importance to design multifunctional fluorescent probes with the capable of localizing in lysosome. In this study, a novel lysosome probe, 4-(4-Pyren-1-yl-but-3-enyl)-morpholine (PIM), was synthesized using pyrene as a fluorescent group and morpholine as a target group. The introduction of morpholine group made PIM localize in lysosome with high selectivity. The fluorescence will be enhanced with the increased viscosity because of restricting the rotation of CC bond and CN in PIM, and the detecting linear range is from 4.05 cP to 393.48 cP, which qualified the requirement of the viscosity monitoring in body. Meanwhile, the fluorescence intensity of PIM declines with the decrease of pH because the Schiff base of PIM is hydrolyzed, which was affirmed by 1H NMR, LC-MS and fluorescence spectra. Moreover, cell imaging and MTT experiments confirmed that PIM as a novel bifunctional probe can be used to detect pH and endogenous viscosity in lysosome.
Collapse
Affiliation(s)
- Yi-Lin Mu
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Li Pan
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qian Lu
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Shu Xing
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ke-Yin Liu
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xian Zhang
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
15
|
Yapici N, Gao X, Yan X, Hou S, Jockusch S, Lesniak L, Gibson KM, Bi L. Novel Dual-Organelle-Targeting Probe (RCPP) for Simultaneous Measurement of Organellar Acidity and Alkalinity in Living Cells. ACS OMEGA 2021; 6:31447-31456. [PMID: 34869971 PMCID: PMC8637586 DOI: 10.1021/acsomega.1c03087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
Many organelles, such as lysosomes and mitochondria, maintain a pH that is different from the cytoplasmic pH. These pH differences have important functional ramifications for those organelles. Many cellular events depend upon a well-compartmentalized distribution of H+ ions spanning the membrane for the optimal function. Cells have developed a variety of mechanisms that enable the regulation of organelle pH. However, the measurement of organellar acidity/alkalinity in living cells has remained a challenge. Currently, most existing probes for the estimation of intracellular pH show a single -organelle targeting capacity. Such probes provide data that fails to comprehensively reveal the pathological and physiological roles and connections between mitochondria and lysosomes in different species. Mitochondrial and lysosomal functions are closely related and important for regulating cellular homeostasis. Accordingly, the design of a single fluorescent probe that can simultaneously target mitochondria and lysosomes is highly desirable, enabling a better understanding of the crosstalk between these organelles. We report the development of a novel fluorescent sensor, rhodamine-coumarin pH probe (RCPP), for detection of organellar acidity/alkalinity. RCPP simultaneously moves between mitochondrion and lysosome subcellular locations, facilitating the simultaneous monitoring of pH alterations in mitochondria and lysosomes.
Collapse
Affiliation(s)
- Nazmiye
B. Yapici
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xiang Gao
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xin Yan
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Shanshan Hou
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Steffen Jockusch
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Lillian Lesniak
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - K. Michael Gibson
- Department
of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Lanrong Bi
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
16
|
Abstract
Fluorescent tools have emerged as an important tool for studying the distinct chemical microenvironments of organelles, due to their high specificity and ability to be used in non-destructive, live cellular studies. These tools fall largely in two categories: exogenous fluorescent dyes, or endogenous labels such as genetically encoded fluorescent proteins. In both cases, the probe must be targeted to the organelle of interest. To date, many organelle-targeted fluorescent tools have been reported and used to uncover new information about processes that underpin health and disease. However, the majority of these tools only apply a handful of targeting groups, and less-studied organelles have few robust targeting strategies. While the development of new, robust strategies is difficult, it is essential to develop such strategies to allow for the development of new tools and broadening the effective study of organelles. This review aims to provide a comprehensive overview of the major targeting strategies for both endogenous and exogenous fluorescent cargo, outlining the specific challenges for targeting each organelle type and as well as new developments in the field.
Collapse
Affiliation(s)
- Jiarun Lin
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
| | - Kylie Yang
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
17
|
Saini A, Singh J, Kumar S. Optically superior fluorescent probes for selective imaging of cells, tumors, and reactive chemical species. Org Biomol Chem 2021; 19:5208-5236. [PMID: 34037048 DOI: 10.1039/d1ob00509j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fluorescent chemical probes have become powerful tools to study biological events in living cells. They provide a great opportunity to quantitatively and qualitatively analyze the physiological and biochemical properties of living cells in real time. The ability of researchers to manipulate these probes for a desired specific purpose has turned many heads in the scientific community. Despite a slow start, fluorescent probe research has seen exponential growth over the last decade in the world. This change required some adventurous and creative scientists from different fields-like biology, medicine, and chemistry-to come together to facilitate the constant expansion of this field. This review article introduces some fundamental concepts related to fluorescent probe designing and development. It also summarizes various fluorescent probes with superior optical properties used in fields like cell biology, cellular imaging, medical research, and cancer diagnosis. It is hoped that this article will encourage more young and creative scientists to contribute their talents to this field.
Collapse
Affiliation(s)
- Abhishek Saini
- Department of Chemistry, Hansraj College, University of Delhi, Delhi-110007, India.
| | - Jyoti Singh
- Department of Chemistry, Hansraj College, University of Delhi, Delhi-110007, India.
| | - Sonu Kumar
- Department of Chemistry, Hansraj College, University of Delhi, Delhi-110007, India.
| |
Collapse
|
18
|
Chin MY, Espinosa JA, Pohan G, Markossian S, Arkin MR. Reimagining dots and dashes: Visualizing structure and function of organelles for high-content imaging analysis. Cell Chem Biol 2021; 28:320-337. [PMID: 33600764 PMCID: PMC7995685 DOI: 10.1016/j.chembiol.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Organelles are responsible for biochemical and cellular processes that sustain life and their dysfunction causes diseases from cancer to neurodegeneration. While researchers are continuing to appreciate new roles of organelles in disease, the rapid development of specifically targeted fluorescent probes that report on the structure and function of organelles will be critical to accelerate drug discovery. Here, we highlight four organelles that collectively exemplify the progression of phenotypic discovery, starting with mitochondria, where many functional probes have been described, then continuing with lysosomes and Golgi and concluding with nascently described membraneless organelles. We introduce emerging probe designs to explore organelle-specific morphology and dynamics and highlight recent case studies using high-content analysis to stimulate further development of probes and approaches for organellar high-throughput screening.
Collapse
Affiliation(s)
- Marcus Y Chin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Jether Amos Espinosa
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Grace Pohan
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Sarine Markossian
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
19
|
Tannert A, Garcia Lopez J, Petkov N, Ivanova A, Peneva K, Neugebauer U. Lysosome-targeting pH indicator based on peri-fused naphthalene monoimide with superior stability for long term live cell imaging. J Mater Chem B 2021; 9:112-124. [DOI: 10.1039/d0tb02208j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lysosomal pH is altered in many pathophysiological conditions. We describe synthesis and spectral properties of a new lysosomal fluorescent marker dye suitable for microscopic evaluation of lysosomal distribution and pH changes.
Collapse
Affiliation(s)
- Astrid Tannert
- Leibniz Institute of Photonic Technology
- 07745 Jena
- Germany
- Center for Sepsis Control and Care
- Jena University Hospital
| | - Javier Garcia Lopez
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| | - Nikolay Petkov
- Faculty of Chemistry and Pharmacy
- Sofia University “St. Kliment Ohridski”
- Sofia
- Bulgaria
| | - Anela Ivanova
- Faculty of Chemistry and Pharmacy
- Sofia University “St. Kliment Ohridski”
- Sofia
- Bulgaria
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology
- 07745 Jena
- Germany
- Center for Sepsis Control and Care
- Jena University Hospital
| |
Collapse
|
20
|
Chisholm DR, Hughes JG, Blacker TS, Humann R, Adams C, Callaghan D, Pujol A, Lembicz NK, Bain AJ, Girkin JM, Ambler CA, Whiting A. Cellular localisation of structurally diverse diphenylacetylene fluorophores. Org Biomol Chem 2020; 18:9231-9245. [PMID: 32966518 DOI: 10.1039/d0ob01153c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent probes are increasingly used as reporter molecules in a wide variety of biophysical experiments, but when designing new compounds it can often be difficult to anticipate the effect that changing chemical structure can have on cellular localisation and fluorescence behaviour. To provide further chemical rationale for probe design, a series of donor-acceptor diphenylacetylene fluorophores with varying lipophilicities and structures were synthesised and analysed in human epidermal cells using a range of cellular imaging techniques. These experiments showed that, within this family, the greatest determinants of cellular localisation were overall lipophilicity and the presence of ionisable groups. Indeed, compounds with high log D values (>5) were found to localise in lipid droplets, but conversion of their ester acceptor groups to the corresponding carboxylic acids caused a pronounced shift to localisation in the endoplasmic reticulum. Mildly lipophilic compounds (log D = 2-3) with strongly basic amine groups were shown to be confined to lysosomes i.e. an acidic cellular compartment, but sequestering this positively charged motif as an amide resulted in a significant change to cytoplasmic and membrane localisation. Finally, specific organelles including the mitochondria could be targeted by incorporating groups such as a triphenylphosphonium moiety. Taken together, this account illustrates a range of guiding principles that can inform the design of other fluorescent molecules but, moreover, has demonstrated that many of these diphenylacetylenes have significant utility as probes in a range of cellular imaging studies.
Collapse
Affiliation(s)
- David R Chisholm
- LightOx Limited, 65 Westgate Road, Newcastle upon Tyne, NE1 1SG, UK. and Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK
| | - Joshua G Hughes
- LightOx Limited, 65 Westgate Road, Newcastle upon Tyne, NE1 1SG, UK. and Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK and Centre for Advanced Instrumentation, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - Thomas S Blacker
- Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Rachel Humann
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK and High Force Research Limited, Bowburn North Industrial Estate, Bowburn, Durham DH6 5PF, UK
| | - Candace Adams
- LightOx Limited, 65 Westgate Road, Newcastle upon Tyne, NE1 1SG, UK.
| | - Daniel Callaghan
- LightOx Limited, 65 Westgate Road, Newcastle upon Tyne, NE1 1SG, UK.
| | - Alba Pujol
- LightOx Limited, 65 Westgate Road, Newcastle upon Tyne, NE1 1SG, UK.
| | - Nicola K Lembicz
- High Force Research Limited, Bowburn North Industrial Estate, Bowburn, Durham DH6 5PF, UK
| | - Angus J Bain
- Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - John M Girkin
- Centre for Advanced Instrumentation, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - Carrie A Ambler
- LightOx Limited, 65 Westgate Road, Newcastle upon Tyne, NE1 1SG, UK. and Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Andrew Whiting
- LightOx Limited, 65 Westgate Road, Newcastle upon Tyne, NE1 1SG, UK. and Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
21
|
Gandra UR, Courjaret R, Machaca K, Al-Hashimi M, Bazzi HS. Multifunctional rhodamine B appended ROMP derived fluorescent probe detects Al 3+ and selectively labels lysosomes in live cells. Sci Rep 2020; 10:19519. [PMID: 33177560 PMCID: PMC7658199 DOI: 10.1038/s41598-020-76525-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
There a few reports of rhodamine-based fluorescent sensors for selective detection of only Al3+, due to the challenge of identifying a suitable ligand for binding Al3+ ion. The use of fluorophore moieties appended to a polymer backbone for sensing applications is far from mature. Here, we report a new fluorescent probe/monomer 4 and its ROMP derived polymer P for specific detection of Al3+ ions. Both monomer 4 and its polymer P exhibit high selectivity toward only Al3+ with no interference from other metal ions, having a limit detection of 0.5 and 2.1 µM, respectively. The reversible recognition of monomer 4 and P for Al3+ was also proved in presence of Na2EDTA by both UV-Vis and fluorometric titration. The experimental data indicates the behavior of 4 and P toward Al3+ is pH independent in medium conditions. In addition, the switch-on luminescence response of 4 at acidic pH (0 < 5.0), allowed us to specifically stain lysosomes (pH ~ 4.5-5.0) in live cells.
Collapse
Affiliation(s)
- Upendar Reddy Gandra
- Department of Chemistry, Texas A&M University at Qatar, P.O.Box 23874, Doha, Qatar
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, P.O. Box 24144, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, P.O. Box 24144, Doha, Qatar
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar, P.O.Box 23874, Doha, Qatar.
| | - Hassan S Bazzi
- Department of Chemistry, Texas A&M University at Qatar, P.O.Box 23874, Doha, Qatar.
- Department of Materials Science & Engineering, Texas A&M University, 209 Reed McDonald Building, College Station, TX, 77843-3003, USA.
| |
Collapse
|
22
|
Oshchepkov MS, Semyonkin AS, Menkov AO, Melnikov PA, Valikhov MP, Solovieva IN, Tkachenko SV, Malinowskaya JA. Microflow synthesis of fluorescent markers based on 1,8-naphthalimide for polylactide nanoparticles and bioimaging. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Díaz JM, Dozois CM, Avelar-González FJ, Hernández-Cuellar E, Pokharel P, de Santiago AS, Guerrero-Barrera AL. The Vacuolating Autotransporter Toxin (Vat) of Escherichia coli Causes Cell Cytoskeleton Changes and Produces Non-lysosomal Vacuole Formation in Bladder Epithelial Cells. Front Cell Infect Microbiol 2020; 10:299. [PMID: 32670893 PMCID: PMC7332727 DOI: 10.3389/fcimb.2020.00299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Urinary tract infections (UTIs) affect more than 150 million people, with a cost of over 3.5 billion dollars, each year. Escherichia coli is associated with 70–80% of UTIs. Uropathogenic E. coli (UPEC) has virulence factors including adhesins, siderophores, and toxins that damage host cells. Vacuolating autotransporter toxin (Vat) is a member of serine protease autotransporter proteins of Enterobacteriaceae (SPATEs) present in some uropathogenic E. coli (UPEC) strains. Vat has been identified in 20–36% of UPEC and is present in almost 68% of urosepsis isolates. However, the mechanism of action of Vat on host cells is not well-known. Thus, in this study the effect of Vat in a urothelium model of bladder cells was investigated. Several toxin concentrations were tested for different time periods, resulting in 15–47% of cellular damage as measured by the LDH assay. Vat induced vacuole formation on the urothelium model in a time-dependent manner. Vat treatment showed loss of the intercellular contacts on the bladder cell monolayer, observed by Scanning Electron Microscopy. This was also shown using antibodies against ZO-1 and occludin by immunofluorescence. Additionally, changes in permeability of the epithelial monolayer was demonstrated with a fluorescence-based permeability assay. Cellular damage was also evaluated by the identification of cytoskeletal changes produced by Vat. Thus, after Vat treatment, cells presented F-actin distribution changes and loss of stress fibers in comparison with control cells. Vat also modified tubulin, but it was not found to affect Arp3 distribution. In order to find the nature of the vacuoles generated by Vat, the Lysotracker deep red fluorescent dye for the detection of acidic organelles was used. Cells treated with Vat showed generation of some vacuoles without acidic content. An ex vivo experiment with mouse bladder exposed to Vat demonstrated loss of integrity of the urothelium. In conclusion, Vat induced cellular damage, vacuole formation, and urothelial barrier dysregulation of bladder epithelial cells. Further studies are needed to elucidate the role of these vacuoles induced by Vat and their relationship with the pathogenesis of urinary tract infection.
Collapse
Affiliation(s)
- Juan Manuel Díaz
- Departamento de Morfología, Universidad Autónoma de Aguascalientes (UAA), Aguascalientes, Mexico
| | - Charles M Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Fappier Santé Biotechnologie, Laval, QC, Canada
| | | | | | - Pravil Pokharel
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Fappier Santé Biotechnologie, Laval, QC, Canada
| | | | | |
Collapse
|
24
|
Abeywickrama CS, Bertman KA, Pang Y. From nucleus to mitochondria to lysosome selectivity switching in a cyanine probe: The phenolic to methoxy substituent conversion affects probe’s selectivity. Bioorg Chem 2020; 99:103848. [DOI: 10.1016/j.bioorg.2020.103848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022]
|
25
|
Dai Y, He F, Ji H, Zhao X, Misal S, Qi Z. Dual-Functional NIR AIEgens for High-Fidelity Imaging of Lysosomes in Cells and Photodynamic Therapy. ACS Sens 2020; 5:225-233. [PMID: 31854187 DOI: 10.1021/acssensors.9b02090] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Design and synthesis of water-soluble near-infrared (NIR) emissive fluorescent molecules with aggregation-induced emission (AIE) characteristics, perfect signal-to-noise ratio for imaging of organelle, and photodynamic therapy (PDT) functions has received enormous attention. However, the dual-functional NIR AIEgens of high-fidelity tracking lysosome and ablation cancer cells was rarely reported. Herein, a series of AIE luminogens (AIEgens) with a typical AIE effect, good biocompatibility, superior photostability, high brightness, and excellent reactive oxygen species (ROS) generation ability were developed, which had different electronic push-pull strength and conjugate system size in the molecular structure. These AIEgens could specifically "light up" and dynamically long-term track the lysosomes in living cells and zebrafish with ultrahigh colocalization imaging Pearson's correlation coefficients (Rr: 0.9687) and overlap coefficient (R: 0.9967). Additionally, the MPAT of NIR luminescence as a photosensitizer was used for photodynamic ablation of cancer cells, owing to prompt generation of the ROS under green light irradiation (495-530 nm, 10 mW cm-2). Hence, this research not only expands the application range of NIR AIEgens but also provides useful insights into design of split-new method for the treatment of cancer.
Collapse
Affiliation(s)
- Yanpeng Dai
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Fangru He
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Hefang Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Xinxin Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Saima Misal
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Zhengjian Qi
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| |
Collapse
|
26
|
Szwed M, Torgersen ML, Kumari RV, Yadava SK, Pust S, Iversen TG, Skotland T, Giri J, Sandvig K. Biological response and cytotoxicity induced by lipid nanocapsules. J Nanobiotechnology 2020; 18:5. [PMID: 31907052 PMCID: PMC6943936 DOI: 10.1186/s12951-019-0567-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background Lipid nanocapsules (LNCs) are promising vehicles for drug delivery. However, since not much was known about cellular toxicity of these nanoparticles in themselves, we have here investigated the mechanisms involved in LNC-induced intoxication of the three breast cancer cell lines MCF-7, MDA-MD-231 and MDA-MB-468. The LNCs used were made of Labrafac™ Lipophile WL1349, Lipoid® S75 and Solutol® HS15. Results High resolution SIM microscopy showed that the DiD-labeled LNCs ended up in lysosomes close to the membrane. Empty LNCs, i.e. without encapsulated drug, induced not only increased lysosomal pH, but also acidification of the cytosol and a rapid inhibition of protein synthesis. The cytotoxicity of the LNCs were measured for up to 72 h of incubation using the MTT assay and ATP measurements in all three cell lines, and revealed that MDA-MB-468 was the most sensitive cell line and MCF-7 the least sensitive cell line to these LNCs. The LNCs induced generation of reactive free oxygen species and lipid peroxidation. Experiments with knock-down of kinases in the near-haploid cell line HAP1 indicated that the kinase HRI is essential for the observed phosphorylation of eIF2α. Nrf2 and ATF4 seem to play a protective role against the LNCs in MDA-MB-231 cells, as knock-down of these factors sensitizes the cells to the LNCs. This is in contrast to MCF-7 cells where the knock-down of these factors had a minor effect on the toxicity of the LNCs. Inhibitors of ferroptosis provided a large protection against LNC toxicity in MDA-MB-231 cells, but not in MCF-7 cells. Conclusions High doses of LNCs showed a different degree of toxicity on the three cell lines studied, i.e. MCF-7, MDA-MD-231 and MDA-MB-468 and affected signaling factors and the cell fate differently in these cell lines.
Collapse
Affiliation(s)
- Marzena Szwed
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Maria Lyngaas Torgersen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Remya Valsala Kumari
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Sunil Kumar Yadava
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Sascha Pust
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Tore Geir Iversen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India.
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway. .,Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
27
|
Louzoun‐Zada S, Jaber QZ, Fridman M. Guiding Drugs to Target‐Harboring Organelles: Stretching Drug‐Delivery to a Higher Level of Resolution. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sivan Louzoun‐Zada
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Tel Aviv 6997801 Israel
| | - Qais Z. Jaber
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Tel Aviv 6997801 Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Tel Aviv 6997801 Israel
| |
Collapse
|
28
|
Louzoun-Zada S, Jaber QZ, Fridman M. Guiding Drugs to Target-Harboring Organelles: Stretching Drug-Delivery to a Higher Level of Resolution. Angew Chem Int Ed Engl 2019; 58:15584-15594. [PMID: 31237741 DOI: 10.1002/anie.201906284] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 01/04/2023]
Abstract
The ratio between the dose of drug required for optimal efficacy and the dose that causes toxicity is referred to as the therapeutic window. This ratio can be increased by directing the drug to the diseased tissue or pathogenic cell. For drugs targeting fungi and malignant cells, the therapeutic window can be further improved by increasing the resolution of drug delivery to the specific organelle that harbors the drug's target. Organelle targeting is challenging and is, therefore, an under-exploited strategy. Here we provide an overview of recent advances in control of the subcellular distribution of small molecules with the focus on chemical modifications. Highlighted are recent examples of active and passive organelle-specific targeting by incorporation of organelle-directing molecular determinants or by chemical modifications of the pharmacophore. The outstanding potential that lies in the development of organelle-specific drugs is becoming increasingly apparent.
Collapse
Affiliation(s)
- Sivan Louzoun-Zada
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Qais Z Jaber
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
29
|
State-of-the-art: functional fluorescent probes for bioimaging and pharmacological research. Acta Pharmacol Sin 2019; 40:717-723. [PMID: 30487651 DOI: 10.1038/s41401-018-0190-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases, neuropsychiatric disorders, and cancers seriously endanger human health. Mechanistic and pharmacological mechanisms of candidate drugs are central to the translational paradigm. Since many signal transduction and molecular events are implicated in these diseases, a novel method to interrogate the key pharmacological mechanisms is required to accelerate innovative drug discovery. Much attention now focuses on the real-time visualization of molecular disease events to yield new insights to the pathogenesis of the diseases. This review focuses on recent advances in the development of chemical probes for imaging pathological events to facilitate the study of the underlying pharmacodynamics and toxicity involved. As reviewed here, optical imaging is now frequently viewed as an indispensable technique in the field of biological research. Promoting interdisciplinary collaboration among chemistry, biology and medicine, is necessary to further refine functional fluorescent probes for diagnostic and therapeutic applications.
Collapse
|
30
|
Zhang Y, Zhang X, Zeng C, Li B, Zhang C, Li W, Hou X, Dong Y. Targeted delivery of atorvastatin via asialoglycoprotein receptor (ASGPR). Bioorg Med Chem 2019; 27:2187-2191. [PMID: 31005367 PMCID: PMC6535107 DOI: 10.1016/j.bmc.2019.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/26/2023]
Abstract
Targeted drug delivery platforms can increase the concentration of drugs in specific cell populations, reduce adverse effects, and hence improve the therapeutic effect of drugs. Herein, we designed two conjugates by installing the targeting ligand GalNAc (N-acetylgalactosamine) onto atorvastatin (AT). Compared to the parent drug, these two conjugates, termed G2-AT and G2-K-AT, showed increased hepatic cellular uptake. Moreover, both conjugates were able to release atorvastatin, and consequently showed dramatic inhibition of β-hydroxy-β-methylglutaryl-CoA (HMG-CoA) reductase and increased LDL receptors on cell surface.
Collapse
Affiliation(s)
- Youxi Zhang
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan Eastern Road, Shenyang 110032, China
| | - Xinfu Zhang
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Chunxi Zeng
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Bin Li
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Wenqing Li
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Xucheng Hou
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States; The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, United States; The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States; Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
31
|
Bertman KA, Abeywickrama CS, Ingle A, Shriver LP, Konopka M, Pang Y. A Fluorescent Flavonoid for Lysosome Imaging: the Effect of Substituents on Selectivity and Optical Properties. J Fluoresc 2019; 29:599-607. [PMID: 30955153 DOI: 10.1007/s10895-019-02371-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/19/2019] [Indexed: 01/17/2023]
Abstract
Lysosome selective bright orange-red emitting flavonoid (2) was synthesized by attaching a strong donor (NPh2) group into flavonoid skeleton. As a result of efficient intra molecular charge transfer due to the strong donor group, a significant bathochromic shift was observed from the emission of 2b (with a -NPh2 group, λem ≈ 590 nm), in comparison that of 1b (with a -NMe2 group, λem ≈ 519 nm). The role of the substituent effect towards ICT was further studied by low temperature spectral analysis. Fluorescence spectra at low temperature confirmed that large Stokes shift for probe 2 (Δλ ≈ 150 nm) was due to strong ICT. Probe 2b exhibited exceptional selectivity towards cellular lysosomes in live cells studies thus generating bright orange-red emission upon localization. Intra-cellular pH analysis results confirmed that probe 2b did not participate in the elevation of lysosomal pH upon staining with different probe concentrations (0.5 μM - 2.0 μM) which is a potential advantage compared to acidotropic commercial LysoTracker® probes. This study further illustrated that the substituents in probe 2 play a significant role towards probe's organelle selectivity since probe 2a (R = OH) did not show any lysosomal localization compared with 2b. In addition, the calculated cytotoxicity data further revealed that this new probe design is highly biocompatible (LC50 > 50 μM) and suitable for long term imaging. Graphical Abstract.
Collapse
Affiliation(s)
| | | | - Ashley Ingle
- Department of Chemistry, University of Akron, Akron, OH, 44325, USA
| | - Leah P Shriver
- Department of Chemistry, University of Akron, Akron, OH, 44325, USA.,Department of Biology, University of Akron, Akron, OH, 44325, USA
| | - Michael Konopka
- Department of Chemistry, University of Akron, Akron, OH, 44325, USA
| | - Yi Pang
- Department of Chemistry, University of Akron, Akron, OH, 44325, USA. .,Maurice Morton Institute of Polymer Science, University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
32
|
Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev 2019; 144:90-111. [PMID: 31419450 PMCID: PMC6986687 DOI: 10.1016/j.addr.2019.08.004] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
The complexity of nanoscale interactions between biomaterials and cells has limited the realization of the ultimate vision of nanotechnology in diagnostics and therapeutics. As such, significant effort has been devoted to advancing our understanding of the biophysical interactions of the myriad nanoparticles. Endocytosis of nanomedicine has drawn tremendous interest in the last decade. Here, we highlight the ever-present barriers to efficient intracellular delivery of nanoparticles as well as the current advances and strategies deployed to breach these barriers. We also introduce new barriers that have been largely overlooked such as the glycocalyx and macromolecular crowding. Additionally, we draw attention to the potential complications arising from the disruption of the newly discovered functions of the lysosomes. Novel strategies of exploiting the inherent intracellular defects in disease states to enhance delivery and the use of exosomes for bioanalytics and drug delivery are explored. Furthermore, we discuss the advances in imaging techniques like electron microscopy, super resolution fluorescence microscopy, and single particle tracking which have been instrumental in our growing understanding of intracellular pathways and nanoparticle trafficking. Finally, we advocate for the push towards more intravital analysis of nanoparticle transport phenomena using the multitude of techniques available to us. Unraveling the underlying mechanisms governing the cellular barriers to delivery and biological interactions of nanoparticles will guide the innovations capable of breaching these barriers.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Marco Herrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Anindit Mukherjee
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA; Department of Biomedical Engineering, Oregon Health and Science University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA.
| |
Collapse
|
33
|
Abeywickrama CS, Wijesinghe KJ, Stahelin RV, Pang Y. Red-emitting pyrene-benzothiazolium: unexpected selectivity to lysosomes for real-time cell imaging without alkalinizing effect. Chem Commun (Camb) 2019; 55:3469-3472. [PMID: 30839045 PMCID: PMC6446231 DOI: 10.1039/c9cc01068h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A series of pyrene-benzothiazolium probes were synthesized. By replacing the pyridinium with a benzothiazolium unit, the selectivity of pyrene-derivatives is found to switch from nuclear to cellular lysosomes. New probes do not require proton participation and exhibit high biocompatibility and long-term imaging ability.
Collapse
|
34
|
Raveendran S, Sen A, Ito-Tanaka H, Kato K, Maekawa T, Kumar DS. Advanced microscopic evaluation of parallel type I and type II cell deaths induced by multi-functionalized gold nanocages in breast cancer. NANOSCALE ADVANCES 2019; 1:989-1001. [PMID: 36133203 PMCID: PMC9473243 DOI: 10.1039/c8na00222c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/08/2018] [Indexed: 06/16/2023]
Abstract
Despite aggressive surgical resections and combinatorial chemoradiations, certain highly malignant populations of tumor cells resurrect and metastasize. Mixed-grade cancer cells fail to respond to standard-of-care therapies by developing intrinsic chemoresistance and subsequently result in tumor relapse. Macroautophagy is a membrane trafficking process that underlies drug resistance and tumorigenesis in most breast cancers. Manipulating cellular homeostasis by a combinatorial nanotherapeutic model, one can evaluate the crosstalk between type I and type II cell death and decipher the fate of cancer therapy. Here, we present a multi-strategic approach in cancer targeting to mitigate the autophagic flux with subcellular toxicity via lysosome permeation, accompanied by mitochondrial perturbation and apoptosis. In this way, a nanoformulation is developed with a unique blend of a lysosomotropic agent, an immunomodulating sulfated-polysaccharide, an adjuvant chemotherapeutic agent, and a monoclonal antibody as a broad-spectrum complex for combinatorial nanotherapy of all breast cancers. To the best of our knowledge, this manuscript illustrates for the first time the applications of advanced microscopic techniques such as electron tomography, three-dimensional rendering and segmentation of subcellular interactions, and fate of the multifunctional therapeutic gold nanocages specifically targeted toward breast cancer cells.
Collapse
Affiliation(s)
- Sreejith Raveendran
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan +81 49 234 2502 +81 49 239 1375
| | - Anindito Sen
- JEOL Ltd. 13F, Ohtemachi Nomura Building, 2-1-1 Ohtemachi Chiyoda-Ku Tokyo Japan
| | - Hiromi Ito-Tanaka
- Department of Biomedical Engineering, Research Centre for BME, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan
| | - Kazunori Kato
- Department of Biomedical Engineering, Research Centre for BME, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan +81 49 234 2502 +81 49 239 1375
| | - D Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan +81 49 234 2502 +81 49 239 1375
| |
Collapse
|
35
|
MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chem Biol 2019; 26:600-614.e7. [PMID: 30745238 DOI: 10.1016/j.chembiol.2019.01.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/07/2018] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Abstract
The proper staining of the plasma membrane (PM) is critical in bioimaging as it delimits the cell. Herein, we developed MemBright, a family of six cyanine-based fluorescent turn-on PM probes that emit from orange to near infrared when reaching the PM, and enable homogeneous and selective PM staining with excellent contrast in mono- and two-photon microscopy. These probes are compatible with long-term live-cell imaging and immunostaining. Moreover, MemBright label neurons in a brighter manner than surrounding cells, allowing identification of neurons in acute brain tissue sections and neuromuscular junctions without any use of transfection or transgenic animals. In addition, MemBright probes were used in super-resolution imaging to unravel the neck of dendritic spines. 3D multicolor dSTORM in combination with immunostaining revealed en-passant synapse displaying endogenous glutamate receptors clustered at the axonal-dendritic contact site. MemBright probes thus constitute a universal toolkit for cell biology and neuroscience biomembrane imaging with a variety of microscopy techniques. VIDEO ABSTRACT.
Collapse
|
36
|
Collot M, Boutant E, Lehmann M, Klymchenko AS. BODIPY with Tuned Amphiphilicity as a Fluorogenic Plasma Membrane Probe. Bioconjug Chem 2019; 30:192-199. [PMID: 30562000 DOI: 10.1021/acs.bioconjchem.8b00828] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Staining of the plasma membrane (PM) is essential in bioimaging, as it delimits the cell surface and provides various information regarding the cell morphology and status. Herein, the lipophilicity of a green emitting BODIPY fluorophore was tuned by gradual functionalization with anchors composed of zwitterionic and aliphatic groups, thus yielding three different amphiphilic dyes. We found that BODIPY bearing one or three anchors failed in efficiently staining the PM: the derivative with one anchor showed low affinity to PM and exhibited strong fluorescence in water due to high solubility, whereas BODIPY with three anchors aggregated strongly in media and precipitated before binding to the PM. In sharp contrast, the BODIPY bearing two anchors (B-2AZ, MemBright-488) formed virtually nonfluorescent soluble aggregates in aqueous medium that quickly deaggregated in the presence of PM, leading to a bright soluble molecular form (quantum yield of 0.92). This fluorogenic response allowed for efficient probing of the PM at low concentration (20 nM) with high signal to background ratio images in mono- as well as two-photon excitation microscopy. B-2AZ proved to selectively stain the PM in a more homogeneous manner than the commercially available fluorescently labeled lectin WGA. Finally, it was successfully used in 3D-imaging to reveal fine intercellular tunneling nanotubes in KB cells and to stain the PM in glioblastoma cells in spheroids.
Collapse
Affiliation(s)
- Mayeul Collot
- Laboratoire de Biophotonique et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin , 67401 ILLKIRCH Cedex, France
| | - Emmanuel Boutant
- Laboratoire de Biophotonique et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin , 67401 ILLKIRCH Cedex, France
| | - Maxime Lehmann
- Laboratoire de Biophotonique et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin , 67401 ILLKIRCH Cedex, France
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin , 67401 ILLKIRCH Cedex, France
| |
Collapse
|
37
|
Zhu R, Wang S, Su X, Liu J. Synthesis of a new coumarin dye for pH independent staining of lysosomes. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Bi W, Bi Y, Li P, Hou S, Yan X, Hensley C, Bammert CE, Zhang Y, Gibson KM, Ju J, Bi L. Indole Alkaloid Derivative B, a Novel Bifunctional Agent That Mitigates 5-Fluorouracil-Induced Cardiotoxicity. ACS OMEGA 2018; 3:15850-15864. [PMID: 30533582 PMCID: PMC6275955 DOI: 10.1021/acsomega.8b02139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Clinically approved therapeutics that mitigate chemotherapy-induced cardiotoxicity, a serious adverse effect of chemotherapy, are lacking. The aim of this study was to determine the putative protective capacity of a novel indole alkaloid derivative B (IADB) against 5-fluorouracil (5-FU)-induced cardiotoxicity. To assess the free-radical scavenging activities of IADB, the acetylcholine-induced relaxation assay in rat thoracic aorta was used. Further, IADB was tested in normal and cancer cell lines with assays gauging autophagy induction. We further examined whether IADB could attenuate cardiotoxicity in 5-FU-treated male ICR mice. We found that IADB could serve as a novel bifunctional agent (displaying both antioxidant and autophagy-modulating activities). Further, we demonstrated that IADB induced production of cytosolic autophagy-associated structures in both cancer and normal cell lines. We observed that IADB cytotoxicity was much lower in normal versus cancer cell lines, suggesting an enhanced potency toward cancer cells. The cardiotoxicity induced by 5-FU was significantly relieved in animals pretreated with IADB. Taken together, IADB treatment, in combination with chemotherapy, may lead to reduced cardiotoxicity, as well as the reduction of anticancer drug dosages that may further improve chemotherapeutic efficacy with decreased off-target effects. Our data suggest that the use of IADB may be therapeutically beneficial in minimizing cardiotoxicity associated with high-dose chemotherapy. On the basis of the redox status difference between normal and tumor cells, IADB selectively induces autophagic cell death, mediated by reactive oxygen species overproduction, in cancer cells. This novel mechanism could reveal novel therapeutic targets in chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wei Bi
- Second
Hospital of HeBei Medical University, Shijiazhuang 050000, P. R. China
| | - Yue Bi
- Second
Hospital of HeBei Medical University, Shijiazhuang 050000, P. R. China
| | - Pengfei Li
- Second
Hospital of HeBei Medical University, Shijiazhuang 050000, P. R. China
| | - Shanshan Hou
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Xin Yan
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Connor Hensley
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Catherine E. Bammert
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Yanrong Zhang
- Second
Hospital of HeBei Medical University, Shijiazhuang 050000, P. R. China
| | - K. Michael Gibson
- Department
of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Jingfang Ju
- Translational
Research Laboratory, Department of Pathology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Lanrong Bi
- Department
of Chemistry and Biological Sciences, Michigan
Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
39
|
Goswami U, Kandimalla R, Kalita S, Chattopadhyay A, Ghosh SS. Polyethylene Glycol-Encapsulated Histone Deacetylase Inhibitor Drug-Composite Nanoparticles for Combination Therapy with Artesunate. ACS OMEGA 2018; 3:11504-11516. [PMID: 30320264 PMCID: PMC6173507 DOI: 10.1021/acsomega.8b02105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Combination drug therapy has become an effective clinical practice for cancer treatment because of low cytotoxicity by the synergistic effect of each medicine. Luminescent Au nanoclusters (Au NCs) were formulated into spherical polyethylene glycol (PEG)-Au NC-encapsulated drug-sodium butyrate (NaB) composite nanoparticles (PEG-Au NC-NaB-NPs) in the presence of PEG and NaB. Their effect on cancer cells was investigated using bio imaging, unravelling the mechanism of the endocytosis pathway and combination therapeutic interventions with a plant-based antimalarial drug artesunate (ART). PEG-Au NC-NaB-NPs showed bright red luminescence in the lysosomal compartment of the cells upon uptake predominantly through a caveolae-mediated pathway. Combination of PEG-Au NC-NaB-NPs with ART displayed enhanced therapeutic activity at a reduced dose compared to its individual doses and revealed heightened synergistic activity as identified from the combination index. The mechanism of synergism revealed elevated generation of reactive oxygen species with both NaB and ART, which disrupts mitochondrial membrane potential as evident from JC-1 staining. Remarkably, the histone deacetylase (HDAC) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling assay enlightened the role of NaB and ART in HDAC inhibition and DNA fragmentation, respectively. Thus, induction of apoptosis with the synergistic effect of both NaB and ART with its meticulous mechanism makes it a promising tool for combinational cancer therapy. In vivo activity of the NPs was evaluated on Daltons lymphoma ascites bearing mice, which exhibited significant reduction of tumor volume and viable tumor cells with a prolonged life span.
Collapse
Affiliation(s)
- Upashi Goswami
- Centre
for Nanotechnology, Department of Chemistry, and Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Raghuram Kandimalla
- Drug
Discovery Lab, Institute of Advanced Study
in Science and Technology, Guwahati 781035, Assam, India
| | - Sanjeeb Kalita
- Drug
Discovery Lab, Institute of Advanced Study
in Science and Technology, Guwahati 781035, Assam, India
| | - Arun Chattopadhyay
- Centre
for Nanotechnology, Department of Chemistry, and Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Siddhartha Sankar Ghosh
- Centre
for Nanotechnology, Department of Chemistry, and Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
40
|
Dutta A, Goswami U, Chattopadhyay A. Probing Cancer Cells through Intracellular Aggregation-Induced Emission Kinetic Rate of Copper Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19459-19472. [PMID: 29775047 DOI: 10.1021/acsami.8b05160] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
pH-responsive luminescent copper nanoclusters (Cu NCs) with aggregation-induced emission (AIE) characteristics have been synthesized. Upon internalization into living cells, the NCs displayed a cellular pH environment-dependent luminescence change with orange-red emission at pHi 4.5, whereas bright green emission was observed over time at pHi 7.4, through their AIE attributes. Furthermore, the intracellular AIE kinetics of the NC probe was measured in MCF-7 cells and compared to that of HEK-293 cells. Intriguingly, the intracellular rate constant value derived for AIE kinetics in MCF-7 cells was found to be 3-fold higher than that in HEK-293 cell lines, whereas the value was 2-fold higher than that observed in aqueous medium. This provided a new platform to study different cell lines based on intracellular AIE in living cells, with additional potential for future applications in cellular imaging, diagnostics, and disease detection.
Collapse
|
41
|
Roy I, Bobbala S, Zhou J, Nguyen MT, Nalluri SKM, Wu Y, Ferris DP, Scott EA, Wasielewski MR, Stoddart JF. ExTzBox: A Glowing Cyclophane for Live-Cell Imaging. J Am Chem Soc 2018; 140:7206-7212. [PMID: 29771509 DOI: 10.1021/jacs.8b03066] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ideal fluorescent probe for live-cell imaging is bright and non-cytotoxic and can be delivered easily into the living cells in an efficient manner. The design of synthetic fluorophores having all three of these properties, however, has proved to be challenging. Here, we introduce a simple, yet effective, strategy based on well-established chemistry for designing a new class of fluorescent probes for live-cell imaging. A box-like hybrid cyclophane, namely ExTzBox·4X (6·4X, X = PF6-, Cl-), has been synthesized by connecting an extended viologen (ExBIPY) and a dipyridyl thiazolothiazole (TzBIPY) unit in an end-to-end fashion with two p-xylylene linkers. Photophysical studies show that 6·4Cl has a quantum yield ΦF = 1.00. Furthermore, unlike its ExBIPY2+ and TzBIPY2+ building units, 6·4Cl is non-cytotoxic to RAW 264.7 macrophages, even with a loading concentration as high as 100 μM, presumably on account of its rigid box-like structure which prevents its intercalation into DNA and may inhibit other interactions with it. After gaining an understanding of the toxicity profile of 6·4Cl, we employed it in live-cell imaging. Confocal microscopy has demonstrated that 64+ is taken up by the RAW 264.7 macrophages, allowing the cells to glow brightly with blue laser excitation, without any hint of photobleaching or disruption of normal cell behavior under the imaging conditions. By contrast, the acyclic reference compound Me2TzBIPY·2Cl (4·2Cl) shows very little fluorescence inside the cells, which is quenched completely under the same imaging conditions. In vitro cell investigations underscore the significance of using highly fluorescent box-like rigid cyclophanes for live-cell imaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - J Fraser Stoddart
- Institute of Molecular Design and Synthesis , Tianjin University , 92 Weijin Road , Nankai District , Tianjin 300072 , P. R. China
| |
Collapse
|
42
|
Chen X, Zhang X, Xia LY, Wang HY, Chen Z, Wu FG. One-Step Synthesis of Ultrasmall and Ultrabright Organosilica Nanodots with 100% Photoluminescence Quantum Yield: Long-Term Lysosome Imaging in Living, Fixed, and Permeabilized Cells. NANO LETTERS 2018; 18:1159-1167. [PMID: 29368935 DOI: 10.1021/acs.nanolett.7b04700] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Water-dispersible nanomaterials with superbright photoluminescence (PL) emissions and narrow PL bandwidths are urgently desired for various imaging applications. Herein, for the first time, we prepared ultrasmall organosilica nanodots (OSiNDs) with an average size of ∼2.0 nm and ∼100% green-emitting PL quantum efficiency via a one-step hydrothermal treatment of two commercial reagents (a silane molecule and rose bengal). In particular, the structural reorganization and halide loss of rose bengal during the hydrothermal treatment contribute to the ultrahigh quantum yield and low phototoxicity of OSiNDs. Owing to their low pH-induced precipitation/aggregation property, the as-prepared OSiNDs can be used as excellent lysosomal trackers with many advantages: (1) They have superior lysosomal targeting ability with a Pearson's coefficient of 0.98; (2) The lysosomal monitoring time of OSiNDs is up to 48 h, which is much longer than those of commercial lysosomal trackers (<2 h); (3) They do not disturb the pH environment of lysosomes and can be used to visualize lysosomes in living, fixed, and permeabilized cells; (4) They exhibit intrinsic lysosomal tracking ability without the introduction of lysosome-targeting ligands (such as morpholine) and superior photostability; (5) The easy, cost-effective, and scalable synthetic method further ensures that these OSiNDs can be readily used as exceptional lysosomal trackers. We expect that the ultrasmall OSiNDs with superior fluorescence properties and easily modifiable surfaces could be applied as fluorescent nanoprobes, light-emitting diode phosphor, and anticounterfeiting material, which should be able to promote the preparation and application of silicon-containing nanomaterials.
Collapse
Affiliation(s)
- Xiaokai Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Liu-Yuan Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Hong-Yin Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
43
|
Liu JB, Vellaisamy K, Li G, Yang C, Wong SY, Leung CH, Pu SZ, Ma DL. A long-lifetime iridium(iii) complex for lysosome tracking with high specificity and a large Stokes shift. J Mater Chem B 2018; 6:3855-3858. [DOI: 10.1039/c8tb00666k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Investigating the role of lysosome dysfunction in cancer requires the development of efficient probes for lysosomes.
Collapse
Affiliation(s)
- Jin-Biao Liu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- China
- Department of Chemistry
| | | | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Suk-Yu Wong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Shou-Zhi Pu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- China
| | - Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| |
Collapse
|
44
|
Liang XG, Cheng J, Qin S, Shao LX, Huang MZ, Wang G, Han Y, Han F, Li X. Conformational restraint as a strategy for navigating towards lysosomes. Chem Commun (Camb) 2018; 54:12010-12013. [PMID: 30204171 DOI: 10.1039/c8cc06155f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using the conformational restraint strategy, we developed a hydrazonate-derived coumarin into a lysosome targeting probe for imaging native formaldehyde at the subcellular level.
Collapse
Affiliation(s)
- Xing-Guang Liang
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province
- First Affiliated Hospital, School of Medicine
- Zhejiang University
- Hangzhou 310003
- China
| | - Juan Cheng
- College of Pharmaceutical Sciences
- Zhejiang University
- China
| | - Siyao Qin
- Department of Chemistry, Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Ling-Xiao Shao
- College of Pharmaceutical Sciences
- Zhejiang University
- China
| | - Ming-Zhu Huang
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province
- First Affiliated Hospital, School of Medicine
- Zhejiang University
- Hangzhou 310003
- China
| | - Gang Wang
- Department of Clinical Pharmacy, Hangzhou First People's Hospital
- Hangzhou 310006
- China
| | - Yifeng Han
- Department of Chemistry, Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Feng Han
- College of Pharmaceutical Sciences
- Zhejiang University
- China
- School of Pharmacy, Nanjing Medical University
- Nanjing 211166
| | - Xin Li
- College of Pharmaceutical Sciences
- Zhejiang University
- China
| |
Collapse
|
45
|
Verma SK, Kumari P, Ansari SN, Ansari MO, Deori D, Mobin SM. A novel mesoionic carbene based highly fluorescent Pd(ii) complex as an endoplasmic reticulum tracker in live cells. Dalton Trans 2018; 47:15646-15650. [DOI: 10.1039/c8dt02778a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of new organometallic MIC based mononuclear Pd(ii) complex 1, specifically target ER of live cells and have fluorescence recovery after photobleaching (FRAP) property.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaikh M. Mobin
- Discipline of Chemistry
- India
- Discipline of Biosciences and Biomedical Engineering
- India
- Discipline of Metallurgy Engineering and Materials Science
| |
Collapse
|
46
|
Kumari P, Verma SK, Mobin SM. Water soluble two-photon fluorescent organic probes for long-term imaging of lysosomes in live cells and tumor spheroids. Chem Commun (Camb) 2018; 54:539-542. [DOI: 10.1039/c7cc07812a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schematic representation of the proposed work.
Collapse
Affiliation(s)
- Pratibha Kumari
- Centre for Biosciences and Bio-Medical Engineering
- Indore
- India
| | | | - Shaikh M. Mobin
- Centre for Biosciences and Bio-Medical Engineering
- Indore
- India
- Discipline of Chemistry
- Indore
| |
Collapse
|
47
|
Zhang H, Liu J, Wang L, Sun M, Yan X, Wang J, Guo JP, Guo W. Amino-Si-rhodamines: A new class of two-photon fluorescent dyes with intrinsic targeting ability for lysosomes. Biomaterials 2017; 158:10-22. [PMID: 29272765 DOI: 10.1016/j.biomaterials.2017.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022]
Abstract
Noninvasive and specific visualization of lysosomes by fluorescence technology is critical for studying lysosomal trafficking in health and disease and for evaluating new cancer therapeutics that target tumor cell lysosomes. To date, there are two basic types of lysosomal probes whose lysosomal localization correlates with lysosomal acidity and endocytosis pathway, respectively. However, the former may suffer from pH-sensitive lysosomal localization and alkalization-induced lysosomal enzyme inactivation, and the latter need long incubation time to penetrate cell membrane due to the energy-dependency of endocytosis process. In this work, a new class of two-photon fluorescent dyes, termed amino-Si-rhodamines (ASiRs), were developed, which possess the intrinsic lysosome-targeted ability that is independent of lysosomal acidity and endocytosis pathway. As a result, ASiRs show not only the stable lysosomal localization against lysosomal pH changes and negligible interference to lysosomal function, but also excellent cell-membrane-permeability due to the energy-independent passive diffusion pathway. These merits, coupled with their excellent two-photon photophysical properties, long-term retention ability in lysosomes, and negligible cytotoxicity, make ASiRs very suitable for real-time and long-term tracking of lysosomes in living cells or tissues without interference to normal cellular processes. Moreover, the easy functionalization via amino linker further allows the construction of various fluorescent probes for biological targets of interest based on ASiR skeleton, as indicated by the cancer-targeted fluorescent probe ASiR6 as well as a fluorescent peroxynitrite probe ASiR-P.
Collapse
Affiliation(s)
- Hongxing Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Linfang Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Minjia Sun
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Xiaohan Yan
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Juanjuan Wang
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China
| | - Jian-Ping Guo
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing, 100041, China
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
48
|
Non-invasive in vivo imaging of fluorescence-labeled bacterial distributions in aquatic species. Int J Vet Sci Med 2017; 5:187-195. [PMID: 30255070 PMCID: PMC6137844 DOI: 10.1016/j.ijvsm.2017.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022] Open
Abstract
In vivo imaging is becoming an advanced tool for noninvasive distribution of longitudinal small animals. However, the aquatic species have been limited to the optical imaging of noninvasively tracking on pathogen distribution. The purpose of this study was to develop shell-less fish and shrimp models of non-invasive in vivo imaging technique for visualization of pathogens. This experiment was utilized Escherichia coli, Edwardsiella tarda, Vibrio alginolyticus and Vibrio harveyi labeled with fluorescence probes to imaging bacterial distributions by IVIS Lumina LT system. The study was traced the internal distribution of fluorescence probes labeled bacteria in systemic organs by quantified their fluorescence intensities. The ex vivo organ images were showed more obvious fluorescent signal in catfish intestine, liver, heart, kidney and the shrimp showed heart, hepatopancreas, and colon. Hence, the in vivo imaging methods using fluorescent labeled bacterial distribution were suggested to quantify by fluorescence intensity in whole pre-infected subjects. Therefore, it can offer the information about the localization and distribution of pathogens in the preclinical research, after immersion and injections.
Collapse
|
49
|
Cai Y, Gui C, Samedov K, Su H, Gu X, Li S, Luo W, Sung HHY, Lam JWY, Kwok RTK, Williams ID, Qin A, Tang BZ. An acidic pH independent piperazine-TPE AIEgen as a unique bioprobe for lysosome tracing. Chem Sci 2017; 8:7593-7603. [PMID: 29568423 PMCID: PMC5848814 DOI: 10.1039/c7sc03515b] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
PIP–TPE’s fluorescence turns on blue due to the large viscosity of lysosomes which restricts intramolecular motions but it red-shifts in the bulk.
Lysosomes are involved in a multitude of cellular processes and their dysfunction is associated with various diseases. They are the most acidic organelles (pH 3.8–6.6, size 0.1–1.2 μm) with the highest viscosity (47–190 cP at 25 °C) in the cell. Because of their acidity, pH dependent non-AIE active fluorescent lysosomal probes have been developed that rely on protonation inhibited photoinduced electron transfer (PET). In this work, an acidic pH independent lysosome targetable piperazine–TPE (PIP–TPE) AIEgen has been designed with unique photophysical properties making it a suitable probe for quantifying viscosity. In a non-aggregated state PIP–TPE shows deep-blue emission as opposed to its yellowish-green emission in the bulk. It possesses high specificity for lysosomes with negligible cytotoxicity and good tracing ability due to its better photostability compared to LysoTracker Red. In contrast to most known lysosome probes that rely solely on PET, restriction of intramolecular motion (RIM) due to the larger viscosity inside the lysosomes is the mechanism responsible for PIP–TPE’s fluorescence. PIP–TPE’s high selectivity is attributed to its unique molecular design that features piperazine fragments providing a perfect balance between lipophilicity and polarity.
Collapse
Affiliation(s)
- Yuanjing Cai
- Guangdong Innovative Research Team , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China . .,Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Chen Gui
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Kerim Samedov
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia , Canada V6T 1Z1
| | - Huifang Su
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Xinggui Gu
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Shiwu Li
- Guangdong Innovative Research Team , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China .
| | - Wenwen Luo
- Guangdong Innovative Research Team , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China .
| | - Herman H Y Sung
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Jacky W Y Lam
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Ryan T K Kwok
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Ian D Williams
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Anjun Qin
- Guangdong Innovative Research Team , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China .
| | - Ben Zhong Tang
- Guangdong Innovative Research Team , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China . .,Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| |
Collapse
|
50
|
Kissing S, Saftig P, Haas A. Vacuolar ATPase in phago(lyso)some biology. Int J Med Microbiol 2017; 308:58-67. [PMID: 28867521 DOI: 10.1016/j.ijmm.2017.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022] Open
Abstract
Many eukaryotic cells ingest extracellular particles in a process termed phagocytosis which entails the generation of a new intracellular compartment, the phagosome. Phagosomes change their composition over time and this maturation process culminates in their fusion with acidic, hydrolase-rich lysosomes. During the maturation process, degradation and, when applicable, killing of the cargo may ensue. Many of the events that are pathologically relevant depend on strong acidification of phagosomes by the 'vacuolar' ATPase (V-ATPase). This protein complex acidifies the lumen of some intracellular compartments at the expense of ATP hydrolysis. We discuss here the roles and importance of V-ATPase in intracellular trafficking, its distribution, inhibition and activities, its role in the defense against microorganisms and the counteractivities of pathogens.
Collapse
Affiliation(s)
- Sandra Kissing
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| | - Albert Haas
- Institut für Zellbiologie, Friedrich-Wilhelms-Universität Bonn, Ulrich-Haberland-Str. 61A, D-53121 Bonn, Germany.
| |
Collapse
|