1
|
Huet A, Mager T, Gossler C, Moser T. Toward Optogenetic Hearing Restoration. Annu Rev Neurosci 2024; 47:103-121. [PMID: 38594945 DOI: 10.1146/annurev-neuro-070623-103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The cochlear implant (CI) is considered the most successful neuroprosthesis as it enables speech comprehension in the majority of the million otherwise deaf patients. In hearing by electrical stimulation of the auditory nerve, the broad spread of current from each electrode acts as a bottleneck that limits the transfer of sound frequency information. Hence, there remains a major unmet medical need for improving the quality of hearing with CIs. Recently, optogenetic stimulation of the cochlea has been suggested as an alternative approach for hearing restoration. Cochlear optogenetics promises to transfer more sound frequency information, hence improving hearing, as light can conveniently be confined in space to activate the auditory nerve within smaller tonotopic ranges. In this review, we discuss the latest experimental and technological developments of optogenetic hearing restoration and outline remaining challenges en route to clinical translation.
Collapse
Affiliation(s)
- Antoine Huet
- Current affiliation: Institute for Neuroscience Montpellier, University of Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Science, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Thomas Mager
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Advanced Optogenes Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany;
| | - Christian Gossler
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany;
- Optics Modules Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany;
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Science, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| |
Collapse
|
2
|
Rogalla MM, Seibert A, Sleeboom JM, Hildebrandt KJ. Differential optogenetic activation of the auditory midbrain in freely moving behaving mice. Front Syst Neurosci 2023; 17:1222176. [PMID: 37719023 PMCID: PMC10501139 DOI: 10.3389/fnsys.2023.1222176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction In patients with severe auditory impairment, partial hearing restoration can be achieved by sensory prostheses for the electrical stimulation of the central nervous system. However, these state-of-the-art approaches suffer from limited spectral resolution: electrical field spread depends on the impedance of the surrounding medium, impeding spatially focused electrical stimulation in neural tissue. To overcome these limitations, optogenetic activation could be applied in such prostheses to achieve enhanced resolution through precise and differential stimulation of nearby neuronal ensembles. Previous experiments have provided a first proof for behavioral detectability of optogenetic activation in the rodent auditory system, but little is known about the generation of complex and behaviorally relevant sensory patterns involving differential activation. Methods In this study, we developed and behaviorally tested an optogenetic implant to excite two spatially separated points along the tonotopy of the murine inferior colliculus (ICc). Results Using a reward based operant Go/No-Go paradigm, we show that differential optogenetic activation of a sub-cortical sensory pathway is possible and efficient. We demonstrate how animals which were previously trained in a frequency discrimination paradigm (a) rapidly respond to either sound or optogenetic stimulation, (b) generally detect optogenetic stimulation of two different neuronal ensembles, and (c) discriminate between them. Discussion Our results demonstrate that optogenetic excitatory stimulation at different points of the ICc tonotopy elicits a stable response behavior over time periods of several months. With this study, we provide the first proof of principle for sub-cortical differential stimulation of sensory systems using complex artificial cues in freely moving animals.
Collapse
Affiliation(s)
- Meike M. Rogalla
- Department of Neuroscience, Division of Auditory Neuroscience, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
- Cluster of Excellence Hearing4all, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
| | - Adina Seibert
- Department of Neuroscience, Division of Auditory Neuroscience, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
| | - Jana M. Sleeboom
- Department of Neuroscience, Division of Auditory Neuroscience, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
| | - K. Jannis Hildebrandt
- Department of Neuroscience, Division of Auditory Neuroscience, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
- Cluster of Excellence Hearing4all, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
| |
Collapse
|
3
|
McGill M, Hight AE, Watanabe YL, Parthasarathy A, Cai D, Clayton K, Hancock KE, Takesian A, Kujawa SG, Polley DB. Neural signatures of auditory hypersensitivity following acoustic trauma. eLife 2022; 11:e80015. [PMID: 36111669 PMCID: PMC9555866 DOI: 10.7554/elife.80015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Neurons in sensory cortex exhibit a remarkable capacity to maintain stable firing rates despite large fluctuations in afferent activity levels. However, sudden peripheral deafferentation in adulthood can trigger an excessive, non-homeostatic cortical compensatory response that may underlie perceptual disorders including sensory hypersensitivity, phantom limb pain, and tinnitus. Here, we show that mice with noise-induced damage of the high-frequency cochlear base were behaviorally hypersensitive to spared mid-frequency tones and to direct optogenetic stimulation of auditory thalamocortical neurons. Chronic two-photon calcium imaging from ACtx pyramidal neurons (PyrNs) revealed an initial stage of spatially diffuse hyperactivity, hyper-correlation, and auditory hyperresponsivity that consolidated around deafferented map regions three or more days after acoustic trauma. Deafferented PyrN ensembles also displayed hypersensitive decoding of spared mid-frequency tones that mirrored behavioral hypersensitivity, suggesting that non-homeostatic regulation of cortical sound intensity coding following sensorineural loss may be an underlying source of auditory hypersensitivity. Excess cortical response gain after acoustic trauma was expressed heterogeneously among individual PyrNs, yet 40% of this variability could be accounted for by each cell's baseline response properties prior to acoustic trauma. PyrNs with initially high spontaneous activity and gradual monotonic intensity growth functions were more likely to exhibit non-homeostatic excess gain after acoustic trauma. This suggests that while cortical gain changes are triggered by reduced bottom-up afferent input, their subsequent stabilization is also shaped by their local circuit milieu, where indicators of reduced inhibition can presage pathological hyperactivity following sensorineural hearing loss.
Collapse
Affiliation(s)
- Matthew McGill
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Ariel E Hight
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Yurika L Watanabe
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
| | - Aravindakshan Parthasarathy
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Dongqin Cai
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Kameron Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Anne Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Sharon G Kujawa
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
4
|
Dynamic Impairment of Olfactory Behavior and Signaling Mediated by an Olfactory Corticofugal System. J Neurosci 2020; 40:7269-7285. [PMID: 32817250 DOI: 10.1523/jneurosci.2667-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 01/16/2023] Open
Abstract
Processing of olfactory information is modulated by centrifugal projections from cortical areas, yet their behavioral relevance and underlying neural mechanisms remain unclear in most cases. The anterior olfactory nucleus (AON) is part of the olfactory cortex, and its extensive connections to multiple upstream and downstream brain centers place it in a prime position to modulate early sensory information in the olfactory system. Here, we show that optogenetic activation of AON neurons in awake male and female mice was not perceived as an odorant equivalent cue. However, AON activation during odorant presentation reliably suppressed behavioral odor responses. This AON-mediated effect was fast and constant across odors and concentrations. Likewise, activation of glutamatergic AON projections to the olfactory bulb (OB) transiently inhibited the excitability of mitral/tufted cells (MTCs) that relay olfactory input to the cortex. Single-unit MTC recordings revealed that optogenetic activation of glutamatergic AON terminals in the OB transiently decreased sensory-evoked MTC spiking, regardless of the strength or polarity of the sensory response. The reduction in MTC firing during optogenetic stimulation was confirmed in recordings in awake mice. These findings suggest that glutamatergic AON projections to the OB impede early olfactory signaling by inhibiting OB output neurons, thereby dynamically gating sensory throughput to the cortex.SIGNIFICANCE STATEMENT The anterior olfactory nucleus (AON) as an olfactory information processing area sends extensive projections to multiple brain centers, but the behavioral consequences of its activation have been scarcely investigated. Using behavioral tests in combination with optogenetic manipulation, we show that, in contrast to what has been suggested previously, the AON does not seem to form odor percepts but instead suppresses behavioral odor responses across odorants and concentrations. Furthermore, this study shows that AON activation inhibits olfactory bulb output neurons in both anesthetized as well as awake mice, pointing to a potential mechanism by which the olfactory cortex can actively and dynamically gate sensory throughput to higher brain centers.
Collapse
|
5
|
Reiss LA. Cochlear implants and other inner ear prostheses: today and tomorrow. CURRENT OPINION IN PHYSIOLOGY 2020; 18:49-55. [PMID: 32905432 DOI: 10.1016/j.cophys.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cochlear implants (CIs) are implantable auditory prostheses designed to restore access to sound in deaf individuals via direct electrical stimulation of the auditory nerve. While CIs have been successful in restoring speech perception to many deaf patients, outcomes are variable and speech recognition in noise remains a problem. This chapter will review the factors underlying this variability, and discuss significant recent innovations to address these issues including neural health preservation, characterization, and regeneration, and other inner ear prostheses. The emerging role of central auditory plasticity will also be discussed. Together, these advances will point to the likely future directions for advancing the next generation of CIs and other inner ear prostheses.
Collapse
Affiliation(s)
- Lina Aj Reiss
- Oregon Health & Science University, Otolaryngology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mailcode NRC04, OHSU, Portland 97239, United States
| |
Collapse
|
6
|
Kozin ED, Brown MC, Lee DJ, Stankovic KM. Light-Based Neuronal Activation: The Future of Cranial Nerve Stimulation. Otolaryngol Clin North Am 2020; 53:171-183. [PMID: 31739905 DOI: 10.1016/j.otc.2019.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite advances in implant hardware, neuroprosthetic devices in otolaryngology have sustained evolutionary rather than revolutionary changes over the past half century. Although electrical stimulation has the capacity for facile activation of neurons and high temporal resolution, it has limited spatial selectivity. Alternative strategies for neuronal stimulation are being investigated to improve spatial resolution. In particular, light-based neuronal stimulation is a viable alternative and complement to electrical stimulation. This article provides a broad overview of light-based neuronal stimulation technologies. Specific examples of active research on light-based prostheses, including cochlear implants, auditory brainstem implants, retinal implants, and facial nerve implants, are reviewed.
Collapse
Affiliation(s)
- Elliott D Kozin
- Massachusetts Eye and Ear Infirmary and Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA.
| | - M Christian Brown
- Massachusetts Eye and Ear Infirmary and Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Daniel J Lee
- Massachusetts Eye and Ear Infirmary and Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Konstantina M Stankovic
- Massachusetts Eye and Ear Infirmary and Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| |
Collapse
|
7
|
Dieter A, Keppeler D, Moser T. Towards the optical cochlear implant: optogenetic approaches for hearing restoration. EMBO Mol Med 2020; 12:e11618. [PMID: 32227585 PMCID: PMC7136966 DOI: 10.15252/emmm.201911618] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/08/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Cochlear implants (CIs) are considered the most successful neuroprosthesis as they enable speech comprehension in the majority of half a million CI users suffering from sensorineural hearing loss. By electrically stimulating the auditory nerve, CIs constitute an interface re-connecting the brain and the auditory scene, providing the patient with information regarding the latter. However, since electric current is hard to focus in conductive environments such as the cochlea, the precision of electrical sound encoding-and thus quality of artificial hearing-is limited. Recently, optogenetic stimulation of the cochlea has been suggested as an alternative approach for hearing restoration. Cochlear optogenetics promises increased spectral selectivity of artificial sound encoding, hence improved hearing, as light can conveniently be confined in space to activate the auditory nerve within smaller tonotopic ranges. In this review, we discuss the latest experimental and technological developments of cochlear optogenetics and outline the remaining challenges on the way to clinical translation.
Collapse
Affiliation(s)
- Alexander Dieter
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Göttingen Graduate School for NeurosciencesBiophysics and Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Daniel Keppeler
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Optogenetics LaboratoryGerman Primate CenterGöttingenGermany
- Auditory Neuroscience GroupMax Planck Institute of Experimental MedicineGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
| |
Collapse
|
8
|
Jun NY, Cardin JA. Activation of Distinct Channelrhodopsin Variants Engages Different Patterns of Network Activity. eNeuro 2020; 7:ENEURO.0222-18.2019. [PMID: 31822522 PMCID: PMC6944482 DOI: 10.1523/eneuro.0222-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/25/2019] [Accepted: 12/01/2019] [Indexed: 11/21/2022] Open
Abstract
Several recently developed Channelrhodopsin (ChR) variants are characterized by rapid kinetics and reduced desensitization in comparison to the widely used ChR2. However, little is known about how varying opsin properties may regulate their interaction with local network dynamics. We compared evoked cortical activity in mice expressing three ChR variants with distinct temporal profiles under the CamKII promoter: Chronos, Chrimson, and ChR2. We assessed overall neural activation by measuring the amplitude and temporal progression of evoked spiking. Using γ-range (30-80 Hz) local field potential (LFP) power as an assay for local network engagement, we examined the recruitment of cortical network activity by each tool. All variants caused light-evoked increases in firing in vivo, but each demonstrated different temporal patterning of evoked activity. In addition, the three ChRs had distinct effects on cortical γ-band activity. Our findings suggest the properties of optogenetic tools can substantially affect their efficacy in vivo, as well their engagement of circuit resonance.
Collapse
Affiliation(s)
- Na Young Jun
- Department of Ophthalmology, Yale University, New Haven, CT 06520
| | - Jessica A Cardin
- Department of Neuroscience, Yale University, New Haven, CT 06520
- Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520
| |
Collapse
|
9
|
Targeted Cortical Manipulation of Auditory Perception. Neuron 2019; 104:1168-1179.e5. [PMID: 31727548 PMCID: PMC6926484 DOI: 10.1016/j.neuron.2019.09.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/25/2019] [Accepted: 09/24/2019] [Indexed: 11/27/2022]
Abstract
Driving perception by direct activation of neural ensembles in cortex is a necessary step for achieving a causal understanding of the neural code for auditory perception and developing central sensory rehabilitation methods. Here, using optogenetic manipulations during an auditory discrimination task in mice, we show that auditory cortex can be short-circuited by coarser pathways for simple sound identification. Yet when the sensory decision becomes more complex, involving temporal integration of information, auditory cortex activity is required for sound discrimination and targeted activation of specific cortical ensembles changes perceptual decisions, as predicted by our readout of the cortical code. Hence, auditory cortex representations contribute to sound discriminations by refining decisions from parallel routes. Auditory cortex is dispensable for discrimination of dissimilar pure tones in mice Auditory cortex is involved in a sound discrimination requiring temporal integration Focal cortical activations bias choices in cortex-dependent discriminations Discrimination is faster for pure tones than for optogenetic cortical activations
Collapse
|
10
|
Vila CH, Williamson RS, Hancock KE, Polley DB. Optimizing optogenetic stimulation protocols in auditory corticofugal neurons based on closed-loop spike feedback. J Neural Eng 2019; 16:066023. [PMID: 31394519 PMCID: PMC6956656 DOI: 10.1088/1741-2552/ab39cf] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Optogenetics provides a means to probe functional connections between brain areas. By activating a set of presynaptic neurons and recording the activity from a downstream brain area, one can establish the sign and strength of a feedforward connection. One challenge is that there are virtually limitless patterns that can be used to stimulate a presynaptic brain area. Functional influences on downstream brain areas can depend not just on whether presynaptic neurons were activated, but how they were activated. Corticofugal axons from the auditory cortex (ACtx) heavily innervate the auditory tectum, the inferior colliculus (IC). Here, we sought to determine whether different modes of corticocollicular activation could titrate the strength of feedforward modulation of sound processing in IC neurons. APPROACH We used multi-channel electrophysiology and optogenetics to record from multiple regions of the IC in awake head-fixed mice while optogenetically stimulating ACtx neurons expressing Chronos, an ultra-fast channelrhodopsin. To identify cortical activation patterns associated with the strongest effects on IC firing rates, we employed a closed-loop evolutionary optimization procedure that tailored the voltage command signal sent to the laser based on spike feedback from single IC neurons. MAIN RESULTS Within minutes, our evolutionary search procedure converged on ACtx stimulation configurations that produced more effective and widespread enhancement of IC unit activity than generic activation parameters. Cortical modulation of midbrain spiking was bi-directional, as the evolutionary search procedure could be programmed to converge on activation patterns that either suppressed or enhanced sound-evoked IC firing rate. SIGNIFICANCE This study introduces a closed-loop optimization procedure to probe functional connections between brain areas. Our findings demonstrate that the influence of descending feedback projections on subcortical sensory processing can vary both in sign and degree depending on how cortical neurons are activated in time.
Collapse
Affiliation(s)
- Charles-Henri Vila
- - Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA
- - Bertarelli Fellows Program, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ross S Williamson
- - Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA
- - Dept. Otolaryngology, Harvard Medical School, Boston MA 02114
| | - Kenneth E Hancock
- - Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA
- - Dept. Otolaryngology, Harvard Medical School, Boston MA 02114
| | - Daniel B Polley
- - Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA
- - Dept. Otolaryngology, Harvard Medical School, Boston MA 02114
| |
Collapse
|
11
|
Welling DB, Jackler RK. Reflections on the Last 25 Years of the American Otological Society and Thoughts on its Future. Otol Neurotol 2019. [PMID: 29533378 DOI: 10.1097/mao.0000000000001760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE To review contributions of the American Otological Society (AOS) over the most recent quarter century (1993-2018) and to comment on possible future evolution of the field during the quarter century to come. METHODS Retrospective review of selected topics from the AOS transactions, distinguished lectureships over the past 25 years, and selective reflection by the authors. Speculation on potential advances of the next quarter century derived from emerging topics in the current literature and foreseeable trends in science and technology are also proffered for consideration (and possible future ridicule). RESULTS Integration of multiple disciplines including bioengineering, medical imaging, genetics, molecular biology, physics, and evidence based medicine have substantially benefitted the practice of otology over the past quarter century. The impact of the contributions of members of the AOS in these developments cannot be over estimated. CONCLUSIONS Further scientific advancement will certainly accelerate change in the practice of otologic surgery and medicine over the coming decade in ways that will be marvelous to behold.
Collapse
Affiliation(s)
- D Bradley Welling
- Harvard Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Robert K Jackler
- Department of Otolaryngology Head and Neck Surgery, Stanford University, Stanford, California
| |
Collapse
|
12
|
Sorg K, Stahn P, Pillong L, Hinsberger MP, Heimann L, Foth HJ, Schick B, Wenzel GI. First biocompatibility margins for optical stimulation at the eardrum via 532-nm laser pulses in a mouse model. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-10. [PMID: 31436071 PMCID: PMC6983485 DOI: 10.1117/1.jbo.24.8.085003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Hearing impairment affects ∼460 million people worldwide. Conservative therapies, such as hearing aids, bone conduction systems, and middle ear implants, do not always sufficiently compensate for this deficit. The optical stimulation is currently under investigation as an alternative stimulation strategy for the activation of the hearing system. To assess the biocompatibility margins of this emerging technology, we established a method applicable in whole-mount preparations of murine tympanic membranes (TM). We irradiated the TM of anesthetized mice with 532-nm laser pulses at an average power of 50, 89, 99, and 125 mW at two different locations of the TM and monitored the hearing function with auditory brainstem responses. Laser-power-dependent negative side effects to the TM were observed at power levels exceeding 89 mW. Although we did not find any significant negative effects of optical stimulation on the hearing function in these mice, based on the histology results further studies are necessary for optimization of the used parameters.
Collapse
Affiliation(s)
- Katharina Sorg
- Saarland University, Department of Otolaryngology, Faculty of Medicine, Homburg, Germany
| | - Patricia Stahn
- Saarland University, Department of Otolaryngology, Faculty of Medicine, Homburg, Germany
| | - Lukas Pillong
- Saarland University, Department of Otolaryngology, Faculty of Medicine, Homburg, Germany
| | - Marius P. Hinsberger
- Saarland University, Department of Otolaryngology, Faculty of Medicine, Homburg, Germany
| | - Larissa Heimann
- Saarland University, Department of Otolaryngology, Faculty of Medicine, Homburg, Germany
| | - Hans-Jochen Foth
- University of Kaiserslautern, Department of Physics, Kaiserslautern, Germany
| | - Bernhard Schick
- Saarland University, Department of Otolaryngology, Faculty of Medicine, Homburg, Germany
| | - Gentiana I. Wenzel
- Saarland University, Department of Otolaryngology, Faculty of Medicine, Homburg, Germany
| |
Collapse
|
13
|
Dombrowski T, Rankovic V, Moser T. Toward the Optical Cochlear Implant. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033225. [PMID: 30323016 DOI: 10.1101/cshperspect.a033225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
When hearing fails, cochlear implants (CIs) provide open speech perception to most of the currently half a million CI users. CIs bypass the defective sensory organ and stimulate the auditory nerve electrically. The major bottleneck of current CIs is the poor coding of spectral information, which results from wide current spread from each electrode contact. As light can be more conveniently confined, optical stimulation of the auditory nerve presents a promising perspective for a fundamental advance of CIs. Moreover, given the improved frequency resolution of optical excitation and its versatility for arbitrary stimulation patterns the approach also bears potential for auditory research. Here, we review the current state of the art focusing on the emerging concept of optogenetic stimulation of the auditory pathway. Developing optogenetic stimulation for auditory research and future CIs requires efforts toward viral gene transfer to the neurons, design and characterization of appropriate optogenetic actuators, as well as engineering of multichannel optical implants.
Collapse
Affiliation(s)
- Tobias Dombrowski
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center, 37075 Göttingen, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Ruhr University Bochum, St. Elisabeth Hospital, 44787 Bochum, Germany
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center, 37075 Göttingen, Germany.,Auditory Neuroscience and Optogenetics Group, German Primate Center, 37077 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center, 37075 Göttingen, Germany.,Auditory Neuroscience and Optogenetics Group, German Primate Center, 37077 Göttingen, Germany.,Auditory Neuroscience Group, Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|
14
|
Williams JJ, Watson AM, Vazquez AL, Schwartz AB. Viral-Mediated Optogenetic Stimulation of Peripheral Motor Nerves in Non-human Primates. Front Neurosci 2019; 13:759. [PMID: 31417342 PMCID: PMC6684788 DOI: 10.3389/fnins.2019.00759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: Reanimation of muscles paralyzed by disease states such as spinal cord injury remains a highly sought therapeutic goal of neuroprosthetic research. Optogenetic stimulation of peripheral motor nerves expressing light-sensitive opsins is a promising approach to muscle reanimation that may overcome several drawbacks of traditional methods such as functional electrical stimulation (FES). However, the utility of these methods has only been demonstrated in rodents to date, while translation to clinical practice will likely first require demonstration and refinement of these gene therapy techniques in non-human primates. Approach: Three rhesus macaques were injected intramuscularly with either one or both of two optogenetic constructs (AAV6-hSyn-ChR2-eYFP and/or AAV6-hSyn-Chronos-eYFP) to transduce opsin expression in the corresponding nerves. Neuromuscular junctions were targeted for virus delivery using an electrical stimulating injection technique. Functional opsin expression was periodically evaluated up to 13 weeks post-injection by optically stimulating targeted nerves with a 472 nm fiber-coupled laser while recording electromyographic (EMG) responses. Main Results: One monkey demonstrated functional expression of ChR2 at 8 weeks post-injection in each of two injected muscles, while the second monkey briefly exhibited contractions coupled to optical stimulation in a muscle injected with the Chronos construct at 10 weeks. A third monkey injected only in one muscle with the ChR2 construct showed strong optically coupled contractions at 5 ½ weeks which then disappeared by 9 weeks. EMG responses to optical stimulation of ChR2-transduced nerves demonstrated graded recruitment relative to both stimulus pulse-width and light intensity, and followed stimulus trains up to 16 Hz. In addition, the EMG response to prolonged stimulation showed delayed fatigue over several minutes. Significance: These results demonstrate the feasibility of viral transduction of peripheral motor nerves for functional optical stimulation of motor activity in non-human primates, a variable timeline of opsin expression in a animal model closer to humans, and fundamental EMG response characteristics to optical nerve stimulation. Together, they represent an important step in translating these optogenetic techniques as a clinically viable gene therapy.
Collapse
Affiliation(s)
- Jordan J. Williams
- Department of Neurobiology, Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alan M. Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto L. Vazquez
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew B. Schwartz
- Department of Neurobiology, Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Stahn P, Lim HH, Hinsberger MP, Sorg K, Pillong L, Kannengießer M, Schreiter C, Foth HJ, Langenbucher A, Schick B, Wenzel GI. Frequency-specific activation of the peripheral auditory system using optoacoustic laser stimulation. Sci Rep 2019; 9:4171. [PMID: 30862850 PMCID: PMC6414650 DOI: 10.1038/s41598-019-40860-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/22/2019] [Indexed: 11/09/2022] Open
Abstract
Hearing impairment is one of the most common sensory deficits in humans. Hearing aids are helpful to patients but can have poor sound quality or transmission due to insufficient output or acoustic feedback, such as for high frequencies. Implantable devices partially overcome these issues but require surgery with limited locations for device attachment. Here, we investigate a new optoacoustic approach to vibrate the hearing organ with laser stimulation to improve frequency bandwidth, not requiring attachment to specific vibratory structures, and potentially reduce acoustic feedback. We developed a laser pulse modulation strategy and simulated its response at the umbo (1-10 kHz) based on a convolution-based model. We achieved frequency-specific activation in which non-contact laser stimulation of the umbo, as well as within the middle ear at the round window and otic capsule, induced precise shifts in the maximal vibratory response of the umbo and neural activation within the inferior colliculus of guinea pigs, corresponding to the targeted, modelled and then stimulated frequency. There was also no acoustic feedback detected from laser stimulation with our experimental setup. These findings open up the potential for using a convolution-based optoacoustic approach as a new type of laser hearing aid or middle ear implant.
Collapse
Affiliation(s)
- Patricia Stahn
- Saarland University, Faculty of Medicine, Department of Otolaryngology, Kirrbergerstr. 100, 66421, Homburg, Germany.
| | - Hubert H Lim
- University of Minnesota, Department of Biomedical Engineering, Department of Otolaryngology, Minnesota, USA
| | - Marius P Hinsberger
- Saarland University, Faculty of Medicine, Department of Otolaryngology, Kirrbergerstr. 100, 66421, Homburg, Germany
| | - Katharina Sorg
- Saarland University, Faculty of Medicine, Department of Otolaryngology, Kirrbergerstr. 100, 66421, Homburg, Germany
| | - Lukas Pillong
- Saarland University, Faculty of Medicine, Department of Otolaryngology, Kirrbergerstr. 100, 66421, Homburg, Germany
| | - Marc Kannengießer
- Saarland University, Faculty of Medicine, Department of Otolaryngology, Kirrbergerstr. 100, 66421, Homburg, Germany
- Saarland University, Experimental Ophthalmology, Homburg, Germany
| | - Cathleen Schreiter
- Saarland University, Faculty of Medicine, Department of Otolaryngology, Kirrbergerstr. 100, 66421, Homburg, Germany
| | - Hans-Jochen Foth
- Technische Universität Kaiserslautern, Department of Physics, Kaiserslautern, Germany
| | | | - Bernhard Schick
- Saarland University, Faculty of Medicine, Department of Otolaryngology, Kirrbergerstr. 100, 66421, Homburg, Germany
| | - Gentiana I Wenzel
- Saarland University, Faculty of Medicine, Department of Otolaryngology, Kirrbergerstr. 100, 66421, Homburg, Germany.
| |
Collapse
|
16
|
Wong K, Kozin ED, Kanumuri VV, Vachicouras N, Miller J, Lacour S, Brown MC, Lee DJ. Auditory Brainstem Implants: Recent Progress and Future Perspectives. Front Neurosci 2019; 13:10. [PMID: 30760974 PMCID: PMC6361749 DOI: 10.3389/fnins.2019.00010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
The auditory brainstem implant (ABI) was first developed nearly 40 years ago and provides auditory rehabilitation to patients who are deaf and ineligible for cochlear implant surgery due to abnormalities of the cochlea and cochlear nerve. The aims of the following review are to describe the history of the ABI and innovations leading up to the modern ABI system, as well as highlight areas of future development in implant design.
Collapse
Affiliation(s)
- Kevin Wong
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elliott D Kozin
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, United States
| | - Vivek V Kanumuri
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, United States
| | - Nicolas Vachicouras
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jonathan Miller
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Stéphanie Lacour
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - M Christian Brown
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, United States
| | - Daniel J Lee
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Ronzitti E, Zampini V, Emiliani V. Optimized Chronos sets the clock for optogenetic hearing restoration. EMBO J 2018; 37:embj.2018101103. [PMID: 30509969 DOI: 10.15252/embj.2018101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Emiliano Ronzitti
- Institut de la Vision, Inserm S968, CNRS UMR7210, Sorbonne University, Paris, France
| | - Valeria Zampini
- Institut de la Vision, Inserm S968, CNRS UMR7210, Sorbonne University, Paris, France
| | - Valentina Emiliani
- Institut de la Vision, Inserm S968, CNRS UMR7210, Sorbonne University, Paris, France
| |
Collapse
|
18
|
Keppeler D, Merino RM, Lopez de la Morena D, Bali B, Huet AT, Gehrt A, Wrobel C, Subramanian S, Dombrowski T, Wolf F, Rankovic V, Neef A, Moser T. Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos. EMBO J 2018; 37:embj.201899649. [PMID: 30396994 DOI: 10.15252/embj.201899649] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
Optogenetic tools, providing non-invasive control over selected cells, have the potential to revolutionize sensory prostheses for humans. Optogenetic stimulation of spiral ganglion neurons (SGNs) in the ear provides a future alternative to electrical stimulation used in cochlear implants. However, most channelrhodopsins do not support the high temporal fidelity pertinent to auditory coding because they require milliseconds to close after light-off. Here, we biophysically characterized the fast channelrhodopsin Chronos and revealed a deactivation time constant of less than a millisecond at body temperature. In order to enhance neural expression, we improved its trafficking to the plasma membrane (Chronos-ES/TS). Following efficient transduction of SGNs using early postnatal injection of the adeno-associated virus AAV-PHPB into the mouse cochlea, fiber-based optical stimulation elicited optical auditory brainstem responses (oABR) with minimal latencies of 1 ms, thresholds of 5 μJ and 100 μs per pulse, and sizable amplitudes even at 1,000 Hz of stimulation. Recordings from single SGNs demonstrated good temporal precision of light-evoked spiking. In conclusion, efficient virus-mediated expression of targeting-optimized Chronos-ES/TS achieves ultrafast optogenetic control of neurons.
Collapse
Affiliation(s)
- Daniel Keppeler
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Ricardo Martins Merino
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Biophysics of Neural Computation Group, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,Neurophysics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - David Lopez de la Morena
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Burak Bali
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Restorative Cochlear Genomics Group, German Primate Center, Göttingen, Germany
| | - Antoine Tarquin Huet
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Biophysics of Neural Computation Group, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Anna Gehrt
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Christian Wrobel
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Swati Subramanian
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Tobias Dombrowski
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Neurophysics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Bernstein Center for Computational Neuroscience, Göttingen, Germany.,Campus Institute for Dynamics of Biological Networks, Göttingen, Germany
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany .,Restorative Cochlear Genomics Group, German Primate Center, Göttingen, Germany
| | - Andreas Neef
- Biophysics of Neural Computation Group, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany .,Neurophysics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Campus Institute for Dynamics of Biological Networks, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany .,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Biophysics of Neural Computation Group, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| |
Collapse
|
19
|
Kuchibhotla K, Bathellier B. Neural encoding of sensory and behavioral complexity in the auditory cortex. Curr Opin Neurobiol 2018; 52:65-71. [PMID: 29709885 DOI: 10.1016/j.conb.2018.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/01/2018] [Accepted: 04/07/2018] [Indexed: 01/07/2023]
Abstract
Converging evidence now supports the idea that auditory cortex is an important step for the emergence of auditory percepts. Recent studies have extended the list of complex, nonlinear sound features coded by cortical neurons. Moreover, we are beginning to uncover general properties of cortical representations, such as invariance and discreteness, which reflect the structure of auditory perception. Complexity, however, emerges not only through nonlinear shaping of auditory information into perceptual bricks. Behavioral context and task-related information strongly influence cortical encoding of sounds via ascending neuromodulation and descending top-down frontal control. These effects appear to be mediated through local inhibitory networks. Thus, auditory cortex can be seen as a hub linking structured sensory representations with behavioral variables.
Collapse
Affiliation(s)
- Kishore Kuchibhotla
- Department of Psychological and Brain Sciences, Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, United States; Laboratoire de Neurosciences Cognitives, INSERM U960, École Normale Supérieure - PSL Research University, Paris, France
| | - Brice Bathellier
- Unité de Neuroscience, Information et Complexité (UNIC), FRE 3693, Centre National de la Recherche Scientifique and Paris-Saclay University, Gif-sur-Yvette, 91198, France.
| |
Collapse
|
20
|
Saran S, Gupta N, Roy S. Theoretical analysis of low-power fast optogenetic control of firing of Chronos-expressing neurons. NEUROPHOTONICS 2018; 5:025009. [PMID: 29845088 PMCID: PMC5966744 DOI: 10.1117/1.nph.5.2.025009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/11/2018] [Indexed: 05/15/2023]
Abstract
A detailed theoretical analysis of low-power, fast optogenetic control of firing of Chronos-expressing neurons has been presented. A three-state model for the Chronos photocycle has been formulated and incorporated in a fast-spiking interneuron circuit model. The effect of excitation wavelength, pulse irradiance, pulse width, and pulse frequency has been studied in detail and compared with ChR2. Theoretical simulations are in excellent agreement with recently reported experimental results and bring out additional interesting features. At very low irradiances ([Formula: see text]), the plateau current in Chronos exhibits a maximum. At [Formula: see text], the plateau current is 2 orders of magnitude smaller and saturates at longer pulse widths ([Formula: see text]) compared to ChR2 ([Formula: see text]). [Formula: see text] in Chronos saturates at much shorter pulse widths (1775 pA at 1.5 ms and [Formula: see text]) than in ChR2. Spiking fidelity is also higher at lower irradiances and longer pulse widths compared to ChR2. Chronos exhibits an average maximal driven rate of over [Formula: see text] in response to [Formula: see text] stimuli, each of 1-ms pulse-width, in the intensity range 0 to [Formula: see text]. The analysis is important to not only understand the photodynamics of Chronos and Chronos-expressing neurons but also to design opsins with optimized properties and perform precision experiments with required spatiotemporal resolution.
Collapse
Affiliation(s)
- Sant Saran
- Dayalbagh Educational Institute, Department of Electrical Engineering, Agra, Uttar Pradesh, India
| | - Neha Gupta
- Dayalbagh Educational Institute, Department of Physics and Computer Science, Agra, Uttar Pradesh, India
| | - Sukhdev Roy
- Dayalbagh Educational Institute, Department of Physics and Computer Science, Agra, Uttar Pradesh, India
- Address all correspondence to: Sukhdev Roy, E-mail:
| |
Collapse
|
21
|
Blackwell JM, Geffen MN. Progress and challenges for understanding the function of cortical microcircuits in auditory processing. Nat Commun 2017; 8:2165. [PMID: 29255268 PMCID: PMC5735136 DOI: 10.1038/s41467-017-01755-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
An important outstanding question in auditory neuroscience is to identify the mechanisms by which specific motifs within inter-connected neural circuits affect auditory processing and, ultimately, behavior. In the auditory cortex, a combination of large-scale electrophysiological recordings and concurrent optogenetic manipulations are improving our understanding of the role of inhibitory–excitatory interactions. At the same time, computational approaches have grown to incorporate diverse neuronal types and connectivity patterns. However, we are still far from understanding how cortical microcircuits encode and transmit information about complex acoustic scenes. In this review, we focus on recent results identifying the special function of different cortical neurons in the auditory cortex and discuss a computational framework for future work that incorporates ideas from network science and network dynamics toward the coding of complex auditory scenes. Advances in multi-neuron recordings and optogenetic manipulation have resulted in an interrogation of the function of specific cortical cell types in auditory cortex during sound processing. Here, the authors review this literature and discuss the merits of integrating computational approaches from dynamic network science.
Collapse
Affiliation(s)
- Jennifer M Blackwell
- Department of Otorhinolaryngology: HNS, Department of Neuroscience, Neuroscience Graduate Group, Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria N Geffen
- Department of Otorhinolaryngology: HNS, Department of Neuroscience, Neuroscience Graduate Group, Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Guo W, Clause AR, Barth-Maron A, Polley DB. A Corticothalamic Circuit for Dynamic Switching between Feature Detection and Discrimination. Neuron 2017; 95:180-194.e5. [PMID: 28625486 PMCID: PMC5568886 DOI: 10.1016/j.neuron.2017.05.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/03/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023]
Abstract
Sensory processing must be sensitive enough to encode faint signals near the noise floor but selective enough to differentiate between similar stimuli. Here we describe a layer 6 corticothalamic (L6 CT) circuit in the mouse auditory forebrain that alternately biases sound processing toward hypersensitivity and improved behavioral sound detection or dampened excitability and enhanced sound discrimination. Optogenetic activation of L6 CT neurons could increase or decrease the gain and tuning precision in the thalamus and all layers of the cortical column, depending on the timing between L6 CT activation and sensory stimulation. The direction of neural and perceptual modulation - enhanced detection at the expense of discrimination or vice versa - arose from the interaction of L6 CT neurons and subnetworks of fast-spiking inhibitory neurons that reset the phase of low-frequency cortical rhythms. These findings suggest that L6 CT neurons contribute to the resolution of the competing demands of detection and discrimination.
Collapse
Affiliation(s)
- Wei Guo
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA 02215, USA
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Asa Barth-Maron
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
23
|
Weiss RS, Voss A, Hemmert W. Optogenetic stimulation of the cochlea-A review of mechanisms, measurements, and first models. NETWORK (BRISTOL, ENGLAND) 2016; 27:212-236. [PMID: 27644125 DOI: 10.1080/0954898x.2016.1224944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This review evaluates the potential of optogenetic methods for the stimulation of the auditory nerve and assesses the feasability of optogenetic cochlear implants (CIs). It provides an overview of all critical steps like opsin targeting strategies, how opsins work, how their function can be modeled and included in neuronal models and the properties of light sources available for optical stimulation. From these foundations, quantitative estimates for the number of independent stimulation channels and the temporal precision of optogenetic stimulation of the auditory nerve are derived and compared with state-of-the-art electrical CIs. We conclude that optogenetic CIs have the potential to increase the number of independent stimulation channels by up to one order of magnitude to about 100, but only if light sources are able to deliver confined illumination patterns independently and parallelly. Already now, opsin variants like ChETA and Chronos enable driving of the auditory nerve up to rates of 200 spikes/s, close to the physiological value of their maximum sustained firing rate. Apart from requiring 10 times more energy than electrical stimulation, optical CIs still face major hurdles concerning the safety of gene transfection and optrode array implantation, for example, before becoming an option to replace electrical CIs.
Collapse
Affiliation(s)
- Robin S Weiss
- a Bio-Inspired Information Processing, Faculty of Electrical and Computer Engineering , Technical University of Munich , Garching , Germany
| | - Andrej Voss
- a Bio-Inspired Information Processing, Faculty of Electrical and Computer Engineering , Technical University of Munich , Garching , Germany
| | - Werner Hemmert
- a Bio-Inspired Information Processing, Faculty of Electrical and Computer Engineering , Technical University of Munich , Garching , Germany
| |
Collapse
|
24
|
Abstract
Auditory brainstem implants (ABIs) provide auditory perception in patients with profound hearing loss who are not candidates for the cochlear implant (CI) because of anatomic constraints or failed CI surgery. Herein, the authors discuss (1) preoperative evaluation of pediatric ABI candidates, (2) surgical approaches, and (3) contemporary ABI devices and their use in the pediatric population. The authors also review the surgical and audiologic outcomes following pediatric ABI surgery. The authors' institutional experience and the nearly 200 cases performed in Europe and the United States indicate that ABI surgery in children can be safe and effective.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA; Department of Otology and Laryngology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Daniel J Lee
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA; Department of Otology and Laryngology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Hass CA, Glickfeld LL. High-fidelity optical excitation of cortico-cortical projections at physiological frequencies. J Neurophysiol 2016; 116:2056-2066. [PMID: 27489370 DOI: 10.1152/jn.00456.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/02/2016] [Indexed: 11/22/2022] Open
Abstract
Optogenetic activation of axons is a powerful approach for determining the synaptic properties and impact of long-range projections both in vivo and in vitro. However, because of the difficulty of measuring activity in axons, our knowledge of the reliability of optogenetic axonal stimulation has relied on data from somatic recordings. Yet, there are many reasons why activation of axons may not be comparable to cell bodies. Thus we have developed an approach to more directly assess the fidelity of optogenetic activation of axonal projections. We expressed opsins (ChR2, Chronos, or oChIEF) in the mouse primary visual cortex (V1) and recorded extracellular, pharmacologically isolated presynaptic action potentials in response to axonal activation in the higher visual areas. Repetitive stimulation of axons with ChR2 resulted in a 70% reduction in the fiber volley amplitude and a 60% increase in the latency at all frequencies tested (10-40 Hz). Thus ChR2 cannot reliably recruit axons during repetitive stimulation, even at frequencies that are reliable for somatic stimulation, likely due to pronounced channel inactivation at the high light powers required to evoke action potentials. By comparison, oChIEF and Chronos evoked photocurrents that inactivated minimally and could produce reliable axon stimulation at frequencies up to 60 Hz. Our approach provides a more direct and accurate evaluation of the efficacy of new optogenetic tools and has identified Chronos and oChIEF as viable tools to interrogate the synaptic and circuit function of long-range projections.
Collapse
Affiliation(s)
- Charles A Hass
- Department of Neurobiology, Duke University, Durham, North Carolina
| | | |
Collapse
|
26
|
MacDougall M, Nummela SU, Coop S, Disney A, Mitchell JF, Miller CT. Optogenetic manipulation of neural circuits in awake marmosets. J Neurophysiol 2016; 116:1286-94. [PMID: 27334951 DOI: 10.1152/jn.00197.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/21/2016] [Indexed: 11/22/2022] Open
Abstract
Optogenetics has revolutionized the study of functional neuronal circuitry (Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Nat Neurosci 8: 1263-1268, 2005; Deisseroth K. Nat Methods 8: 26-29, 2011). Although these techniques have been most successfully implemented in rodent models, they have the potential to be similarly impactful in studies of nonhuman primate brains. Common marmosets (Callithrix jacchus) have recently emerged as a candidate primate model for gene editing, providing a potentially powerful model for studies of neural circuitry and disease in primates. The application of viral transduction methods in marmosets for identifying and manipulating neuronal circuitry is a crucial step in developing this species for neuroscience research. In the present study we developed a novel, chronic method to successfully induce rapid photostimulation in individual cortical neurons transduced by adeno-associated virus to express channelrhodopsin (ChR2) in awake marmosets. We found that large proportions of neurons could be effectively photoactivated following viral transduction and that this procedure could be repeated for several months. These data suggest that techniques for viral transduction and optical manipulation of neuronal populations are suitable for marmosets and can be combined with existing behavioral preparations in the species to elucidate the functional neural circuitry underlying perceptual and cognitive processes.
Collapse
Affiliation(s)
- Matthew MacDougall
- Department of Neurosurgery, University of California, San Diego, La Jolla, California; Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California
| | - Samuel U Nummela
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California
| | - Shanna Coop
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California
| | - Anita Disney
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Jude F Mitchell
- Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, California; Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California; Neurosciences Graduate Program, University of California, San Diego, La Jolla, California; Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, California;
| |
Collapse
|
27
|
King J, Shehu I, Roland JT, Svirsky MA, Froemke RC. A physiological and behavioral system for hearing restoration with cochlear implants. J Neurophysiol 2016; 116:844-58. [PMID: 27281743 DOI: 10.1152/jn.00048.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022] Open
Abstract
Cochlear implants are neuroprosthetic devices that provide hearing to deaf patients, although outcomes are highly variable even with prolonged training and use. The central auditory system must process cochlear implant signals, but it is unclear how neural circuits adapt-or fail to adapt-to such inputs. The knowledge of these mechanisms is required for development of next-generation neuroprosthetics that interface with existing neural circuits and enable synaptic plasticity to improve perceptual outcomes. Here, we describe a new system for cochlear implant insertion, stimulation, and behavioral training in rats. Animals were first ensured to have significant hearing loss via physiological and behavioral criteria. We developed a surgical approach for multichannel (2- or 8-channel) array insertion, comparable with implantation procedures and depth in humans. Peripheral and cortical responses to stimulation were used to program the implant objectively. Animals fitted with implants learned to use them for an auditory-dependent task that assesses frequency detection and recognition in a background of environmentally and self-generated noise and ceased responding appropriately to sounds when the implant was temporarily inactivated. This physiologically calibrated and behaviorally validated system provides a powerful opportunity to study the neural basis of neuroprosthetic device use and plasticity.
Collapse
Affiliation(s)
- Julia King
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York; Neuroscience Institute, New York University School of Medicine, New York, New York; Department of Otolaryngology, New York University School of Medicine, New York, New York; Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| | - Ina Shehu
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York; Department of Otolaryngology, New York University School of Medicine, New York, New York; Department of Biology, Hunter College, New York, New York; and
| | - J Thomas Roland
- Department of Otolaryngology, New York University School of Medicine, New York, New York
| | - Mario A Svirsky
- Neuroscience Institute, New York University School of Medicine, New York, New York; Department of Otolaryngology, New York University School of Medicine, New York, New York; Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York; Center for Neural Science, New York University, New York, New York. *, co-senior authors
| | - Robert C Froemke
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York; Neuroscience Institute, New York University School of Medicine, New York, New York; Department of Otolaryngology, New York University School of Medicine, New York, New York; Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York; Center for Neural Science, New York University, New York, New York. *, co-senior authors.
| |
Collapse
|
28
|
Pages DS, Ross DA, Puñal VM, Agashe S, Dweck I, Mueller J, Grill WM, Wilson BS, Groh JM. Effects of Electrical Stimulation in the Inferior Colliculus on Frequency Discrimination by Rhesus Monkeys and Implications for the Auditory Midbrain Implant. J Neurosci 2016; 36:5071-83. [PMID: 27147659 PMCID: PMC4854969 DOI: 10.1523/jneurosci.3540-15.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 μA, 100-300 Hz, n = 172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals' judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site compared with the reference frequency used in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site's response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency-tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated, and to provide a greater range of evoked percepts. SIGNIFICANCE STATEMENT Patients with hearing loss stemming from causes that interrupt the auditory pathway after the cochlea need a brain prosthetic to restore hearing. Recently, prosthetic stimulation in the human inferior colliculus (IC) was evaluated in a clinical trial. Thus far, speech understanding was limited for the subjects and this limitation is thought to be partly due to challenges in harnessing the sound frequency representation in the IC. Here, we tested the effects of IC stimulation in monkeys trained to report the sound frequencies they heard. Our results indicate that the IC can be used to introduce a range of frequency percepts and suggest that placement of a greater number of electrode contacts may improve the effectiveness of such implants.
Collapse
Affiliation(s)
- Daniel S Pages
- Department of Psychology and Neuroscience, Center for Cognitive Neuroscience,
| | | | | | | | | | - Jerel Mueller
- Department of Biomedical Engineering, and School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | | | - Blake S Wilson
- Schools of Medicine and Engineering, Duke University, Durham, North Carolina 27708, and
| | - Jennifer M Groh
- Department of Psychology and Neuroscience, Center for Cognitive Neuroscience, Department of Neurobiology,
| |
Collapse
|
29
|
Central Gain Restores Auditory Processing following Near-Complete Cochlear Denervation. Neuron 2016; 89:867-79. [PMID: 26833137 DOI: 10.1016/j.neuron.2015.12.041] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/05/2015] [Accepted: 12/16/2015] [Indexed: 11/23/2022]
Abstract
Sensory organ damage induces a host of cellular and physiological changes in the periphery and the brain. Here, we show that some aspects of auditory processing recover after profound cochlear denervation due to a progressive, compensatory plasticity at higher stages of the central auditory pathway. Lesioning >95% of cochlear nerve afferent synapses, while sparing hair cells, in adult mice virtually eliminated the auditory brainstem response and acoustic startle reflex, yet tone detection behavior was nearly normal. As sound-evoked responses from the auditory nerve grew progressively weaker following denervation, sound-evoked activity in the cortex-and, to a lesser extent, the midbrain-rebounded or surpassed control levels. Increased central gain supported the recovery of rudimentary sound features encoded by firing rate, but not features encoded by precise spike timing such as modulated noise or speech. These findings underscore the importance of central plasticity in the perceptual sequelae of cochlear hearing impairment.
Collapse
|