1
|
Liu Y, Li C, Freites JA, Tobias DJ, Voth GA. Quantitative insights into the mechanism of proton conduction and selectivity for the human voltage-gated proton channel Hv1. Proc Natl Acad Sci U S A 2024; 121:e2407479121. [PMID: 39259593 PMCID: PMC11420211 DOI: 10.1073/pnas.2407479121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Human voltage-gated proton (hHv1) channels are crucial for regulating essential biological processes such as immune cell respiratory burst, sperm capacitation, and cancer cell migration. Despite the significant concentration difference between protons and other ions in physiological conditions, hHv1 demonstrates remarkable proton selectivity. Our calculations of single-proton, cation, and anion permeation free energy profiles quantitatively demonstrate that the proton selectivity of the wild-type channel originates from its strong proton affinity via the titration of the key residues D112 and D174, although the channel imposes similar kinetic blocking effects for protons compared to other ions. A two-proton knock-on model is proposed to mathematically explain the electrophysiological measurements of the pH-dependent proton conductance in the conductive state. Moreover, it is shown that the anion selectivity of the D112N mutant channel is tied to impaired proton transport and substantial anion leakage.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL 60637
| | - Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL 60637
| | | | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL 60637
| |
Collapse
|
2
|
DeCoursey TE. Transcendent Aspects of Proton Channels. Annu Rev Physiol 2024; 86:357-377. [PMID: 37931166 PMCID: PMC10938948 DOI: 10.1146/annurev-physiol-042222-023242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A handful of biological proton-selective ion channels exist. Some open at positive or negative membrane potentials, others open at low or high pH, and some are light activated. This review focuses on common features that result from the unique properties of protons. Proton conduction through water or proteins differs qualitatively from that of all other ions. Extraordinary proton selectivity is needed to ensure that protons permeate and other ions do not. Proton selectivity arises from a proton pathway comprising a hydrogen-bonded chain that typically includes at least one titratable amino acid side chain. The enormously diverse functions of proton channels in disparate regions of the phylogenetic tree can be summarized by considering the chemical and electrical consequences of proton flux across membranes. This review discusses examples of cells in which proton efflux serves to increase pHi, decrease pHo, control the membrane potential, generate action potentials, or compensate transmembrane movement of electrical charge.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois, USA;
| |
Collapse
|
3
|
Lazaridis T. Proton Paths in Models of the Hv1 Proton Channel. J Phys Chem B 2023; 127:7937-7945. [PMID: 37695850 DOI: 10.1021/acs.jpcb.3c03960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The voltage-gated proton channel (Hv1) plays an essential role in numerous biological processes, but a detailed molecular understanding of its function is lacking. The lack of reliable structures for the open and resting states is a major handicap. Several models have been built based on homologous voltage sensors and the structure of a chimera between the mouse homologue and a phosphatase voltage sensor, but their validity is uncertain. In addition, differing views exist regarding the mode of proton translocation, the role of specific residues, and the mechanism of pH effects on voltage gating. Here we use classical proton hopping simulations under a voltage biasing force to evaluate some of the proposed structural models and explore the mechanism of proton conduction. Paradoxically, some models proposed for the closed state allow for proton permeation more easily than models for the open state. An open state model with a D112-R211 salt bridge (R3D) allows proton transport more easily than models with a D112-R208 salt bridge (R2D). However, its permeation rate seems too high, considering experimental conductances. In all cases, the proton permeates through a water wire, bypassing the salt-bridged D112 rather than being shuttled by D112. Attempts to protonate D112 are rejected due to its strong interaction with an arginine. Consistent with proton selectivity, no Na+ permeation was observed in the R2D models. As a negative control, simulations with the Kv1.2-Kv2.1 paddle-chimera voltage sensor, which is not expected to conduct protons, did not show proton permeation under the same conditions. Hydrogen bond connectivity graphs show a constriction at D112, but cannot discriminate between open and closed states.
Collapse
Affiliation(s)
- Themis Lazaridis
- Department of Chemistry, City College of New York/CUNY, 160 Convent Avenue, New York, New York 10031, United States
- Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
4
|
Chaves G, Jardin C, Derst C, Musset B. Voltage-Gated Proton Channels in the Tree of Life. Biomolecules 2023; 13:1035. [PMID: 37509071 PMCID: PMC10377628 DOI: 10.3390/biom13071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
With a single gene encoding HV1 channel, proton channel diversity is particularly low in mammals compared to other members of the superfamily of voltage-gated ion channels. Nonetheless, mammalian HV1 channels are expressed in many different tissues and cell types where they exert various functions. In the first part of this review, we regard novel aspects of the functional expression of HV1 channels in mammals by differentially comparing their involvement in (1) close conjunction with the NADPH oxidase complex responsible for the respiratory burst of phagocytes, and (2) in respiratory burst independent functions such as pH homeostasis or acid extrusion. In the second part, we dissect expression of HV channels within the eukaryotic tree of life, revealing the immense diversity of the channel in other phylae, such as mollusks or dinoflagellates, where several genes encoding HV channels can be found within a single species. In the last part, a comprehensive overview of the biophysical properties of a set of twenty different HV channels characterized electrophysiologically, from Mammalia to unicellular protists, is given.
Collapse
Affiliation(s)
- Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christophe Jardin
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christian Derst
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
- Center of Physiology, Pathophysiology and Biophysics, The Salzburg Location, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
5
|
Boytsov D, Brescia S, Chaves G, Koefler S, Hannesschlaeger C, Siligan C, Goessweiner-Mohr N, Musset B, Pohl P. Trapped Pore Waters in the Open Proton Channel H V 1. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205968. [PMID: 36683221 DOI: 10.1002/smll.202205968] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The voltage-gated proton channel, HV 1, is crucial for innate immune responses. According to alternative hypotheses, protons either hop on top of an uninterrupted water wire or bypass titratable amino acids, interrupting the water wire halfway across the membrane. To distinguish between both hypotheses, the water mobility for the putative case of an uninterrupted wire is estimated. The predicted single-channel water permeability 2.3 × 10-12 cm3 s-1 reflects the permeability-governing number of hydrogen bonds between water molecules in single-file configuration and pore residues. However, the measured unitary water permeability does not confirm the predicted value. Osmotic deflation of reconstituted lipid vesicles reveals negligible water permeability of the HV 1 wild-type channel and the D174A mutant open at 0 mV. The conductance of 1400 H+ s-1 per wild-type channel agrees with the calculated diffusion limit for a ≈2 Å capture radius for protons. Removal of a charged amino acid (D174) at the pore mouth decreases H+ conductance by reducing the capture radius. At least one intervening amino acid contributes to H+ conductance while interrupting the water wire across the membrane.
Collapse
Affiliation(s)
- Danila Boytsov
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | - Stefania Brescia
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | - Gustavo Chaves
- Institute of Physiology, Pathophysiology and Biophysics, CPPB, Paracelsus Medical University, 90419, Nuremberg, Germany
| | - Sabina Koefler
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | | | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | | | - Boris Musset
- Institute of Physiology, Pathophysiology and Biophysics, CPPB, Paracelsus Medical University, 90419, Nuremberg, Germany
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| |
Collapse
|
6
|
Nikolova V, Kircheva N, Dobrev S, Angelova S, Dudev T. Lanthanides as Calcium Mimetic Species in Calcium-Signaling/Buffering Proteins: The Effect of Lanthanide Type on the Ca2+/Ln3+ Competition. Int J Mol Sci 2023; 24:ijms24076297. [PMID: 37047269 PMCID: PMC10094714 DOI: 10.3390/ijms24076297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Lanthanides, the 14 4f-block elements plus Lanthanum, have been extensively used to study the structure and biochemical properties of metalloproteins. The characteristics of lanthanides within the lanthanide series are similar, but not identical. The present research offers a systematic investigation of the ability of the entire Ln3+ series to substitute for Ca2+ in biological systems. A well-calibrated DFT/PCM protocol is employed in studying the factors that control the metal selectivity in biological systems by modeling typical calcium signaling/buffering binding sites and elucidating the thermodynamic outcome of the competition between the “alien” La3+/Ln3+ and “native” Ca2+, and La3+ − Ln3+ within the lanthanide series. The calculations performed reveal that the major determinant of the Ca2+/Ln3+ selectivity in calcium proteins is the net charge of the calcium binding pocket; the more negative the charge, the higher the competitiveness of the trivalent Ln3+ with respect to its Ca2+ contender. Solvent exposure of the binding site also influences the process; buried active centers with net charge of −4 or −3 are characterized by higher Ln3+ over Ca2+ selectivity, whereas it is the opposite for sites with overall charge of −1. Within the series, the competition between La3+ and its fellow lanthanides is determined by the balance between two competing effects: electronic (favoring heavier lanthanides) and solvation (generally favoring the lighter lanthanides).
Collapse
Affiliation(s)
- Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
7
|
Alvear-Arias JJ, Pena-Pichicoi A, Carrillo C, Fernandez M, Gonzalez T, Garate JA, Gonzalez C. Role of voltage-gated proton channel (Hv1) in cancer biology. Front Pharmacol 2023; 14:1175702. [PMID: 37153807 PMCID: PMC10157179 DOI: 10.3389/fphar.2023.1175702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
The acid-base characteristics of tumor cells and the other elements that compose the tumor microenvironment have been topics of scientific interest in oncological research. There is much evidence confirming that pH conditions are maintained by changes in the patterns of expression of certain proton transporters. In the past decade, the voltage-gated proton channel (Hv1) has been added to this list and is increasingly being recognized as a target with onco-therapeutic potential. The Hv1 channel is key to proton extrusion for maintaining a balanced cytosolic pH. This protein-channel is expressed in a myriad of tissues and cell lineages whose functions vary from producing bioluminescence in dinoflagellates to alkalizing spermatozoa cytoplasm for reproduction, and regulating the respiratory burst for immune system response. It is no wonder that in acidic environments such as the tumor microenvironment, an exacerbated expression and function of this channel has been reported. Indeed, multiple studies have revealed a strong relationship between pH balance, cancer development, and the overexpression of the Hv1 channel, being proposed as a marker for malignancy in cancer. In this review, we present data that supports the idea that the Hv1 channel plays a significant role in cancer by maintaining pH conditions that favor the development of malignancy features in solid tumor models. With the antecedents presented in this bibliographic report, we want to strengthen the idea that the Hv1 proton channel is an excellent therapeutic strategy to counter the development of solid tumors.
Collapse
Affiliation(s)
- Juan J. Alvear-Arias
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Antonio Pena-Pichicoi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Christian Carrillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernandez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Tania Gonzalez
- National Center for Minimally Invasive Surgery, La Habana, Cuba
| | - Jose A. Garate
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: Carlos Gonzalez,
| |
Collapse
|
8
|
Protons in Gating the Kv1.2 Channel: A Calculated Set of Protonation States in Response to Polarization/Depolarization of the Channel, with the Complete Proposed Proton Path from Voltage Sensing Domain to Gate. MEMBRANES 2022; 12:membranes12070718. [PMID: 35877921 PMCID: PMC9318985 DOI: 10.3390/membranes12070718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022]
Abstract
We have in the past proposed that proton motion constitutes the gating current in the potassium channel Kv1.2 and is responsible for the gating mechanism. For this to happen, there must be a proton path between the voltage-sensing domain (VSD) and the channel gate, and here we present quantum calculations that lead to a specific pair of proton paths, defined at the molecular level, with well-defined water molecule linkages, and with hydrogen bonding between residues; there is also at least one interpath crossover, where protons can switch paths. Quantum calculations on the entire 563-atom system give the complete geometry, the energy, and atomic charges. Calculations show that three specific residues (in the pdb 3Lut numbering, H418, E327, R326), and the T1 intracellular moiety, all of which have been shown experimentally to be involved in gating, would necessarily be protonated or deprotonated in the path between the VSD and the gate. Hydroxyl reorientation of serine and threonine residues are shown to provide a means of adjusting proton directions of motion. In the deprotonated state for K312, a low energy state, our calculations come close to reproducing the X-ray structure. The demonstration of the existence of a double proton path between VSD and gate supports the proposed proton gating mechanism; when combined with our earlier demonstration of proton generation in the VSD, and comparison with other systems that are known to move protons, we are close to achieving the definition of a complete gating mechanism in molecular detail. The coupling of the paths to the VSD, and to the PVPV section that essentially forms the gate, can be easily seen from the results of the calculation. The gate itself remains for further computations.
Collapse
|
9
|
Jardin C, Ohlwein N, Franzen A, Chaves G, Musset B. The pH-dependent gating of the human voltage-gated proton channel from computational simulations. Phys Chem Chem Phys 2022; 24:9964-9977. [PMID: 35445675 DOI: 10.1039/d1cp05609c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Gating of the voltage-gated proton channel HV1 is strongly controlled by pH. There is evidence that this involves the sidechains of titratable amino acids that change their protonation state with changes of the pH. Despite experimental investigations to identify the amino acids involved in pH sensing only few progress has been made, including one histidine at the cytoplasmic side of the channel that is involved in sensing cellular pH. We have used constant pH molecular dynamics simulations in symmetrical and asymmetrical pH conditions across the membrane to investigate the pH- and ΔpH-dependent gating of the human HV1 channel. Therefore, the pKa of every titratable amino acids has been assessed in single simulations. Our simulations captured initial conformational changes between a deactivated and an activated state of the channel induced solely by changes of the pH. The pH-dependent gating is accompanied by an outward displacement of the three S4 voltage sensing arginines that moves the second arginine past the hydrophobic gasket (HG) which separates the inner and outer pores of the channel. HV1 activation, when outer pH increases, involves amino acids at the extracellular entrance of the channel that extend the network of interactions from the external solution down to the HG. Whereas, amino acids at the cytoplasmic entrance of the channel are involved in activation, when inner pH decreases, and in a network of interactions that extend from the cytoplasm up to the HG.
Collapse
Affiliation(s)
- Christophe Jardin
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany.
| | - Niklas Ohlwein
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany. .,Klinik für Anästhesiologie und operative Intensivmedizin, Universitätklinik der Paracelsus Medizinischen Privatuniversität, Nuremberg, Germany
| | - Arne Franzen
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Gustavo Chaves
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany.
| | - Boris Musset
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany.
| |
Collapse
|
10
|
Gating Mechanism of the Voltage-Gated Proton Channel Studied by Molecular Dynamics Simulations. Molecules 2022; 27:molecules27072277. [PMID: 35408673 PMCID: PMC9000549 DOI: 10.3390/molecules27072277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
The voltage-gated proton channel Hv1 has important roles in proton extrusion, pH homeostasis, sperm motility, and cancer progression. The Hv1 channel has also been found to be highly expressed in cell lines and tissue samples from patients with breast cancer. A high-resolution closed-state structure has been reported for the mouse Hv1 chimera channel (mHv1cc), solved by X-ray crystallography, but the open-state structure of Hv1 has not been solved. Since Hv1 is a promising drug target, various groups have proposed open conformations by molecular modeling and simulation studies. However, the gating mechanism and the open-state conformation under the membrane potential are still debate. Here, we present a molecular dynamics study considering membrane potential and pH conditions. The closed-state structure of mHv1cc was used to run molecular dynamics (MD) simulations with respect to electric field and pH conditions in order to investigate the mechanism of proton transfer. We observed a continuous hydrogen bond chain of water molecules called a water-wire to be formed through the channel pore in the channel opening, triggered by downward displacement of the S2 helix and upward movement of the S4 helix relative to other helices. Due to the movement of the S2 and S4 helices, the internal salt bridge network was rearranged, and the hydrophobic gating layers were destroyed. In line with previous experimental and simulation observations, our simulation results led us to propose a new gating mechanism for the Hv1 proton channel, and may provide valuable information for novel drug discovery.
Collapse
|
11
|
Chaves G, Derst C, Jardin C, Franzen A, Musset B. Voltage-gated proton channels in polyneopteran insects. FEBS Open Bio 2022; 12:523-537. [PMID: 34986517 PMCID: PMC8804609 DOI: 10.1002/2211-5463.13361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/04/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Voltage‐gated proton channels (HV1) are expressed in eukaryotes, including basal hexapods and polyneopteran insects. However, currently, there is little known about HV1 channels in insects. A characteristic aspartate (Asp) that functions as the proton selectivity filter (SF) and the RxWRxxR voltage‐sensor motif are conserved structural elements in HV1 channels. By analysing Transcriptome Shotgun Assembly (TSA) databases, we found 33 polyneopteran species meeting these structural requirements. Unexpectedly, an unusual natural variation Asp to glutamate (Glu) at SF was found in Phasmatodea and Mantophasmatodea. Additionally, we analysed the expression and function of HV1 in the phasmatodean stick insect Extatosoma tiaratum (Et). EtHV1 is strongly expressed in nervous tissue and shows pronounced inward proton conduction. This is the first study of a natural occurring Glu within the SF of a functional HV1 and might be instrumental in uncovering the physiological function of HV1 in insects.
Collapse
Affiliation(s)
- Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Christian Derst
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Christophe Jardin
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Arne Franzen
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, Forschungszentrum Jülich, Germany
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany.,Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
12
|
Sokolov VS, Cherny VV, Ayuyan AG, DeCoursey TE. Analysis of an electrostatic mechanism for ΔpH dependent gating of the voltage-gated proton channel, H V1, supports a contribution of protons to gating charge. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148480. [PMID: 34363792 PMCID: PMC8432343 DOI: 10.1016/j.bbabio.2021.148480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
Voltage-gated proton channels (HV1) resemble the voltage-sensing domain of other voltage-gated ion channels, but differ in containing the conduction pathway. Essential to the functions of HV1 channels in many cells and species is a unique feature called ΔpH dependent gating. The pH on both sides of the membrane strictly regulates the voltage range of channel opening, generally resulting in exclusively outward proton current. Two types of mechanisms could produce ΔpH dependent gating. The "countercharge" mechanism proposes that protons destabilize salt bridges between amino acids in the protein that stabilize specific gating configurations (closed or open). An "electrostatic" mechanism proposes that protons bound to the channel alter the electrical field sensed by the protein. Obligatory proton binding within the membrane electrical field would contribute to measured gating charge. Estimations on the basis of the electrostatic model explain ΔpH dependent gating, but quantitative modeling requires calculations of the electric field inside the protein which, in turn, requires knowledge of its structure. We conclude that both mechanisms operate and contribute to ΔpH dependent gating of HV1.
Collapse
Affiliation(s)
- Valerij S Sokolov
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Moscow 119071, Russia
| | - Vladimir V Cherny
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA
| | - Artem G Ayuyan
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA
| | - Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA.
| |
Collapse
|
13
|
Gabdulkhakov A, Kolyadenko I, Oliveira P, Tamagnini P, Mikhaylina A, Tishchenko S. The role of positive charged residue in the proton-transfer mechanism of two-domain laccase from Streptomyces griseoflavus Ac-993. J Biomol Struct Dyn 2021; 40:8324-8331. [PMID: 33870857 DOI: 10.1080/07391102.2021.1911852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Multi-copper oxidases are capable of coupling the one-electron oxidation of four substrate equivalents to the four-electron reduction of dioxygen to two molecules of water. This process takes place at the trinuclear copper center of the enzymes. Previously, the main catalytic stages for three-domain (3D) laccases have been identified. However, for bacterial small two-domain (2D) laccases several questions remain to be answered. One of them is the nature of the protonation events upon the reductive cleavage of dioxygen to water. In 3D laccases, acidic residues play a key role in the protonation mechanisms. In this study, the role of the Arg240 residue, located within the T2 tunnel of 2D laccase from Streptomyces griseoflavus Ac-993, was investigated. X-ray structural analysis and kinetic characterization of two mutants, R240A and R240H, have provided support for a role of this residue in the protonation events. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Azat Gabdulkhakov
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | - Ilya Kolyadenko
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | - Paulo Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Alisa Mikhaylina
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | | |
Collapse
|
14
|
Zhao C, Tombola F. Voltage-gated proton channels from fungi highlight role of peripheral regions in channel activation. Commun Biol 2021; 4:261. [PMID: 33637875 PMCID: PMC7910559 DOI: 10.1038/s42003-021-01792-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Here, we report the identification and characterization of the first proton channels from fungi. The fungal proteins are related to animal voltage-gated Hv channels and are conserved in both higher and lower fungi. Channels from Basidiomycota and Ascomycota appear to be evolutionally and functionally distinct. Representatives from the two phyla share several features with their animal counterparts, including structural organization and strong proton selectivity, but they differ from each other and from animal Hvs in terms of voltage range of activation, pharmacology, and pH sensitivity. The activation gate of Hv channels is believed to be contained within the transmembrane core of the protein and little is known about contributions of peripheral regions to the activation mechanism. Using a chimeragenesis approach, we find that intra- and extracellular peripheral regions are main determinants of the voltage range of activation in fungal channels, highlighting the role of these overlooked components in channel gating.
Collapse
Affiliation(s)
- Chang Zhao
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| | - Francesco Tombola
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA.
| |
Collapse
|
15
|
Kircheva N, Dobrev S, Nikolova V, Angelova S, Dudev T. Zinc and Its Critical Role in Retinitis pigmentosa: Insights from DFT/SMD Calculations. Inorg Chem 2020; 59:17347-17355. [DOI: 10.1021/acs.inorgchem.0c02664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria
| |
Collapse
|
16
|
Li X, Zhang H, Yu H, Xia J, Zhu YB, Wu HA, Hou J, Lu J, Ou R, Easton CD, Selomulya C, Hill MR, Jiang L, Wang H. Unidirectional and Selective Proton Transport in Artificial Heterostructured Nanochannels with Nano-to-Subnano Confined Water Clusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001777. [PMID: 32390263 DOI: 10.1002/adma.202001777] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
The construction of biological proton channel analogues has attracted substantial interest owing to their wide potential in separation of ions, sensing, and energy conversion. Here, metal-organic framework (MOF)/polymer heterogeneous nanochannels are presented, in which water molecules are confined to disordered clusters in the nanometer-sized polymer regions and to ordered chains with unique molecular configurations in the 1D sub-1-nm porous MOF regions, to realize unidirectional, fast, and selective proton transport properties, analogous to natural proton channels. Given the nano-to-subnano confined water junctions, experimental proton conductivities in the polymer-to-MOF direction of the channels are much higher than those in the opposite direction, showing a high rectification up to 500 and one to two orders of magnitude enhancement compared to the conductivity of proton transport in bulk water. The channels also show a good proton selectivity over other cations. Theoretical simulations further reveal that the preferential and fast proton conduction in the nano-to-subnano channel direction is attributed to extremely low energy barriers for proton transport from disordered to ordered water clusters. This study opens a novel approach to regulate ion permeability and selectivity of artificial ion channels.
Collapse
Affiliation(s)
- Xingya Li
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Huacheng Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Hao Yu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yin-Bo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria, 3168, Australia
| | - Jun Lu
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ranwen Ou
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | | | | | - Matthew R Hill
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Manufacturing, CSIRO, Clayton, Victoria, 3168, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Key Laboratory of Bioinspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
17
|
Groome JR, Bayless-Edwards L. Roles for Countercharge in the Voltage Sensor Domain of Ion Channels. Front Pharmacol 2020; 11:160. [PMID: 32180723 PMCID: PMC7059764 DOI: 10.3389/fphar.2020.00160] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels share a common structure typified by peripheral, voltage sensor domains. Their S4 segments respond to alteration in membrane potential with translocation coupled to ion permeation through a central pore domain. The mechanisms of gating in these channels have been intensely studied using pioneering methods such as measurement of charge displacement across a membrane, sequencing of genes coding for voltage-gated ion channels, and the development of all-atom molecular dynamics simulations using structural information from prokaryotic and eukaryotic channel proteins. One aspect of this work has been the description of the role of conserved negative countercharges in S1, S2, and S3 transmembrane segments to promote sequential salt-bridge formation with positively charged residues in S4 segments. These interactions facilitate S4 translocation through the lipid bilayer. In this review, we describe functional and computational work investigating the role of these countercharges in S4 translocation, voltage sensor domain hydration, and in diseases resulting from countercharge mutations.
Collapse
Affiliation(s)
- James R. Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Landon Bayless-Edwards
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- Oregon Health and Sciences University School of Medicine, Portland, OR, United States
| |
Collapse
|
18
|
Hydrophobic gasket mutation produces gating pore currents in closed human voltage-gated proton channels. Proc Natl Acad Sci U S A 2019; 116:18951-18961. [PMID: 31462498 PMCID: PMC6754559 DOI: 10.1073/pnas.1905462116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A large family of membrane proteins, voltage-gated ion channels, regulate a vast array of physiological functions in essentially all life forms. How these molecules sense membrane potential and respond by creating ionic conduction is incompletely understood. The voltage sensors of these channels contain a “hydrophobic gasket,” a ring of hydrophobic amino acids near the center of the membrane, separating internal and external aqueous solutions. Although voltage-gated proton channels, HV1, resemble voltage-sensing domains of other channels, they differ fundamentally. On depolarization, HV1 conducts protons, whereas other voltage sensors open a physically distinct pore. We identify Val109, Phe150, Val177, and Val178 as the hHV1 hydrophobic gasket. Replacement with less hydrophobic amino acids accelerated channel opening and caused proton-selective leak through closed channels. The hydrophobic gasket (HG), a ring of hydrophobic amino acids in the voltage-sensing domain of most voltage-gated ion channels, forms a constriction between internal and external aqueous vestibules. Cationic Arg or Lys side chains lining the S4 helix move through this “gating pore” when the channel opens. S4 movement may occur during gating of the human voltage-gated proton channel, hHV1, but proton current flows through the same pore in open channels. Here, we replaced putative HG residues with less hydrophobic residues or acidic Asp. Substitution of individuals, pairs, or all 3 HG positions did not impair proton selectivity. Evidently, the HG does not act as a secondary selectivity filter. However, 2 unexpected functions of the HG in HV1 were discovered. Mutating HG residues independently accelerated channel opening and compromised the closed state. Mutants exhibited open–closed gating, but strikingly, at negative voltages where “normal” gating produces a nonconducting closed state, the channel leaked protons. Closed-channel proton current was smaller than open-channel current and was inhibited by 10 μM Zn2+. Extreme hyperpolarization produced a deeper closed state through a weakly voltage-dependent transition. We functionally identify the HG as Val109, Phe150, Val177, and Val178, which play a critical and exclusive role in preventing H+ influx through closed channels. Molecular dynamics simulations revealed enhanced mobility of Arg208 in mutants exhibiting H+ leak. Mutation of HG residues produces gating pore currents reminiscent of several channelopathies.
Collapse
|
19
|
Kariev AM, Green ME. Quantum Calculation of Proton and Other Charge Transfer Steps in Voltage Sensing in the Kv1.2 Channel. J Phys Chem B 2019; 123:7984-7998. [DOI: 10.1021/acs.jpcb.9b05448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alisher M. Kariev
- Department of Chemistry and Biochemistry, City College of New York, New York, New York 10011, United States
| | - Michael E. Green
- Department of Chemistry and Biochemistry, City College of New York, New York, New York 10011, United States
| |
Collapse
|
20
|
Kircheva N, Dudev T. Novel Insights into Gallium's Mechanism of Therapeutic Action: A DFT/PCM Study of the Interaction between Ga 3+ and Ribonucleotide Reductase Substrates. J Phys Chem B 2019; 123:5444-5451. [PMID: 31177779 DOI: 10.1021/acs.jpcb.9b03145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The broadly accepted mechanism of gallium's therapeutic action postulates the inactivation of the upregulated/hyperactive enzyme ribonucleotide reductase (RNR) in cancer cells by substituting the redox-active iron by redox-silent gallium in the enzyme active site. Recently, another hypothesis for the Ga3+ curative effect has been put forward: the metal cation can deactivate the enzyme by entrapping its substrates (nucleotide diphosphates; NDPs) into Ga3+-NDP complexes, lowering the free substrate levels in the cell. Several questions arise: Does gallium readily form complexes with NDPs? What are the preferable modes of metal binding to NDPs? Does, and if so, to what extent, the metal binding alter the native conformation of the substrate, thus influencing the process of substrate-enzyme recognition? Here, by employing density functional theory (DFT)/polarizable continuum model (PCM) calculations, we attempt to answer these questions. The results, which are in line with the available experimental data, lay support to the recent hypothesis about the curative effect of gallium, revealing that, by engaging the free NDPs in forming metal complexes, on the one side, and producing metal constructs that are not/poorly recognizable by the host enzyme, on the other side, gallium deprives RNR from its substrates, thus reducing the enzyme activity in malignant cells.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Faculty of Chemistry and Pharmacy , Sofia University , 1164 Sofia , Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy , Sofia University , 1164 Sofia , Bulgaria
| |
Collapse
|
21
|
Saotome K, Teng B, Tsui CCA, Lee WH, Tu YH, Kaplan JP, Sansom MSP, Liman ER, Ward AB. Structures of the otopetrin proton channels Otop1 and Otop3. Nat Struct Mol Biol 2019; 26:518-525. [PMID: 31160780 PMCID: PMC6564688 DOI: 10.1038/s41594-019-0235-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/26/2019] [Indexed: 01/08/2023]
Abstract
Otopetrins (Otop1-Otop3) comprise one of two known eukaryotic proton-selective channel families. Otop1 is required for otoconia formation and a candidate mammalian sour taste receptor. Here we report cryo-EM structures of zebrafish Otop1 and chicken Otop3 in lipid nanodiscs. The structures reveal a dimeric architecture, with each subunit forming 12 transmembrane helices divided into structurally similar amino (N) and carboxy (C) domains. Cholesterol-like molecules occupy various sites in Otop1 and Otop3 and occlude a central tunnel. In molecular dynamics simulations, hydrophilic vestibules formed by the N and C domains and in the intrasubunit interface between N and C domains form conduits for water entry into the membrane core, suggesting three potential proton conduction pathways. By mutagenesis, we tested the roles of charged residues in each putative permeation pathway. Our results provide a structural basis for understanding selective proton permeation and gating of this conserved family of proton channels.
Collapse
Affiliation(s)
- Kei Saotome
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Bochuan Teng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Che Chun Alex Tsui
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yu-Hsiang Tu
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Joshua P Kaplan
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Emily R Liman
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
22
|
Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2. Proc Natl Acad Sci U S A 2019; 116:9380-9389. [PMID: 31004059 PMCID: PMC6510988 DOI: 10.1073/pnas.1818707116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although channelrhodopsin (ChR) is a widely applied light-activated ion channel, important properties such as light adaptation, photocurrent inactivation, and alteration of the ion selectivity during continuous illumination are not well understood from a molecular perspective. Herein, we address these open questions using single-turnover electrophysiology, time-resolved step-scan FTIR, and Raman spectroscopy of fully dark-adapted ChR2. This yields a unifying parallel photocycle model integrating now all so far controversial discussed data. In dark-adapted ChR2, the protonated retinal Schiff base chromophore (RSBH+) adopts an all-trans,C=N-anti conformation only. Upon light activation, a branching reaction into either a 13-cis,C=N-anti or a 13-cis,C=N-syn retinal conformation occurs. The anti-cycle features sequential H+ and Na+ conductance in a late M-like state and an N-like open-channel state. In contrast, the 13-cis,C=N-syn isomer represents a second closed-channel state identical to the long-lived P480 state, which has been previously assigned to a late intermediate in a single-photocycle model. Light excitation of P480 induces a parallel syn-photocycle with an open-channel state of small conductance and high proton selectivity. E90 becomes deprotonated in P480 and stays deprotonated in the C=N-syn cycle. Deprotonation of E90 and successive pore hydration are crucial for late proton conductance following light adaptation. Parallel anti- and syn-photocycles now explain inactivation and ion selectivity changes of ChR2 during continuous illumination, fostering the future rational design of optogenetic tools.
Collapse
|
23
|
Fudim R, Szczepek M, Vierock J, Vogt A, Schmidt A, Kleinau G, Fischer P, Bartl F, Scheerer P, Hegemann P. Design of a light-gated proton channel based on the crystal structure of Coccomyxa rhodopsin. Sci Signal 2019; 12:12/573/eaav4203. [PMID: 30890657 DOI: 10.1126/scisignal.aav4203] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The light-driven proton pump Coccomyxa subellipsoidea rhodopsin (CsR) provides-because of its high expression in heterologous host cells-an opportunity to study active proton transport under controlled electrochemical conditions. In this study, solving crystal structure of CsR at 2.0-Å resolution enabled us to identify distinct features of the membrane protein that determine ion transport directivity and voltage sensitivity. A specific hydrogen bond between the highly conserved Arg83 and the nearby nonconserved tyrosine (Tyr14) guided our structure-based transformation of CsR into an operational light-gated proton channel (CySeR) that could potentially be used in optogenetic assays. Time-resolved electrophysiological and spectroscopic measurements distinguished pump currents from channel currents in a single protein and emphasized the necessity of Arg83 mobility in CsR as a dynamic extracellular barrier to prevent passive conductance. Our findings reveal that molecular constraints that distinguish pump from channel currents are structurally more confined than was generally expected. This knowledge might enable the structure-based design of novel optogenetic tools, which derive from microbial pumps and are therefore ion specific.
Collapse
Affiliation(s)
- Roman Fudim
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Michal Szczepek
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Johannes Vierock
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Arend Vogt
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Andrea Schmidt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Paul Fischer
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Franz Bartl
- Biophysical Chemistry, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Peter Hegemann
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany.
| |
Collapse
|
24
|
On the control of the proton current in the voltage-gated proton channel Hv1. Proc Natl Acad Sci U S A 2018; 115:10321-10326. [PMID: 30254162 DOI: 10.1073/pnas.1809766115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The nature of the action of voltage-activated proton transport proteins is a conundrum of great current interest. Here we approach this issue by exploring the action of Hv1, a voltage-gated proton channel found in different cells in humans and other organisms. Our study focuses on evaluating the free energy of transporting a proton through the channel, as well as the effect of the proton transfer through D112, in both the closed and open channel conformations. It is found that D112 allows a transported proton to bypass the electrostatic barrier of the open channel, while not being able to help in passing the barrier in the closed form. This reflects the change in position of the gating arginine residues relative to D112, upon voltage activation. Significantly, the effect of D112 accounts for the observed trend in selectivity by overcoming the electrostatic barrier at its highest point. Thus, the calculations provide a structure/function correlation for the Hv1 system. The present work also clarifies that the action of Hv1 is not controlled by a Grotthuss mechanism but, as is always the case, by the protein electrostatic potential at the rate-limiting barriers.
Collapse
|
25
|
Kigundu G, Cooper JL, Smith SME. H v 1 Proton Channels in Dinoflagellates: Not Just for Bioluminescence? J Eukaryot Microbiol 2018; 65:928-933. [PMID: 29698585 PMCID: PMC7167071 DOI: 10.1111/jeu.12627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/11/2018] [Accepted: 04/15/2018] [Indexed: 01/08/2023]
Abstract
Bioluminescence in dinoflagellates is controlled by HV1 proton channels. Database searches of dinoflagellate transcriptomes and genomes yielded hits with sequence features diagnostic of all confirmed HV1, and show that HV1 is widely distributed in the dinoflagellate phylogeny including the basal species Oxyrrhis marina. Multiple sequence alignments followed by phylogenetic analysis revealed three major subfamilies of HV1 that do not correlate with presence of theca, autotrophy, geographic location, or bioluminescence. These data suggest that most dinoflagellates express a HV1 which has a function separate from bioluminescence. Sequence evidence also suggests that dinoflagellates can contain more than one HV1 gene.
Collapse
Affiliation(s)
- Gabriel Kigundu
- Department of Molecular and Cellular Biology, Kennesaw State University, 370 Paulding Avenue MD 1202, Kennesaw, Georgia, 30144
| | - Jennifer L Cooper
- Department of Molecular and Cellular Biology, Kennesaw State University, 370 Paulding Avenue MD 1202, Kennesaw, Georgia, 30144
| | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, 370 Paulding Avenue MD 1202, Kennesaw, Georgia, 30144
| |
Collapse
|
26
|
Cherny VV, Morgan D, Thomas S, Smith SME, DeCoursey TE. Histidine 168 is crucial for ΔpH-dependent gating of the human voltage-gated proton channel, hH V1. J Gen Physiol 2018; 150:851-862. [PMID: 29743300 PMCID: PMC5987877 DOI: 10.1085/jgp.201711968] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/27/2018] [Indexed: 01/28/2023] Open
Abstract
Voltage-gated proton channels open appropriately in myriad physiological situations because their gating is powerfully modulated by both pHo and pHi. Cherny et al. serendipitously identify a histidine at the inner end of the S3 helix that is required for the response to pHi. We recently identified a voltage-gated proton channel gene in the snail Helisoma trivolvis, HtHV1, and determined its electrophysiological properties. Consistent with early studies of proton currents in snail neurons, HtHV1 opens rapidly, but it unexpectedly exhibits uniquely defective sensitivity to intracellular pH (pHi). The H+ conductance (gH)-V relationship in the voltage-gated proton channel (HV1) from other species shifts 40 mV when either pHi or pHo (extracellular pH) is changed by 1 unit. This property, called ΔpH-dependent gating, is crucial to the functions of HV1 in many species and in numerous human tissues. The HtHV1 channel exhibits normal pHo dependence but anomalously weak pHi dependence. In this study, we show that a single point mutation in human hHV1—changing His168 to Gln168, the corresponding residue in HtHV1—compromises the pHi dependence of gating in the human channel so that it recapitulates the HtHV1 response. This location was previously identified as a contributor to the rapid gating kinetics of HV1 in Strongylocentrotus purpuratus. His168 mutation in human HV1 accelerates activation but accounts for only a fraction of the species difference. H168Q, H168S, or H168T mutants exhibit normal pHo dependence, but changing pHi shifts the gH-V relationship on average by <20 mV/unit. Thus, His168 is critical to pHi sensing in hHV1. His168, located at the inner end of the pore on the S3 transmembrane helix, is the first residue identified in HV1 that significantly impairs pH sensing when mutated. Because pHo dependence remains intact, the selective erosion of pHi dependence supports the idea that there are distinct internal and external pH sensors. Although His168 may itself be a pHi sensor, the converse mutation, Q229H, does not normalize the pHi sensitivity of the HtHV1 channel. We hypothesize that the imidazole group of His168 interacts with nearby Phe165 or other parts of hHV1 to transduce pHi into shifts of voltage-dependent gating.
Collapse
Affiliation(s)
| | - Deri Morgan
- Department of Physiology & Biophysics, Rush University, Chicago, IL
| | - Sarah Thomas
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA
| | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA
| | | |
Collapse
|
27
|
DeCoursey TE. Voltage and pH sensing by the voltage-gated proton channel, H V1. J R Soc Interface 2018; 15:20180108. [PMID: 29643227 PMCID: PMC5938591 DOI: 10.1098/rsif.2018.0108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high pKa) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their pKa needs to be within the operational pH range. We propose a 'counter-charge' model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, 1750 West Harrison, Chicago, IL 60612, USA
| |
Collapse
|
28
|
DeCoursey TE, Morgan D, Musset B, Cherny VV. Insights into the structure and function of HV1 from a meta-analysis of mutation studies. J Gen Physiol 2017; 148:97-118. [PMID: 27481712 PMCID: PMC4969798 DOI: 10.1085/jgp.201611619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/30/2016] [Indexed: 01/26/2023] Open
Abstract
The voltage-gated proton channel (HV1) is a widely distributed, proton-specific ion channel with unique properties. Since 2006, when genes for HV1 were identified, a vast array of mutations have been generated and characterized. Accessing this potentially useful resource is hindered, however, by the sheer number of mutations and interspecies differences in amino acid numbering. This review organizes all existing information in a logical manner to allow swift identification of studies that have characterized any particular mutation. Although much can be gained from this meta-analysis, important questions about the inner workings of HV1 await future revelation.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Boris Musset
- Institut für Physiologie, PMU Klinikum Nürnberg, 90419 Nürnberg, Germany
| | - Vladimir V Cherny
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| |
Collapse
|
29
|
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology and Biophysics, Rush University, Chicago, IL, 60612, USA
| |
Collapse
|
30
|
Bennett AL, Ramsey IS. CrossTalk opposing view: proton transfer in Hv1 utilizes a water wire, and does not require transient protonation of a conserved aspartate in the S1 transmembrane helix. J Physiol 2017; 595:6797-6799. [PMID: 29023730 DOI: 10.1113/jp274553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ashley L Bennett
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Ian Scott Ramsey
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
31
|
DeCoursey TE. CrossTalk proposal: Proton permeation through H V 1 requires transient protonation of a conserved aspartate in the S1 transmembrane helix. J Physiol 2017; 595:6793-6795. [PMID: 29023793 DOI: 10.1113/jp274495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology and Biophysics, Rush University, Chicago, IL, 60612, USA
| |
Collapse
|
32
|
Bennett AL, Ramsey IS. Rebuttal from Ashley L. Bennett and Ian Scott Ramsey. J Physiol 2017; 595:6803. [PMID: 29023729 DOI: 10.1113/jp274984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ashley L Bennett
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Ian Scott Ramsey
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
33
|
Vierock J, Grimm C, Nitzan N, Hegemann P. Molecular determinants of proton selectivity and gating in the red-light activated channelrhodopsin Chrimson. Sci Rep 2017; 7:9928. [PMID: 28855540 PMCID: PMC5577340 DOI: 10.1038/s41598-017-09600-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Channelrhodopsins are light-gated ion channels of green algae used for the precise temporal and spatial control of transmembrane ion fluxes. The channelrhodopsin Chrimson from Chlamydomonas noctigama allows unprecedented deep tissue penetration due to peak absorption at 590 nm. We demonstrate by electrophysiological recordings and imaging techniques that Chrimson is highly proton selective causing intracellular acidification in HEK cells that is responsible for slow photocurrent decline during prolonged illumination. We localized molecular determinants of both high proton selectivity and red light activation to the extracellular pore. Whereas exchange of Glu143 only drops proton conductance and generates an operational Na-channel with 590 nm activation, exchange of Glu139 in addition increased the open state lifetime and shifted the absorption hypsochromic by 70 nm. In conjunction with Glu300 in the center and Glu124 and Glu125 at the intracellular end of the pore, Glu139 contributes to a delocalized activation gate and stabilizes by long-range interaction counterion configuration involving protonation of Glu165 that we identified as a key determinant of the large opsin shift in Chrimson.
Collapse
Affiliation(s)
- Johannes Vierock
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Christiane Grimm
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Noam Nitzan
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| |
Collapse
|
34
|
DeCoursey TE. The intimate and controversial relationship between voltage-gated proton channels and the phagocyte NADPH oxidase. Immunol Rev 2017; 273:194-218. [PMID: 27558336 DOI: 10.1111/imr.12437] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One of the most fascinating and exciting periods in my scientific career entailed dissecting the symbiotic relationship between two membrane transporters, the Nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase complex and voltage-gated proton channels (HV 1). By the time I entered this field, there had already been substantial progress toward understanding NADPH oxidase, but HV 1 were known only to a tiny handful of cognoscenti around the world. Having identified the first proton currents in mammalian cells in 1991, I needed to find a clear function for these molecules if the work was to become fundable. The then-recent discoveries of Henderson, Chappell, and colleagues in 1987-1988 that led them to hypothesize interactions of both molecules during the respiratory burst of phagocytes provided an excellent opportunity. In a nutshell, both transporters function by moving electrical charge across the membrane: NADPH oxidase moves electrons and HV 1 moves protons. The consequences of electrogenic NADPH oxidase activity on both membrane potential and pH strongly self-limit this enzyme. Fortunately, both consequences specifically activate HV 1, and HV 1 activity counteracts both consequences, a kind of yin-yang relationship. Notwithstanding a decade starting in 1995 when many believed the opposite, these are two separate molecules that function independently despite their being functionally interdependent in phagocytes. The relationship between NADPH oxidase and HV 1 has become a paradigm that somewhat surprisingly has now extended well beyond the phagocyte NADPH oxidase - an industrial strength producer of reactive oxygen species (ROS) - to myriad other cells that produce orders of magnitude less ROS for signaling purposes. These cells with their seven NADPH oxidase (NOX) isoforms provide a vast realm of mechanistic obscurity that will occupy future studies for years to come.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL, USA
| |
Collapse
|
35
|
van Keulen SC, Gianti E, Carnevale V, Klein ML, Rothlisberger U, Delemotte L. Does Proton Conduction in the Voltage-Gated H + Channel hHv1 Involve Grotthuss-Like Hopping via Acidic Residues? J Phys Chem B 2017; 121:3340-3351. [PMID: 27801578 PMCID: PMC6310143 DOI: 10.1021/acs.jpcb.6b08339] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hv1s are ubiquitous highly selective voltage-gated proton channels involved in male fertility, immunology, and the invasiveness of certain forms of breast cancer. The mechanism of proton extrusion in Hv1 is not yet understood, while it constitutes the first step toward the design of high-affinity drugs aimed at this important pharmacological target. In this contribution, we explore the details of the mechanism via an integrative approach, using classical and QM/MM molecular dynamics simulations of a monomeric hHv1 model. We propose that protons localize in three binding sites along the channel lumen, formed by three pairs of conserved negatively charged residues lining the pore: D174/E153, D112/D185, and E119/D123. Local rearrangements, involving notably a dihedral transition of F150, a conserved phenylalanine lining the permeation pathway, appear to allow protons to hop from one acidic residue to the next through a bridging water molecule. These results constitute a first attempt at rationalizing hHv1 selectivity for H+ and the role played by D112 in this process. They pave the way for further quantitative characterization of H+ transport in hHv1.
Collapse
Affiliation(s)
- Siri C. van Keulen
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Eleonora Gianti
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Michael L. Klein
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lucie Delemotte
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Present address: Science for Life Laboratory, Department of Theoretical Physics, KTH, Box 1031, SE-171 21 Solna, Stockholm, Sweden
| |
Collapse
|
36
|
Rodriguez JD, Haq S, Bachvaroff T, Nowak KF, Nowak SJ, Morgan D, Cherny VV, Sapp MM, Bernstein S, Bolt A, DeCoursey TE, Place AR, Smith SME. Identification of a vacuolar proton channel that triggers the bioluminescent flash in dinoflagellates. PLoS One 2017; 12:e0171594. [PMID: 28178296 PMCID: PMC5298346 DOI: 10.1371/journal.pone.0171594] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/23/2017] [Indexed: 11/19/2022] Open
Abstract
In 1972, J. Woodland Hastings and colleagues predicted the existence of a proton selective channel (HV1) that opens in response to depolarizing voltage across the vacuole membrane of bioluminescent dinoflagellates and conducts protons into specialized luminescence compartments (scintillons), thereby causing a pH drop that triggers light emission. HV1 channels were subsequently identified and demonstrated to have important functions in a multitude of eukaryotic cells. Here we report a predicted protein from Lingulodinium polyedrum that displays hallmark properties of bona fide HV1, including time-dependent opening with depolarization, perfect proton selectivity, and characteristic ΔpH dependent gating. Western blotting and fluorescence confocal microscopy of isolated L. polyedrum scintillons immunostained with antibody to LpHV1 confirm LpHV1's predicted organellar location. Proteomics analysis demonstrates that isolated scintillon preparations contain peptides that map to LpHV1. Finally, Zn2+ inhibits both LpHV1 proton current and the acid-induced flash in isolated scintillons. These results implicate LpHV1 as the voltage gated proton channel that triggers bioluminescence in L. polyedrum, confirming Hastings' hypothesis. The same channel likely mediates the action potential that communicates the signal along the tonoplast to the scintillon.
Collapse
Affiliation(s)
- Juan D. Rodriguez
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Saddef Haq
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| | - Kristine F. Nowak
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Scott J. Nowak
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, Illinois, United States of America
| | - Vladimir V. Cherny
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, Illinois, United States of America
| | - Maredith M. Sapp
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Steven Bernstein
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Andrew Bolt
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Thomas E. DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, Illinois, United States of America
| | - Allen R. Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| | - Susan M. E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia, United States of America
| |
Collapse
|
37
|
Dudev T, Doudeva L. How the extra methylene group affects the ligation properties of Glu vs. Asp and Gln vs. Asn amino acids: a DFT/PCM study. J Mol Model 2017; 23:45. [DOI: 10.1007/s00894-017-3233-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/13/2017] [Indexed: 12/15/2022]
|
38
|
Dudev T, Nikolova V. Determinants of Fe2+ over M2+ (M = Mg, Mn, Zn) Selectivity in Non-Heme Iron Proteins. Inorg Chem 2016; 55:12644-12650. [DOI: 10.1021/acs.inorgchem.6b01822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria
| | - Valia Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria
| |
Collapse
|
39
|
Dudev T, Grauffel C, Lim C. Influence of the Selectivity Filter Properties on Proton Selectivity in the Influenza A M2 Channel. J Am Chem Soc 2016; 138:13038-13047. [DOI: 10.1021/jacs.6b08041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Todor Dudev
- Faculty
of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Cédric Grauffel
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Carmay Lim
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
40
|
Randolph AL, Mokrab Y, Bennett AL, Sansom MS, Ramsey IS. Proton currents constrain structural models of voltage sensor activation. eLife 2016; 5. [PMID: 27572256 PMCID: PMC5065317 DOI: 10.7554/elife.18017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
The Hv1 proton channel is evidently unique among voltage sensor domain proteins in mediating an intrinsic 'aqueous' H+ conductance (GAQ). Mutation of a highly conserved 'gating charge' residue in the S4 helix (R1H) confers a resting-state H+ 'shuttle' conductance (GSH) in VGCs and Ci VSP, and we now report that R1H is sufficient to reconstitute GSH in Hv1 without abrogating GAQ. Second-site mutations in S3 (D185A/H) and S4 (N4R) experimentally separate GSH and GAQ gating, which report thermodynamically distinct initial and final steps, respectively, in the Hv1 activation pathway. The effects of Hv1 mutations on GSH and GAQ are used to constrain the positions of key side chains in resting- and activated-state VS model structures, providing new insights into the structural basis of VS activation and H+ transfer mechanisms in Hv1.
Collapse
Affiliation(s)
- Aaron L Randolph
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States.,Medical College of Virginia Campus, Virginia Commonwealth University School of Medicine, Richmond, United States
| | - Younes Mokrab
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ashley L Bennett
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States.,Medical College of Virginia Campus, Virginia Commonwealth University School of Medicine, Richmond, United States
| | - Mark Sp Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ian Scott Ramsey
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States.,Medical College of Virginia Campus, Virginia Commonwealth University School of Medicine, Richmond, United States
| |
Collapse
|
41
|
Ribeiro-Silva L, Queiroz FO, da Silva AMB, Hirata AE, Arcisio-Miranda M. Voltage-Gated Proton Channel in Human Glioblastoma Multiforme Cells. ACS Chem Neurosci 2016; 7:864-9. [PMID: 27225904 DOI: 10.1021/acschemneuro.6b00083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Solid tumors tend to have a more glycolytic metabolism leading to an accumulation of acidic metabolites in their cytosol, and consequently, their intracellular pH (pHi) turns critically lower if the cells do not handle the acid excess. Recently, it was proposed that the voltage gated proton channels (HV1) can regulate the pHi in several cancers. Here we report the functional expression of voltage gated proton channels in a human glioblastoma multiforme (GBM) cell line, the most common and lethal brain tumor. T98G cells presented an outward, slow activating voltage-dependent proton current, which was also ΔpH-dependent and inhibited by ZnCl2, characterizing it as being conducted by HV1 channels. Furthermore, blocking HV1 channels with ZnCl2 significantly reduced the pHi, cell survival, and migration, indicating an important role for HV1 for tumor proliferation and progression in GBM. Overall, our results suggest that HV1 channels can be a new therapeutic target for GBM.
Collapse
Affiliation(s)
- Luisa Ribeiro-Silva
- Laboratório
de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica,
Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-060 São Paulo, SP Brasil
| | - Fernanda Oliveira Queiroz
- Laboratório
de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica,
Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-060 São Paulo, SP Brasil
| | - Annielle Mendes Brito da Silva
- Laboratório
de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica,
Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-060 São Paulo, SP Brasil
| | - Aparecida Emiko Hirata
- Departamento
de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-060 São Paulo, SP Brasil
| | - Manoel Arcisio-Miranda
- Laboratório
de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica,
Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-060 São Paulo, SP Brasil
| |
Collapse
|
42
|
Chaves G, Derst C, Franzen A, Mashimo Y, Machida R, Musset B. Identification of an HV
1 voltage-gated proton channel in insects. FEBS J 2016; 283:1453-64. [DOI: 10.1111/febs.13680] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/05/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Gustavo Chaves
- Institute of Complex Systems; Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich; Germany
| | - Christian Derst
- Zoologisches Institut; Biozentrum Universität zu Köln; Germany
| | - Arne Franzen
- Institute of Complex Systems; Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich; Germany
| | - Yuta Mashimo
- Sugadaira Montane Research Center; University of Tsukuba; Ueda Japan
| | - Ryuichiro Machida
- Sugadaira Montane Research Center; University of Tsukuba; Ueda Japan
| | - Boris Musset
- Institute of Complex Systems; Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich; Germany
- Institut für Physiologie und Pathophysiologie; Paracelsus Universität Salzburg Standort Nürnberg; Nuremberg Germany
| |
Collapse
|
43
|
Nikolova V, Angelova S, Markova N, Dudev T. Gallium as a Therapeutic Agent: A Thermodynamic Evaluation of the Competition between Ga(3+) and Fe(3+) Ions in Metalloproteins. J Phys Chem B 2016; 120:2241-8. [PMID: 26885684 DOI: 10.1021/acs.jpcb.6b01135] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gallium has been employed (in the form of soluble salts) to fight various forms of cancer, infectious, and inflammatory diseases. The rationale behind this lies in the ability of Ga(3+) cation to mimic closely in appearance the native ferric ion, Fe(3+), thus interfering with the biological processes requiring ferric cofactors. However, Ga(3+) ion cannot participate in redox reactions and, when substituting for the "native" Fe(3+) ion in the enzyme active site, renders it inactive. Although a significant body of information on the Ga(3+)-Fe(3+) competition in biological systems has been accumulated, the intimate mechanism of the process is still not well understood and several questions remain: What are the basic physical principles governing the competition between the two trivalent cations in proteins? What type of metal centers are the most likely targets for gallium therapy? To what extent are the Fe(3+)-binding sites in the key enzyme ribonucleotide reductase vulnerable to Ga(3+) substitution? Here, we address these questions by studying the competition between Ga(3+) and Fe(3+) ions in model metal binding sites of various compositions and charge states. The results obtained are in line with available experimental data and shed light on the intimate mechanism of the Ga(3+)/Fe(3+) selectivity in various model metal binding sites and biological systems such as serum transferrin and ribonucleotide reductase.
Collapse
Affiliation(s)
- Valia Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski" , 1164 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences , 1113 Sofia, Bulgaria
| | - Nikoleta Markova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski" , 1164 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl. Ohridski" , 1164 Sofia, Bulgaria
| |
Collapse
|
44
|
Dudev T, Mazmanian K, Lim C. Factors controlling the selectivity for Na+over Mg2+in sodium transporters and enzymes. Phys Chem Chem Phys 2016; 18:16986-97. [DOI: 10.1039/c6cp01937d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The paper discloses the key factors and physical bases that render a given binding site either Mg2+or Na+-selective.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy
- Sofia University
- Sofia 1164
- Bulgaria
| | - Karine Mazmanian
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
- Chemical Biology and Molecular Biophysics Program
| | - Carmay Lim
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
- Department of Chemistry
| |
Collapse
|
45
|
Grauffel C, Lim C. Factors Governing the Bridging Water Protonation State in Polynuclear Mg(2+) Proteins. J Phys Chem B 2015; 120:1759-70. [PMID: 26560089 DOI: 10.1021/acs.jpcb.5b09323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An aqua ligand bridges metal cations in a wide variety of enzymes, many of which are drug targets for various diseases. However, the factors affecting its protonation state and thus biological roles remain elusive. By computing the free energy for replacing the bridging H2O by OH(-) in various model Mg(2+) sites, we have evaluated how the nature of an aqua bridge depends on the site's net charge (i.e., the number of charged ligands in the first and second shell and the number of metal cations), the site's solvent exposure, the ligand's charge-donating ability, the bridging oxygen's hydrogen-bonding interactions, intramolecular proton transfer from the bridging H2O to a nearby carboxylate, and the metal coordination number. The results reveal the key factors dictating the protonation state of bridging H2O and provide guidelines in predicting whether H2O or OH(-) bridges two Mg(2+) in polynuclear sites. This helps to elucidate the nucleophile in the enzyme-catalyzed reaction and the net charge of the metal complex (metal cation and first-shell ligands), which plays a critical role in binding.
Collapse
Affiliation(s)
- Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan.,Department of Chemistry, National Tsing Hua University , Hsinchu 300, Taiwan
| |
Collapse
|
46
|
Cherny VV, Morgan D, Musset B, Chaves G, Smith SME, DeCoursey TE. Tryptophan 207 is crucial to the unique properties of the human voltage-gated proton channel, hHV1. ACTA ACUST UNITED AC 2015; 146:343-56. [PMID: 26458876 PMCID: PMC4621752 DOI: 10.1085/jgp.201511456] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/18/2015] [Indexed: 01/19/2023]
Abstract
Part of the "signature sequence" that defines the voltage-gated proton channel (H(V1)) is a tryptophan residue adjacent to the second Arg in the S4 transmembrane helix: RxWRxxR, which is perfectly conserved in all high confidence H(V1) genes. Replacing Trp207 in human HV1 (hH(V1)) with Ala, Ser, or Phe facilitated gating, accelerating channel opening by 100-fold, and closing by 30-fold. Mutant channels opened at more negative voltages than wild-type (WT) channels, indicating that in WT channels, Trp favors a closed state. The Arrhenius activation energy, Ea, for channel opening decreased to 22 kcal/mol from 30-38 kcal/mol for WT, confirming that Trp207 establishes the major energy barrier between closed and open hH(V1). Cation-π interaction between Trp207 and Arg211 evidently latches the channel closed. Trp207 mutants lost proton selectivity at pHo >8.0. Finally, gating that depends on the transmembrane pH gradient (ΔpH-dependent gating), a universal feature of H(V1) that is essential to its biological functions, was compromised. In the WT hH(V1), ΔpH-dependent gating is shown to saturate above pHi or pHo 8, consistent with a single pH sensor with alternating access to internal and external solutions. However, saturation occurred independently of ΔpH, indicating the existence of distinct internal and external pH sensors. In Trp207 mutants, ΔpH-dependent gating saturated at lower pHo but not at lower pHi. That Trp207 mutation selectively alters pHo sensing further supports the existence of distinct internal and external pH sensors. Analogous mutations in H(V1) from the unicellular species Karlodinium veneficum and Emiliania huxleyi produced generally similar consequences. Saturation of ΔpH-dependent gating occurred at the same pHo and pHi in H(V1) of all three species, suggesting that the same or similar group(s) is involved in pH sensing. Therefore, Trp enables four characteristic properties: slow channel opening, highly temperature-dependent gating kinetics, proton selectivity, and ΔpH-dependent gating.
Collapse
Affiliation(s)
- Vladimir V Cherny
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Boris Musset
- Institute of Complex Systems 4 Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gustavo Chaves
- Institute of Complex Systems 4 Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| |
Collapse
|
47
|
Abstract
The main properties of the voltage-gated proton channel (HV1) are described in this review, along with what is known about how the channel protein structure accomplishes its functions. Just as protons are unique among ions, proton channels are unique among ion channels. Their four transmembrane helices sense voltage and the pH gradient and conduct protons exclusively. Selectivity is achieved by the unique ability of H3O(+) to protonate an Asp-Arg salt bridge. Pathognomonic sensitivity of gating to the pH gradient ensures HV1 channel opening only when acid extrusion will result, which is crucial to most of its biological functions. An exception occurs in dinoflagellates in which influx of H(+) through HV1 triggers the bioluminescent flash. Pharmacological interventions that promise to ameliorate cancer, asthma, brain damage in ischemic stroke, Alzheimer's disease, autoimmune diseases, and numerous other conditions await future progress.
Collapse
Affiliation(s)
- Thomas E. DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison, Chicago IL, 60612 USA
| |
Collapse
|