1
|
Zhou Z, Mao X, Jiang C, Li W, Zhou T, Liu M, Sun S, Wang M, Dong N, Wu Q, Zhou H. Deficiencies in corin and atrial natriuretic peptide-mediated signaling impair endochondral ossification in bone development. Commun Biol 2024; 7:1380. [PMID: 39443661 PMCID: PMC11500007 DOI: 10.1038/s42003-024-07077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Corin is a protease that activates atrial natriuretic peptide (ANP), a hormone in cardiovascular homeostasis. Structurally, ANP is similar to C-type natriuretic peptide (CNP) crucial in bone development. Here, we examine the role of corin and ANP in chondrocyte differentiation and bone formation. We show that in Corin and Nppa (encoding ANP) knockout (KO) mice, chondrocyte differentiation is impaired, resulting in shortened limb long bones. In adult mice, Corin and Nppa deficiency impairs bone density and microarchitecture. Molecular studies in cartilages from newborn Corin and Nppa KO mice and in cultured chondrocytes indicate that corin and ANP act in chondrocytes via cGMP-dependent protein kinase G signaling to inhibit mitogen-activated protein kinase phosphorylation and stimulate glycogen synthase kinase-3β phosphorylation and β-catenin upregulation. These results indicate that corin and ANP signaling regulates chondrocyte differentiation in bone development and homeostasis, suggesting that enhancing ANP signaling may improve bone quality in patients with osteoporosis.
Collapse
Affiliation(s)
- Zibin Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xiaoyu Mao
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Chun Jiang
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Mengting Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| | - Haibin Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Rintz E, Celik B, Fnu N, Herreño-Pachón AM, Khan S, Benincore-Flórez E, Tomatsu S. Molecular therapy and nucleic acid adeno-associated virus-based gene therapy delivering combinations of two growth-associated genes to MPS IVA mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102211. [PMID: 38831899 PMCID: PMC11145352 DOI: 10.1016/j.omtn.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is caused by a deficiency of the galactosamine (N-acetyl)-6-sulfatase (GALNS) enzyme responsible for the degradation of specific glycosaminoglycans (GAGs). The progressive accumulation of GAGs leads to various skeletal abnormalities (short stature, hypoplasia, tracheal obstruction) and several symptoms in other organs. To date, no treatment is effective for patients with bone abnormalities. To improve bone pathology, we propose a novel combination treatment with the adeno-associated virus (AAV) vectors expressing GALNS enzyme and a natriuretic peptide C (CNP; NPPC gene) as a growth-promoting agent for MPS IVA. In this study, an MPS IVA mouse model was treated with an AAV vector expressing GALNS combined with another AAV vector expressing NPPC gene, followed for 12 weeks. After the combination therapy, bone growth in mice was induced with increased enzyme activity in tissues (bone, liver, heart, lung) and plasma. Moreover, there were significant changes in bone morphology in CNP-treated mice with increased CNP activity in plasma. Delivering combinations of CNP and GALNS gene therapies enhanced bone growth in MPS IVA mice more than in GALNS gene therapy alone. Enzyme expression therapy alone fails to reach the bone growth region; our results indicate that combining it with CNP offers a potential alternative.
Collapse
Affiliation(s)
- Estera Rintz
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Betul Celik
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nidhi Fnu
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Angélica María Herreño-Pachón
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shaukat Khan
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | | | - Shunji Tomatsu
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
3
|
Hakata T, Ueda Y, Yamashita T, Yamauchi I, Kosugi D, Sugawa T, Fujita H, Okamoto K, Fujii T, Taura D, Yasoda A, Akiyama H, Inagaki N. Neprilysin Inhibition Promotes Skeletal Growth via the CNP/NPR-B Pathway. Endocrinology 2024; 165:bqae058. [PMID: 38752331 DOI: 10.1210/endocr/bqae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Indexed: 05/28/2024]
Abstract
C-type natriuretic peptide (CNP) plays a crucial role in enhancing endochondral bone growth and holds promise as a therapeutic agent for impaired skeletal growth. To overcome CNP's short half-life, we explored the potential of dampening its clearance system. Neprilysin (NEP) is an endopeptidase responsible for catalyzing the degradation of CNP. Thus, we investigated the effects of NEP inhibition on skeletal growth by administering sacubitril, a NEP inhibitor, to C57BL/6 mice. Remarkably, we observed a dose-dependent skeletal overgrowth phenotype in mice treated with sacubitril. Histological analysis of the growth plate revealed a thickening of the hypertrophic and proliferative zones, mirroring the changes induced by CNP administration. The promotion of skeletal growth observed in wild-type mice treated with sacubitril was nullified by the knockout of cartilage-specific natriuretic peptide receptor B (NPR-B). Notably, sacubitril promoted skeletal growth in mice only at 3 to 4 weeks of age, a period when endogenous CNP and NEP expression was higher in the lumbar vertebrae. Additionally, sacubitril facilitated endochondral bone growth in organ culture experiments using tibial explants from fetal mice. These findings suggest that NEP inhibition significantly promotes skeletal growth via the CNP/NPR-B pathway, warranting further investigations for potential applications in people with short stature.
Collapse
Affiliation(s)
- Takuro Hakata
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takafumi Yamashita
- Metabolism and Endocrinology Division of Internal Medicine, Kishiwada City Hospital, Osaka 596-8501, Japan
| | - Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Daisuke Kosugi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Taku Sugawa
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Haruka Fujita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kentaro Okamoto
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Daisuke Taura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Akihiro Yasoda
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine Gifu 501-1194, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
- Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-kofukai, Osaka 530-8480, Japan
| |
Collapse
|
4
|
Lessey AJ, Mirczuk SM, Chand AN, Kurrasch DM, Korbonits M, Niessen SJM, McArdle CA, McGonnell IM, Fowkes RC. Pharmacological and Genetic Disruption of C-Type Natriuretic Peptide ( nppcl) Expression in Zebrafish ( Danio rerio) Causes Stunted Growth during Development. Int J Mol Sci 2023; 24:12921. [PMID: 37629102 PMCID: PMC10454581 DOI: 10.3390/ijms241612921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Human patients with mutations within NPPC or NPR2 genes (encoding C-type natriuretic peptide (CNP) and guanylyl cyclase-B (GC-B), respectively) display clinical signs associated with skeletal abnormalities, such as overgrowth or short stature. Mice with induced models of Nppc or Npr2 deletion display profound achondroplasia, dwarfism and early death. Recent pharmacological therapies to treat short stature are utilizing long-acting CNP analogues, but the effects of manipulating CNP expression during development remain unknown. Here, we use Danio rerio (zebrafish) as a model for vertebrate development, employing both pharmacological and reverse genetics approaches to alter expression of genes encoding CNP in zebrafish. Four orthologues of CNP were identified in zebrafish, and spatiotemporal expression profiling confirmed their presence during development. Bioinformatic analyses suggested that nppcl is the most likely the orthologue of mammalian CNP. Exogenous CNP treatment of developing zebrafish embryos resulted in impaired growth characteristics, such as body length, head width and eye diameter. This reduced growth was potentially caused by increased apoptosis following CNP treatment. Expression of endogenous nppcl was downregulated in these CNP-treated embryos, suggesting that negative feedback of the CNP system might influence growth during development. CRISPR knock-down of endogenous nppcl in developing zebrafish embryos also resulted in impaired growth characteristics. Collectively, these data suggest that CNP in zebrafish is crucial for normal embryonic development, specifically with regard to growth.
Collapse
Affiliation(s)
- Andrew J. Lessey
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (A.J.L.); (S.M.M.); (A.N.C.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Samantha M. Mirczuk
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (A.J.L.); (S.M.M.); (A.N.C.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Annisa N. Chand
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (A.J.L.); (S.M.M.); (A.N.C.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Deborah M. Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N2, Canada;
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Stijn J. M. Niessen
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK;
- Veterinary Specialist Consultations, Loosdrechtseweg 56, 1215 JX Hilversum, The Netherlands
| | - Craig A. McArdle
- Department of Translational Science, Bristol Medical School, University of Bristol, Whitson Street, Bristol BS1 3NY, UK;
| | - Imelda M. McGonnell
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Robert C. Fowkes
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (A.J.L.); (S.M.M.); (A.N.C.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Endocrine Signaling Group, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Volpe M, Gallo G, Rubattu S. Endocrine functions of the heart: from bench to bedside. Eur Heart J 2023; 44:643-655. [PMID: 36582126 DOI: 10.1093/eurheartj/ehac759] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
Heart has a recognized endocrine function as it produces several biologically active substances with hormonal properties. Among these hormones, the natriuretic peptide (NP) system has been extensively characterized and represents a prominent expression of the endocrine function of the heart. Over the years, knowledge about the mechanisms governing their synthesis, secretion, processing, and receptors interaction of NPs has been intensively investigated. Their main physiological endocrine and paracrine effects on cardiovascular and renal systems are mostly mediated through guanylate cyclase-A coupled receptors. The potential role of NPs in the pathophysiology of heart failure and particularly their counterbalancing action opposing the overactivation of renin-angiotensin-aldosterone and sympathetic nervous systems has been described. In addition, NPs are used today as key biomarkers in cardiovascular diseases with both diagnostic and prognostic significance. On these premises, multiple therapeutic strategies based on the biological properties of NPs have been attempted to develop new cardiovascular therapies. Apart from the introduction of the class of angiotensin receptor/neprilysin inhibitors in the current management of heart failure, novel promising molecules, including M-atrial natriuretic peptide (a novel atrial NP-based compound), have been tested for the treatment of human hypertension. The development of new drugs is currently underway, and we are probably only at the dawn of novel NPs-based therapeutic strategies. The present article also provides an updated overview of the regulation of NPs synthesis and secretion by microRNAs and epigenetics as well as interactions of cardiac hormones with other endocrine systems.
Collapse
Affiliation(s)
- Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.,IRCCS San Raffaele, Via della Pisana 235, 00163 Rome, Italy
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.,IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli (IS), Italy
| |
Collapse
|
6
|
Hua J, Huang J, Li G, Lin S, Cui L. Glucocorticoid induced bone disorders in children: Research progress in treatment mechanisms. Front Endocrinol (Lausanne) 2023; 14:1119427. [PMID: 37082116 PMCID: PMC10111257 DOI: 10.3389/fendo.2023.1119427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023] Open
Abstract
Long-term or supra-physiological dose of glucocorticoid (GC) application in clinic can lead to impaired bone growth and osteoporosis. The side effects of GC on the skeletal system are particularly serious in growing children, potentially causing growth retardation or even osteoporotic fractures. Children's bone growth is dependent on endochondral ossification of growth plate chondrocytes, and excessive GC can hinder the development of growth plate and longitudinal bone growth. Despite the availability of drugs for treating osteoporosis, they have failed to effectively prevent or treat longitudinal bone growth and development disorders caused by GCs. As of now, there is no specific drug to mitigate these severe side effects. Traditional Chinese Medicine shows potential as an alternative to the current treatments by eliminating the side effects of GC. In summary, this article comprehensively reviews the research frontiers concerning growth and development disorders resulting from supra-physiological levels of GC and discusses the future research and treatment directions for optimizing steroid therapy. This article may also provide theoretical and experimental insight into the research and development of novel drugs to prevent GC-related side effects.
Collapse
Affiliation(s)
- Junying Hua
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Jianping Huang
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Liao Cui, ; Sien Lin,
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Liao Cui, ; Sien Lin,
| |
Collapse
|
7
|
Egbert JR, Uliasz TF, Lowther KM, Kaback D, Wagner BM, Healy CL, O’Connell TD, Potter LR, Jaffe LA, Yee SP. Epitope-tagged and phosphomimetic mouse models for investigating natriuretic peptide-stimulated receptor guanylyl cyclases. Front Mol Neurosci 2022; 15:1007026. [PMID: 36340689 PMCID: PMC9627482 DOI: 10.3389/fnmol.2022.1007026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023] Open
Abstract
The natriuretic peptide receptors NPR1 and NPR2, also known as guanylyl cyclase A and guanylyl cyclase B, have critical functions in many signaling pathways, but much remains unknown about their localization and function in vivo. To facilitate studies of these proteins, we developed genetically modified mouse lines in which endogenous NPR1 and NPR2 were tagged with the HA epitope. To investigate the role of phosphorylation in regulating NPR1 and NPR2 guanylyl cyclase activity, we developed mouse lines in which regulatory serines and threonines were substituted with glutamates, to mimic the negative charge of the phosphorylated forms (NPR1-8E and NPR2-7E). Here we describe the generation and applications of these mice. We show that the HA-NPR1 and HA-NPR2 mice can be used to characterize the relative expression levels of these proteins in different tissues. We describe studies using the NPR2-7E mice that indicate that dephosphorylation of NPR2 transduces signaling pathways in ovary and bone, and studies using the NPR1-8E mice that indicate that the phosphorylation state of NPR1 is a regulator of heart, testis, and adrenal function.
Collapse
Affiliation(s)
- Jeremy R. Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, United States,*Correspondence: Jeremy R. Egbert,
| | - Tracy F. Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, United States
| | - Katie M. Lowther
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, United States,Center for Mouse Genome Modification, University of Connecticut Health Center, Farmington, CT, United States
| | - Deborah Kaback
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, United States,Center for Mouse Genome Modification, University of Connecticut Health Center, Farmington, CT, United States
| | - Brandon M. Wagner
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Chastity L. Healy
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Timothy D. O’Connell
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Lincoln R. Potter
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States,Lincoln R. Potter,
| | - Laurinda A. Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, United States,Laurinda A. Jaffe,
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, United States,Center for Mouse Genome Modification, University of Connecticut Health Center, Farmington, CT, United States,Siu-Pok Yee,
| |
Collapse
|
8
|
Du Z, Yuan J, Wu Z, Chen Q, Liu X, Jia J. Circulating Exosomal circRNA_0063476 Impairs Expression of Markers of Bone Growth Via the miR-518c-3p/DDX6 Axis in ISS. Endocrinology 2022; 163:6668858. [PMID: 35974445 DOI: 10.1210/endocr/bqac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Idiopathic short stature (ISS), a disorder of unknown cause, accounts for approximately 80% of the clinical diagnoses of children with short stature. Exosomal circular RNA in plasma has been implicated in various disease processes. However, the role of exosome-derived circRNA in ISS has not been elucidated yet. METHODS Plasma exosomes of ISS and normal children were cocultured with human chondrocytes. Microarray analysis and RT-PCR identified the differential expression of circRNA in exosomes between ISS and normal children. Hsa_circ_0063476 was upregulated or downregulated in human chondrocytes. Subsequently, overexpression rats of hsa_circ_0063476 was constructed via adenoviral vector to further validate the role of hsa_circ_0063476 on longitudinal bone growth via in vivo experiment. RESULTS The plasma exosome of ISS children suppressed the expression of markers of chondrocyte hypertrophy and endochondral ossification. Subsequently, upregulation of hsa_circ_0063476 in ISS exosome was identified. In vitro experiments demonstrated that chondrocyte proliferation, cell cycle and endochondral ossification were suppressed, and apoptosis was increased following hsa_circ_0063476 overexpression in human chondrocytes. Conversely, silencing hsa_circ_0063476 in human chondrocytes can show opposite outcomes. Our study further revealed hsa_circ_0063476 overexpression in vitro can enhance chondrocyte apoptosis and inhibit the expression of markers of chondrocyte proliferation and endochondral ossification via miR-518c-3p/DDX6 axis. Additionally, the rats with hsa_circ_0063476 overexpression showed a short stature phenotype. CONCLUSIONS The authors identified a novel pathogenesis in ISS that exosome-derived hsa_circ_0063476 retards the expression of markers of endochondral ossification and impairs longitudinal bone growth via miR-518c-3p/DDX6 axis, which may provide a unique therapeutic avenue for ISS.
Collapse
Affiliation(s)
- Zhi Du
- Departments of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jinghong Yuan
- Departments of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Zhiwen Wu
- Departments of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Qi Chen
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Xijuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jingyu Jia
- Departments of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| |
Collapse
|
9
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
10
|
Molecular Mechanism of Induction of Bone Growth by the C-Type Natriuretic Peptide. Int J Mol Sci 2022; 23:ijms23115916. [PMID: 35682595 PMCID: PMC9180634 DOI: 10.3390/ijms23115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
The skeletal development process in the body occurs through sequential cellular and molecular processes called endochondral ossification. Endochondral ossification occurs in the growth plate where chondrocytes differentiate from resting, proliferative, hypertrophic to calcified zones. Natriuretic peptides (NPTs) are peptide hormones with multiple functions, including regulation of blood pressure, water-mineral balance, and many metabolic processes. NPTs secreted from the heart activate different tissues and organs, working in a paracrine or autocrine manner. One of the natriuretic peptides, C-type natriuretic peptide-, induces bone growth through several mechanisms. This review will summarize the knowledge, including the newest discoveries, of the mechanism of CNP activation in bone growth.
Collapse
|
11
|
Miyazaki Y, Ichimura A, Kitayama R, Okamoto N, Yasue T, Liu F, Kawabe T, Nagatomo H, Ueda Y, Yamauchi I, Hakata T, Nakao K, Kakizawa S, Nishi M, Mori Y, Akiyama H, Nakao K, Takeshima H. C-type natriuretic peptide facilitates autonomic Ca 2+ entry in growth plate chondrocytes for stimulating bone growth. eLife 2022; 11:71931. [PMID: 35287796 PMCID: PMC8923661 DOI: 10.7554/elife.71931] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/27/2022] [Indexed: 12/30/2022] Open
Abstract
The growth plates are cartilage tissues found at both ends of developing bones, and vital proliferation and differentiation of growth plate chondrocytes are primarily responsible for bone growth. C-type natriuretic peptide (CNP) stimulates bone growth by activating natriuretic peptide receptor 2 (NPR2) which is equipped with guanylate cyclase on the cytoplasmic side, but its signaling pathway is unclear in growth plate chondrocytes. We previously reported that transient receptor potential melastatin-like 7 (TRPM7) channels mediate intermissive Ca2+ influx in growth plate chondrocytes, leading to activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) for promoting bone growth. In this report, we provide evidence from experiments using mutant mice, indicating a functional link between CNP and TRPM7 channels. Our pharmacological data suggest that CNP-evoked NPR2 activation elevates cellular cGMP content and stimulates big-conductance Ca2+-dependent K+ (BK) channels as a substrate for cGMP-dependent protein kinase (PKG). BK channel-induced hyperpolarization likely enhances the driving force of TRPM7-mediated Ca2+ entry and seems to accordingly activate CaMKII. Indeed, ex vivo organ culture analysis indicates that CNP-facilitated bone growth is abolished by chondrocyte-specific Trpm7 gene ablation. The defined CNP signaling pathway, the NPR2-PKG-BK channel–TRPM7 channel–CaMKII axis, likely pinpoints promising target proteins for developing new therapeutic treatments for divergent growth disorders.
Collapse
Affiliation(s)
- Yuu Miyazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Ryo Kitayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Naoki Okamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Tomoki Yasue
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Feng Liu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takaaki Kawabe
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroki Nagatomo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Ueda
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Takuro Hakata
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazumasa Nakao
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sho Kakizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | | | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University, Kyoto, Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Hirota K, Hirashima T, Horikawa K, Yasoda A, Matsuda M. C-type Natriuretic Peptide-induced PKA Activation Promotes Endochondral Bone Formation in Hypertrophic Chondrocytes. Endocrinology 2022; 163:6511000. [PMID: 35041746 PMCID: PMC8826897 DOI: 10.1210/endocr/bqac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 11/28/2022]
Abstract
Longitudinal bone growth is achieved by a tightly controlled process termed endochondral bone formation. C-type natriuretic peptide (CNP) stimulates endochondral bone formation through binding to its specific receptor, guanylyl cyclase (GC)-B. However, CNP/GC-B signaling dynamics in different stages of endochondral bone formation have not been fully clarified, especially in terms of the interaction between the cyclic guanine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) pathways. Here, we demonstrated that CNP activates the cAMP/protein kinase A (PKA) pathway and that this activation contributed to the elongation of the hypertrophic zone in the growth plate. Cells of the chondrogenic line ATDC5 were transfected with Förster resonance energy transfer (FRET)-based cGMP and PKA biosensors. Dual-FRET imaging revealed that CNP increased intracellular cGMP levels and PKA activities in chondrocytes. Further, CNP-induced PKA activation was enhanced following differentiation of ATDC5 cells. Live imaging of the fetal growth plate of transgenic mice, expressing a FRET biosensor for PKA, PKAchu mice, showed that CNP predominantly activates the PKA in the hypertrophic chondrocytes. Additionally, histological analysis of the growth plate of PKAchu mice demonstrated that CNP increased the length of the growth plate, but coadministration of a PKA inhibitor, H89, inhibited the growth-promoting effect of CNP only in the hypertrophic zone. In summary, we revealed that CNP-induced cGMP elevation activated the cAMP/PKA pathway, and clarified that this PKA activation contributed to the bone growth-promoting effect of CNP in hypertrophic chondrocytes. These results provide insights regarding the cross-talk between cGMP and cAMP signaling in endochondral bone formation and in the physiological role of the CNP/GC-B system.
Collapse
Affiliation(s)
- Keisho Hirota
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Correspondence: Keisho Hirota, Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Tsuyoshi Hirashima
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- The Hakubi Center, Kyoto University, Kyoto, Japan
- Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Kazuki Horikawa
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University Graduate School, Tokushima, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Machnicki AL, White CA, Meadows CA, McCloud D, Evans S, Thomas D, Hurley JD, Crow D, Chirchir H, Serrat MA. Altered IGF-I activity and accelerated bone elongation in growth plates precede excess weight gain in a mouse model of juvenile obesity. J Appl Physiol (1985) 2022; 132:511-526. [PMID: 34989650 PMCID: PMC8836718 DOI: 10.1152/japplphysiol.00431.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nearly one-third of children in the United States are overweight or obese by their preteens. Tall stature and accelerated bone elongation are characteristic features of childhood obesity, which cooccur with conditions such as limb bowing, slipped epiphyses, and fractures. Children with obesity paradoxically have normal circulating IGF-I, the major growth-stimulating hormone. Here, we describe and validate a mouse model of excess dietary fat to examine mechanisms of growth acceleration in obesity. We used in vivo multiphoton imaging and immunostaining to test the hypothesis that high-fat diet increases IGF-I activity and alters growth plate structure before the onset of obesity. We tracked bone and body growth in male and female C57BL/6 mice (n = 114) on high-fat (60% kcal fat) or control (10% kcal fat) diets from weaning (3 wk) to skeletal maturity (12 wk). Tibial and tail elongation rates increased after brief (1-2 wk) high-fat diet exposure without altering serum IGF-I. Femoral bone density and growth plate size were increased, but growth plates were disorganized in not-yet-obese high-fat diet mice. Multiphoton imaging revealed more IGF-I in the vasculature surrounding growth plates of high-fat diet mice and increased uptake when vascular levels peaked. High-fat diet growth plates had more activated IGF-I receptors and fewer inhibitory binding proteins, suggesting increased IGF-I bioavailability in growth plates. These results, which parallel pediatric growth patterns, highlight the fundamental role of diet in the earliest stages of developing obesity-related skeletal complications and validate the utility of the model for future studies aimed at determining mechanisms of diet-enhanced bone lengthening.NEW & NOTEWORTHY This paper validates a mouse model of linear growth acceleration in juvenile obesity. We demonstrate that high-fat diet induces rapid increases in bone elongation rate that precede excess weight gain and parallel pediatric growth. By imaging IGF-I delivery to growth plates in vivo, we reveal novel diet-induced changes in IGF-I uptake and activity. These results are important for understanding the sequelae of musculoskeletal complications that accompany advanced bone age and obesity in children.
Collapse
Affiliation(s)
- Allison L. Machnicki
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Cassaundra A. White
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Chad A. Meadows
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Darby McCloud
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Sarah Evans
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Dominic Thomas
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - John D. Hurley
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Daniel Crow
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Habiba Chirchir
- 2Department of Biological Sciences, Marshall University, Huntington, West Virginia,3Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia
| | - Maria A. Serrat
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
14
|
Takei Y. Evolution of the membrane/particulate guanylyl cyclase: From physicochemical sensors to hormone receptors. Gen Comp Endocrinol 2022; 315:113797. [PMID: 33957096 DOI: 10.1016/j.ygcen.2021.113797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Guanylyl cyclase (GC) is an enzyme that produces 3',5'-cyclic guanosine monophosphate (cGMP), one of the two canonical cyclic nucleotides used as a second messenger for intracellular signal transduction. The GCs are classified into two groups, particulate/membrane GCs (pGC) and soluble/cytosolic GCs (sGC). In relation to the endocrine system, pGCs include hormone receptors for natriuretic peptides (GC-A and GC-B) and guanylin peptides (GC-C), while sGC is a receptor for nitric oxide and carbon monoxide. Comparing the functions of pGCs in eukaryotes, it is apparent that pGCs perceive various environmental factors such as light, temperature, and various external chemical signals in addition to endocrine hormones, and transmit the information into the cell using the intracellular signaling cascade initiated by cGMP, e.g., cGMP-dependent protein kinases, cGMP-sensitive cyclic nucleotide-gated ion channels and cGMP-regulated phosphodiesterases. Among vertebrate pGCs, GC-E and GC-F are localized on retinal epithelia and are involved in modifying signal transduction from the photoreceptor, rhodopsin. GC-D and GC-G are localized in olfactory epithelia and serve as sensors at the extracellular domain for external chemical signals such as odorants and pheromones. GC-G also responds to guanylin peptides in the urine, which alters sensitivity to other chemicals. In addition, guanylin peptides that are secreted into the intestinal lumen, a pseudo-external environment, act on the GC-C on the apical membrane for regulation of epithelial transport. In this context, GC-C and GC-G appear to be in transition from exocrine pheromone receptor to endocrine hormone receptor. The pGCs also exist in various deuterostome and protostome invertebrates, and act as receptors for environmental, exocrine and endocrine factors including hormones. Tracing the evolutionary history of pGCs, it appears that pGCs first appeared as a sensor for physicochemical signals in the environment, and then evolved to function as hormone receptors. In this review, the author proposes an evolutionary history of pGCs that highlights the emerging role of the GC/cGMP system for signal transduction in hormone action.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
15
|
Prickett TCR, Espiner EA, Irving M, Bacino C, Phillips JA, Savarirayan R, Day JRS, Fisheleva E, Larimore K, Chan ML, Jeha GS. Evidence of feedback regulation of C-type natriuretic peptide during Vosoritide therapy in Achondroplasia. Sci Rep 2021; 11:24278. [PMID: 34930956 PMCID: PMC8688426 DOI: 10.1038/s41598-021-03593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
Evidence from genetic disorders of CNP signalling suggests that plasma concentrations of CNP are subject to feedback regulation. In subjects with Achondroplasia (Ach), CNP intracellular activity is suppressed and plasma concentrations are raised but the therapeutic impact of exogenous CNP agonists on endogenous CNP is unknown. In this exploratory dose finding and extension study of 28 Ach children receiving Vosoritide over a 5 year period of treatment, endogenous CNP production was assessed using measurements of plasma aminoterminal proCNP (NTproCNP) adjusted for age and sex and normalised as standard deviation score (SDS), and then related to skeletal growth. Before treatment NTproCNP SDS was raised. Within the first 3 months of accelerating growth, levels were significantly reduced. Across the 5 years of sustained growth, levels varied widely and were markedly increased in some subjects during adolescence. Plasma NTproCNP was suppressed at 4 h post-injection in proportion to the prevailing level of hormone resistance as reflected by SDS before injection. We conclude CNP remains subject to regulation during growth promoting doses of Vosoritide. Fall in CNP during accelerating growth is consistent with an indirect feedback whereas the fall at 4 h is likely to be a direct effect from removal of intra cellular CNP resistance.
Collapse
Affiliation(s)
- Timothy C R Prickett
- Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand.
| | - Eric A Espiner
- Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - Melita Irving
- Guy's and St. Thomas' NHS Foundation Trust, Evelina Children's Hospital, London, UK
| | | | | | - Ravi Savarirayan
- Murdoch Children's Research Institute, Royal Children's Hospital Victoria, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Watanabe-Takano H, Ochi H, Chiba A, Matsuo A, Kanai Y, Fukuhara S, Ito N, Sako K, Miyazaki T, Tainaka K, Harada I, Sato S, Sawada Y, Minamino N, Takeda S, Ueda HR, Yasoda A, Mochizuki N. Mechanical load regulates bone growth via periosteal Osteocrin. Cell Rep 2021; 36:109380. [PMID: 34260913 DOI: 10.1016/j.celrep.2021.109380] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation.
Collapse
Affiliation(s)
- Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan.
| | - Hiroki Ochi
- Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Ayaka Matsuo
- Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Naoki Ito
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-7-6 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Keisuke Sako
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Ichiro Harada
- Medical Products Technology, Development Center, R&D headquarters, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yasuhiro Sawada
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan; Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan; Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Shu Takeda
- Division of Endocrinology, Toranomon Hospital Endocrine Center, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | - Hiroki R Ueda
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
17
|
Shuhaibar LC, Kaci N, Egbert JR, Horville T, Loisay L, Vigone G, Uliasz TF, Dambroise E, Swingle MR, Honkanen RE, Biosse Duplan M, Jaffe LA, Legeai-Mallet L. Phosphatase inhibition by LB-100 enhances BMN-111 stimulation of bone growth. JCI Insight 2021; 6:141426. [PMID: 33986191 PMCID: PMC8262325 DOI: 10.1172/jci.insight.141426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Activating mutations in fibroblast growth factor receptor 3 (FGFR3) and inactivating mutations in the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase both result in decreased production of cyclic GMP in chondrocytes and severe short stature, causing achondroplasia (ACH) and acromesomelic dysplasia, type Maroteaux, respectively. Previously, we showed that an NPR2 agonist BMN-111 (vosoritide) increases bone growth in mice mimicking ACH (Fgfr3Y367C/+). Here, because FGFR3 signaling decreases NPR2 activity by dephosphorylating the NPR2 protein, we tested whether a phosphatase inhibitor (LB-100) could enhance BMN-111–stimulated bone growth in ACH. Measurements of cGMP production in chondrocytes of living tibias, and of NPR2 phosphorylation in primary chondrocytes, showed that LB-100 counteracted FGF-induced dephosphorylation and inactivation of NPR2. In ex vivo experiments with Fgfr3Y367C/+ mice, the combination of BMN-111 and LB-100 increased bone length and cartilage area, restored chondrocyte terminal differentiation, and increased the proliferative growth plate area, more than BMN-111 alone. The combination treatment also reduced the abnormal elevation of MAP kinase activity in the growth plate of Fgfr3Y367C/+ mice and improved the skull base anomalies. Our results provide a proof of concept that a phosphatase inhibitor could be used together with an NPR2 agonist to enhance cGMP production as a therapy for ACH.
Collapse
Affiliation(s)
- Leia C Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut, USA
| | - Nabil Kaci
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France.,Inovarion, F-75005 Paris, France
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut, USA
| | - Thibault Horville
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Léa Loisay
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Giulia Vigone
- Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut, USA
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut, USA
| | - Emilie Dambroise
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile Alabama, USA
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile Alabama, USA
| | - Martin Biosse Duplan
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France.,Service de Médecine Bucco-Dentaire, Hôpital Bretonneau, AP-HP, Paris, France
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut, USA
| | - Laurence Legeai-Mallet
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| |
Collapse
|
18
|
Jiang Z, Byers S, Casal ML, Smith LJ. Failures of Endochondral Ossification in the Mucopolysaccharidoses. Curr Osteoporos Rep 2020; 18:759-773. [PMID: 33064251 PMCID: PMC7736118 DOI: 10.1007/s11914-020-00626-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The mucopolysaccharidoses (MPS) are a group of inherited lysosomal storage disorders characterized by abnormal accumulation of glycosaminoglycans (GAGs) in cells and tissues. MPS patients frequently exhibit failures of endochondral ossification during postnatal growth leading to skeletal deformity and short stature. In this review, we outline the current understanding of the cellular and molecular mechanisms underlying failures of endochondral ossification in MPS and discuss associated treatment challenges and opportunities. RECENT FINDINGS Studies in MPS patients and animal models have demonstrated that skeletal cells and tissues exhibit significantly elevated GAG storage from early in postnatal life and that this is associated with impaired cartilage-to-bone conversion in primary and secondary ossification centers, and growth plate dysfunction. Recent studies have begun to elucidate the underlying cellular and molecular mechanisms, including impaired chondrocyte proliferation and hypertrophy, diminished growth factor signaling, disrupted cell cycle progression, impaired autophagy, and increased cell stress and apoptosis. Current treatments such as hematopoietic stem cell transplantation and enzyme replacement therapy fail to normalize endochondral ossification in MPS. Emerging treatments including gene therapy and small molecule-based approaches hold significant promise in this regard. Failures of endochondral ossification contribute to skeletal deformity and short stature in MPS patients, increasing mortality and reducing quality of life. Early intervention is crucial for effective treatment, and there is a critical need for new approaches that normalize endochondral ossification by directly targeting affected cells and signaling pathways.
Collapse
Affiliation(s)
- Zhirui Jiang
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Sharon Byers
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Paediatrics, The University of Adelaide, Adelaide, SA, Australia
- Genetics and Evolution, The University of Adelaide, Adelaide, SA, Australia
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Prickett TC, A Espiner E. Circulating products of C-type natriuretic peptide and links with organ function in health and disease. Peptides 2020; 132:170363. [PMID: 32634451 DOI: 10.1016/j.peptides.2020.170363] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Paracrine actions of CNP and rapid degradation at source severely limit study of CNP's many roles in vivo. However provided sensitive and validated assays are used, there is increasing evidence that low concentrations of bioactive CNP in plasma, and the readily detectable concentrations of the bio-inactive processed product of proCNP (aminoterminal proCNP), can be used to advance understanding of the hormone's role in pathophysiology. Provided renal function is normal, concordant changes in both CNP and NTproCNP reflect change in tissue production of proCNP whereas change in CNP alone results from altered rates of bioactive CNP degradation and are reflected in the ratio of NTproCNP to CNP. As already shown in juveniles, where plasma concentration of CNP products are higher and are associated with concurrent endochondral bone growth, measurements of plasma CNP products in mature adults have potential to clarify organ response to stress and injury. Excepting the role of CNP in fetal-maternal welfare, this review examines evidence linking plasma CNP products with function of a wide range of tissues in adults, including the impact of extraneous factors such as nutrients, hormone therapy and exercise.
Collapse
Affiliation(s)
- Timothy Cr Prickett
- Department of Medicine, University of Otago, PO Box 4345, Christchurch, 8140 New Zealand.
| | - Eric A Espiner
- Department of Medicine, University of Otago, PO Box 4345, Christchurch, 8140 New Zealand
| |
Collapse
|
20
|
Ueda Y, Hirota K, Yamauchi I, Hakata T, Yamashita T, Fujii T, Yasoda A, Inagaki N. Is C-type natriuretic peptide regulated by a feedback loop? A study on systemic and local autoregulatory effect. PLoS One 2020; 15:e0240023. [PMID: 33002060 PMCID: PMC7529242 DOI: 10.1371/journal.pone.0240023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
C-type natriuretic peptide (CNP) is a pivotal enhancer of endochondral bone growth and is expected to be a therapeutic reagent for impaired skeletal growth. Although we showed that CNP stimulates bone growth as a local regulator in the growth plate via the autocrine/paracrine system, CNP is abundantly produced in other various tissues and its blood concentration is reported to correlate positively with growth velocity. Therefore we investigated the systemic regulation of CNP levels using rodent models. In order to examine whether CNP undergoes systemic feedback regulation, we investigated blood CNP levels and local CNP expression in various tissues, including cartilage, of 4-week-old rats after systemic administration of sufficient amounts of exogenous CNP (0.5 mg/kg/day) for 3 days. This CNP administration did not alter blood NT-proCNP levels in male rats but decreased mRNA expression only in tissue that included cartilage. Decrease in expression and blood NT-proCNP were greater in female rats. To analyze the existence of direct autoregulation of CNP in the periphery as an autocrine/paracrine system, we estimated the effect of exogenous supplementation of CNP on the expression of endogenous CNP itself in the growth plate cartilage of extracted fetal murine tibias and in ATDC5, a chondrogenic cell line. We found no alteration of endogenous CNP expression after incubation with adequate concentrations of exogenous CNP for 4 and 24 hours, which were chosen to observe primary and later transcriptional effects, respectively. These results indicate that CNP is not directly autoregulated but indirectly autoregulated in cartilage tissue. A feedback system is crucial for homeostatic regulation and further studies are needed to elucidate the regulatory system of CNP production and function.
Collapse
Affiliation(s)
- Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- * E-mail: (YU); (AY)
| | - Keisho Hirota
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takuro Hakata
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takafumi Yamashita
- Department of Metabolism and Endocrinology, Kishiwada City Hospital, Kishiwada-shi, Osaka, Japan
| | - Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, Fukakusa, Fushimi-ku, Kyoto, Japan
- * E-mail: (YU); (AY)
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
21
|
Lauffer P, Miranda-Laferte E, van Duyvenvoorde HA, van Haeringen A, Werner F, Boudin E, Schmidt H, Mueller TD, Kuhn M, van der Kaay DCM. An Activating Deletion Variant in the Submembrane Region of Natriuretic Peptide Receptor-B Causes Tall Stature. J Clin Endocrinol Metab 2020; 105:5819532. [PMID: 32282051 PMCID: PMC7450217 DOI: 10.1210/clinem/dgaa190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
CONTEXT C-type natriuretic peptide (CNP) is critically involved in endochondral bone growth. Variants in the genes encoding CNP or its cyclic guanosine monophosphate (cGMP)-forming receptor (natriuretic peptide receptor-B [NPR-B], gene NPR2) cause monogenic growth disorders. Here we describe a novel gain-of-function variant of NPR-B associated with tall stature and macrodactyly of the great toes (epiphyseal chondrodysplasia, Miura type). DESIGN History and clinical characteristics of 3 family members were collected. NPR2 was selected for sequencing. Skin fibroblasts and transfected HEK-293 cells were used to compare mutant versus wild-type NPR-B activities. Homology modeling was applied to understand the molecular consequences of the variant. RESULTS Mother's height was +2.77 standard deviation scores (SDS). The heights of her 2 daughters were +1.96 SDS at 7 years and +1.30 SDS at 4 years of age. Skeletal surveys showed macrodactyly of the great toes and pseudo-epiphyses of the mid- and proximal phalanges. Sequencing identified a novel heterozygous variant c.1444_1449delATGCTG in exon 8 of NPR2, predicted to result in deletion of 2 amino acids Met482-Leu483 within the submembrane region of NPR-B. In proband's skin fibroblasts, basal cGMP levels and CNP-stimulated cGMP production were markedly increased compared with controls. Consistently, assays with transfected HEK-293 cells showed markedly augmented baseline and ligand-dependent activity of mutant NPR-B. CONCLUSIONS We report the second activating variant within the intracellular submembrane region of NPR-B resulting in tall stature and macrodactyly. Our functional and modeling studies suggest that this domain plays a critical role in the baseline conformation and ligand-dependent structural rearrangement of NPR-B required for cGMP production.
Collapse
Affiliation(s)
- Peter Lauffer
- Department of Clinical Genetics, Leiden University Medical Center, ZA Leiden, the Netherlands
- Department of Paediatric Endocrinology, Emma Children’s Hospital, Amsterdam University Medical Center, AZ Amsterdam, the Netherlands
- Correspondence and Reprint Requests: Peter Lauffer, Emma Children’s Hospital, Amsterdam University Medical Center, Department of Paediatric Endocrinology, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands. E-mail:
| | | | | | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, ZA Leiden, the Netherlands
| | - Franziska Werner
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Eveline Boudin
- Centre of Medical Genetics, University of Antwerp, Edegem, Belgium
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thomas D Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
22
|
Kagan BJ, Rosello‐Diez A. Integrating levels of bone growth control: From stem cells to body proportions. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e384. [DOI: 10.1002/wdev.384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/09/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Brett J. Kagan
- Australian Regenerative Medicine Institute Monash University Clayton Australia
| | | |
Collapse
|
23
|
Taura D, Nakao K, Nakagawa Y, Kinoshita H, Sone M, Nakao K. C-type natriuretic peptide (CNP)/guanylate cyclase B (GC-B) system and endothelin-1(ET-1)/ET receptor A and B system in human vasculature. Can J Physiol Pharmacol 2020; 98:611-617. [PMID: 32268070 DOI: 10.1139/cjpp-2019-0686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To assess the physiological and clinical implications of the C-type natriuretic peptide (CNP)/guanylyl cyclase B (GC-B) system in the human vasculature, we have examined gene expressions of CNP and its receptor, GC-B, in human vascular endothelial cells (ECs) and smooth muscle cells (SMCs) and have also compared the endothelin-1(ET-1)/endothelin receptor-A (ETR-A) and endothelin receptor-B (ETR-B) system in human aortic ECs (HAECs) and vascular SMCs (HSMCs) in vitro. We also examined these gene expressions in human embryonic stem (ES)/induced pluripotent stem cell (iPS)-derived ECs and mural cells (MCs). A little but significant amount of mRNA encoding CNP was detected in both human ES-derived ECs and HAECs. A substantial amount of GC-B was expressed in both ECs (iPS-derived ECs and HAECs) and SMCs (iPS-derived MCs and HSMCs). ET-1 was expressed solely in ECs. ETR-A was expressed in SMCs, while ETR-B was expressed in ECs. These results indicate the existence of a vascular CNP/GC-B system in the human vascular wall, indicating the evidence for clinical implication of the CNP/GC-B system in concert with the ET-1/ETR-A and ETR-B system in the human vasculature.
Collapse
Affiliation(s)
- Daisuke Taura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuhiro Nakao
- National Cardiovascular, Cerebrovascular Research Center Hospital, Suita, Japan
| | - Yasuaki Nakagawa
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideyuki Kinoshita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakatsu Sone
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
24
|
Espiner EA, Prickett TCR. New Prospects for Restoring Skeletal Growth in Mucopolysaccharidoses. Endocrinology 2020; 161:5802320. [PMID: 32152627 PMCID: PMC7445418 DOI: 10.1210/endocr/bqaa034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Eric A Espiner
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Correspondence: Eric Espiner, Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand. E-mail:
| | | |
Collapse
|
25
|
Špiranec K, Chen W, Werner F, Nikolaev VO, Naruke T, Koch F, Werner A, Eder-Negrin P, Diéguez-Hurtado R, Adams RH, Baba HA, Schmidt H, Schuh K, Skryabin BV, Movahedi K, Schweda F, Kuhn M. Endothelial C-Type Natriuretic Peptide Acts on Pericytes to Regulate Microcirculatory Flow and Blood Pressure. Circulation 2019; 138:494-508. [PMID: 29626067 DOI: 10.1161/circulationaha.117.033383] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Peripheral vascular resistance has a major impact on arterial blood pressure levels. Endothelial C-type natriuretic peptide (CNP) participates in the local regulation of vascular tone, but the target cells remain controversial. The cGMP-producing guanylyl cyclase-B (GC-B) receptor for CNP is expressed in vascular smooth muscle cells (SMCs). However, whereas endothelial cell-specific CNP knockout mice are hypertensive, mice with deletion of GC-B in vascular SMCs have unaltered blood pressure. METHODS We analyzed whether the vasodilating response to CNP changes along the vascular tree, ie, whether the GC-B receptor is expressed in microvascular types of cells. Mice with a floxed GC-B ( Npr2) gene were interbred with Tie2-Cre or PDGF-Rβ-Cre ERT2 lines to develop mice lacking GC-B in endothelial cells or in precapillary arteriolar SMCs and capillary pericytes. Intravital microscopy, invasive and noninvasive hemodynamics, fluorescence energy transfer studies of pericyte cAMP levels in situ, and renal physiology were combined to dissect whether and how CNP/GC-B/cGMP signaling modulates microcirculatory tone and blood pressure. RESULTS Intravital microscopy studies revealed that the vasodilatatory effect of CNP increases toward small-diameter arterioles and capillaries. CNP consistently did not prevent endothelin-1-induced acute constrictions of proximal arterioles, but fully reversed endothelin effects in precapillary arterioles and capillaries. Here, the GC-B receptor is expressed both in endothelial and mural cells, ie, in pericytes. It is notable that the vasodilatatory effects of CNP were preserved in mice with endothelial GC-B deletion, but abolished in mice lacking GC-B in microcirculatory SMCs and pericytes. CNP, via GC-B/cGMP signaling, modulates 2 signaling cascades in pericytes: it activates cGMP-dependent protein kinase I to phosphorylate downstream targets such as the cytoskeleton-associated vasodilator-activated phosphoprotein, and it inhibits phosphodiesterase 3A, thereby enhancing pericyte cAMP levels. These pathways ultimately prevent endothelin-induced increases of pericyte calcium levels and pericyte contraction. Mice with deletion of GC-B in microcirculatory SMCs and pericytes have elevated peripheral resistance and chronic arterial hypertension without a change in renal function. CONCLUSIONS Our studies indicate that endothelial CNP regulates distal arteriolar and capillary blood flow. CNP-induced GC-B/cGMP signaling in microvascular SMCs and pericytes is essential for the maintenance of normal microvascular resistance and blood pressure.
Collapse
Affiliation(s)
- Katarina Špiranec
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Wen Chen
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Franziska Werner
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.)
| | - Takashi Naruke
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Franziska Koch
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Andrea Werner
- Institute of Physiology, University of Regensburg, Germany (A.W., F.S.)
| | - Petra Eder-Negrin
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Rodrigo Diéguez-Hurtado
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis (R.D.-H., R.H.A.)
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis (R.D.-H., R.H.A.)
| | - Hideo A Baba
- Faculty of Medicine, University of Münster, Germany. Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Germany (H.A.B.)
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany (H.S.)
| | - Kai Schuh
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Boris V Skryabin
- Core Facility Transgenic Animal and genetic engineering Models (B.V.S.)
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab, Vesalius Research Center, Center for Inflammation Research, and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium (K.M.)
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Germany (A.W., F.S.)
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| |
Collapse
|
26
|
Prickett TCR, Spittlehouse JK, Miller AL, Liau Y, Kennedy MA, Cameron VA, Pearson JF, Boden JM, Troughton RW, Espiner EA. Contrasting signals of cardiovascular health among natriuretic peptides in subjects without heart disease. Sci Rep 2019; 9:12108. [PMID: 31431677 PMCID: PMC6702214 DOI: 10.1038/s41598-019-48553-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/07/2019] [Indexed: 01/22/2023] Open
Abstract
Natriuretic Peptides (NP) are important in maintaining normal cardiac and metabolic status and have been used to predict cardiovascular events. Whether plasma concentrations of NP products within the normal range reflect cardio-metabolic health is unknown. Plasma NTproANP, NTproBNP and NTproCNP and their bioactive counterparts were measured in a random sample of 348 community dwellers aged 49-51 yr without heart disease and associations sought with established vascular risk factors, echocardiographic indices and a genetic variant previously linked with BNP. Stratified by sex, each of ten vascular risk factors were positively associated with NTproCNP whereas associations with NTproBNP and NTproANP were all negative. In both sexes, higher plasma NTproCNP was associated with higher arterial elastance, lower LV stroke volume and lower LV end diastolic volume. Exactly opposite associations were found with plasma NTproBNP or NTproANP. Sex specific differences were identified: positive association of NTproBNP with LV end systolic volume and the negative association with LV elastance were found only in males. The genetic variant rs198358 was independently associated with NTproBNP but not with NTproANP. In conclusion, higher NTproCNP is likely to be an adaptive response to impaired LV relaxation whereas genetic factors likely contribute to higher NTproBNP and improved cardio-metabolic health at midlife.
Collapse
Affiliation(s)
| | | | - Allison L Miller
- Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Yusmiati Liau
- Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Martin A Kennedy
- Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Vicky A Cameron
- Departments of Medicine, University of Otago, Christchurch, New Zealand
| | - John F Pearson
- Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - Joseph M Boden
- Psychological Medicine, University of Otago, Christchurch, New Zealand
| | | | - Eric A Espiner
- Departments of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
27
|
Espiner E, Prickett T, Olney R. Plasma C-Type Natriuretic Peptide: Emerging Applications in Disorders of Skeletal Growth. Horm Res Paediatr 2019; 90:345-357. [PMID: 30844819 DOI: 10.1159/000496544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/30/2018] [Indexed: 11/19/2022] Open
Abstract
Although studies in experimental animals show that blood levels of C-type natriuretic peptide (CNP) and its bioinactive aminoterminal propeptide (NTproCNP) are potential biomarkers of long bone growth, a lack of suitable assays and appropriate reference ranges has limited the application of CNP measurements in clinical practice. Plasma concentrations of the processed product of proCNP, NTproCNP - and to a lesser extent CNP itself - correlate with concurrent height velocity throughout all phases of normal skeletal growth, as well as during interventions known to affect skeletal growth in children. Since a change in levels precedes a measurable change in height velocity during interventions, measuring NTproCNP may have predictive value in clinical practice. Findings from a variety of genetic disorders affecting CNP signaling suggest that plasma concentrations of both peptides may be helpful in diagnosis, provided factors such as concurrent height velocity, feedback regulation of CNP, and differential changes in peptide clearance are considered when interpreting values. An improved understanding of factors affecting plasma levels, and the availability of commercial kits enabling accurate measurement using small volumes of plasma, can be expected to facilitate potential applications in growth disorders including genetic causes -affecting the CNP signaling pathway.
Collapse
Affiliation(s)
- Eric Espiner
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - Tim Prickett
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand,
| | - Robert Olney
- Division of Endocrinology, Nemours Children's Specialty Care, Jacksonville, Florida, USA
| |
Collapse
|
28
|
Yamamoto K, Kawai M, Yamazaki M, Tachikawa K, Kubota T, Ozono K, Michigami T. CREB activation in hypertrophic chondrocytes is involved in the skeletal overgrowth in epiphyseal chondrodysplasia Miura type caused by activating mutations of natriuretic peptide receptor B. Hum Mol Genet 2019; 28:1183-1198. [PMID: 30544148 DOI: 10.1093/hmg/ddy428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023] Open
Abstract
Natriuretic peptide receptor B (NPRB) produces cyclic guanosine monophosphate (cGMP) when bound by C-type natriuretic peptide (CNP). Activating mutations in NPRB cause a skeletal overgrowth disorder, which has been named epiphyseal chondrodysplasia, Miura type (ECDM; OMIM #615923). Here we explored the cellular and molecular mechanisms for the skeletal overgrowth in ECDM using a mouse model in which an activating mutant NPRB is specifically expressed in chondrocytes. The mutant mice (NPRB[p.V883M]-Tg) exhibited postnatal skeletal overgrowth and increased cGMP in cartilage. Both endogenous and transgene-derived NPRB proteins were localized at the plasma membrane of hypertrophic chondrocytes. The hypertrophic zone of growth plate was thickened in NPRB[p.V883M]-Tg. An in vivo BrdU-labeling assay suggested that some of the hypertrophic chondrocytes in NPRB[p.V883M]-Tg mice continued to proliferate, although wild-type (WT) chondrocytes stopped proliferating after they became hypertrophic. In vitro cell studies revealed that NPRB activation increased the phosphorylation of cyclic AMP-responsive element binding protein (CREB) and expression of cyclin D1 in matured chondrocytes. Treatment with cell-permeable cGMP also enhanced the CREB phosphorylation. Inhibition of cyclic adenosine monophosphate (cAMP)/protein kinase A pathway had no effects on the CREB phosphorylation induced by NPRB activation. In immunostaining of the growth plates for the proliferation marker Ki67, phosphorylated CREB and cyclin D1, most signals were similarly observed in the proliferating zone in both genotypes, but some cells in the hypertrophic zone of NPRB[p.V883M]-Tg were also positively stained. These results suggest that NPRB activation evokes its signal in hypertrophic chondrocytes to induce CREB phosphorylation and make them continue to proliferate, leading to the skeletal overgrowth in ECDM.
Collapse
Affiliation(s)
- Keiko Yamamoto
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan
| | - Kanako Tachikawa
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan
| |
Collapse
|
29
|
Yotsumoto T, Morozumi N, Furuya M, Fujii T, Hirota K, Ueda Y, Nakao K, Yamanaka S, Yoshikiyo K, Yoshida S, Nishimura T, Abe Y, Jindo T, Ogasawara H, Yasoda A. Foramen magnum stenosis and midface hypoplasia in C-type natriuretic peptide-deficient rats and restoration by the administration of human C-type natriuretic peptide with 53 amino acids. PLoS One 2019; 14:e0216340. [PMID: 31120905 PMCID: PMC6532844 DOI: 10.1371/journal.pone.0216340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/18/2019] [Indexed: 01/09/2023] Open
Abstract
C-type natriuretic peptide (CNP)-knockout (KO) rats exhibit impaired skeletal growth, with long bones shorter than those in wild-type (WT) rats. This study compared craniofacial morphology in the CNP-KO rat with that in the Spontaneous Dwarf Rat (SDR), a growth hormone (GH)-deficient model. The effects of subcutaneous administration of human CNP with 53 amino acids (CNP-53) from 5 weeks of age for 4 weeks on craniofacial morphology in CNP-KO rats were also investigated. Skulls of CNP-KO rats at 9 weeks of age were longitudinally shorter and the foramen magnum was smaller than WT rats. There were no differences in foramen magnum stenosis and midface hypoplasia between CNP-KO rats at 9 and 33 weeks of age. These morphological features were the same as those observed in CNP-KO mice and activated fibroblast growth factor receptor 3 achondroplasia-phenotype mice. In contrast, SDR did not exhibit foramen magnum stenosis and midface hypoplasia, despite shorter stature than in control rats. After administration of exogenous CNP-53, the longitudinal skull length and foramen magnum size in CNP-KO rats were significantly greater, and full or partial rescue was confirmed. The synchondrosis at the cranial base in CNP-KO rats is closed at 9 weeks, but not at 4 weeks of age. In contrast, synchondrosis closure in CNP-KO rats treated with CNP-53 was incomplete at 9 weeks of age. Administration of exogenous CNP-53 accelerated craniofacial skeletogenesis, leading to improvement in craniofacial morphology. As these findings in CNP-KO rats are similar to those in patients with achondroplasia, treatment with CNP-53 or a CNP analog may be able to restore craniofacial morphology and foramen magnum size as well as short stature.
Collapse
Affiliation(s)
- Takafumi Yotsumoto
- Asubio Pharma Co., Ltd. Kobe, Japan
- Daiichi Sankyo Co., Ltd. Tokyo, Japan
- * E-mail:
| | | | | | - Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keisho Hirota
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazumasa Nakao
- Department of Oral and Maxillofacial Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeki Yamanaka
- Department of Oral and Maxillofacial Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazunori Yoshikiyo
- Asubio Pharma Co., Ltd. Kobe, Japan
- Daiichi Sankyo Co., Ltd. Tokyo, Japan
| | - Sayaka Yoshida
- Asubio Pharma Co., Ltd. Kobe, Japan
- Daiichi Sankyo Co., Ltd. Tokyo, Japan
| | - Tomonari Nishimura
- Asubio Pharma Co., Ltd. Kobe, Japan
- Daiichi Sankyo Co., Ltd. Tokyo, Japan
| | - Yasuyuki Abe
- Asubio Pharma Co., Ltd. Kobe, Japan
- Daiichi Sankyo Co., Ltd. Tokyo, Japan
| | - Toshimasa Jindo
- Asubio Pharma Co., Ltd. Kobe, Japan
- Daiichi Sankyo Co., Ltd. Tokyo, Japan
| | - Hiroyuki Ogasawara
- Asubio Pharma Co., Ltd. Kobe, Japan
- Daiichi Sankyo Co., Ltd. Tokyo, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| |
Collapse
|
30
|
Yang S, Qian Z, Liu D, Wen N, Xu J, Guo X. Integration of C-type natriuretic peptide gene-modified bone marrow mesenchymal stem cells with chitosan/silk fibroin scaffolds as a promising strategy for articular cartilage regeneration. Cell Tissue Bank 2019; 20:209-220. [PMID: 30854603 DOI: 10.1007/s10561-019-09760-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/03/2019] [Indexed: 12/20/2022]
Abstract
The treatment of articular cartilage defects has become a major clinical concern. Currently, additional efforts are necessary to develop effective methods to cure this disease. In this work, we combined gene therapy with tissue engineering methods to test their effect on cartilage repair. In in vitro experiments, we obtained C-type natriuretic peptide (CNP) gene-modified bone marrow-derived mesenchymal stem cells (BMSCs) by transfection with recombinant adenovirus containing the CNP gene and revealed that CNP gene-modified BMSCs had good chondrogenic differentiation ability. By the freeze-drying method, we successfully synthesized a chitosan/silk fibroin (CS/SF) porous scaffold, which had a suitable aperture size for chondrogenesis. Then, we loaded CNP gene-modified BMSCs onto CS/SF scaffolds and tested their effect on repairing full-thickness cartilage defects in rat joints. The gross morphology and histology examination results showed that the composite of the CNP gene-modified BMSCs and CS/SF scaffolds had better repair effects than those of the other three groups at each time point. Additionally, compared to the group with BMSCs and scaffolds, we found that there was more cartilage matrix in the CNP gene-modified BMSCs and CS/SF scaffolds group. Data obtained in the present study suggest that the composite of CNP gene-modified BMSCs and CS/SF scaffolds represent promising strategies for repairing focal cartilage lesions.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Stomatology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Zhiyong Qian
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Donghua Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing, 100850, China
| | - Ning Wen
- Department of Stomatology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Juan Xu
- Department of Stomatology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
31
|
Morozumi N, Yotsumoto T, Yamaki A, Yoshikiyo K, Yoshida S, Nakamura R, Jindo T, Furuya M, Maeda H, Minamitake Y, Kangawa K. ASB20123: A novel C-type natriuretic peptide derivative for treatment of growth failure and dwarfism. PLoS One 2019; 14:e0212680. [PMID: 30794654 PMCID: PMC6386482 DOI: 10.1371/journal.pone.0212680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
C-type natriuretic peptide (CNP) and its receptor natriuretic peptide receptor B (NPR-B) are physiological potent positive regulators of endochondral bone growth; therefore, the CNP/NPR-B signaling pathway is one of the most promising therapeutic targets for treating growth failure and dwarfism. In this article, we summarized the pharmacological properties of a novel CNP analog peptide ASB20123 as a therapeutic agent for short stature. ASB20123, one of the CNP/ghrelin chimeric peptides, is composed of CNP(1-22) and human ghrelin(12-28, E17D). Compared to CNP(1-22), ASB20123 showed similar agonist activity for NPR-B and improved biokinetics with a longer plasma half-life in rats. In addition, the distribution of ASB20123 to the cartilage was higher than that of CNP(1-22) after single subcutaneous (sc) injection to mice. These results suggested that the C-terminal part of ghrelin, which has clusters of basic amino acid residues and a BX7B motif, might contribute to the retention of ASB20123 in the extracellular matrix of the growth plate. Multiple sc doses of ASB20123 potently stimulated skeletal growth in rats in a dose-dependent manner, and sc infusion was more effective than bolus injection at the same dose. Our data indicated that high plasma levels of ASB20123 would not necessarily be required for bone growth acceleration. Thus, pharmaceutical formulation approaches for sustained-release dosage forms to allow chronic exposure to ASB20123 might be suitable to ensure drug effectiveness and safety.
Collapse
Affiliation(s)
| | - Takafumi Yotsumoto
- Asubio Pharma Co., Ltd., Kobe, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
- * E-mail:
| | - Akira Yamaki
- Asubio Pharma Co., Ltd., Kobe, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kazunori Yoshikiyo
- Asubio Pharma Co., Ltd., Kobe, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Sayaka Yoshida
- Asubio Pharma Co., Ltd., Kobe, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Ryuichi Nakamura
- Asubio Pharma Co., Ltd., Kobe, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Toshimasa Jindo
- Asubio Pharma Co., Ltd., Kobe, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | - Hiroaki Maeda
- Asubio Pharma Co., Ltd., Kobe, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | - Kenji Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
32
|
Marques P, Korbonits M. Pseudoacromegaly. Front Neuroendocrinol 2019; 52:113-143. [PMID: 30448536 DOI: 10.1016/j.yfrne.2018.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 01/19/2023]
Abstract
Individuals with acromegaloid physical appearance or tall stature may be referred to endocrinologists to exclude growth hormone (GH) excess. While some of these subjects could be healthy individuals with normal variants of growth or physical traits, others will have acromegaly or pituitary gigantism, which are, in general, straightforward diagnoses upon assessment of the GH/IGF-1 axis. However, some patients with physical features resembling acromegaly - usually affecting the face and extremities -, or gigantism - accelerated growth/tall stature - will have no abnormalities in the GH axis. This scenario is termed pseudoacromegaly, and its correct diagnosis can be challenging due to the rarity and variability of these conditions, as well as due to significant overlap in their characteristics. In this review we aim to provide a comprehensive overview of pseudoacromegaly conditions, highlighting their similarities and differences with acromegaly and pituitary gigantism, to aid physicians with the diagnosis of patients with pseudoacromegaly.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
33
|
NAKAO K. Translational science: Newly emerging science in biology and medicine - Lessons from translational research on the natriuretic peptide family and leptin. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:538-567. [PMID: 31708497 PMCID: PMC6856003 DOI: 10.2183/pjab.95.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Translation is the process of turning observations in the laboratory, clinic, and community into interventions that improve the health of individuals and the public, ranging from diagnostics and therapeutics to medical procedures and behavioral changes. Translational research is defined as the effort to traverse a particular step of the translation process for a particular target or disease. Translational science is a newly emerging science, distinct from basic and clinical sciences in biology and medicine, and is a field of investigation focused on understanding the scientific and operational principles underlying each step of the translational process. Advances in translational science will increase the efficacy and safety of translational research in all diagnostic and therapeutic areas. This report examines translational research on novel hormones, the natriuretic peptide family and leptin, which have achieved clinical applications or for which studies are still ongoing, and also emphasizes the lessons that translational science has learned from more than 30 years' experience in translational research.
Collapse
Affiliation(s)
- Kazuwa NAKAO
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
34
|
Duda T, Pertzev A, Ravichandran S, Sharma RK. Ca 2+-Sensor Neurocalcin δ and Hormone ANF Modulate ANF-RGC Activity by Diverse Pathways: Role of the Signaling Helix Domain. Front Mol Neurosci 2018; 11:430. [PMID: 30546296 PMCID: PMC6278801 DOI: 10.3389/fnmol.2018.00430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022] Open
Abstract
Prototype member of the membrane guanylate cyclase family, ANF-RGC (Atrial Natriuretic Factor Receptor Guanylate Cyclase), is the physiological signal transducer of two most hypotensive hormones ANF and BNP, and of the intracellular free Ca2+. Both the hormonal and the Ca2+-modulated signals operate through a common second messenger, cyclic GMP; yet, their operational modes are divergent. The hormonal pathways originate at the extracellular domain of the guanylate cyclase; and through a cascade of structural changes in its successive domains activate the C-terminal catalytic domain (CCD). In contrast, the Ca2+ signal operating via its sensor, myristoylated neurocalcin δ both originates and is translated directly at the CCD. Through a detailed sequential deletion and expression analyses, the present study examines the role of the signaling helix domain (SHD) in these two transduction pathways. SHD is a conserved 35-amino acid helical region of the guanylate cyclase, composed of five heptads, each meant to tune and transmit the hormonal signals to the CCD for their translation and generation of cyclic GMP. Its structure is homo-dimeric and the molecular docking analyses point out to the possibility of antiparallel arrangement of the helices. Contrary to the hormonal signaling, SHD has no role in regulation of the Ca2+- modulated pathway. The findings establish and define in molecular terms the presence of two distinct non-overlapping transduction modes of ANF-RGC, and for the first time demonstrate how differently they operate, and, yet generate cyclic GMP utilizing common CCD machinery.
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| | - Alexandre Pertzev
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| | - Sarangan Ravichandran
- Advanced Biomedical Computational Sciences Group, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Leidos Biomedical Research Inc., Fredrick, MD, United States
| | - Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| |
Collapse
|
35
|
Involvement of natriuretic peptide system in C2C12 myocytes. Mol Cell Biochem 2018; 456:15-27. [PMID: 30519782 DOI: 10.1007/s11010-018-3486-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
Abstract
The natriuretic peptide system, a key regulator of cGMP signaling, comprises three types of natriuretic peptides, osteocrin/musclin (OSTN), and their natriuretic peptide receptors. Although this system plays important roles in many organs, its physiological roles in skeletal muscle have not been clearly described. In the present study, we investigated the role of the natriuretic peptide system in C2C12 myocytes. All three natriuretic peptide receptors were expressed by cells differentiating from myoblasts to myotubes, and natriuretic peptide receptor B (NPR-B) transcripts were detected at the highest levels. Further, higher levels of cGMP were generated in response to stimulation with C-type natriuretic peptide (CNP) versus atrial natriuretic peptide (ANP), which reflected receptor expression levels. A cGMP analog downregulated the expression of a few ER stress-related genes. Furthermore, OSTN gene expression was strongly upregulated after 20 days of differentiation. Augmented gene expression was found to correlate closely with endoplasmic reticulum (ER) stress, and C/EBP [CCAAT-enhancer-binding protein] homologous protein (CHOP), which is known to be activated by ER stress, affected the expression of OSTN. Together, these results suggest a role for natriuretic peptide signaling in the ER stress response of myocytes.
Collapse
|
36
|
Ain NU, Iqbal M, Valta H, Emerling CA, Ahmed S, Makitie O, Naz S. Novel variants in natriuretic peptide receptor 2 in unrelated patients with acromesomelic dysplasia type Maroteaux. Eur J Med Genet 2018; 62:103554. [PMID: 30359775 DOI: 10.1016/j.ejmg.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/05/2018] [Accepted: 10/20/2018] [Indexed: 11/29/2022]
Abstract
Acromesomelic dysplasia are a heterogeneous group of disorders with variable spectrum and severity of skeletal anomalies in the affected individuals. Acromesomelic dysplasia type Maroteaux (AMDM) is characterized by extreme shortening of the forelimbs and disproportionate short stature. Several homozygous inactivating mutations in NPR2 have been identified in different AMDM patients. We report five novel variants in affected individuals in four different families. These include two nonsense and three missense variants. This study broadens the genotypic spectrum of NPR2 mutations in individuals with AMDM and also describes the intra- and inter-familial phenotypic variability due to NPR2 variants.
Collapse
Affiliation(s)
- Noor Ul Ain
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan; Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Muddassar Iqbal
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Helena Valta
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Christopher A Emerling
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sufian Ahmed
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Outi Makitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland; Department of Clinical Genetics, HUSLAB, Helsinki University Hospital, Helsinki, Finland; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
37
|
Hirota K, Furuya M, Morozumi N, Yoshikiyo K, Yotsumoto T, Jindo T, Nakamura R, Murakami K, Ueda Y, Hanada T, Sade H, Yoshida S, Enomoto K, Kanai Y, Yamauchi I, Yamashita T, Ueda-Sakane Y, Fujii T, Yasoda A, Inagaki N. Exogenous C-type natriuretic peptide restores normal growth and prevents early growth plate closure in its deficient rats. PLoS One 2018; 13:e0204172. [PMID: 30235256 PMCID: PMC6147488 DOI: 10.1371/journal.pone.0204172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
Signaling by C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B, is a pivotal stimulator of endochondral bone growth. We recently developed CNP knockout (KO) rats that exhibit impaired skeletal growth with early growth plate closure. In the current study, we further characterized the phenotype and growth plate morphology in CNP-KO rats, and the effects of exogenous CNP in rats. We used CNP-53, an endogenous form of CNP consisting of 53 amino acids, and administered it for four weeks by continuous subcutaneous infusion at 0.15 or 0.5 mg/kg/day to four-week old CNP-KO and littermate wild type (WT) rats. We demonstrated that CNP-KO rats were useful as a reproducible animal model for skeletal dysplasia, due to their impairment in endochondral bone growth. There was no significant difference in plasma bone-turnover markers between the CNP-KO and WT rats. At eight weeks of age, growth plate closure was observed in the distal end of the tibia and the calcaneus of CNP-KO rats. Continuous subcutaneous infusion of CNP-53 significantly, and in a dose-dependent manner, stimulated skeletal growth in CNP-KO and WT rats, with CNP-KO rats being more sensitive to the treatment. CNP-53 also normalized the length of long bones and the growth plate thickness, and prevented growth plate closure in the CNP-KO rats. Using organ culture experiment of fetal rat tibia, gene set enrichment analysis indicated that CNP might have a negative influence on mitogen activated protein kinase signaling cascades in chondrocyte. Our results indicated that CNP-KO rats might be a valuable animal model for investigating growth plate physiology and the mechanism of growth plate closure, and that CNP-53, or its analog, may have the potential to promote growth and to prevent early growth plate closure in the short stature.
Collapse
Affiliation(s)
- Keisho Hirota
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mayumi Furuya
- Asubio Pharma Co. Ltd. Kobe, Japan
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (MF); (AY)
| | | | | | | | | | | | - Koichiro Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takafumi Yamashita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoriko Ueda-Sakane
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (MF); (AY)
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
38
|
Holmes G, Zhang L, Rivera J, Murphy R, Assouline C, Sullivan L, Oppeneer T, Jabs EW. C-type natriuretic peptide analog treatment of craniosynostosis in a Crouzon syndrome mouse model. PLoS One 2018; 13:e0201492. [PMID: 30048539 PMCID: PMC6062116 DOI: 10.1371/journal.pone.0201492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/16/2018] [Indexed: 11/18/2022] Open
Abstract
Activating mutations of fibroblast growth factor receptors (FGFRs) are a major cause of skeletal dysplasias, and thus they are potential targets for pharmaceutical intervention. BMN 111, a C-type natriuretic peptide analog, inhibits FGFR signaling at the level of the RAF1 kinase through natriuretic peptide receptor 2 (NPR2) and has been shown to lengthen the long bones and improve skull morphology in the Fgfr3Y367C/+ thanatophoric dysplasia mouse model. Here we report the effects of BMN 111 in treating craniosynostosis and aberrant skull morphology in the Fgfr2cC342Y/+ Crouzon syndrome mouse model. We first demonstrated that NPR2 is expressed in the murine coronal suture and spheno-occipital synchondrosis in the newborn period. We then gave Fgfr2cC342Y/+ and Fgfr2c+/+ (WT) mice once-daily injections of either vehicle or reported therapeutic levels of BMN 111 between post-natal days 3 and 31. Changes in skeletal morphology, including suture patency, skull dimensions, and long bone length, were assessed by micro-computed tomography. Although BMN 111 treatment significantly increased long bone growth in both WT and mutant mice, skull dimensions and suture patency generally were not significantly affected. A small but significant increase in the relative length of the anterior cranial base was observed. Our results indicate that the differential effects of BMN 111 in treating various skeletal dysplasias may depend on the process of bone formation targeted (endochondral or intramembranous), the specific FGFR mutated, and/or the specific signaling pathway changes due to a given mutation.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lening Zhang
- BioMarin Pharmaceutical, Novato, California, United States of America
| | - Joshua Rivera
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ryan Murphy
- BioMarin Pharmaceutical, Novato, California, United States of America
| | - Claudia Assouline
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lorraine Sullivan
- BioMarin Pharmaceutical, Novato, California, United States of America
| | - Todd Oppeneer
- BioMarin Pharmaceutical, Novato, California, United States of America
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
39
|
Live imaging analysis of the growth plate in a murine long bone explanted culture system. Sci Rep 2018; 8:10332. [PMID: 29985449 PMCID: PMC6037772 DOI: 10.1038/s41598-018-28742-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/28/2018] [Indexed: 11/09/2022] Open
Abstract
Skeletal growth in mammals, which owes the growth of an individual, occurs at the growth plate and to observe and analyze its dynamic growth is of high interest. Here we performed live imaging analysis of the growth plate of a fetal murine long bone organ culture using two-photon excitation microscopy. We could observe a dynamic growth of the growth plate of explanted fetal murine ulna, as well as the resultant linear elongation of the explants. As for the factors contributing to the elongation of the growth plate, the displacement length of each chondrocyte was larger in the prehypertrophic or hypertrophic zone than in the proliferative zone. The segmented area and its extracellular component were increased in both the proliferative and prehypertrophic-hypertrophic zones, whereas an increase in cellular components was only seen in the prehypertrophic-hypertrophic zone. C-type natriuretic peptide, a known positive stimulator of endochondral bone growth mainly targeting prehypertrophic-hypertrophic zone, augmented all of the factors affecting growth plate elongation, whereas it had little effect on the proliferation of chondrocytes. Collectively, the axial trajectory of each chondrocyte mainly owes cellular or extracellular expansion especially in prehypertrophic-hypertrophic zone and results in growth plate elongation, which might finally result in endochondral bone elongation.
Collapse
|
40
|
Dumoulin A, Ter-Avetisyan G, Schmidt H, Rathjen FG. Molecular Analysis of Sensory Axon Branching Unraveled a cGMP-Dependent Signaling Cascade. Int J Mol Sci 2018; 19:E1266. [PMID: 29695045 PMCID: PMC5983660 DOI: 10.3390/ijms19051266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/15/2018] [Accepted: 04/20/2018] [Indexed: 01/11/2023] Open
Abstract
Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP)-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, neurons in dorsal root ganglia (DRG) and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.
Collapse
Affiliation(s)
| | | | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| | - Fritz G Rathjen
- Max-Delbrück-Center, Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
41
|
Fujii T, Hirota K, Yasoda A, Takizawa A, Morozumi N, Nakamura R, Yotsumoto T, Kondo E, Yamashita Y, Sakane Y, Kanai Y, Ueda Y, Yamauchi I, Yamanaka S, Nakao K, Kuwahara K, Jindo T, Furuya M, Mashimo T, Inagaki N, Serikawa T, Nakao K. Rats deficient C-type natriuretic peptide suffer from impaired skeletal growth without early death. PLoS One 2018; 13:e0194812. [PMID: 29566041 PMCID: PMC5864047 DOI: 10.1371/journal.pone.0194812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/09/2018] [Indexed: 12/22/2022] Open
Abstract
We have previously investigated the physiological role of C-type natriuretic peptide (CNP) on endochondral bone growth, mainly with mutant mouse models deficient in CNP, and reported that CNP is indispensable for physiological endochondral bone growth in mice. However, the survival rate of CNP knockout (KO) mice fell to as low as about 70% until 10 weeks after birth, and we could not sufficiently analyze the phenotype at the adult stage. Herein, we generated CNP KO rats by using zinc-finger nuclease-mediated genome editing technology. We established two lines of mutant rats completely deficient in CNP (CNP KO rats) that exhibited a phenotype identical to that observed in mice deficient in CNP, namely, a short stature with severely impaired endochondral bone growth. Histological analysis revealed that the width of the growth plate, especially that of the hypertrophic chondrocyte layer, was markedly lower and the proliferation of growth plate chondrocytes tended to be reduced in CNP KO rats. Notably, CNP KO rats did not have malocclusions and survived for over one year after birth. At 33 weeks of age, CNP KO rats persisted significantly shorter than wild-type rats, with closed growth plates of the femur in all samples, which were not observed in wild-type rats. Histologically, CNP deficiency affected only bones among all body tissues studied. Thus, CNP KO rats survive over one year, and exhibit a deficit in endochondral bone growth and growth retardation throughout life.
Collapse
Affiliation(s)
- Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keisho Hirota
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail:
| | - Akiko Takizawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | | | | | | | - Eri Kondo
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yui Yamashita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoriko Sakane
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeki Yamanaka
- Department of Maxillofacial Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazumasa Nakao
- Department of Maxillofacial Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | - Mayumi Furuya
- Asubio Pharma Co., Ltd., Kobe, Japan
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoji Mashimo
- Genome Editing Research and Development (R&D) Center and Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tadao Serikawa
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
42
|
Duda T, Pertzev A, Sharma RK. CO 2/bicarbonate modulates cone photoreceptor ROS-GC1 and restores its CORD6-linked catalytic activity. Mol Cell Biochem 2018; 448:91-105. [PMID: 29427171 DOI: 10.1007/s11010-018-3317-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/02/2018] [Indexed: 01/12/2023]
Abstract
This study with recombinant reconstituted system mimicking the cellular conditions of the native cones documents that photoreceptor ROS-GC1 is modulated by gaseous CO2. Mechanistically, CO2 is sensed by carbonic anhydrase (CAII), generates bicarbonate that, in turn, directly targets the core catalytic domain of ROS-GC1, and activates it to increased synthesis of cyclic GMP. This, then, functions as a second messenger for the cone phototransduction. The study demonstrates that, in contrast to the Ca2+-modulated phototransduction, the CO2 pathway is Ca2+-independent, yet is linked with it and synergizes it. It, through R787C mutation in the third heptad of the signal helix domain of ROS-GC1, affects cone-rod dystrophy, CORD6. CORD6 is caused firstly by lowered basal and GCAP1-dependent ROS-GC1 activity and secondly, by a shift in Ca2+ sensitivity of the ROS-GC1/GCAP1 complex that remains active in darkness. Remarkably, the first but not the second defect disappears with bicarbonate thus explaining the basis for CORD6 pathological severity. Because cones, but not rods, express CAII, the excessive synthesis of cyclic GMP would be most acute in cones.
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, USA
| | - Alexander Pertzev
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, USA
| | - Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, USA.
| |
Collapse
|
43
|
Tröster P, Haseleu J, Petersen J, Drees O, Schmidtko A, Schwaller F, Lewin GR, Ter-Avetisyan G, Winter Y, Peters S, Feil S, Feil R, Rathjen FG, Schmidt H. The Absence of Sensory Axon Bifurcation Affects Nociception and Termination Fields of Afferents in the Spinal Cord. Front Mol Neurosci 2018; 11:19. [PMID: 29472841 PMCID: PMC5809486 DOI: 10.3389/fnmol.2018.00019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/15/2018] [Indexed: 12/16/2022] Open
Abstract
A cGMP signaling cascade composed of C-type natriuretic peptide, the guanylyl cyclase receptor Npr2 and cGMP-dependent protein kinase I (cGKI) controls the bifurcation of sensory axons upon entering the spinal cord during embryonic development. However, the impact of axon bifurcation on sensory processing in adulthood remains poorly understood. To investigate the functional consequences of impaired axon bifurcation during adult stages we generated conditional mouse mutants of Npr2 and cGKI (Npr2fl/fl;Wnt1Cre and cGKIKO/fl;Wnt1Cre) that lack sensory axon bifurcation in the absence of additional phenotypes observed in the global knockout mice. Cholera toxin labeling in digits of the hind paw demonstrated an altered shape of sensory neuron termination fields in the spinal cord of conditional Npr2 mouse mutants. Behavioral testing of both sexes indicated that noxious heat sensation and nociception induced by chemical irritants are impaired in the mutants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are not affected. Recordings from C-fiber nociceptors in the hind limb skin showed that Npr2 function was not required to maintain normal heat sensitivity of peripheral nociceptors. Thus, the altered behavioral responses to noxious heat found in Npr2fl/fl;Wnt1Cre mice is not due to an impaired C-fiber function. Overall, these data point to a critical role of axonal bifurcation for the processing of pain induced by heat or chemical stimuli.
Collapse
Affiliation(s)
- Philip Tröster
- Developmental Neurobiology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Julia Haseleu
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jonas Petersen
- Institute of Pharmacology, College of Pharmacy, Goethe University, Frankfurt am Main, Germany.,Institute of Pharmacology and Toxicology, Zentrum für Biomedizinische Ausbildung und Forschung (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Oliver Drees
- Institute of Pharmacology and Toxicology, Zentrum für Biomedizinische Ausbildung und Forschung (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Achim Schmidtko
- Institute of Pharmacology, College of Pharmacy, Goethe University, Frankfurt am Main, Germany.,Institute of Pharmacology and Toxicology, Zentrum für Biomedizinische Ausbildung und Forschung (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Frederick Schwaller
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gohar Ter-Avetisyan
- Developmental Neurobiology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - York Winter
- Cognitive Neurobiology, Humboldt University of Berlin, Berlin, Germany
| | - Stefanie Peters
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Susanne Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Fritz G Rathjen
- Developmental Neurobiology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Hannes Schmidt
- Developmental Neurobiology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
44
|
Egbert JR, Yee SP, Jaffe LA. Luteinizing hormone signaling phosphorylates and activates the cyclic GMP phosphodiesterase PDE5 in mouse ovarian follicles, contributing an additional component to the hormonally induced decrease in cyclic GMP that reinitiates meiosis. Dev Biol 2018; 435:6-14. [PMID: 29341896 DOI: 10.1016/j.ydbio.2018.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Prior to birth, oocytes within mammalian ovarian follicles initiate meiosis, but then arrest in prophase until puberty, when with each reproductive cycle, one or more follicles are stimulated by luteinizing hormone (LH) to resume meiosis in preparation for fertilization. Within preovulatory follicles, granulosa cells produce high levels of cGMP, which diffuses into the oocyte to maintain meiotic arrest. LH signaling restarts meiosis by rapidly lowering the levels of cGMP in the follicle and oocyte. Part of this decrease is mediated by the dephosphorylation and inactivation the NPR2 guanylyl cyclase in response to LH, but the mechanism for the remainder of the cGMP decrease is unknown. At least one cGMP phosphodiesterase, PDE5, is activated by LH signaling, which would contribute to lowering cGMP. PDE5 exhibits increased cGMP-hydrolytic activity when phosphorylated on serine 92, and we recently demonstrated that LH signaling phosphorylates PDE5 on this serine and increases its activity in rat follicles. To test the extent to which this mechanism contributes to the cGMP decrease that restarts meiosis, we generated a mouse line in which serine 92 was mutated to alanine (Pde5-S92A), such that it cannot be phosphorylated. Here we show that PDE5 phosphorylation is required for the LH-induced increase in cGMP-hydrolytic activity, but that this increase has only a modest effect on the LH-induced cGMP decrease in mouse follicles, and does not affect the timing of meiotic resumption. Though we show that the activation of PDE5 is among the mechanisms contributing to the cGMP decrease, these results suggest that another cGMP phosphodiesterase is also activated by LH signaling.
Collapse
Affiliation(s)
- Jeremy R Egbert
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA.
| | - Siu-Pok Yee
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA; Center for Mouse Genome Modification, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA.
| | - Laurinda A Jaffe
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA.
| |
Collapse
|
45
|
Shuhaibar LC, Robinson JW, Vigone G, Shuhaibar NP, Egbert JR, Baena V, Uliasz TF, Kaback D, Yee SP, Feil R, Fisher MC, Dealy CN, Potter LR, Jaffe LA. Dephosphorylation of the NPR2 guanylyl cyclase contributes to inhibition of bone growth by fibroblast growth factor. eLife 2017; 6:31343. [PMID: 29199951 PMCID: PMC5745078 DOI: 10.7554/elife.31343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/02/2017] [Indexed: 01/17/2023] Open
Abstract
Activating mutations in fibroblast growth factor (FGF) receptor 3 and inactivating mutations in the NPR2 guanylyl cyclase both cause severe short stature, but how these two signaling systems interact to regulate bone growth is poorly understood. Here, we show that bone elongation is increased when NPR2 cannot be dephosphorylated and thus produces more cyclic GMP. By developing an in vivo imaging system to measure cyclic GMP production in intact tibia, we show that FGF-induced dephosphorylation of NPR2 decreases its guanylyl cyclase activity in growth plate chondrocytes in living bone. The dephosphorylation requires a PPP-family phosphatase. Thus FGF signaling lowers cyclic GMP production in the growth plate, which counteracts bone elongation. These results define a new component of the signaling network by which activating mutations in the FGF receptor inhibit bone growth. Between birth and puberty, the bones of mammals grow drastically in length. This process is controlled by many proteins, and mutations affecting these proteins can cause bones to either be too long or too short. For example, mutations of a protein called the fibroblast growth factor receptor, or FGF for short, and a protein called NPR2, can cause similar forms of dwarfism – a condition characterized by short stature. The FGF protein controls bone growth, and people with overactive receptors for FGF suffer from a form of dwarfism known as achondroplasia, while people that lack FGF receptors have longer bones. The NPR2 protein, on the other hand, produces a molecule called cGMP, which is necessary for the bones to grow. When NPR2 is blocked, less cGMP is produced, which results in shorter limbs. Previous studies of bone cells grown in the laboratory have shown that these two proteins are linked by a chain of chemical messages. When the FGF receptor is active, phosphate molecules are removed from the NPR2 protein, which reduces the amount of GMP produced. However, until now it was not known whether this mechanism also controls growth in actual bones. Here, Shuhaibar et al. used genetically modified mice in which the phosphate group could not be removed from their NPR2 enzyme. As a result, the bones of these mice were longer than usual. Shuhaibar et al. then developed an imaging technique to examine the region in the bone were growth happens. To see whether FGF reduces the amount of cGMP produced by NPR2 in these areas, cGMP was detected with a fluorescent sensor in order to be tracked. In normal mice, the FGF receptor reduced the rate at which cGMP was produced, but in mice with mutated NPR2, this did not happen. When the cells could not remove the phosphates from NPR2, cGMP levels stayed high and the bones grew longer. These findings reveal new insights into the molecular causes of dwarfism. The next step will be to identify the enzyme responsible for removing phosphate from NPR2. Blocking its activity could help to enhance bone growth. In the future, this could lead to new drug treatments for achondroplasia.
Collapse
Affiliation(s)
- Leia C Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Jerid W Robinson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
| | - Giulia Vigone
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Ninna P Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Valentina Baena
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Deborah Kaback
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Melanie C Fisher
- Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, United States
| | - Caroline N Dealy
- Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, United States
| | - Lincoln R Potter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, United States
| |
Collapse
|
46
|
Morozumi N, Sato S, Yoshida S, Harada Y, Furuya M, Minamitake Y, Kangawa K. Design and evaluation of novel natriuretic peptide derivatives with improved pharmacokinetic and pharmacodynamic properties. Peptides 2017; 97:16-21. [PMID: 28899838 DOI: 10.1016/j.peptides.2017.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/03/2017] [Accepted: 09/07/2017] [Indexed: 11/22/2022]
Abstract
C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor B (NPR-B), are potent positive regulators of endochondral bone growth, making the CNP pathway one of the most promising therapeutic targets for the treatment of growth failure. However, the administration of exogenous CNP is not fully effective, due to its rapid clearance in vivo. Modification of CNP to potentially druggable derivatives may result in increased resistance to proteolytic degradation, longer plasma half-life (T1/2), and better distribution to target tissues. In the present study, we designed and evaluated CNP/ghrelin chimeric peptides as novel CNP derivatives. We have previously reported that the ghrelin C-terminus increases peptide metabolic stability. Therefore, we combined the 17-membered, internal disulfide ring portion of CNP with the C-terminal portion of ghrelin. The resultant peptide displayed improved biokinetics compared to CNP, with increased metabolic stability and longer plasma T1/2. Repeated subcutaneous administration of the chimeric peptide to mice resulted in a significant acceleration in longitudinal growth, whereas CNP(1-22) did not. These results suggest that the ghrelin C-terminus improves the stability of CNP, and the chimeric peptide may be useful as a novel therapeutic agent for growth failure and short stature.
Collapse
Affiliation(s)
- Naomi Morozumi
- Asubio Pharma Co, Ltd. 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| | - Seiji Sato
- Asubio Pharma Co, Ltd. 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Sayaka Yoshida
- Asubio Pharma Co, Ltd. 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Yuriko Harada
- Asubio Pharma Co, Ltd. 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Mayumi Furuya
- Asubio Pharma Co, Ltd. 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Yoshiharu Minamitake
- Asubio Pharma Co, Ltd. 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Kenji Kangawa
- National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita, Osaka, 565-8565, Japan
| |
Collapse
|
47
|
Kanai Y, Yasoda A, Mori KP, Watanabe-Takano H, Nagai-Okatani C, Yamashita Y, Hirota K, Ueda Y, Yamauchi I, Kondo E, Yamanaka S, Sakane Y, Nakao K, Fujii T, Yokoi H, Minamino N, Mukoyama M, Mochizuki N, Inagaki N. Circulating osteocrin stimulates bone growth by limiting C-type natriuretic peptide clearance. J Clin Invest 2017; 127:4136-4147. [PMID: 28990933 DOI: 10.1172/jci94912] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/29/2017] [Indexed: 12/30/2022] Open
Abstract
Although peptides are safe and useful as therapeutics, they are often easily degraded or metabolized. Dampening the clearance system for peptide ligands is a promising strategy for increasing the efficacy of peptide therapies. Natriuretic peptide receptor B (NPR-B) and its naturally occurring ligand, C-type natriuretic peptide (CNP), are potent stimulators of endochondral bone growth, and activating the CNP/NPR-B system is expected to be a powerful strategy for treating impaired skeletal growth. CNP is cleared by natriuretic peptide clearance receptor (NPR-C); therefore, we investigated the effect of reducing the rate of CNP clearance on skeletal growth by limiting the interaction between CNP and NPR-C. Specifically, we generated transgenic mice with increased circulating levels of osteocrin (OSTN) protein, a natural NPR-C ligand without natriuretic activity, and observed a dose-dependent skeletal overgrowth phenotype in these animals. Skeletal overgrowth in OSTN-transgenic mice was diminished in either CNP- or NPR-C-depleted backgrounds, confirming that CNP and NPR-C are indispensable for the bone growth-stimulating effect of OSTN. Interestingly, double-transgenic mice of CNP and OSTN had even higher levels of circulating CNP and additional increases in bone length, as compared with mice with elevated CNP alone. Together, these results support OSTN administration as an adjuvant agent for CNP therapy and provide a potential therapeutic approach for diseases with impaired skeletal growth.
Collapse
Affiliation(s)
- Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, and
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, and
| | - Keita P Mori
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Chiaki Nagai-Okatani
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yui Yamashita
- Department of Diabetes, Endocrinology and Nutrition, and
| | - Keisho Hirota
- Department of Diabetes, Endocrinology and Nutrition, and
| | - Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, and
| | | | - Eri Kondo
- Department of Diabetes, Endocrinology and Nutrition, and
| | - Shigeki Yamanaka
- Department of Oral and Maxillofacial Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoriko Sakane
- Department of Diabetes, Endocrinology and Nutrition, and
| | - Kazumasa Nakao
- Department of Oral and Maxillofacial Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Hideki Yokoi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Naoto Minamino
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Masashi Mukoyama
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Naoki Mochizuki
- Department of Cell Biology and.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, and
| |
Collapse
|
48
|
Yamanaka S, Nakao K, Koyama N, Isobe Y, Ueda Y, Kanai Y, Kondo E, Fujii T, Miura M, Yasoda A, Nakao K, Bessho K. Circulatory CNP Rescues Craniofacial Hypoplasia in Achondroplasia. J Dent Res 2017. [PMID: 28644737 DOI: 10.1177/0022034517716437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Achondroplasia is the most common genetic form of human dwarfism, characterized by midfacial hypoplasia resulting in occlusal abnormality and foramen magnum stenosis, leading to serious neurologic complications and hydrocephalus. Currently, surgery is the only way to manage jaw deformity, neurologic complications, and hydrocephalus in patients with achondroplasia. We previously showed that C-type natriuretic peptide (CNP) is a potent stimulator of endochondral bone growth of long bones and vertebrae and is also a potent stimulator in the craniofacial region, which is crucial for midfacial skeletogenesis. In this study, we analyzed craniofacial morphology in a mouse model of achondroplasia, in which fibroblast growth factor receptor 3 (FGFR3) is specifically activated in cartilage ( Fgfr3ach mice), and investigated the mechanisms of jaw deformities caused by this mutation. Furthermore, we analyzed the effect of CNP on the maxillofacial area in these animals. Fgfr3ach mice exhibited midfacial hypoplasia, especially in the sagittal direction, caused by impaired endochondral ossification in craniofacial cartilage and by premature closure of the spheno-occipital synchondrosis, an important growth center in craniomaxillofacial skeletogenesis. We crossed Fgfr3ach mice with transgenic mice in which CNP is expressed in the liver under the control of the human serum amyloid-P component promoter, resulting in elevated levels of circulatory CNP ( Fgfr3ach/SAP-Nppc-Tg mice). In the progeny, midfacial hypoplasia in the sagittal direction observed in Fgfr3ach mice was improved significantly by restoring the thickness of synchondrosis and promoting proliferation of chondrocytes in the craniofacial cartilage. In addition, the foramen magnum stenosis observed in Fgfr3ach mice was significantly ameliorated in Fgfr3ach/SAP-Nppc-Tg mice due to enhanced endochondral bone growth of the anterior intraoccipital synchondrosis. These results clearly demonstrate the therapeutic potential of CNP for treatment of midfacial hypoplasia and foramen magnum stenosis in achondroplasia.
Collapse
Affiliation(s)
- S Yamanaka
- 1 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazumasa Nakao
- 1 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - N Koyama
- 1 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Isobe
- 1 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Ueda
- 2 Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Kanai
- 2 Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - E Kondo
- 2 Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Fujii
- 2 Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Miura
- 2 Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - A Yasoda
- 2 Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuwa Nakao
- 3 TK Project, Medical Innovation Center, Kyoto University, Kyoto, Japan
| | - K Bessho
- 1 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
49
|
Shi Q, Qian Z, Liu D, Sun J, Xu J, Guo X. Maintaining the Phenotype Stability of Chondrocytes Derived from MSCs by C-Type Natriuretic Peptide. Front Physiol 2017; 8:143. [PMID: 28337152 PMCID: PMC5340764 DOI: 10.3389/fphys.2017.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/23/2017] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a critical role in cartilage tissue engineering. However, MSCs-derived chondrocytes or cartilage tissues are not stable and easily lose the cellular and cartilage phenotype during long-term culture in vitro or implantation in vivo. As a result, chondrocytes phenotypic instability can contribute to accelerated ossification. Thus, it is a big challenge to maintain their correct phenotype for engineering hyaline cartilage. As one member of the natriuretic peptide family, C-type natriuretic peptide (CNP) is found to correlate with the development of the cartilage, affect the chondrocytes proliferation and differentiation. Besides, based on its biological effects on protection of extracellular matrix of cartilage and inhibition of mineralization, we hypothesize that CNP may contribute to the stability of chondrocyte phenotype of MSCs-derived chondrocytes.
Collapse
Affiliation(s)
- Quan Shi
- Department of Stomatology, Chinese People's Liberation Army General HospitalBeijing, China; Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical SciencesBeijing, China
| | - Zhiyong Qian
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical SciencesBeijing, China; School of Biological Science and Medical Engineering, Beihang UniversityBeijing, China
| | - Donghua Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences Beijing, China
| | - Jie Sun
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical SciencesBeijing, China; Stomatology Center, General Hospital of Armed Police ForcesBeijing, China
| | - Juan Xu
- Department of Stomatology, Chinese People's Liberation Army General Hospital Beijing, China
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences Beijing, China
| |
Collapse
|
50
|
Nakao K, Kuwahara K, Nishikimi T, Nakagawa Y, Kinoshita H, Minami T, Kuwabara Y, Yamada C, Yamada Y, Tokudome T, Nagai-Okatani C, Minamino N, Nakao YM, Yasuno S, Ueshima K, Sone M, Kimura T, Kangawa K, Nakao K. Endothelium-Derived C-Type Natriuretic Peptide Contributes to Blood Pressure Regulation by Maintaining Endothelial Integrity. Hypertension 2017; 69:286-296. [DOI: 10.1161/hypertensionaha.116.08219] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/10/2016] [Accepted: 12/06/2016] [Indexed: 11/16/2022]
Abstract
We previously reported the secretion of C-type natriuretic peptide (CNP) from vascular endothelial cells and proposed the existence of a vascular natriuretic peptide system composed of endothelial CNP and smooth muscle guanylyl cyclase-B (GC-B), the CNP receptor, and involved in the regulation of vascular tone, remodeling, and regeneration. In this study, we assessed the functional significance of this system in the regulation of blood pressure in vivo using vascular endothelial cell–specific CNP knockout and vascular smooth muscle cell–specific GC-B knockout mice. These mice showed neither the skeletal abnormality nor the early mortality observed in systemic CNP or GC-B knockout mice. Endothelial cell–specific CNP knockout mice exhibited significantly increased blood pressures and an enhanced acute hypertensive response to nitric oxide synthetase inhibition. Acetylcholine-induced, endothelium-dependent vasorelaxation was impaired in rings of mesenteric artery isolated from endothelial cell–specific CNP knockout mice. In addition, endothelin-1 gene expression was enhanced in pulmonary vascular endothelial cells from endothelial cell–specific CNP knockout mice, which also showed significantly higher plasma endothelin-1 concentrations and a greater reduction in blood pressure in response to an endothelin receptor antagonist than their control littermates. By contrast, vascular smooth muscle cell–specific GC-B knockout mice exhibited blood pressures similar to control mice, and acetylcholine-induced vasorelaxation was preserved in their isolated mesenteric arteries. Nonetheless, CNP-induced acute vasorelaxation was nearly completely abolished in mesenteric arteries from vascular smooth muscle cell–specific GC-B knockout mice. These results demonstrate that endothelium-derived CNP contributes to the chronic regulation of vascular tone and systemic blood pressure by maintaining endothelial function independently of vascular smooth muscle GC-B.
Collapse
Affiliation(s)
- Kazuhiro Nakao
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Koichiro Kuwahara
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Toshio Nishikimi
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Yasuaki Nakagawa
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Hideyuki Kinoshita
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Takeya Minami
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Yoshihiro Kuwabara
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Chinatsu Yamada
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Yuko Yamada
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Takeshi Tokudome
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Chiaki Nagai-Okatani
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Naoto Minamino
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Yoko M. Nakao
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Shinji Yasuno
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Kenji Ueshima
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Masakatsu Sone
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Takeshi Kimura
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Kenji Kangawa
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Kazuwa Nakao
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| |
Collapse
|