1
|
Japaridze A, Struijk V, Swamy K, Rosłoń I, Shoshani O, Dekker C, Alijani F. Synchronization of E. coli Bacteria Moving in Coupled Microwells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407832. [PMID: 39584392 PMCID: PMC11753501 DOI: 10.1002/smll.202407832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/21/2024] [Indexed: 11/26/2024]
Abstract
Synchronization plays a crucial role in the dynamics of living organisms. Uncovering the mechanism behind it requires an understanding of individual biological oscillators and the coupling forces between them. Here, a single-cell assay is developed that studies rhythmic behavior in the motility of E. coli cells that can be mutually synchronized. Circular microcavities are used to isolate E. coli cells that swim along the cavity wall, resulting in self-sustained oscillations. Connecting these cavities by microchannels yields synchronization patterns with phase slips. It is demonstrated that the coordinated movement observed in coupled E. coli oscillators follows mathematical rules of synchronization which is used to quantify the coupling strength. These findings advance the understanding of motility in confinement, and open up new opportunities for engineering networks of coupled oscillators in microbial active matter.
Collapse
Affiliation(s)
| | - Victor Struijk
- Delft University of TechnologyDelft2628 CDThe Netherlands
| | - Kushal Swamy
- Delft University of TechnologyDelft2628 CDThe Netherlands
| | | | - Oriel Shoshani
- Ben‐Gurion University of the NegevBeer‐Sheva841050Israel
| | - Cees Dekker
- Delft University of TechnologyDelft2628 CDThe Netherlands
| | - Farbod Alijani
- Delft University of TechnologyDelft2628 CDThe Netherlands
| |
Collapse
|
2
|
Wu-Zhang B, Fedosov DA, Gompper G. Collective behavior of squirmers in thin films. SOFT MATTER 2024; 20:5687-5702. [PMID: 38639062 DOI: 10.1039/d4sm00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Bacteria in biofilms form complex structures and can collectively migrate within mobile aggregates, which is referred to as swarming. This behavior is influenced by a combination of various factors, including morphological characteristics and propulsive forces of swimmers, their volume fraction within a confined environment, and hydrodynamic and steric interactions between them. In our study, we employ the squirmer model for microswimmers and the dissipative particle dynamics method for fluid modeling to investigate the collective motion of swimmers in thin films. The film thickness permits a free orientation of non-spherical squirmers, but constraints them to form a two-layered structure at maximum. Structural and dynamic properties of squirmer suspensions confined within the slit are analyzed for different volume fractions of swimmers, motility types (e.g., pusher, neutral squirmer, puller), and the presence of a rotlet dipolar flow field, which mimics the counter-rotating flow generated by flagellated bacteria. Different states are characterized, including a gas-like phase, swarming, and motility-induced phase separation, as a function of increasing volume fraction. Our study highlights the importance of an anisotropic swimmer shape, hydrodynamic interactions between squirmers, and their interaction with the walls for the emergence of different collective behaviors. Interestingly, the formation of collective structures may not be symmetric with respect to the two walls. Furthermore, the presence of a rotlet dipole significantly mitigates differences in the collective behavior between various swimmer types. These results contribute to a better understanding of the formation of bacterial biofilms and the emergence of collective states in confined active matter.
Collapse
Affiliation(s)
- Bohan Wu-Zhang
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
3
|
Fazeli A, Thakore V, Ala-Nissila T, Karttunen M. Non-Stokesian dynamics of magnetic helical nanoswimmers under confinement. PNAS NEXUS 2024; 3:pgae182. [PMID: 38765716 PMCID: PMC11102084 DOI: 10.1093/pnasnexus/pgae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Electromagnetically propelled helical nanoswimmers offer great potential for nanorobotic applications. Here, the effect of confinement on their propulsion is characterized using lattice-Boltzmann simulations. Two principal mechanisms give rise to their forward motion under confinement: (i) pure swimming and (ii) the thrust created by the differential pressure due to confinement. Under strong confinement, they face greater rotational drag but display a faster propulsion for fixed driving frequency in agreement with experimental findings. This is due to the increased differential pressure created by the boundary walls when they are sufficiently close to each other and the particle. We have proposed two analytical relations (i) for predicting the swimming speed of an unconfined particle as a function of its angular speed and geometrical properties, and (ii) an empirical expression to accurately predict the propulsion speed of a confined swimmer as a function of the degree of confinement and its unconfined swimming speed. At low driving frequencies and degrees of confinement, the systems retain the expected linear behavior consistent with the predictions of the Stokes equation. However, as the driving frequency and/or the degree of confinement increase, their impact on propulsion leads to increasing deviations from the Stokesian regime and emergence of nonlinear behavior.
Collapse
Affiliation(s)
- Alireza Fazeli
- Department of Mathematics, Western University, London, ON N6A 5B7, Canada
- Center for Advanced Materials and Biomaterials Research, Western University, London, ON N6A 5B7, Canada
| | - Vaibhav Thakore
- Department of Mathematics, Western University, London, ON N6A 5B7, Canada
- Center for Advanced Materials and Biomaterials Research, Western University, London, ON N6A 5B7, Canada
| | - Tapio Ala-Nissila
- Multiscale Statistical and Quantum Physics Group, Quantum Technology Finland Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Espoo, Finland
- Interdisciplinary Centre for Mathematical Modelling, Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Mikko Karttunen
- Department of Physics and Astronomy, Western University, London, ON N6A 5B7, Canada
- Department of Chemistry, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
4
|
Jakuszeit T, Croze OA. Role of tumbling in bacterial scattering at convex obstacles. Phys Rev E 2024; 109:044405. [PMID: 38755868 DOI: 10.1103/physreve.109.044405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/15/2024] [Indexed: 05/18/2024]
Abstract
Active propulsion, as performed by bacteria and Janus particles, in combination with hydrodynamic interaction results in the accumulation of bacteria at a flat wall. However, in microfluidic devices with cylindrical pillars of sufficiently small radius, self-propelled particles can slide along and scatter off the surface of a pillar, without becoming trapped over long times. This nonequilibrium scattering process has been predicted to result in large diffusivities, even at high obstacle density, unlike particles that undergo classical specular reflection. Here, we test this prediction by experimentally studying the nonequilibrium scattering of pusherlike swimmers in microfluidic obstacle lattices. To explore the role of tumbles in the scattering process, we microscopically tracked wild-type (run and tumble) and smooth-swimming (run only) mutants of the bacterium Escherichia coli scattering off microfluidic pillars. We quantified key scattering parameters and related them to previously proposed models that included a prediction for the diffusivity, discussing their relevance. Finally, we discuss potential interpretations of the role of tumbles in the scattering process and connect our work to the broader study of swimmers in porous media.
Collapse
Affiliation(s)
- Theresa Jakuszeit
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS UMR 144, 75005 Paris, France
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ottavio A Croze
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
5
|
Eswaran P, Mishra S. Synchronized rotations of active particles on chemical substrates. SOFT MATTER 2024; 20:2592-2599. [PMID: 38416156 DOI: 10.1039/d3sm00452j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Many microorganisms use chemical 'signaling' - a quintessential self-organizing strategy in non-equilibrium - that can induce spontaneous aggregation and coordinated motion. Using synthetic signaling as a design principle, we construct a minimal model of active Brownian particles (ABPs) having soft repulsive interactions on a chemically quenched patterned substrate. The interplay between chemo-phoretic interactions and activity is numerically investigated for a proposed variant of the Keller-Segel model for chemotaxis. Such competition not only results in a chemo-motility-induced phase-separated state, but also results in a new cohesive clustering phase with synchronized rotations. Our results suggest that rotational order can emerge in systems by virtue of activity and repulsive interactions alone without an explicit alignment interaction. These rotations can also be exploited by designing mechanical devices that can generate reorienting torques using active particles.
Collapse
Affiliation(s)
- Pathma Eswaran
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
6
|
Abdulkadieva MM, Sysolyatina EV, Vasilieva EV, Litvinenko VV, Kalinin EV, Zhukhovitsky VG, Shevlyagina NV, Andreevskaya SG, Stanishevskyi YM, Vasiliev MM, Petrov OF, Ermolaeva SA. Motility provides specific adhesion patterns and improves Listeria monocytogenes invasion into human HEp-2 cells. PLoS One 2023; 18:e0290842. [PMID: 37651463 PMCID: PMC10470941 DOI: 10.1371/journal.pone.0290842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Listeria monocytogenes is motile at 22°C and non-motile at 37°C. In contrast, expression of L. monocytogenes virulence factors is low at 22°C and up-regulated at 37°C. Here, we studied a character of L. monocytogenes near surface swimming (NSS) motility and its effects on adhesion patterns and invasion into epithelial cells. L. monocytogenes and its saprophytic counterpart L. innocua both grown at 22°C showed similar NSS characteristics including individual velocities, trajectory lengths, residence times, and an asymmetric distribution of velocity directions. Similar NSS patterns correlated with similar adhesion patterns. Motile bacteria, including both pathogenic and saprophytic species, showed a preference for adhering to the periphery of epithelial HEp-2 cells. In contrast, non-motile bacteria were evenly distributed across the cell surface, including areas over the nucleus. However, the uneven distribution of motile bacteria did not enhance the invasion into HEp-2 cells unless virulence factor production was up-regulated by the transient shift of the culture to 37°C. Motile L. monocytogenes grown overnight at 22°C and then shifted to 37°C for 2 h expressed invasion factors at the same level and invaded human cells up to five times more efficiently comparatively with non-motile bacteria grown overnight at 37°C. Taken together, obtained results demonstrated that (i) NSS motility and correspondent peripheral location over the cell surface did not depend on L. monocytogenes virulence traits; (ii) motility improved L. monocytogenes invasion into human HEp-2 cells within a few hours after the transition from the ambient temperature to the human body temperature.
Collapse
Affiliation(s)
- Mariam M. Abdulkadieva
- Department of Infections with Natural Foci, Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
- Department of Dusty Plasmas, Joint Institute of High Temperatures RAS, Moscow, Russia
- Institute of Biochemical Technology and Nanotechnology, People’s Friendship University RUDN, Moscow, Russia
| | - Elena V. Sysolyatina
- Department of Infections with Natural Foci, Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Elena V. Vasilieva
- Department of Infections with Natural Foci, Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
- Department of Dusty Plasmas, Joint Institute of High Temperatures RAS, Moscow, Russia
| | - Veronika V. Litvinenko
- Department of Infections with Natural Foci, Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
- Department of Dusty Plasmas, Joint Institute of High Temperatures RAS, Moscow, Russia
| | - Egor V. Kalinin
- Department of Infections with Natural Foci, Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
- Institute of Biochemical Technology and Nanotechnology, People’s Friendship University RUDN, Moscow, Russia
| | - Vladimir G. Zhukhovitsky
- Department of Bacterial Infections, Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
- Russian Medical Academy of Continuing Professional Education (RMANPO), Ministry of Public Health, Moscow, Russia
| | - Natalia V. Shevlyagina
- Department of Bacterial Infections, Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Svetlana G. Andreevskaya
- Department of Bacterial Infections, Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Yaroslav M. Stanishevskyi
- Institute of Biochemical Technology and Nanotechnology, People’s Friendship University RUDN, Moscow, Russia
| | - Mikhail M. Vasiliev
- Department of Dusty Plasmas, Joint Institute of High Temperatures RAS, Moscow, Russia
| | - Oleg F. Petrov
- Department of Dusty Plasmas, Joint Institute of High Temperatures RAS, Moscow, Russia
| | - Svetlana A. Ermolaeva
- Department of Infections with Natural Foci, Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
7
|
Nsamela A, Garcia Zintzun AI, Montenegro-Johnson TD, Simmchen J. Colloidal Active Matter Mimics the Behavior of Biological Microorganisms-An Overview. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202685. [PMID: 35971193 DOI: 10.1002/smll.202202685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
This article provides a review of the recent development of biomimicking behaviors in active colloids. While the behavior of biological microswimmers is undoubtedly influenced by physics, it is frequently guided and manipulated by active sensing processes. Understanding the respective influences of the surrounding environment can help to engineering the desired response also in artificial swimmers. More often than not, the achievement of biomimicking behavior requires the understanding of both biological and artificial microswimmers swimming mechanisms and the parameters inducing mechanosensory responses. The comparison of both classes of microswimmers provides with analogies in their dependence on fuels, interaction with boundaries and stimuli induced motion, or taxis.
Collapse
Affiliation(s)
- Audrey Nsamela
- Chair of Physical Chemistry, TU Dresden, 01069, Dresden, Germany
- Elvesys SAS, 172 Rue de Charonne, Paris, 75011, France
| | | | | | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01069, Dresden, Germany
| |
Collapse
|
8
|
Menzel AM. Circular motion subject to external alignment under active driving: Nonlinear dynamics and the circle map. Phys Rev E 2022; 106:064603. [PMID: 36671092 DOI: 10.1103/physreve.106.064603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Hardly any real self-propelling or actively driven object is perfect. Thus, undisturbed motion will generally not follow straight lines but rather bent or circular trajectories. We here address self-propelled or actively driven objects that move in discrete steps and additionally tend to migrate towards a certain direction by discrete angular adjustment. Overreaction in the angular alignment is possible. This competition implies pronounced nonlinear dynamics including period doubling and chaotic behavior in a broad parameter regime. Such behavior directly affects the appearance of the trajectories. Furthermore, we address collective motion and effects of spatial self-concentration.
Collapse
Affiliation(s)
- Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
9
|
Shave MK, Santore MM. Motility Increases the Numbers and Durations of Cell-Surface Engagements for Escherichia coli Flowing near Poly(ethylene glycol)-Functionalized Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34342-34353. [PMID: 35857760 PMCID: PMC9674025 DOI: 10.1021/acsami.2c05936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bacteria are keenly sensitive to properties of the surfaces they contact, regulating their ability to form biofilms and initiate infections. This study examines how the presence of flagella, interactions between the cell body and the surface, or motility itself guides the dynamic contact between bacterial cells and a surface in flow, potentially enabling cells to sense physicochemical and mechanical properties of surfaces. This work focuses on a poly(ethylene glycol) biomaterial coating, which does not retain cells. In a comparison of four Escherichia coli strains with different flagellar expressions and motilities, cells with substantial run-and-tumble swimming motility exhibited increased flux to the interface (3 times the calculated transport-limited rate which adequately described the non-motile cells), greater proportions of cells engaging in dynamic nanometer-scale surface associations, extended times of contact with the surface, increased probability of return to the surface after escape and, as evidenced by slow velocities during near-surface travel, closer cellular approach. All these metrics, reported here as distributions of cell populations, point to a greater ability of motile cells, compared with nonmotile cells, to interact more closely, forcefully, and for greater periods of time with interfaces in flow. With contact durations of individual cells exceeding 10 s in the window of observation and trends suggesting further interactions beyond the field of view, the dynamic contact of individual cells may approach the minute timescales reported for mechanosensing and other cell recognition pathways. Thus, despite cell translation and the dynamic nature of contact, flow past a surface, even one rendered non-cell arresting by use of an engineered coating, may produce a subpopulation of cells already upregulating virulence factors before they arrest on a downstream surface and formally initiate biofilm formation.
Collapse
Affiliation(s)
| | - Maria M. Santore
- corresponding author: Maria Santore, Department of Polymer Science and Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, 413-577-1417,
| |
Collapse
|
10
|
Motility Suppression and Trapping Bacteria by ZnO Nanostructures. CRYSTALS 2022. [DOI: 10.3390/cryst12081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regulating the swimming motility of bacteria near surfaces is essential to suppress or avoid bacterial contamination and infection in catheters and medical devices with wall surfaces. However, the motility of bacteria near walls strongly depends on the combination of the local physicochemical properties of the surfaces. To unravel how nanostructures and their local chemical microenvironment dynamically affect the bacterial motility near surfaces, here, we directly visualize the bacterial swimming and systematically analyze the motility of Escherichia coli swimming on ZnO nanoparticle films and nanowire arrays with further ultraviolet irradiation. The results show that the ZnO nanowire arrays reduce the swimming motility, thus significantly enhancing the trapping ability for motile bacteria. Additionally, thanks to the wide bandgap nature of a ZnO semiconductor, the ultraviolet irradiation rapidly reduces the bacteria locomotion due to the hydroxyl and singlet oxygen produced by the photodynamic effects of ZnO nanowire arrays in an aqueous solution. The findings quantitatively reveal how the combination of geometrical nanostructured surfaces and local tuning of the steric microenvironment are able to regulate the motility of swimming bacteria and suggest the efficient inhibition of bacterial translocation and infection by nanostructured coatings.
Collapse
|
11
|
Clopés J, Gompper G, Winkler RG. Alignment and propulsion of squirmer pusher-puller dumbbells. J Chem Phys 2022; 156:194901. [DOI: 10.1063/5.0091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The properties of microswimmer dumbbells composed of pusher-puller pairs are investigated by mesoscale hydrodynamic simulations employing the multiparticle collision dynamics approach for the fluid. An individual microswimmer is represented by a squirmer, and various active-stress combinations in a dumbbell are considered. The squirmers are connected by a bond, which does not impose any geometrical restriction on the individual rotational motion. Our simulations reveal a strong influence of the squirmers' flow fields on the orientation of their propulsion directions, their fluctuations, and the swimming behavior of a dumbbell. The properties of pusher-puller pairs with equal magnitude of the active stresses dependent only weakly on the stress magnitude. This is similar to dumbbells of microswimmers without hydrodynamic interactions. However, for non-equal stress magnitudes, the active stress implies strong orientational correlations of the swimmers' propulsion directions with respect to each other as well as the bond vector. The orientational coupling is most pronounced for pairs with large differences of the active stress magnitude. The alignment of the squirmer propulsion directions with respect to each other is preferentially orthogonal in dumbbells with a strong pusher and weak puller, and antiparallel in the opposite case when the puller dominates. These strong correlations affect the active motion of dumbbells which is faster for strong pushers and slower for strong pullers.
Collapse
Affiliation(s)
| | - Gerhard Gompper
- Institute of Biological Information Processing, Forschungszentrum Jülich GmbH, Germany
| | - Roland G. Winkler
- Institute for Advanced Simulation, Forschungszentrum Jülich, Germany
| |
Collapse
|
12
|
Tan Z, Calandrini V, Dhont JKG, Nägele G, Winkler RG. Hydrodynamics of immiscible binary fluids with viscosity contrast: a multiparticle collision dynamics approach. SOFT MATTER 2021; 17:7978-7990. [PMID: 34378623 DOI: 10.1039/d1sm00541c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a multiparticle collision dynamics (MPC) implementation of layered immiscible fluids A and B of different shear viscosities separated by planar interfaces. The simulated flow profile for imposed steady shear motion and the time-dependent shear stress functions are in excellent agreement with our continuum hydrodynamics results for the composite fluid. The wave-vector dependent transverse velocity auto-correlation functions (TVAF) in the bulk-fluid regions of the layers decay exponentially, and agree with those of single-phase isotropic MPC fluids. In addition, we determine the hydrodynamic mobilities of an embedded colloidal sphere moving steadily parallel or transverse to a fluid-fluid interface, as functions of the distance from the interface. The obtained mobilities are in good agreement with hydrodynamic force multipoles calculations, for a no-slip sphere moving under creeping flow conditions near a clean, ideally flat interface. The proposed MPC fluid-layer model can be straightforwardly implemented, and it is computationally very efficient. Yet, owing to the spatial discretization inherent to the MPC method, the model can not reproduce all hydrodynamic features of an ideally flat interface between immiscible fluids.
Collapse
Affiliation(s)
- Zihan Tan
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany.
| | | | | | | | | |
Collapse
|
13
|
A Review on the Some Issues of Multiphase Flow with Self-Driven Particles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiphase flow with self-driven particles is ubiquitous and complex. Exploring the flow properties has both important academic meaning and engineering value. This review emphasizes some recent studies on multiphase flow with self-driven particles: the hydrodynamic interactions between self-propelled/self-rotary particles and passive particles; the aggregation, phase separation and sedimentation of squirmers; the influence of rheological properties on its motion; and the kinematic characteristics of axisymmetric squirmers. Finally, some open problems, challenges, and future directions are highlighted.
Collapse
|
14
|
Shave MK, Xu Z, Raman V, Kalasin S, Tuominen MT, Forbes NS, Santore MM. Escherichia coli Swimming back Toward Stiffer Polyetheylene Glycol Coatings, Increasing Contact in Flow. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17196-17206. [PMID: 33821607 PMCID: PMC8503937 DOI: 10.1021/acsami.1c00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bacterial swimming in flow near surfaces is critical to the spread of infection and device colonization. Understanding how material properties affect flagella- and motility-dependent bacteria-surface interactions is a first step in designing new medical devices that mitigate the risk of infection. We report that, on biomaterial coatings such as polyethylene glycol (PEG) hydrogels and end-tethered layers that prevent adhesive bacteria accumulation, the coating mechanics and hydration control the near-surface travel and dynamic surface contact of E. coli cells in gentle shear flow (order 10 s-1). Along relatively stiff (order 1 MPa) PEG hydrogels or end-tethered layers of PEG chains of similar polymer correlation length, run-and-tumble E. coli travel nanometrically close to the coating's surface in the flow direction in distinguishable runs or "engagements" that persist for several seconds, after which cells leave the interface. The duration of these engagements was greater along stiff hydrogels and end-tethered layers compared with softer, more-hydrated hydrogels. Swimming cells that left stiff hydrogels or end-tethered layers proceeded out to distances of a few microns and then returned to engage the surface again and again, while cells engaging the soft hydrogel tended not to return after leaving. As a result of differences in the duration of engagements and tendency to return to stiff hydrogel and end-tethered layers, swimming E. coli experienced 3 times the integrated dynamic surface contact with stiff coatings compared with softer hydrogels. The striking similarity of swimming behaviors near 16-nm-thick end-tethered layers and 100-μm-thick stiff hydrogels argues that only the outermost several nanometers of a highly hydrated coating influence cell travel. The range of material stiffnesses, cell-surface distance during travel, and time scales of travel compared with run-and-tumble time scales suggests the influence of the coating derives from its interactions with flagella and its potential to alter flagellar bundling. Given that restriction of flagellar rotation is known to trigger increased virulence, bacteria influenced by surfaces in one region may become predisposed to form a biofilm downstream.
Collapse
Affiliation(s)
- Molly K. Shave
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| | - Zhou Xu
- Department of Physics, University of Massachusetts, Amherst, MA 01003
| | - Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
| | - Surachate Kalasin
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| | - Mark T. Tuominen
- Department of Physics, University of Massachusetts, Amherst, MA 01003
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
| | - Maria M. Santore
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
15
|
Abstract
Understanding the motility behavior of bacteria in confining microenvironments, in which they search for available physical space and move in response to stimuli, is important for environmental, food industry, and biomedical applications. We studied the motility of five bacterial species with various sizes and flagellar architectures (Vibrio natriegens, Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) in microfluidic environments presenting various levels of confinement and geometrical complexity, in the absence of external flow and concentration gradients. When the confinement is moderate, such as in quasi-open spaces with only one limiting wall, and in wide channels, the motility behavior of bacteria with complex flagellar architectures approximately follows the hydrodynamics-based predictions developed for simple monotrichous bacteria. Specifically, V. natriegens and V. fischeri moved parallel to the wall and P. putida and E. coli presented a stable movement parallel to the wall but with incidental wall escape events, while M. marinus exhibited frequent flipping between wall accumulator and wall escaper regimes. Conversely, in tighter confining environments, the motility is governed by the steric interactions between bacteria and the surrounding walls. In mesoscale regions, where the impacts of hydrodynamics and steric interactions overlap, these mechanisms can either push bacteria in the same directions in linear channels, leading to smooth bacterial movement, or they could be oppositional (e.g., in mesoscale-sized meandered channels), leading to chaotic movement and subsequent bacterial trapping. The study provides a methodological template for the design of microfluidic devices for single-cell genomic screening, bacterial entrapment for diagnostics, or biocomputation.
Collapse
|
16
|
Otte S, Ipiña EP, Pontier-Bres R, Czerucka D, Peruani F. Statistics of pathogenic bacteria in the search of host cells. Nat Commun 2021; 12:1990. [PMID: 33790272 PMCID: PMC8012381 DOI: 10.1038/s41467-021-22156-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/25/2021] [Indexed: 11/24/2022] Open
Abstract
A crucial phase in the infection process, which remains poorly understood, is the localization of suitable host cells by bacteria. It is often assumed that chemotaxis plays a key role during this phase. Here, we report a quantitative study on how Salmonella Typhimurium search for T84 human colonic epithelial cells. Combining time-lapse microscopy and mathematical modeling, we show that bacteria can be described as chiral active particles with strong active speed fluctuations, which are of biological, as opposed to thermal, origin. We observe that there exists a giant range of inter-individual variability of the bacterial exploring capacity. Furthermore, we find Salmonella Typhimurium does not exhibit biased motion towards the cells and show that the search time statistics is consistent with a random search strategy. Our results indicate that in vitro localization of host cells, and also cell infection, are random processes, not involving chemotaxis, that strongly depend on bacterial motility parameters.
Collapse
Affiliation(s)
- Stefan Otte
- Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, Monaco
| | - Emiliano Perez Ipiña
- Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, Monaco
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Rodolphe Pontier-Bres
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, Monaco
- Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Dorota Czerucka
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, Monaco.
- Centre Scientifique de Monaco (CSM), Monaco, Monaco.
| | - Fernando Peruani
- Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Nice, France.
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, Monaco.
- Laboratoire de Pysique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, Cergy-Pontoise, France.
| |
Collapse
|
17
|
Kurzthaler C, Stone HA. Microswimmers near corrugated, periodic surfaces. SOFT MATTER 2021; 17:3322-3332. [PMID: 33630004 DOI: 10.1039/d0sm01782e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We explore hydrodynamic interactions between microswimmers and corrugated, or rough, surfaces, as found often in biological systems and microfluidic devices. Using the Lorentz reciprocal theorem for viscous flows we derive exact expressions for the roughness-induced velocities up to first order in the surface-height fluctuations and provide solutions for the translational and angular velocities valid for arbitrary surface shapes. We apply our theoretical predictions to elucidate the impact of a periodic, wavy surface on the velocities of microswimmers modeled in terms of a superposition of Stokes singularities. Our findings, valid in the framework of a far-field analysis, show that the roughness-induced velocities vary non-monotonically with the wavelength of the surface. For wavelengths comparable to the swimmer-surface distance a pusher can experience a repulsive contribution due to the reflection of flow fields at the edge of a surface cavity, which decreases the overall attraction to the wall.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Department of Mechanical and Aerospace Engineering, Princeton University, New Jersey 08544, USA.
| | | |
Collapse
|
18
|
Semwal V, Dikshit S, Mishra S. Dynamics of a collection of active particles on a two-dimensional periodic undulated surface. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:20. [PMID: 33686531 DOI: 10.1140/epje/s10189-021-00044-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
We study the dynamics of circular disk-shaped active particles on a two-dimensional periodic undulated surface. Each particle has an internal energy mechanism which is modeled by an active friction force and it is controlled by an activity parameter [Formula: see text]. It acts as negative friction if the speed of the particle is smaller than [Formula: see text] and normal friction otherwise. Surface undulation is modeled by the periodic undulation of fixed amplitude and wavelength. The dynamics of the particle is studied for different activities and surface undulations (SU). Three types of particle dynamic is observed on varying activity and SU: confined, early time subdiffusion to diffusion and super diffusion to late time diffusion. An effective equilibrium is established by showing the Green-Kubo relation between the effective diffusivity and the velocity auto-correlation function for all activities and small SU.
Collapse
Affiliation(s)
- Vivek Semwal
- Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India.
| | - Shambhavi Dikshit
- Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India
| | - Shradha Mishra
- Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India
| |
Collapse
|
19
|
Zhang J, Chinappi M, Biferale L. Base flow decomposition for complex moving objects in linear hydrodynamics: Application to helix-shaped flagellated microswimmers. Phys Rev E 2021; 103:023109. [PMID: 33736027 DOI: 10.1103/physreve.103.023109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
The motion of microswimmers in complex flows is ruled by the interplay between swimmer propulsion and the dynamics induced by the fluid velocity field. Here we study the motion of a chiral microswimmer whose propulsion is provided by the spinning of a helical tail with respect to its body in a simple shear flow. Thanks to an efficient computational strategy that allowed us to simulate thousands of different trajectories, we show that the tail shape dramatically affects the swimmer's motion. In the shear dominated regime, the swimmers carrying an elliptical helical tail show several different Jeffery-like (tumbling) trajectories depending on their initial configuration. As the propulsion torque increases, a progressive regularization of the motion is observed until, in the propulsion dominated regime, the swimmers converge to the same final trajectory independently on the initial configuration. Overall, our results show that elliptical helix swimmer presents a much richer variety of trajectories with respect to the usually studied circular helix tails.
Collapse
Affiliation(s)
- Ji Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Mauro Chinappi
- Department of Industrial Engineering, University of Rome, Tor Vergata, Via del Politecnico 1, 00133 Roma, Italy
| | - Luca Biferale
- Department of Physics, INFN, University of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
| |
Collapse
|
20
|
Zarif M, Naji A. Confinement-induced alternating interactions between inclusions in an active fluid. Phys Rev E 2020; 102:032613. [PMID: 33075886 DOI: 10.1103/physreve.102.032613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/08/2020] [Indexed: 11/07/2022]
Abstract
In a system of colloidal inclusions suspended in an equilibrium bath of smaller particles, the particulate bath engenders effective, short-ranged, primarily attractive interactions between the inclusions, known as depletion interactions, that originate from the steric depletion of bath particles from the immediate vicinity of the inclusions. In a bath of active (self-propelled) particles, the nature of such bath-mediated interactions can qualitatively change from attraction to repulsion, and they become stronger in magnitude and range of action as compared with typical equilibrium depletion interactions, especially as the bath activity (particle self-propulsion) is increased. We study effective interactions mediated by a bath of active Brownian particles between two fixed, impenetrable, and disk-shaped inclusions in a planar (channel) confinement in two dimensions. Confinement is found to strongly influence the effective interaction between the inclusions, specifically by producing alternating interaction profiles with possible attractive and repulsive regions in sufficiently narrow channels. We study the dependence of the ensuing interactions on different system parameters and the orientational (parallel versus perpendicular) configuration of the inclusion pair relative to the channel walls. The confinement effects are largely regulated by the layering of active particles next to the surface boundaries, both of the inclusions and the channel walls that counteract one another in accumulating the active particles in their own proximities. In narrow channels, the combined effects due to the channel walls and the inclusions lead to peculiar structuring of active particles (reminiscent of wavelike interference patterns) within the channel.
Collapse
Affiliation(s)
- Mahdi Zarif
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.,School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
21
|
Sprenger AR, Shaik VA, Ardekani AM, Lisicki M, Mathijssen AJTM, Guzmán-Lastra F, Löwen H, Menzel AM, Daddi-Moussa-Ider A. Towards an analytical description of active microswimmers in clean and in surfactant-covered drops. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:58. [PMID: 32920676 DOI: 10.1140/epje/i2020-11980-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 05/24/2023]
Abstract
Geometric confinements are frequently encountered in the biological world and strongly affect the stability, topology, and transport properties of active suspensions in viscous flow. Based on a far-field analytical model, the low-Reynolds-number locomotion of a self-propelled microswimmer moving inside a clean viscous drop or a drop covered with a homogeneously distributed surfactant, is theoretically examined. The interfacial viscous stresses induced by the surfactant are described by the well-established Boussinesq-Scriven constitutive rheological model. Moreover, the active agent is represented by a force dipole and the resulting fluid-mediated hydrodynamic couplings between the swimmer and the confining drop are investigated. We find that the presence of the surfactant significantly alters the dynamics of the encapsulated swimmer by enhancing its reorientation. Exact solutions for the velocity images for the Stokeslet and dipolar flow singularities inside the drop are introduced and expressed in terms of infinite series of harmonic components. Our results offer useful insights into guiding principles for the control of confined active matter systems and support the objective of utilizing synthetic microswimmers to drive drops for targeted drug delivery applications.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| | - Vaseem A Shaik
- School of Mechanical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Maciej Lisicki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Arnold J T M Mathijssen
- Department of Bioengineering, Stanford University, 443 Via Ortega, 94305, Stanford, CA, USA
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Francisca Guzmán-Lastra
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Av. Manuel Montt 367, Providencia, Santiago de Chile, Chile
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
22
|
Sprenger AR, Fernandez-Rodriguez MA, Alvarez L, Isa L, Wittkowski R, Löwen H. Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7066-7073. [PMID: 31975603 DOI: 10.1021/acs.langmuir.9b03617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combining experiments on active colloids, whose propulsion velocity can be controlled via a feedback loop, and the theory of active Brownian motion, we explore the dynamics of an overdamped active particle with a motility that depends explicitly on the particle orientation. In this case, the active particle moves faster when oriented along one direction and slower when oriented along another, leading to anisotropic translational dynamics which is coupled to the particle's rotational diffusion. We propose a basic model of active Brownian motion for orientation-dependent motility. On the basis of this model, we obtain analytical results for the mean trajectories, averaged over the Brownian noise for various initial configurations, and for the mean-square displacements including their non-Gaussian behavior. The theoretical results are found to be in good agreement with the experimental data. Orientation-dependent motility is found to induce significant anisotropy in the particle displacement, mean-square displacement, and non-Gaussian parameter even in the long-time limit. Our findings establish a methodology for engineering complex anisotropic motilities of active Brownian particles, with a potential impact in the study of the swimming behavior of microorganisms subjected to anisotropic driving fields.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | | - Laura Alvarez
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
23
|
Deng J, Molaei M, Chisholm NG, Stebe KJ. Motile Bacteria at Oil-Water Interfaces: Pseudomonas aeruginosa. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6888-6902. [PMID: 32097012 DOI: 10.1021/acs.langmuir.9b03578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacteria are important examples of active or self-propelled colloids. Because of their directed motion, they accumulate near interfaces. There, they can become trapped and swim adjacent to the interface via hydrodynamic interactions, or they can adsorb directly and swim in an adhered state with complex trajectories that differ from those in bulk in both form and spatiotemporal implications. We have adopted the monotrichous bacterium Pseudomonas aeruginosa PA01 as a model species and have studied its motion at oil-aqueous interfaces. We have identified conditions in which bacteria swim persistently without restructuring the interface, allowing detailed and prolonged study of their motion. In addition to characterizing the ensemble behavior of the bacteria, we have observed a gallery of distinct trajectories of individual swimmers on and near fluid interfaces. We attribute these diverse swimming behaviors to differing trapped states for the bacteria in the fluid interface. These trajectory types include Brownian diffusive paths for passive adsorbed bacteria, curvilinear trajectories including curly paths with radii of curvature larger than the cell body length, and rapid pirouette motions with radii of curvature comparable to the cell body length. Finally, we see interfacial visitors that come and go from the interfacial plane. We characterize these individual swimmer motions. This work may impact nutrient cycles for bacteria on or near interfaces in nature. This work will also have implications in microrobotics, as active colloids in general and bacteria in particular are used to carry cargo in this burgeoning field. Finally, these results have implications in engineering of active surfaces that exploit interfacially trapped self-propelled colloids.
Collapse
Affiliation(s)
- Jiayi Deng
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, United States
| | - Mehdi Molaei
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, United States
| | - Nicholas G Chisholm
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, United States
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
24
|
Mousavi SM, Gompper G, Winkler RG. Wall entrapment of peritrichous bacteria: a mesoscale hydrodynamics simulation study. SOFT MATTER 2020; 16:4866-4875. [PMID: 32424390 DOI: 10.1039/d0sm00571a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microswimmers such as E. coli bacteria accumulate and exhibit an intriguing dynamics near walls, governed by hydrodynamic and steric interactions. Insight into the underlying mechanisms and predominant interactions demand a detailed characterization of the entrapment process. We employ a mesoscale hydrodynamics simulation approach to study entrapment of an E. coli-type cell at a no-slip wall. The cell is modeled by a spherocylindrical body with several explicit helical flagella. Three stages of the entrapment process can be distinguished: the approaching regime, where a cell swims toward a wall on a nearly straight trajectory; a scattering regime, where the cell touches the wall and reorients; and a surface-swimming regime. Our simulations show that steric interactions may dominate the entrapment process, yet, hydrodynamic interactions slow down the adsorption dynamics close to the boundary and imply a circular motion on the wall. The locomotion of the cell is characterized by a strong wobbling dynamics, with cells preferentially pointing toward the wall during surface swimming.
Collapse
Affiliation(s)
- S Mahdiyeh Mousavi
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany.
| | | | | |
Collapse
|
25
|
Huang G, Li S, Jin X, Qi M, Gong X, Zhang G. Microscale topographic surfaces modulate three-dimensional migration of human spermatozoa. Colloids Surf B Biointerfaces 2020; 193:111096. [PMID: 32413705 DOI: 10.1016/j.colsurfb.2020.111096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/04/2020] [Accepted: 04/24/2020] [Indexed: 11/28/2022]
Abstract
Sperm migration in the female reproductive tract is vital for reproduction. Surface topography is expected to be a vital determinant on this process. Using digital holographic microscopy (DHM), we investigated three-dimensional (3D) motion dynamics of human spermatozoa near a flat glass surface and microscale topographic surfaces with tunable roughness fabricated by a monolayer of closely packed silica colloidal particles. Generally, the rougher surfaces show negative impacts on the sperm migration through the hydrodynamic interactions modulated by surface topography, reflected as oscillating trajectories with wider swimming orientation distribution, reduced 3D velocity and less helical/hyperactivated/hyerhelical motions. Nevertheless, slight difference is observed for the sperm motion near the flat glass surface and the surface with a feature dimension similar to the sperm tail. Our study provides new insights in understanding and manipulating sperm motions.
Collapse
Affiliation(s)
- Gui Huang
- Faculty of Material Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Sun Li
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600, Tianhe Road, Guangzhou, PR China
| | - Xueqing Jin
- Faculty of Material Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Meng Qi
- Faculty of Material Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xiangjun Gong
- Faculty of Material Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates(South China University of Technology), PR China.
| | - Guangzhao Zhang
- Faculty of Material Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
26
|
Gompper G, Winkler RG, Speck T, Solon A, Nardini C, Peruani F, Löwen H, Golestanian R, Kaupp UB, Alvarez L, Kiørboe T, Lauga E, Poon WCK, DeSimone A, Muiños-Landin S, Fischer A, Söker NA, Cichos F, Kapral R, Gaspard P, Ripoll M, Sagues F, Doostmohammadi A, Yeomans JM, Aranson IS, Bechinger C, Stark H, Hemelrijk CK, Nedelec FJ, Sarkar T, Aryaksama T, Lacroix M, Duclos G, Yashunsky V, Silberzan P, Arroyo M, Kale S. The 2020 motile active matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:193001. [PMID: 32058979 DOI: 10.1088/1361-648x/ab6348] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area.
Collapse
Affiliation(s)
- Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tanida S, Furuta K, Nishikawa K, Hiraiwa T, Kojima H, Oiwa K, Sano M. Gliding filament system giving both global orientational order and clusters in collective motion. Phys Rev E 2020; 101:032607. [PMID: 32289972 DOI: 10.1103/physreve.101.032607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
Emergence and collapse of coherent motions of self-propelled particles are affected more by particle motions and interactions than by their material or biological details. In the reconstructed systems of biofilaments and molecular motors, several types of collective motion including a global-order pattern emerge due to the alignment interaction. Meanwhile, earlier studies show that the alignment interaction of a binary collision of biofilaments is too weak to form the global order. The multiple collision is revealed to be important to achieve global order, but it is still unclear what kind of multifilament collision is actually involved. In this study, we demonstrate that not only alignment but also crossing of two filaments is essential to produce an effective multiple-particle interaction and the global order. We design the reconstructed system of biofilaments and molecular motors to vary a probability of the crossing of biofilaments on a collision and thus control the effect of volume exclusion. In this system, biofilaments glide along their polar strands on the turf of molecular motors and can align themselves nematically when they collide with each other. Our experiments show the counterintuitive result, in which the global order is achieved only when the crossing is allowed. When the crossing is prohibited, the cluster pattern emerges instead. We also investigate the numerical model in which we can change the strength of the volume exclusion effect and find that the global orientational order and clusters emerge with weak and strong volume exclusion effects, respectively. With those results and simple theory, we conclude that not only alignment but also finite crossing probability are necessary for the effective multiple-particles interaction forming the global order. Additionally, we describe the chiral symmetry breaking of a microtubule motion which causes a rotation of global alignment.
Collapse
Affiliation(s)
- Sakurako Tanida
- Department of Physics, Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Ken'ya Furuta
- National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Japan
| | - Kaori Nishikawa
- Department of Physics, Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tetsuya Hiraiwa
- Department of Physics, Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hiroaki Kojima
- National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Japan
| | - Kazuhiro Oiwa
- National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Japan
| | - Masaki Sano
- Department of Physics, Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
28
|
Ahmadzadegan A, Wang S, Vlachos PP, Ardekani AM. Hydrodynamic attraction of bacteria to gas and liquid interfaces. Phys Rev E 2019; 100:062605. [PMID: 31962476 DOI: 10.1103/physreve.100.062605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 06/10/2023]
Abstract
Near an interface, the distribution of swimming microorganisms such as bacteria is distinguished from inert colloidal particles because of the interfacial hydrodynamics induced by swimming. In this work, we use nontumbling flagellated bacteria, Escherichia coli, to study cell distribution near gas and liquid interfaces and compare it to the case of a solid wall. For low-viscosity ratios such as gas interfaces, we observe a stronger cell accumulation compared to that near liquid and solid surfaces. This contradicts known theoretical predictions. Therefore, we develop a model based on Brownian dynamics, including hydrodynamic effects and short-range physiochemical interactions between bacteria and interfaces. This model explains our experimental findings and can predict cell distribution near clean and surfactant-contaminated interfaces. By considering higher order singularities, this study helps explain bacteria orientation, trajectories, and cell density.
Collapse
Affiliation(s)
- Adib Ahmadzadegan
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Shiyan Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Pavlos P Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
29
|
Das S, Cacciuto A. Colloidal swimmers near curved and structured walls. SOFT MATTER 2019; 15:8290-8301. [PMID: 31616894 DOI: 10.1039/c9sm01432b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present systematic numerical simulations to understand the behavior of colloidal swimmers near a wall. We extend previous theoretical calculations based on lubrication theory to include walls with arbitrary curvature, and show how to extract from simulations a set of parameters crucial to accurately estimate the leading hydrodynamic contributions associated with the curvature of a wall. Our results show explicitly how introducing curvature to the wall not only affects the average incident angle the swimmer acquires when swimming near it, but it also leads to much broader angular distributions. This suggests an increasingly leading role of thermal fluctuations with curvature, which in turn results in significantly different motility of the swimmers. We also show how the backwards motion previously reported for pushers also extends to puller-like swimmers under the appropriate conditions. Finally, aiming at understanding the behavior of colloidal swimmers near a colloidal crystal, we also considered the case of a wall built from colloidal particles that are either free to rotate, representing a crystal held together by isotropic forces, or have their rotational degrees of freedom locked-in, representing a crystal held together by directional interactions. In both cases, we find that puller-like swimmers follow a stochastic run-and-tumble-like dynamics.
Collapse
Affiliation(s)
- S Das
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA.
| | | |
Collapse
|
30
|
Kuron M, Stärk P, Holm C, de Graaf J. Hydrodynamic mobility reversal of squirmers near flat and curved surfaces. SOFT MATTER 2019; 15:5908-5920. [PMID: 31282522 DOI: 10.1039/c9sm00692c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Self-propelled particles have been experimentally shown to orbit spherical obstacles and move along surfaces. Here, we theoretically and numerically investigate this behavior for a hydrodynamic squirmer interacting with spherical objects and flat walls using three different methods of approximately solving the Stokes equations: The method of reflections, which is accurate in the far field; lubrication theory, which describes the close-to-contact behavior; and a lattice Boltzmann solver that accurately accounts for near-field flows. The method of reflections predicts three distinct behaviors: orbiting/sliding, scattering, and hovering, with orbiting being favored for lower curvature as in the literature. Surprisingly, it also shows backward orbiting/sliding for sufficiently strong pushers, caused by fluid recirculation in the gap between the squirmer and the obstacle leading to strong forces opposing forward motion. Lubrication theory instead suggests that only hovering is a stable point for the dynamics. We therefore employ lattice Boltzmann to resolve this discrepancy and we qualitatively reproduce the richer far-field predictions. Our results thus provide insight into a possible mechanism of mobility reversal mediated solely through hydrodynamic interactions with a surface.
Collapse
Affiliation(s)
- Michael Kuron
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|
31
|
Bayati P, Popescu MN, Uspal WE, Dietrich S, Najafi A. Dynamics near planar walls for various model self-phoretic particles. SOFT MATTER 2019; 15:5644-5672. [PMID: 31245803 DOI: 10.1039/c9sm00488b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
For chemically active particles suspended in a liquid solution and moving by self-phoresis, the dynamics near chemically inert, planar walls is studied theoretically by employing various choices for the activity function, i.e., the spatial distribution of the sites where various chemical reactions take place. We focus on the case of solutions composed of electrically neutral species. This analysis extends previous studies of the case that the chemical activity can be modeled effectively as the release of a "product" molecular species from parts of the surface of the particle by accounting for annihilation of the product molecules by chemical reactions, either on the rest of the surface of the particle or in the volume of the surrounding solution. We show that, for the models considered here, the emergence of "sliding" and "hovering" wall-bound states is a generic, robust feature. However, the details of these states, such as the range of parameters within which they occur, depend on the specific model for the activity function. Additionally, in certain cases there is a reversal of the direction of the motion compared to the one observed if the particle is far away from the wall. We have also studied the changes of the dynamics induced by a direct interaction between the particle and the wall by including a short-ranged repulsive component to the interaction in addition to the steric one (a procedure often employed in numerical simulations of active colloids). Upon increasing the strength of this additional component, while keeping its range fixed, significant qualitative changes occur in the phase portraits of the dynamics near the wall: for sufficiently strong short-ranged repulsion, the sliding steady states of the dynamics are transformed into hovering states. Furthermore, our studies provide evidence for an additional "oscillatory" wall-bound steady state of motion for chemically active particles due to a strong, short-ranged, and direct repulsion. This kind of particle translates along the wall at a distance from it which oscillates between a minimum and a maximum.
Collapse
Affiliation(s)
- Parvin Bayati
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Mihail N Popescu
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - William E Uspal
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany and Department of Mechanical Engineering, University of Hawai'i at Manoa, 2540 Dole Street, Holmes 302, Honolulu, HI 96822, USA
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Ali Najafi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. and Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
32
|
Bianchi S, Saglimbeni F, Frangipane G, Dell'Arciprete D, Di Leonardo R. 3D dynamics of bacteria wall entrapment at a water-air interface. SOFT MATTER 2019; 15:3397-3406. [PMID: 30933209 DOI: 10.1039/c9sm00077a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Swimming bacteria can be trapped for prolonged times at the surface of an impenetrable boundary. The subsequent surface confined motility is found to be very sensitive to the physico-chemical properties of the interfaces which determine the boundary conditions for the flow. The quantitative understanding of this complex dynamics requires detailed and systematic experimental data to validate theoretical models for both flagellar propulsion and interfacial dynamics. Using a combination of optical trapping and holographic imaging we study the 3D dynamics of wall entrapment of swimming bacteria that are sequentially released towards a surfactant-covered liquid-air interface. We find that an incompressible surfactant model for the interface quantitatively accounts for the observed normal and tangential speed of bacteria as they approach the boundary. Surprisingly we also find that, although bacteria circulate over the air phase in counterclockwise circular trajectories, typical of free-slip interfaces, the body axis is still tilted "nose down" as found for no-slip interfaces.
Collapse
Affiliation(s)
- Silvio Bianchi
- CNR-NANOTEC, Soft and Living Matter Laboratory, Rome, I-00185 Roma, Italy.
| | | | | | | | | |
Collapse
|
33
|
Yang J, Shimogonya Y, Ishikawa T. Bacterial detachment from a wall with a bump line. Phys Rev E 2019; 99:023104. [PMID: 30934287 DOI: 10.1103/physreve.99.023104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Indexed: 11/07/2022]
Abstract
The interactions of bacteria with surfaces have important implications in numerous areas of research, such as bioenergy, biofilm, biofouling, and infection. Recently, several experimental studies have reported that the adhesion of bacteria can be reduced considerably by microscale wall features. To clarify the effect of wall configurations, we numerically investigated the behavior of swimming bacteria near a flat wall with a bump line. The results showed that the effects of bump configuration are significant; a detachment time larger than several seconds can be achieved in certain parameter sets. These results illustrate that the number density of bacteria near the wall may be reduced by appropriately controlling the parameter sets. When background shear flow was imposed, the near-wall bacterium mainly moved towards the vorticity axis. The detachment time of cells increased significantly by adjusting the bump line to have 45^{∘} relative to the flow direction. The knowledge obtained in this study is fundamental for understanding the interactions between bacteria and surfaces according to more complex geometries, and is useful for reducing the adhesion of cells to walls.
Collapse
Affiliation(s)
- Jinyou Yang
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Sendai 980-8579, Japan.,School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Yuji Shimogonya
- Department of Mechanical Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamura, Koriyama 963-8642, Japan
| | - Takuji Ishikawa
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Sendai 980-8579, Japan.,Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Sendai 980-8579, Japan
| |
Collapse
|
34
|
Popescu MN, Uspal WE, Domínguez A, Dietrich S. Effective Interactions between Chemically Active Colloids and Interfaces. Acc Chem Res 2018; 51:2991-2997. [PMID: 30403132 DOI: 10.1021/acs.accounts.8b00237] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemically active colloids can achieve force- and torque-free motility ("self-propulsion") via the promotion, on their surface, of catalytic chemical reactions involving the surrounding solution. Such systems are valuable both from a theoretical perspective, serving as paradigms for nonequilibrium processes, as well as from an application viewpoint, according to which active colloids are envisioned to play the role of carriers ("engines") in novel lab-on-a-chip devices. The motion of such colloids is intrinsically connected with a "chemical field", i.e., the distribution near the colloid of the number densities of the various chemical species present in the solution, and with the hydrodynamic flow of the solution around the particle. In most of the envisioned applications, and in virtually all reported experimental studies, the active colloids operate under spatial confinement (e.g., within a microfluidic channel, a drop, a free-standing liquid film, etc.). In such cases, the chemical field and the hydrodynamic flow associated with an active colloid are influenced by any nearby confining surfaces, and these disturbances couple back to the particle. Thus, an effective interaction with the spatial confinement arises. Consequently, the particle is endowed with means to perceive and to respond to its environment. Understanding these effective interactions, finding the key parameters which control them, and designing particles with desired, preconfigured responses to given environments, require interdisciplinary approaches which synergistically integrate methods and knowledge from physics, chemistry, engineering, and materials science. Here we review how, via simple models of chemical activity and self-phoretic motion, progress has recently been made in understanding the basic physical principles behind the complex behaviors exhibited by active particles near interfaces. First, we consider the occurrence of "interface-bounded" steady states of chemically active colloids near simple, nonresponsive interfaces. Examples include particles "sliding" along, or "hovering" above, a hard planar wall while inducing hydrodynamic flow of the solution. These states lay the foundations for concepts like the guidance of particles by the topography of the wall. We continue to discuss responsive interfaces: a suitable chemical patterning of a planar wall allows one to bring the particles into states of motion which are spatially localized (e.g., within chemical stripes or along chemical steps). These occur due to the wall responding to the activity-induced chemical gradients by generating osmotic flows, which encode the surface-chemistry of the wall. Finally, we discuss how, via activity-induced Marangoni stresses, long-ranged effective interactions emerge from the strong hydrodynamic response of fluid interfaces. These examples highlight how in this context a desired behavior can be potentially selected by tuning suitable parameters (e.g., the phoretic mobility of the particle, or the strength of the Marangoni stress at an interface). This can be accomplished via a judicious design of the surface chemistry of the particle and of the boundary, or by the choice of the chemical reaction in solution.
Collapse
Affiliation(s)
- Mihail N. Popescu
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - William E. Uspal
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Alvaro Domínguez
- Física Teórica, Universidad de Sevilla, Apdo. 1065, 41080 Sevilla, Spain
| | - Siegfried Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| |
Collapse
|
35
|
Popescu MN, Uspal WE, Eskandari Z, Tasinkevych M, Dietrich S. Effective squirmer models for self-phoretic chemically active spherical colloids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:145. [PMID: 30569319 DOI: 10.1140/epje/i2018-11753-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/09/2018] [Indexed: 05/10/2023]
Abstract
Various aspects of self-motility of chemically active colloids in Newtonian fluids can be captured by simple models for their chemical activity plus a phoretic-slip hydrodynamic boundary condition on their surface. For particles of simple shapes (e.g., spheres) --as employed in many experimental studies-- which move at very low Reynolds numbers in an unbounded fluid, such models of chemically active particles effectively map onto the well studied so-called hydrodynamic squirmers (S. Michelin and E. Lauga, J. Fluid Mech. 747, 572 (2014)). Accordingly, intuitively appealing analogies of "pusher/puller/neutral" squirmers arise naturally. Within the framework of self-diffusiophoresis we illustrate the above-mentioned mapping and the corresponding flows in an unbounded fluid for a number of choices of the activity function (i.e., the spatial distribution and the type of chemical reactions across the surface of the particle). We use the central collision of two active particles as a simple, paradigmatic case for demonstrating that in the presence of other particles or boundaries the behavior of chemically active colloids may be qualitatively different, even in the far field, from the one exhibited by the corresponding "effective squirmer", obtained from the mapping in an unbounded fluid. This emphasizes that understanding the collective behavior and the dynamics under geometrical confinement of chemically active particles necessarily requires to explicitly account for the dependence of the hydrodynamic interactions on the distribution of chemical species resulting from the activity of the particles.
Collapse
Affiliation(s)
- M N Popescu
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569, Stuttgart, Germany.
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany.
| | - W E Uspal
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569, Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany
| | - Z Eskandari
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569, Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany
| | - M Tasinkevych
- Centro de Física Teórica e Computacional, Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, P-1749-016, Lisboa, Portugal
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569, Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany
| |
Collapse
|
36
|
Theers M, Westphal E, Qi K, Winkler RG, Gompper G. Clustering of microswimmers: interplay of shape and hydrodynamics. SOFT MATTER 2018; 14:8590-8603. [PMID: 30339172 DOI: 10.1039/c8sm01390j] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The spatiotemporal dynamics in systems of active self-propelled particles is controlled by the propulsion mechanism in combination with various direct interactions, such as steric repulsion and hydrodynamics. These direct interactions are typically anisotropic, and come in different "flavors", such as spherical and elongated particle shapes, pusher and puller flow fields, etc. The combination of the various aspects is expected to lead to new emergent behavior. However, it is a priori not evident whether shape and hydrodynamics act synergistically or antagonistically to generate motility-induced clustering (MIC) and phase separation (MIPS). We employ a model of prolate spheroidal microswimmers-called squirmers-in quasi-two-dimensional confinement to address this issue by mesoscale hydrodynamic simulations. For comparison, non-hydrodynamic active Brownian particles (ABPs) are considered to elucidate the contribution of hydrodynamic interactions. For spherical particles, the comparison between ABPs and hydrodynamic-squirmer ensembles reveals a suppression of MIPS due to hydrodynamic interactions. Yet, our analysis shows that dynamic clusters exist, with a broad size distribution. The fundamental difference between ABPs and squirmers is attributed to an increased reorientation of squirmers by hydrodynamic torques during their collisions. In contrast, for elongated squirmers, hydrodynamics interactions enhance MIPS. The transition to a phase-separated state strongly depends on the nature of the swimmer's flow field-with an increased tendency toward MIPS for pullers, and a reduced tendency for pushers. Thus, hydrodynamic interactions show opposing effects on MIPS for spherical and elongated microswimmers, and details of the propulsion mechanism of biological microswimmers may be very important to determine their collective behavior.
Collapse
Affiliation(s)
- Mario Theers
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | | | |
Collapse
|
37
|
Conrad JC, Poling-Skutvik R. Confined Flow: Consequences and Implications for Bacteria and Biofilms. Annu Rev Chem Biomol Eng 2018; 9:175-200. [DOI: 10.1146/annurev-chembioeng-060817-084006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria overwhelmingly live in geometrically confined habitats that feature small pores or cavities, narrow channels, or nearby interfaces. Fluid flows through these confined habitats are ubiquitous in both natural and artificial environments colonized by bacteria. Moreover, these flows occur on time and length scales comparable to those associated with motility of bacteria and with the formation and growth of biofilms, which are surface-associated communities that house the vast majority of bacteria to protect them from host and environmental stresses. This review describes the emerging understanding of how flow near surfaces and within channels and pores alters physical processes that control how bacteria disperse, attach to surfaces, and form biofilms. This understanding will inform the development and deployment of technologies for drug delivery, water treatment, and antifouling coatings and guide the structuring of bacterial consortia for production of chemicals and pharmaceuticals.
Collapse
Affiliation(s)
- Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
38
|
Zöttl A, Stark H. Simulating squirmers with multiparticle collision dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:61. [PMID: 29766348 DOI: 10.1140/epje/i2018-11670-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Multiparticle collision dynamics is a modern coarse-grained simulation technique to treat the hydrodynamics of Newtonian fluids by solving the Navier-Stokes equations. Naturally, it also includes thermal noise. Initially it has been applied extensively to spherical colloids or bead-spring polymers immersed in a fluid. Here, we review and discuss the use of multiparticle collision dynamics for studying the motion of spherical model microswimmers called squirmers moving in viscous fluids.
Collapse
Affiliation(s)
- Andreas Zöttl
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OX1 3NP, Oxford, UK.
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany.
| | - Holger Stark
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| |
Collapse
|
39
|
Pimponi D, Chinappi M, Gualtieri P. Flagellated microswimmers: Hydrodynamics in thin liquid films. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:28. [PMID: 29488023 DOI: 10.1140/epje/i2018-11635-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
The hydrodynamics of a flagellated microswimmer moving in thin films is discussed. The fully resolved hydrodynamics is exploited by solving the Stokes equations for the actual geometry of the swimmer. Two different interfaces are used to confine the swimmer: a bottom solid wall and a top air-liquid interface, as appropriate for a thin film. The swimmer follows curved clockwise trajectories that can converge towards an asymptotically stable circular path or can result in a collision with one of the two interfaces. A bias towards the air-liquid interface emerges. Slight changes in the swimmer geometry and film thickness strongly affect the resulting dynamics suggesting that a very reach phenomenology occurs in the presence of confinement. Under specific conditions, the swimmer follows a "crown-like" path. Implications for the motion of bacteria close to an air bubble moving in a microchannel are discussed.
Collapse
Affiliation(s)
- Daniela Pimponi
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184, Roma, Italy
| | - Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, via del Politecnico 1, 00133, Roma, Italy
| | - Paolo Gualtieri
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184, Roma, Italy.
| |
Collapse
|
40
|
Singh SP, Gompper G, Winkler RG. Steady state sedimentation of ultrasoft colloids. J Chem Phys 2018; 148:084901. [PMID: 29495770 DOI: 10.1063/1.5001886] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The structural and dynamical properties of ultra-soft colloids-star polymers-exposed to a uniform external force field are analyzed by applying the multiparticle collision dynamics technique, a hybrid coarse-grain mesoscale simulation approach, which captures thermal fluctuations and long-range hydrodynamic interactions. In the weak-field limit, the structure of the star polymer is nearly unchanged; however, in an intermediate regime, the radius of gyration decreases, in particular transverse to the sedimentation direction. In the limit of a strong field, the radius of gyration increases with field strength. Correspondingly, the sedimentation coefficient increases with increasing field strength, passes through a maximum, and decreases again at high field strengths. The maximum value depends on the functionality of the star polymer. High field strengths lead to symmetry breaking with trailing, strongly stretched polymer arms and a compact star-polymer body. In the weak-field-linear response regime, the sedimentation coefficient follows the scaling relation of a star polymer in terms of functionality and arm length.
Collapse
Affiliation(s)
- Sunil P Singh
- Indian Institute of Science Education and Research Bhopal, Bhopal By pass Road Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
41
|
Malgaretti P, Popescu MN, Dietrich S. Self-diffusiophoresis induced by fluid interfaces. SOFT MATTER 2018; 14:1375-1388. [PMID: 29383367 DOI: 10.1039/c7sm02347b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The influence of a fluid-fluid interface on self-phoresis of chemically active, axially symmetric, spherical colloids is analyzed. Distinct from the studies of self-phoresis for colloids trapped at fluid interfaces or in the vicinity of hard walls, here we focus on the issue of self-phoresis close to a fluid-fluid interface. In order to provide physically intuitive results highlighting the role played by the interface, the analysis is carried out for the case that the symmetry axis of the colloid is normal to the interface; moreover, thermal fluctuations are not taken into account. Similarly to what has been observed near hard walls, we find that such colloids can be set into motion even if their whole surface is homogeneously active. This is due to the anisotropy along the direction normal to the interface owing to the partitioning by diffusion, among the coexisting fluid phases, of the product of the chemical reaction taking place at the colloid surface. Different from results corresponding to hard walls, in the case of a fluid interface the direction of motion, i.e., towards the interface or away from it, can be controlled by tuning the physical properties of one of the two fluid phases. This effect is analyzed qualitatively and quantitatively, both by resorting to a far-field approximation and via an exact, analytical calculation which provides the means for a critical assessment of the approximate analysis.
Collapse
Affiliation(s)
- P Malgaretti
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany.
| | | | | |
Collapse
|
42
|
Zaeifi Yamchi M, Naji A. Effective interactions between inclusions in an active bath. J Chem Phys 2017; 147:194901. [DOI: 10.1063/1.5001505] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Mahdi Zaeifi Yamchi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
43
|
Kurzthaler C, Franosch T. Intermediate scattering function of an anisotropic Brownian circle swimmer. SOFT MATTER 2017; 13:6396-6406. [PMID: 28872170 DOI: 10.1039/c7sm00873b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microswimmers exhibit noisy circular motion due to asymmetric propulsion mechanisms, their chiral body shape, or by hydrodynamic couplings in the vicinity of surfaces. Here, we employ the Brownian circle swimmer model and characterize theoretically the dynamics in terms of the directly measurable intermediate scattering function. We derive the associated Fokker-Planck equation for the conditional probabilities and provide an exact solution in terms of generalizations of the Mathieu functions. Different spatiotemporal regimes are identified reflecting the bare translational diffusion at large wavenumbers, the persistent circular motion at intermediate wavenumbers and an enhanced effective diffusion at small wavenumbers. In particular, the circular motion of the particle manifests itself in characteristic oscillations at a plateau of the intermediate scattering function for wavenumbers probing the radius.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
44
|
Creeping flow dynamics over superhydrophobic ball: Slip effects and drag reduction. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Jashnsaz H, Al Juboori M, Weistuch C, Miller N, Nguyen T, Meyerhoff V, McCoy B, Perkins S, Wallgren R, Ray BD, Tsekouras K, Anderson GG, Pressé S. Hydrodynamic Hunters. Biophys J 2017; 112:1282-1289. [PMID: 28355554 PMCID: PMC5376100 DOI: 10.1016/j.bpj.2017.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/30/2022] Open
Abstract
The Gram-negative Bdellovibrio bacteriovorus (BV) is a model bacterial predator that hunts other bacteria and may serve as a living antibiotic. Despite over 50 years since its discovery, it is suggested that BV probably collides into its prey at random. It remains unclear to what degree, if any, BV uses chemical cues to target its prey. The targeted search problem by the predator for its prey in three dimensions is a difficult problem: it requires the predator to sensitively detect prey and forecast its mobile prey’s future position on the basis of previously detected signal. Here instead we find that rather than chemically detecting prey, hydrodynamics forces BV into regions high in prey density, thereby improving its odds of a chance collision with prey and ultimately reducing BV’s search space for prey. We do so by showing that BV’s dynamics are strongly influenced by self-generated hydrodynamic flow fields forcing BV onto surfaces and, for large enough defects on surfaces, forcing BV in orbital motion around these defects. Key experimental controls and calculations recapitulate the hydrodynamic origin of these behaviors. While BV’s prey (Escherichia coli) are too small to trap BV in hydrodynamic orbit, the prey are also susceptible to their own hydrodynamic fields, substantially confining them to surfaces and defects where mobile predator and prey density is now dramatically enhanced. Colocalization, driven by hydrodynamics, ultimately reduces BV’s search space for prey from three to two dimensions (on surfaces) even down to a single dimension (around defects). We conclude that BV’s search for individual prey remains random, as suggested in the literature, but confined, however—by generic hydrodynamic forces—to reduced dimensionality.
Collapse
Affiliation(s)
- Hossein Jashnsaz
- Department of Physics, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Mohammed Al Juboori
- Biomedical Engineering, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Corey Weistuch
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Nicholas Miller
- Biomedical Engineering, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Tyler Nguyen
- Stark Neurosciences Research Institute, Indiana University School of Medicine (ISUM), Indianapolis, Indiana
| | - Viktoria Meyerhoff
- Mechanical Engineering, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Bryan McCoy
- Department of Chemistry and Chemical Biology, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Stephanie Perkins
- Department of Biology, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Ross Wallgren
- Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Bruce D Ray
- Department of Physics, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Konstantinos Tsekouras
- Department of Physics, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Gregory G Anderson
- Department of Biology, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana.
| | - Steve Pressé
- Department of Physics, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana; Department of Chemistry and Chemical Biology, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana; Cellular and Integrative Physiology Department, Indiana University School of Medicine (IUSM), Indianapolis, Indiana.
| |
Collapse
|
46
|
Nili H, Kheyri M, Abazari J, Fahimniya A, Naji A. Population splitting of rodlike swimmers in Couette flow. SOFT MATTER 2017; 13:4494-4506. [PMID: 28584884 DOI: 10.1039/c7sm00293a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a quantitative analysis on the response of a dilute active suspension of self-propelled rods (swimmers) in a planar channel subjected to an imposed shear flow. To best capture the salient features of the shear-induced effects, we consider the case of an imposed Couette flow, providing a constant shear rate across the channel. We argue that the steady-state behavior of swimmers can be understood in the light of a population splitting phenomenon, occurring as the shear rate exceeds a certain threshold, initiating the reversal of the swimming direction for a finite fraction of swimmers from down- to upstream or vice versa, depending on the swimmer position within the channel. Swimmers thus split into two distinct, statistically significant and oppositely swimming majority and minority populations. The onset of population splitting translates into a transition from a self-propulsion-dominated regime to a shear-dominated regime, corresponding to a unimodal-to-bimodal change in the probability distribution function of the swimmer orientation. We present a phase diagram in terms of the swim and flow Péclet numbers showing the separation of these two regimes by a discontinuous transition line. Our results shed further light on the behavior of swimmers in a shear flow and provide an explanation for the previously reported non-monotonic behavior of the mean, near-wall, parallel-to-flow orientation of swimmers with increasing shear strength.
Collapse
Affiliation(s)
- Hossein Nili
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran.
| | | | | | | | | |
Collapse
|
47
|
Popescu MN, Uspal WE, Dietrich S. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:134001. [PMID: 28140364 DOI: 10.1088/1361-648x/aa5bf1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g. the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate 'point-particle' analysis, we show analytically that-owing to this kind of induced active response (chemi-osmosis) of the wall-such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial 'swimmers' exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change in the environment. We show that the alignment with the surface-chemistry gradient is generic for chemically active colloids as long as they exhibit motility in an unbounded fluid, i.e. this phenomenon does not depend on the exact details of the propulsion mechanism. The results are discussed in the context of simple models of chemical activity, corresponding to Janus particles with 'source' chemical reactions on one half of the surface and either 'inert' or 'sink' reactions over the other half.
Collapse
Affiliation(s)
- M N Popescu
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany. IV Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | | | | |
Collapse
|
48
|
Eisenstecken T, Hu J, Winkler RG. Bacterial swarmer cells in confinement: a mesoscale hydrodynamic simulation study. SOFT MATTER 2016; 12:8316-8326. [PMID: 27714355 DOI: 10.1039/c6sm01532h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A wide spectrum of Peritrichous bacteria undergo considerable physiological changes when they are inoculated onto nutrition-rich surfaces and exhibit a rapid and collective migration denoted as swarming. Thereby, the length of such swarmer cells and their number of flagella increases substantially. In this article, we investigated the properties of individual E. coli-type swarmer cells confined between two parallel walls via mesoscale hydrodynamic simulations, combining molecular dynamics simulations of the swarmer cell with the multiparticle particle collision dynamics approach for the embedding fluid. E. coli-type swarmer cells are three-times longer than their planktonic counter parts, but their flagella density is comparable. By varying the wall separation, we analyze the confinement effect on the flagella arrangement, on the distribution of cells in the gap between the walls, and on the cell dynamics. We find only a weak dependence of confinement on the bundle structure and dynamics. The distribution of cells in the gap changes from a geometry-dominated behavior for very narrow to fluid-dominated behavior for wider gaps, where cells are preferentially located in the gap center for narrower gaps and stay preferentially next to one of the walls for wider gaps. Dynamically, the cells exhibit a wide spectrum of migration behaviors, depending on their flagella bundle arrangement, and ranges from straight swimming to wall rolling.
Collapse
Affiliation(s)
- Thomas Eisenstecken
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | - Jinglei Hu
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany. and Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China.
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
49
|
Park JD, Myung JS, Ahn KH. A review on particle dynamics simulation techniques for colloidal dispersions: Methods and applications. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0229-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Theers M, Westphal E, Gompper G, Winkler RG. Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit. SOFT MATTER 2016; 12:7372-7385. [PMID: 27529776 DOI: 10.1039/c6sm01424k] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose a hydrodynamic model for a spheroidal microswimmer with two tangential surface velocity modes. This model is analytically solvable and reduces to Lighthill's and Blake's spherical squirmer model in the limit of equal major and minor semi-axes. Furthermore, we present an implementation of such a spheroidal squirmer by means of particle-based mesoscale hydrodynamics simulations using the multiparticle collision dynamics approach. We investigate its properties as well as the scattering of two spheroidal squirmers in a slit geometry. Thereby we find a stable fixed point, where two pullers swim cooperatively forming a wedge-like conformation with a small constant angle.
Collapse
Affiliation(s)
- Mario Theers
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | |
Collapse
|