1
|
Verma N, Setia A, Mehata AK, Randhave N, Badgujar P, Malik AK, Muthu MS. Recent Advancement of Indocyanine Green Based Nanotheranostics for Imaging and Therapy of Coronary Atherosclerosis. Mol Pharm 2024; 21:4804-4826. [PMID: 39225111 DOI: 10.1021/acs.molpharmaceut.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is a vascular intima condition in which any part of the circulatory system is affected, including the aorta and coronary arteries. Indocyanine green (ICG), a theranostic compound approved by the FDA, has shown promise in the treatment of coronary atherosclerosis after incorporation into nanoplatforms. By integration of ICG with targeting agents such as peptides or antibodies, it is feasible to increase its concentration in damaged arteries, hence increasing atherosclerosis detection. Nanotheranostics offers cutting-edge techniques for the clinical diagnosis and therapy of atherosclerotic plaques. Combining the optical properties of ICG with those of nanocarriers enables the improved imaging of atherosclerotic plaques and targeted therapeutic interventions. Several ICG-based nanotheranostics platforms have been developed such as polymeric nanoparticles, iron oxide nanoparticles, biomimetic systems, liposomes, peptide-based systems, etc. Theranostics for atherosclerosis diagnosis use magnetic resonance imaging (MRI), computed tomography (CT), near-infrared fluorescence (NIRF) imaging, photoacoustic/ultrasound imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT) imaging techniques. In addition to imaging, there is growing interest in employing ICG to treat atherosclerosis. In this review, we provide a conceptual explanation of ICG-based nanotheranostics for the imaging and therapy of coronary atherosclerosis. Moreover, advancements in imaging modalities such as MRI, CT, PET, SPECT, and ultrasound/photoacoustic have been discussed. Furthermore, we highlight the applications of ICG for coronary atherosclerosis.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
2
|
Hatami M, Özbek A, Deán‐Ben XL, Gutierrez J, Schill A, Razansky D, Larin KV. Noninvasive Tracking of Embryonic Cardiac Dynamics and Development with Volumetric Optoacoustic Spectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400089. [PMID: 38526147 PMCID: PMC11165471 DOI: 10.1002/advs.202400089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Indexed: 03/26/2024]
Abstract
Noninvasive monitoring of cardiac development can potentially prevent cardiac anomalies in adulthood. Mouse models provide unique opportunities to study cardiac development and disease in mammals. However, high-resolution noninvasive functional analyses of murine embryonic cardiac models are challenging because of the small size and fast volumetric motion of the embryonic heart, which is deeply embedded inside the uterus. In this study, a real time volumetric optoacoustic spectroscopy (VOS) platform for whole-heart visualization with high spatial (100 µm) and temporal (10 ms) resolutions is developed. Embryonic heart development on gestational days (GDs) 14.5-17.5 and quantify cardiac dynamics using time-lapse-4D image data of the heart is followed. Additionally, spectroscopic recordings enable the quantification of the blood oxygenation status in heart chambers in a label-free and noninvasive manner. This technology introduces new possibilities for high-resolution quantification of embryonic heart function at different gestational stages in mammalian models, offering an invaluable noninvasive method for developmental biology.
Collapse
Affiliation(s)
- Maryam Hatami
- Department of Biomedical EngineeringUniversity of HoustonHoustonTX77004USA
| | - Ali Özbek
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Xosé Luís Deán‐Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Jessica Gutierrez
- Department of Biomedical EngineeringUniversity of HoustonHoustonTX77004USA
| | - Alexander Schill
- Department of Biomedical EngineeringUniversity of HoustonHoustonTX77004USA
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and ToxicologyFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Kirill V. Larin
- Department of Biomedical EngineeringUniversity of HoustonHoustonTX77004USA
- Department of Integrative PhysiologyBaylor College of MedicineHoustonTX77030USA
| |
Collapse
|
3
|
Mohn F, Exner M, Szwargulski P, Möddel M, Knopp T, Graeser M. Saline bolus for negative contrast perfusion imaging in magnetic particle imaging. Phys Med Biol 2023; 68:175026. [PMID: 37609892 DOI: 10.1088/1361-6560/ace309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/29/2023] [Indexed: 08/24/2023]
Abstract
Objective.Magnetic particle imaging (MPI) is capable of high temporal resolution measurements of the spatial distribution of magnetic nanoparticles and therefore well suited for perfusion imaging, which is an important tool in medical diagnosis. Perfusion imaging in MPI usually requires a fresh bolus of tracer material to capture the key signal dynamics. Here, we propose a method to decouple the imaging sequence from the injection of additional tracer material, without further increasing the administered iron dose in the body with each image.Approach.A bolus of physiological saline solution without any particles (negative contrast) diminishes the steady-state concentration of a long-circulating tracer during passage. This depression in the measured concentration contributes to the required contrast dynamics. The presence of a long-circulating tracer is therefore a prerequisite to obtain the negative contrast. As a quantitative tracer based imaging method, the signal is linear in the tracer concentration for any location that contains nanoparticles and zero in the surrounding tissue which does not provide any intrinsic signal. After tracer injection, the concentration over time (positive contrast) can be utilized to calculate dynamic diagnostic parameters like perfusion parameters in vessels and organs. Every acquired perfusion image thus requires a new bolus of tracer with a sufficiently large iron dose to be visible above the background.Main results.Perfusion parameters are calculated based on the time response of the proposed negative bolus and compared to a positive bolus. Results from phantom experiments show that normalized signals from positive and negative boli are concurrent and deviations of calculated perfusion maps are low.Significance.Our method opens up the possibility to increase the total monitoring time of a future patient by utilizing a positive-negative contrast sequence, while minimizing the iron dose per acquired image.
Collapse
Affiliation(s)
- Fabian Mohn
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Exner
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Patryk Szwargulski
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Martin Möddel
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Knopp
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fraunhofer Research Institution for Individualized and Cell-based Medicine, IMTE, Lübeck, Germany
| | - Matthias Graeser
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fraunhofer Research Institution for Individualized and Cell-based Medicine, IMTE, Lübeck, Germany
- Institute for Medical Engineering, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Kalva SK, Deán-Ben XL, Reiss M, Razansky D. Spiral volumetric optoacoustic tomography for imaging whole-body biodynamics in small animals. Nat Protoc 2023; 18:2124-2142. [PMID: 37208409 DOI: 10.1038/s41596-023-00834-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/20/2023] [Indexed: 05/21/2023]
Abstract
Fast tracking of biological dynamics across multiple murine organs using the currently commercially available whole-body preclinical imaging systems is hindered by their limited contrast, sensitivity and spatial or temporal resolution. Spiral volumetric optoacoustic tomography (SVOT) provides optical contrast, with an unprecedented level of spatial and temporal resolution, by rapidly scanning a mouse using spherical arrays, thus overcoming the current limitations in whole-body imaging. The method enables the visualization of deep-seated structures in living mammalian tissues in the near-infrared spectral window, while further providing unrivalled image quality and rich spectroscopic optical contrast. Here, we describe the detailed procedures for SVOT imaging of mice and provide specific details on how to implement a SVOT system, including component selection, system arrangement and alignment, as well as the image processing methods. The step-by-step guide for the rapid panoramic (360°) head-to-tail whole-body imaging of a mouse includes the rapid visualization of contrast agent perfusion and biodistribution. The isotropic spatial resolution possible with SVOT can reach 90 µm in 3D, while alternative steps enable whole-body scans in less than 2 s, unattainable with other preclinical imaging modalities. The method further allows the real-time (100 frames per second) imaging of biodynamics at the whole-organ level. The multiscale imaging capacity provided by SVOT can be used for visualizing rapid biodynamics, monitoring responses to treatments and stimuli, tracking perfusion, and quantifying total body accumulation and clearance dynamics of molecular agents and drugs. Depending on the imaging procedure, the protocol requires 1-2 h to complete by users trained in animal handling and biomedical imaging.
Collapse
Affiliation(s)
- Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Paltauf G. Photoacoustic tomography reveals structural and functional cardiac images of animal models. LIGHT, SCIENCE & APPLICATIONS 2023; 12:42. [PMID: 36781837 PMCID: PMC9925423 DOI: 10.1038/s41377-023-01084-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Three-dimensional photoacoustic tomography synchronized with an electrocardiogram provides highly resolved images of a beating heart with optical absorption contrast and enables investigation of cardiovascular diseases in animal models.
Collapse
|
6
|
Choi S, Yang J, Lee SY, Kim J, Lee J, Kim WJ, Lee S, Kim C. Deep Learning Enhances Multiparametric Dynamic Volumetric Photoacoustic Computed Tomography In Vivo (DL-PACT). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2202089. [PMID: 36354200 PMCID: PMC9811490 DOI: 10.1002/advs.202202089] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/09/2022] [Indexed: 05/19/2023]
Abstract
Photoacoustic computed tomography (PACT) has become a premier preclinical and clinical imaging modality. Although PACT's image quality can be dramatically improved with a large number of ultrasound (US) transducer elements and associated multiplexed data acquisition systems, the associated high system cost and/or slow temporal resolution are significant problems. Here, a deep learning-based approach is demonstrated that qualitatively and quantitively diminishes the limited-view artifacts that reduce image quality and improves the slow temporal resolution. This deep learning-enhanced multiparametric dynamic volumetric PACT approach, called DL-PACT, requires only a clustered subset of many US transducer elements on the conventional multiparametric PACT. Using DL-PACT, high-quality static structural and dynamic contrast-enhanced whole-body images as well as dynamic functional brain images of live animals and humans are successfully acquired, all in a relatively fast and cost-effective manner. It is believed that the strategy can significantly advance the use of PACT technology for preclinical and clinical applications such as neurology, cardiology, pharmacology, endocrinology, and oncology.
Collapse
Affiliation(s)
- Seongwook Choi
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jinge Yang
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Soo Young Lee
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jiwoong Kim
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jihye Lee
- Department of ChemistryPOSTECH‐CATHOLIC Biomedical Engineering InstitutePohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Won Jong Kim
- Department of ChemistryPOSTECH‐CATHOLIC Biomedical Engineering InstitutePohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Seungchul Lee
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Chulhong Kim
- Department of Electrical EngineeringConvergence IT EngineeringMechanical EngineeringSchool of Interdisciplinary Bioscience and BioengineeringGraduate School of Artificial Intelligenceand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| |
Collapse
|
7
|
Kalva SK, Sánchez-Iglesias A, Deán-Ben XL, Liz-Marzán LM, Razansky D. Rapid Volumetric Optoacoustic Tracking of Nanoparticle Kinetics across Murine Organs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:172-178. [PMID: 34949083 DOI: 10.1021/acsami.1c17661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Large-scale visualization of nanoparticle kinetics is essential for optimizing drug delivery and characterizing in vivo toxicity associated with engineered nanomaterials. Real-time tracking of nanoparticulate agents across multiple murine organs is hindered with the currently available whole-body preclinical imaging systems due to limitations in contrast, sensitivity, spatial, or temporal resolution. Herein, we demonstrate rapid volumetric tracking of gold nanoagent kinetics and biodistribution in mice at a suborgan level with single-sweep volumetric optoacoustic tomography (sSVOT). The imaging system accomplishes whole-body three-dimensional scans in less than 1.8 s, further attaining a high spatial resolution of 130 μm and sub-picomolar sensitivity. We visualized the clearance dynamics of purposely synthesized gold nanorods and nanorod clusters, featuring different sizes and surface chemistries as well as their corresponding accumulation within the liver and spleen. The newly discovered capacity to image rapid whole-body kinetics down to suborgan scales opens up new avenues for the development and characterization of diagnostic and therapeutic nanoagents.
Collapse
Affiliation(s)
- Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8092, Switzerland
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian 20014, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastian 20014, Spain
| | - Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8092, Switzerland
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian 20014, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastian 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8092, Switzerland
| |
Collapse
|
8
|
Ivankovic I, Déan-Ben XL, Haas H, Kimm MA, Wildgruber M, Razansky D. Volumetric Optoacoustic Tomography Differentiates Myocardial Remodelling. Mol Imaging Biol 2021; 22:1235-1243. [PMID: 32394284 DOI: 10.1007/s11307-020-01498-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Myocardial healing following myocardial infarction (MI) is a complex process that is yet to be fully understood. Clinical attempts in regeneration of the injured myocardium using cardiac stem cells faced major challenges, calling for a better understanding of the processes involved at a more basic level in order to foster translation. PROCEDURES We examined the feasibility of volumetric optoacoustic tomography (VOT) in studying healing of the myocardium in different models of MI, including permanent occlusion (PO) of the left coronary artery, temporary occlusion (ischemia-reperfusion-I/R) and infarcted c-kit mutants, a genetic mouse model with impaired cardiac healing. Murine hearts were imaged at 100 Hz frame rate using 800 nm excitation wavelength, corresponding to the peak absorption of indocyanine green (ICG) in plasma and the isosbestic point of haemoglobin. RESULTS The non-invasive real-time volumetric imaging capabilities of VOT have allowed the detection of significant variations in the pulmonary transit time (PTT), a parameter affected by MI, across different murine models. Upon intravenous injection of ICG, we were able to track alterations in cardiac perfusion in I/R models, which were absent in wild-type (wt) PO or kitW/kitW-v PO mice. The wt-PO and I/R models further exhibited irregularities in their cardiac cycles. CONCLUSIONS Clear differences in the PTT, ICG perfusion and cardiac cycle patterns were identified between the different models and days post MI. Overall, the results highlight the unique capacity of VOT for multi-parametric characterization of morphological and functional changes in murine models of MI.
Collapse
Affiliation(s)
- Ivana Ivankovic
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Xosé Luís Déan-Ben
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Helena Haas
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts der Isar Technical University of Munich, Munich, Germany
| | - Melanie A Kimm
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts der Isar Technical University of Munich, Munich, Germany
| | - Moritz Wildgruber
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts der Isar Technical University of Munich, Munich, Germany
- Translational Research Imaging Center, Department of Clinical Radiology, Universitätsklinikum Münster, Munster, Germany
| | - Daniel Razansky
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Mukaddim RA, Ahmed R, Varghese T. Subaperture Processing-Based Adaptive Beamforming for Photoacoustic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2336-2350. [PMID: 33606629 PMCID: PMC8330397 DOI: 10.1109/tuffc.2021.3060371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Delay-and-sum (DAS) beamformers, when applied to photoacoustic (PA) image reconstruction, produce strong sidelobes due to the absence of transmit focusing. Consequently, DAS PA images are often severely degraded by strong off-axis clutter. For preclinical in vivo cardiac PA imaging, the presence of these noise artifacts hampers the detectability and interpretation of PA signals from the myocardial wall, crucial for studying blood-dominated cardiac pathological information and to complement functional information derived from ultrasound imaging. In this article, we present PA subaperture processing (PSAP), an adaptive beamforming method, to mitigate these image degrading effects. In PSAP, a pair of DAS reconstructed images is formed by splitting the received channel data into two complementary nonoverlapping subapertures. Then, a weighting matrix is derived by analyzing the correlation between subaperture beamformed images and multiplied with the full-aperture DAS PA image to reduce sidelobes and incoherent clutter. We validated PSAP using numerical simulation studies using point target, diffuse inclusion and microvasculature imaging, and in vivo feasibility studies on five healthy murine models. Qualitative and quantitative analysis demonstrate improvements in PAI image quality with PSAP compared to DAS and coherence factor weighted DAS (DAS CF ). PSAP demonstrated improved target detectability with a higher generalized contrast-to-noise (gCNR) ratio in vasculature simulations where PSAP produces 19.61% and 19.53% higher gCNRs than DAS and DAS CF , respectively. Furthermore, PSAP provided higher image contrast quantified using contrast ratio (CR) (e.g., PSAP produces 89.26% and 11.90% higher CR than DAS and DAS CF in vasculature simulations) and improved clutter suppression.
Collapse
|
10
|
Mukaddim RA, Varghese T. Spatiotemporal Coherence Weighting for In Vivo Cardiac Photoacoustic Image Beamformation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:586-598. [PMID: 32795968 PMCID: PMC8011040 DOI: 10.1109/tuffc.2020.3016900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Photoacoustic (PA) image reconstruction generally utilizes delay-and-sum (DAS) beamforming of received acoustic waves from tissue irradiated with optical illumination. However, nonadaptive DAS reconstructed cardiac PA images exhibit temporally varying noise which causes reduced myocardial PA signal specificity, making image interpretation difficult. Adaptive beamforming algorithms such as minimum variance (MV) with coherence factor (CF) weighting have been previously reported to improve the DAS image quality. In this article, we report on an adaptive beamforming algorithm by extending CF weighting to the temporal domain for preclinical cardiac PA imaging (PAI). The proposed spatiotemporal coherence factor (STCF) considers multiple temporally adjacent image acquisition events during beamforming and cancels out signals with low spatial coherence and temporal coherence, resulting in higher background noise cancellation while preserving the main features of interest (myocardial wall) in the resultant PA images. STCF has been validated using the numerical simulations and in vivo ECG and respiratory-signal-gated cardiac PAI in healthy murine hearts. The numerical simulation results demonstrate that STCF weighting outperforms DAS and MV beamforming with and without CF weighting under different levels of inherent contrast, acoustic attenuation, optical scattering, and signal-to-noise (SNR) of channel data. Performance improvement is attributed to higher sidelobe reduction (at least 5 dB) and SNR improvement (at least 10 dB). Improved myocardial signal specificity and higher signal rejection in the left ventricular chamber and acoustic gel region are observed with STCF in cardiac PAI.
Collapse
|
11
|
Ren W, Deán-Ben XL, Augath MA, Razansky D. Development of concurrent magnetic resonance imaging and volumetric optoacoustic tomography: A phantom feasibility study. JOURNAL OF BIOPHOTONICS 2021; 14:e202000293. [PMID: 33169918 DOI: 10.1002/jbio.202000293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 05/28/2023]
Abstract
Optoacoustic tomography (OAT) and magnetic resonance imaging (MRI) provide highly complementary capabilities for anatomical and functional imaging of living organisms. Herein, we investigate on the feasibility of combining both modalities to render concurrent images. This was achieved by introducing a specifically-designed copper-shielded spherical ultrasound array into a preclinical MRI scanner. Phantom experiments revealed that the OAT probe caused minimal distortion in the MRI images, while synchronization of the laser and the MRI pulse sequence enabled defining artifact-free acquisition windows for OAT. Good dynamic OAT contrast from superparamagnetic iron oxide nanoparticles, a commonly used agent for MRI contrast enhancement, was also observed. The hybrid OAT-MRI system thus provides an excellent platform for cross-validating functional readings of both modalities. Overall, this initial study serves to establish the technical feasibility of developing a hybrid OAT-MRI system for biomedical research.
Collapse
Affiliation(s)
- Wuwei Ren
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Mark-Aurel Augath
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Li M, Nyayapathi N, Kilian HI, Xia J, Lovell JF, Yao J. Sound Out the Deep Colors: Photoacoustic Molecular Imaging at New Depths. Mol Imaging 2020; 19:1536012120981518. [PMID: 33336621 PMCID: PMC7750763 DOI: 10.1177/1536012120981518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoacoustic tomography (PAT) has become increasingly popular for molecular imaging due to its unique optical absorption contrast, high spatial resolution, deep imaging depth, and high imaging speed. Yet, the strong optical attenuation of biological tissues has traditionally prevented PAT from penetrating more than a few centimeters and limited its application for studying deeply seated targets. A variety of PAT technologies have been developed to extend the imaging depth, including employing deep-penetrating microwaves and X-ray photons as excitation sources, delivering the light to the inside of the organ, reshaping the light wavefront to better focus into scattering medium, as well as improving the sensitivity of ultrasonic transducers. At the same time, novel optical fluence mapping algorithms and image reconstruction methods have been developed to improve the quantitative accuracy of PAT, which is crucial to recover weak molecular signals at larger depths. The development of highly-absorbing near-infrared PA molecular probes has also flourished to provide high sensitivity and specificity in studying cellular processes. This review aims to introduce the recent developments in deep PA molecular imaging, including novel imaging systems, image processing methods and molecular probes, as well as their representative biomedical applications. Existing challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Mucong Li
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| | - Nikhila Nyayapathi
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Hailey I Kilian
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jun Xia
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Junjie Yao
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| |
Collapse
|
13
|
Lafci B, Merčep E, Herraiz JL, Deán-Ben XL, Razansky D. Noninvasive multiparametric characterization of mammary tumors with transmission-reflection optoacoustic ultrasound. Neoplasia 2020. [DOI: https://doi.org/10.1016/j.neo.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Lafci B, Merčep E, Herraiz JL, Deán-Ben XL, Razansky D. Noninvasive multiparametric charac-terization of mammary tumors with transmission-reflection optoacoustic ultrasound. Neoplasia 2020; 22:770-777. [PMID: 33142241 PMCID: PMC7644559 DOI: 10.1016/j.neo.2020.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Development of imaging methods capable of furnishing tumor-specific morphological, functional, and molecular information is paramount for early diagnosis, staging, and treatment of breast cancer. Ultrasound (US) and optoacoustic (OA) imaging methods exhibit excellent traits for tumor imaging in terms of fast imaging speed, ease of use, excellent contrast, and lack of ionizing radiation. Here, we demonstrate simultaneous tomographic whole body imaging of optical absorption, US reflectivity, and speed of sound (SoS) in living mice. In vivo studies of 4T1 breast cancer xenografts models revealed synergistic and complementary value of the hybrid imaging approach for characterizing mammary tumors. While neovasculature surrounding the tumor areas were observed based on the vascular anatomy contrast provided by the OA data, the tumor boundaries could be discerned by segmenting hypoechoic structures in pulse-echo US images. Tumor delineation was further facilitated by enhancing the contrast and spatial resolution of the SoS maps with a full-wave inversion method. The malignant lesions could thus be distinguished from other hypoechoic regions based on the average SoS values. The reported findings corroborate the strong potential of the hybrid imaging approach for advancing cancer research in small animal models and fostering development of new clinical diagnostic approaches.
Collapse
Affiliation(s)
- Berkan Lafci
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Elena Merčep
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Neuherberg, Germany; iThera Medical GmbH, Munich, Germany
| | - Joaquin L Herraiz
- Nuclear Physics Group and IPARCOS, Complutense University of Madrid, Madrid, Spain; Health Research Institute of Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland; Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Neuherberg, Germany.
| |
Collapse
|
15
|
Biton S, Arbel N, Drozdov G, Gilboa G, Rosenthal A. Optoacoustic model-based inversion using anisotropic adaptive total-variation regularization. PHOTOACOUSTICS 2019; 16:100142. [PMID: 31737487 PMCID: PMC6849433 DOI: 10.1016/j.pacs.2019.100142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 05/13/2023]
Abstract
In optoacoustic tomography, image reconstruction is often performed with incomplete or noisy data, leading to reconstruction errors. Significant improvement in reconstruction accuracy may be achieved in such cases by using nonlinear regularization schemes, such as total-variation minimization and L 1-based sparsity-preserving schemes. In this paper, we introduce a new framework for optoacoustic image reconstruction based on adaptive anisotropic total-variation regularization, which is more capable of preserving complex boundaries than conventional total-variation regularization. The new scheme is demonstrated in numerical simulations on blood-vessel images as well as on experimental data and is shown to be more capable than the total-variation-L 1 scheme in enhancing image contrast.
Collapse
|
16
|
Volumetric optoacoustic tomography enables non-invasive in vivo characterization of impaired heart function in hypoxic conditions. Sci Rep 2019; 9:8369. [PMID: 31182733 PMCID: PMC6557887 DOI: 10.1038/s41598-019-44818-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/21/2019] [Indexed: 12/28/2022] Open
Abstract
Exposure to chronic hypoxia results in pulmonary hypertension characterized by increased vascular resistance and pulmonary vascular remodeling, changes in functional parameters of the pulmonary vasculature, and right ventricular hypertrophy, which can eventually lead to right heart failure. The underlying mechanisms of hypoxia-induced pulmonary hypertension have still not been fully elucidated while no curative treatment is currently available. Commonly employed pre-clinical analytic methods are largely limited to invasive studies interfering with cardiac tissue or otherwise ex vivo functional studies and histopathology. In this work, we suggest volumetric optoacoustic tomography (VOT) for non-invasive assessment of heart function in response to chronic hypoxia. Mice exposed for 3 consecutive weeks to normoxia or chronic hypoxia were imaged in vivo with heart perfusion tracked by VOT using indocyanide green contrast agent at high temporal (100 Hz) and spatial (200 µm) resolutions in 3D. Unequivocal difference in the pulmonary transit time was revealed between the hypoxic and normoxic conditions concomitant with the presence of pulmonary vascular remodeling within hypoxic models. Furthermore, a beat-to-beat analysis of the volumetric image data enabled identifying and characterizing arrhythmic events in mice exposed to chronic hypoxia. The newly introduced non-invasive methodology for analysis of impaired pulmonary vasculature and heart function under chronic hypoxic exposure provides important inputs into development of early diagnosis and treatment strategies in pulmonary hypertension.
Collapse
|
17
|
Karlas A, Fasoula NA, Paul-Yuan K, Reber J, Kallmayer M, Bozhko D, Seeger M, Eckstein HH, Wildgruber M, Ntziachristos V. Cardiovascular optoacoustics: From mice to men - A review. PHOTOACOUSTICS 2019; 14:19-30. [PMID: 31024796 PMCID: PMC6476795 DOI: 10.1016/j.pacs.2019.03.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 05/04/2023]
Abstract
Imaging has become an indispensable tool in the research and clinical management of cardiovascular disease (CVD). An array of imaging technologies is considered for CVD diagnostics and therapeutic assessment, ranging from ultrasonography, X-ray computed tomography and magnetic resonance imaging to nuclear and optical imaging methods. Each method has different operational characteristics and assesses different aspects of CVD pathophysiology; nevertheless, more information is desirable for achieving a comprehensive view of the disease. Optoacoustic (photoacoustic) imaging is an emerging modality promising to offer novel information on CVD parameters by allowing high-resolution imaging of optical contrast several centimeters deep inside tissue. Implemented with illumination at several wavelengths, multi-spectral optoacoustic tomography (MSOT) in particular, is sensitive to oxygenated and deoxygenated hemoglobin, water and lipids allowing imaging of the vasculature, tissue oxygen saturation and metabolic or inflammatory parameters. Progress with fast-tuning lasers, parallel detection and advanced image reconstruction and data-processing algorithms have recently transformed optoacoustics from a laboratory tool to a promising modality for small animal and clinical imaging. We review progress with optoacoustic CVD imaging, highlight the research and diagnostic potential and current applications and discuss the advantages, limitations and possibilities for integration into clinical routine.
Collapse
Affiliation(s)
- Angelos Karlas
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Korbinian Paul-Yuan
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Josefine Reber
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Kallmayer
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Dmitry Bozhko
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Markus Seeger
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hans-Henning Eckstein
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Moritz Wildgruber
- Institute for Diagnostic and Interventional Radiology, University Hospital rechts der Isar, Munich, Germany
- Institute for Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
18
|
Basak K, Luís Deán-Ben X, Gottschalk S, Reiss M, Razansky D. Non-invasive determination of murine placental and foetal functional parameters with multispectral optoacoustic tomography. LIGHT, SCIENCE & APPLICATIONS 2019; 8:71. [PMID: 31666944 PMCID: PMC6804938 DOI: 10.1038/s41377-019-0181-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/27/2019] [Accepted: 07/17/2019] [Indexed: 05/12/2023]
Abstract
Despite the importance of placental function in embryonic development, it remains poorly understood and challenging to characterize, primarily due to the lack of non-invasive imaging tools capable of monitoring placental and foetal oxygenation and perfusion parameters during pregnancy. We developed an optoacoustic tomography approach for real-time imaging through entire ~4 cm cross-sections of pregnant mice. Functional changes in both maternal and embryo regions were studied at different gestation days when subjected to an oxygen breathing challenge and perfusion with indocyanine green. Structural phenotyping of the cross-sectional scans highlighted different internal organs, whereas multi-wavelength acquisitions enabled non-invasive label-free spectroscopic assessment of blood-oxygenation parameters in foeto-placental regions, rendering a strong correlation with the amount of oxygen administered. Likewise, the placental function in protecting the embryo from extrinsically administered agents was substantiated. The proposed methodology may potentially further serve as a probing mechanism to appraise embryo development during pregnancy in the clinical setting.
Collapse
Affiliation(s)
- Kausik Basak
- Faculty of Medicine, Technical University Munich, Munich, Germany
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Present Address: Kausik Basak, Institute of Advanced Studies and Research, JIS University, Kolkata, West Bengal India
| | - Xosé Luís Deán-Ben
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Sven Gottschalk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Michael Reiss
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Faculty of Medicine, Technical University Munich, Munich, Germany
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Zheng P, Li J, Kros JM. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med Res Rev 2018; 38:325-376. [PMID: 28862319 PMCID: PMC5763363 DOI: 10.1002/med.21463] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022]
Abstract
To date, five cancer treatment modalities have been defined. The three traditional modalities of cancer treatment are surgery, radiotherapy, and conventional chemotherapy, and the two modern modalities include molecularly targeted therapy (the fourth modality) and immunotherapy (the fifth modality). The cardiotoxicity associated with conventional chemotherapy and radiotherapy is well known. Similar adverse cardiac events are resurging with the fourth modality. Aside from the conventional and newer targeted agents, even the most newly developed, immune-based therapeutic modalities of anticancer treatment (the fifth modality), e.g., immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy, have unfortunately led to potentially lethal cardiotoxicity in patients. Cardiac complications represent unresolved and potentially life-threatening conditions in cancer survivors, while effective clinical management remains quite challenging. As a consequence, morbidity and mortality related to cardiac complications now threaten to offset some favorable benefits of modern cancer treatments in cancer-related survival, regardless of the oncologic prognosis. This review focuses on identifying critical research-practice gaps, addressing real-world challenges and pinpointing real-time insights in general terms under the context of clinical cardiotoxicity induced by the fourth and fifth modalities of cancer treatment. The information ranges from basic science to clinical management in the field of cardio-oncology and crosses the interface between oncology and onco-pharmacology. The complexity of the ongoing clinical problem is addressed at different levels. A better understanding of these research-practice gaps may advance research initiatives on the development of mechanism-based diagnoses and treatments for the effective clinical management of cardiotoxicity.
Collapse
Affiliation(s)
- Ping‐Pin Zheng
- Cardio‐Oncology Research GroupErasmus Medical CenterRotterdamthe Netherlands
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Jin Li
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Johan M Kros
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
20
|
ÖZBEK ALI, DEÁN-BEN XOSÉLUÍS, RAZANSKY DANIEL. Optoacoustic imaging at kilohertz volumetric frame rates. OPTICA 2018; 5:857-863. [PMID: 31608306 PMCID: PMC6788779 DOI: 10.1364/optica.5.000857] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
State-of-the-art optoacoustic tomographic imaging systems have been shown to attain three-dimensional (3D) frame rates of the order of 100 Hz. While such a high volumetric imaging speed is beyond reach for other bio-imaging modalities, it may still be insufficient to accurately monitor some faster events occurring on a millisecond scale. Increasing the 3D imaging rate is usually hampered by the limited throughput capacity of the data acquisition electronics and memory used to capture vast amounts of the generated optoacoustic (OA) data in real time. Herein, we developed a sparse signal acquisition scheme and a total-variation-based reconstruction approach in a combined space-time domain in order to achieve 3D OA imaging at kilohertz rates. By continuous monitoring of freely swimming zebrafish larvae in a 3D region, we demonstrate that the new approach enables significantly increasing the volumetric imaging rate by using a fraction of the tomographic projections without compromising the reconstructed image quality. The suggested method may benefit studies looking at ultrafast biological phenomena in 3D, such as large-scale neuronal activity, cardiac motion, or freely behaving organisms.
Collapse
Affiliation(s)
- ALI ÖZBEK
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, D-85764 Neuherberg, Germany
- School of Medicine and School of Bioengineering, Technical University of Munich, D-81675 Munich, Germany
| | - XOSÉ LUÍS DEÁN-BEN
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - DANIEL RAZANSKY
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, D-85764 Neuherberg, Germany
- School of Medicine and School of Bioengineering, Technical University of Munich, D-81675 Munich, Germany
- Corresponding author:
| |
Collapse
|
21
|
Finlay MC, Mosse CA, Colchester RJ, Noimark S, Zhang EZ, Ourselin S, Beard PC, Schilling RJ, Parkin IP, Papakonstantinou I, Desjardins AE. Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e17103. [PMID: 30167220 PMCID: PMC6062020 DOI: 10.1038/lsa.2017.103] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/11/2017] [Accepted: 06/14/2017] [Indexed: 05/08/2023]
Abstract
High-frequency ultrasound imaging can provide exquisite visualizations of tissue to guide minimally invasive procedures. Here, we demonstrate that an all-optical ultrasound transducer, through which light guided by optical fibers is used to generate and receive ultrasound, is suitable for real-time invasive medical imaging in vivo. Broad-bandwidth ultrasound generation was achieved through the photoacoustic excitation of a multiwalled carbon nanotube-polydimethylsiloxane composite coating on the distal end of a 300-μm multi-mode optical fiber by a pulsed laser. The interrogation of a high-finesse Fabry-Pérot cavity on a single-mode optical fiber by a wavelength-tunable continuous-wave laser was applied for ultrasound reception. This transducer was integrated within a custom inner transseptal needle (diameter 1.08 mm; length 78 cm) that included a metallic septum to acoustically isolate the two optical fibers. The use of this needle within the beating heart of a pig provided unprecedented real-time views (50 Hz scan rate) of cardiac tissue (depth: 2.5 cm; axial resolution: 64 μm) and revealed the critical anatomical structures required to safely perform a transseptal crossing: the right and left atrial walls, the right atrial appendage, and the limbus fossae ovalis. This new paradigm will allow ultrasound imaging to be integrated into a broad range of minimally invasive devices in different clinical contexts.
Collapse
Affiliation(s)
- Malcolm C Finlay
- William Harvey Cardiovascular Research Institute, Queen Mary University of London and Barts Heart Centre, London EC1A 7BE, UK
| | - Charles A Mosse
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| | - Richard J Colchester
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| | - Sacha Noimark
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
- UCL Centre for Materials Research, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Edward Z Zhang
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| | - Sebastien Ourselin
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| | - Paul C Beard
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| | - Richard J Schilling
- William Harvey Cardiovascular Research Institute, Queen Mary University of London and Barts Heart Centre, London EC1A 7BE, UK
| | - Ivan P Parkin
- UCL Centre for Materials Research, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Ioannis Papakonstantinou
- Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK
| | - Adrien E Desjardins
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| |
Collapse
|
22
|
Lin HCA, Déan-Ben XL, Ivankovic I, Kimm MA, Kosanke K, Haas H, Meier R, Lohöfer F, Wildgruber M, Razansky D. Characterization of Cardiac Dynamics in an Acute Myocardial Infarction Model by Four-Dimensional Optoacoustic and Magnetic Resonance Imaging. Theranostics 2017; 7:4470-4479. [PMID: 29158839 PMCID: PMC5695143 DOI: 10.7150/thno.20616] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/15/2017] [Indexed: 01/25/2023] Open
Abstract
Extraction of murine cardiac functional parameters on a beat-by-beat basis is limited with the existing imaging modalities due to insufficient three-dimensional temporal resolution. Faster volumetric imaging methods enabling in vivo characterization of functional parameters are poised to advance cardiovascular research and provide a better understanding of the mechanisms underlying cardiac diseases. We present a new approach based on analyzing contrast-enhanced optoacoustic (OA) images acquired at high volumetric frame rate without using cardiac gating or other approaches for motion correction. We apply an acute murine myocardial infarction model optimized for acquisition of artifact-free optoacoustic imaging data to study cardiovascular hemodynamics. Infarcted hearts (n = 21) could be clearly differentiated from healthy controls (n = 9) based on a significantly higher pulmonary transit time (PTT) (2.25 [2.00-2.41] s versus 1.34 [1.25-1.67] s, p = 0.0235), while no statistically significant difference was observed in the heart rate (318 [252-361] bpm versus 264 [252-320] bpm, p = 0.3129). Nevertheless, nonlinear heartbeat dynamics was stronger in the healthy hearts, as evidenced by the third harmonic component in the heartbeat spectra. MRI data acquired from the same mice further revealed that the PTT increases with the size of infarction and similarly increases with reduced ejection fraction. Moreover, an inverse relationship between infarct PTT and time post-surgery was found, which suggests the occurrence of cardiac healing. In combination with the proven ability of optoacoustics to track targeted probes within the injured myocardium, our method can depict cardiac anatomy, function, and molecular signatures, with both high spatial and temporal resolution. Volumetric four-dimensional optoacoustic characterization of cardiac dynamics with supreme temporal resolution can capture cardiovascular dynamics on a beat-by-beat basis in mouse models of myocardial ischemia.
Collapse
|
23
|
Li L, Zhu L, Shen Y, Wang LV. Multiview Hilbert transformation in full-ring transducer array-based photoacoustic computed tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76017. [PMID: 28745385 PMCID: PMC5527266 DOI: 10.1117/1.jbo.22.7.076017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/12/2017] [Indexed: 05/20/2023]
Abstract
Based on the photoacoustic (PA) effect, PA tomography directly measures specific optical absorption, i.e., absorbed optical energy per unit volume. We recently developed a full-ring ultrasonic transducer array-based photoacoustic computed tomography (PACT) system for small-animal whole-body imaging. The system has a full-view detection angle and high in-plane resolution (∼100 μm). However, due to the bandpass frequency response of the piezoelectric transducer elements and the limited elevational detection coverage of the full-ring transducer array, the reconstructed images present bipolar (i.e., both positive and negative) pixel values, which cause ambiguities in image interpretation for physicians and biologists. We propose a multiview Hilbert transformation method to recover the unipolar initial pressure for full-ring PACT. The effectiveness of the proposed algorithm was first validated by numerical simulations and then demonstrated with ex vivo mouse brain structural imaging and in vivo mouse whole-body imaging.
Collapse
Affiliation(s)
- Lei Li
- Washington University in St. Louis, Department of Electrical and System Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Caltech Optical Imaging Laboratory, Pasadena, California, United States
| | - Liren Zhu
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Caltech Optical Imaging Laboratory, Pasadena, California, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Yuecheng Shen
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Caltech Optical Imaging Laboratory, Pasadena, California, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Caltech Optical Imaging Laboratory, Pasadena, California, United States
- California Institute of Technology, Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Pasadena, California, United States
- Address all correspondence to: Lihong V. Wang, E-mail:
| |
Collapse
|
24
|
Deán-Ben XL, Gottschalk S, Mc Larney B, Shoham S, Razansky D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem Soc Rev 2017; 46:2158-2198. [PMID: 28276544 PMCID: PMC5460636 DOI: 10.1039/c6cs00765a] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Visualization of dynamic functional and molecular events in an unperturbed in vivo environment is essential for understanding the complex biology of living organisms and of disease state and progression. To this end, optoacoustic (photoacoustic) sensing and imaging have demonstrated the exclusive capacity to maintain excellent optical contrast and high resolution in deep-tissue observations, far beyond the penetration limits of modern microscopy. Yet, the time domain is paramount for the observation and study of complex biological interactions that may be invisible in single snapshots of living systems. This review focuses on the recent advances in optoacoustic imaging assisted by smart molecular labeling and dynamic contrast enhancement approaches that enable new types of multiscale dynamic observations not attainable with other bio-imaging modalities. A wealth of investigated new research topics and clinical applications is further discussed, including imaging of large-scale brain activity patterns, volumetric visualization of moving organs and contrast agent kinetics, molecular imaging using targeted and genetically expressed labels, as well as three-dimensional handheld diagnostics of human subjects.
Collapse
Affiliation(s)
- X L Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - S Gottschalk
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - B Mc Larney
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - S Shoham
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - D Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
25
|
Deán-Ben XL, Fehm TF, Ford SJ, Gottschalk S, Razansky D. Spiral volumetric optoacoustic tomography visualizes multi-scale dynamics in mice. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e16247. [PMID: 30167242 PMCID: PMC6062167 DOI: 10.1038/lsa.2016.247] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 05/04/2023]
Abstract
Imaging dynamics at different temporal and spatial scales is essential for understanding the biological complexity of living organisms, disease state and progression. Optoacoustic imaging has been shown to offer exclusive applicability across multiple scales with excellent optical contrast and high resolution in deep-tissue observations. Yet, efficient visualization of multi-scale dynamics remained difficult with state-of-the-art systems due to inefficient trade-offs between image acquisition time and effective field of view. Herein, we introduce the spiral volumetric optoacoustic tomography technique that provides spectrally enriched high-resolution contrast across multiple spatiotemporal scales. In vivo experiments in mice demonstrate a wide range of dynamic imaging capabilities, from three-dimensional high-frame-rate visualization of moving organs and contrast agent kinetics in selected areas to whole-body longitudinal studies with unprecedented image quality. The newly introduced paradigm shift in imaging of multi-scale dynamics adds to the multifarious advantages provided by the optoacoustic technology for structural, functional and molecular imaging.
Collapse
Affiliation(s)
- X Luís Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Thomas F Fehm
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, 85764 Neuherberg, Germany
- School of Medicine and School of Bioengineering, Technical University of Munich, 81675 Munich, Germany
| | - Steven J Ford
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Sven Gottschalk
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Daniel Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, 85764 Neuherberg, Germany
- School of Medicine and School of Bioengineering, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
26
|
A Review on Real-Time 3D Ultrasound Imaging Technology. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6027029. [PMID: 28459067 PMCID: PMC5385255 DOI: 10.1155/2017/6027029] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/07/2017] [Indexed: 01/06/2023]
Abstract
Real-time three-dimensional (3D) ultrasound (US) has attracted much more attention in medical researches because it provides interactive feedback to help clinicians acquire high-quality images as well as timely spatial information of the scanned area and hence is necessary in intraoperative ultrasound examinations. Plenty of publications have been declared to complete the real-time or near real-time visualization of 3D ultrasound using volumetric probes or the routinely used two-dimensional (2D) probes. So far, a review on how to design an interactive system with appropriate processing algorithms remains missing, resulting in the lack of systematic understanding of the relevant technology. In this article, previous and the latest work on designing a real-time or near real-time 3D ultrasound imaging system are reviewed. Specifically, the data acquisition techniques, reconstruction algorithms, volume rendering methods, and clinical applications are presented. Moreover, the advantages and disadvantages of state-of-the-art approaches are discussed in detail.
Collapse
|
27
|
Deán-Ben XL, Gottschalk S, Sela G, Shoham S, Razansky D. Functional optoacoustic neuro-tomography of calcium fluxes in adult zebrafish brain in vivo. OPTICS LETTERS 2017; 42:959-962. [PMID: 28248341 DOI: 10.1364/ol.42.000959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genetically-encoded calcium indicators (GECIs) have revolutionized neuroimaging by enabling mapping of the activity of entire neuronal populations in vivo. Visualization of these powerful activity sensors has to date been limited to depth-restricted microscopic studies due to intense light scattering in the brain. We demonstrate, for the first time, in vivo real-time volumetric optoacoustic monitoring of calcium transients in adult transgenic zebrafish expressing the GCaMP5G calcium indicator. Fast changes in optoacoustic traces associated with GCaMP5G activity were detectable in the presence of other strongly absorbing endogenous chromophores, such as hemoglobin. The new functional optoacoustic neuroimaging method can visualize neural activity at penetration depths and spatio-temporal resolution scales not covered with the existing neuroimaging techniques.
Collapse
|
28
|
Deán-Ben XL, Ding L, Razansky D. Dynamic particle enhancement in limited-view optoacoustic tomography. OPTICS LETTERS 2017; 42:827-830. [PMID: 28198875 DOI: 10.1364/ol.42.000827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Limited-view artifacts are commonly present in optoacoustic tomography images, mainly due to practical geometrical and physical constraints imposed by the imaging systems. Herein, a new approach called dynamic particle-enhanced optoacoustic tomography (DPOT) is proposed for improving image contrast and visibility of optoacoustic images under limited-view scenarios. The method is based on a nonlinear combination of a temporal sequence of tomographic reconstructions representing sparsely distributed moving particles. We demonstrate experimental performance by dynamically imaging the flow of suspended microspheres in three dimensions, which shows promise for DPOT applicability in angiographic imaging in living organisms.
Collapse
|
29
|
van den Berg PJ, Bansal R, Daoudi K, Steenbergen W, Prakash J. Preclinical detection of liver fibrosis using dual-modality photoacoustic/ultrasound system. BIOMEDICAL OPTICS EXPRESS 2016; 7:5081-5091. [PMID: 28018726 PMCID: PMC5175553 DOI: 10.1364/boe.7.005081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/09/2016] [Accepted: 10/18/2016] [Indexed: 05/07/2023]
Abstract
Liver fibrosis is a major cause for increasing mortality worldwide. Preclinical research using animal models is required for the discovery of new anti-fibrotic therapies, but currently relies on endpoint liver histology. In this study, we investigated a cost-effective and portable photoacoustic/ultrasound (PA/US) imaging system as a potential non-invasive alternative. Fibrosis was induced in mice using CCl4 followed by liver imaging and histological analysis. Imaging showed significantly increased PA features with higher frequency signals in fibrotic livers versus healthy livers. This corresponds to more heterogeneous liver structure resulting from collagen deposition and angiogenesis. Importantly, PA response and its frequency were highly correlated with histological parameters. These results demonstrate the preclinical feasibility of the PA imaging approach and applicability of dual PA/US system.
Collapse
Affiliation(s)
- Pim J van den Berg
- Biomedical Photonic Imaging, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work;
| | - Ruchi Bansal
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work;
| | - Khalid Daoudi
- Biomedical Photonic Imaging, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Wiendelt Steenbergen
- Biomedical Photonic Imaging, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work
| | - Jai Prakash
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE, Enschede, The Netherlands; These authors contributed equally to the work
| |
Collapse
|
30
|
Burton CS, Mayo JR, Cunningham IA. Energy subtraction angiography is comparable to digital subtraction angiography in terms of iodine Rose SNR. Med Phys 2016; 43:5925. [DOI: 10.1118/1.4962651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
31
|
Sivasubramanian K, Pramanik M. High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system. BIOMEDICAL OPTICS EXPRESS 2016; 7:312-23. [PMID: 26977342 PMCID: PMC4771451 DOI: 10.1364/boe.7.000312] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 05/02/2023]
Abstract
Photoacoustic tomography, a hybrid imaging modality combining optical and ultrasound imaging, is gaining attention in the field of medical imaging. Typically, a Q-switched Nd:YAG laser is used to excite the tissue and generate photoacoustic signals. But, such photoacoustic imaging systems are difficult to translate into clinical applications owing to their high cost, bulky size often requiring an optical table to house such lasers. Moreover, the low pulse repetition rate of few tens of hertz prevents them from being used in high frame rate photoacoustic imaging. In this work, we have demonstrated up to 7000 Hz photoacoustic imaging (B-mode) and measured the flow rate of a fast moving object. We used a ~140 nanosecond pulsed laser diode as an excitation source and a clinical ultrasound imaging system to capture and display the photoacoustic images. The excitation laser is ~803 nm in wavelength with ~1.4 mJ energy per pulse. So far, the reported 2-dimensional photoacoustic B-scan imaging is only a few tens of frames per second using a clinical ultrasound system. Therefore, this is the first report on 2-dimensional photoacoustic B-scan imaging with 7000 frames per second. We have demonstrated phantom imaging to view and measure the flow rate of ink solution inside a tube. This fast photoacoustic imaging can be useful for various clinical applications including cardiac related problems, where the blood flow rate is quite high, or other dynamic studies.
Collapse
Affiliation(s)
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
| |
Collapse
|
32
|
Deán-Ben XL, Estrada H, Ozbek A, Razansky D. Influence of the absorber dimensions on wavefront shaping based on volumetric optoacoustic feedback. OPTICS LETTERS 2015; 40:5395-5398. [PMID: 26565883 DOI: 10.1364/ol.40.005395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The recently demonstrated control over light distribution through turbid media based on real-time three-dimensional optoacoustic feedback has offered promising prospects to interferometrically focus light within scattering objects. Nevertheless, the focusing capacity of the feedback-based approach is strongly conditioned by the number of optical modes (speckle grains) enclosed in the volume that can be resolved with the optoacoustic imaging system. In this Letter, we experimentally tested the light intensity enhancement achieved with optoacoustic feedback measurements from different sizes of absorbing microparticles. The importance of the obtained results is discussed in the context of potential signal enhancement at deep locations within a scattering medium where the effective speckle grain sizes approach the minimum values dictated by optical diffraction.
Collapse
|