1
|
Hossain MM, Pérez-López E, Todd CD, Wei Y, Bonham-Smith PC. Plasmodiophora brassicae Effector PbPE23 Induces Necrotic Responses in Both Host and Nonhost Plants. PHYTOPATHOLOGY 2025; 115:66-76. [PMID: 39284156 DOI: 10.1094/phyto-02-24-0064-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Plasmodiophora brassicae is an obligate biotroph that causes clubroot disease in cruciferous plants, including canola and Arabidopsis. In contrast to most known bacterial, oomycete, and fungal pathogens that colonize at the host apoplastic space, the protist P. brassicae establishes an intracellular colonization within various types of root cells and secretes a plethora of effector proteins to distinct cellular compartments favorable for the survival and growth of the pathogen during pathogenesis. Identification and functional characterization of P. brassicae effectors has been hampered by the limited understanding of this unique pathosystem. Here, we report a P. brassicae effector, PbPE23, containing a serine/threonine kinase domain, that induces necrosis after heterologous expression by leaf infiltration in both host and nonhost plants. Although PbPE23 is an active kinase, the kinase activity itself is not required for triggering necrosis in plants. PbPE23 shows a nucleocytoplasmic localization in Nicotiana benthamiana, and its N-terminal 25TPDPAQKQ32 sequence, resembling the contiguous hydrophilic TPAP motif and Q-rich region in many necrosis and ethylene inducing peptide 1-like proteins from plant-associated microbes, is required for the induction of necrosis. Furthermore, transcript profiling of PbPE23 reveals its high expression at the transition stages from primary to secondary infection, suggesting its potential involvement in the development of clubroot disease.
Collapse
Affiliation(s)
- Md Musharaf Hossain
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Edel Pérez-López
- Department of Plant Sciences, Université Laval, Québec City, QB, G1V 0A6, Canada
| | - Christopher D Todd
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Peta C Bonham-Smith
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
2
|
Vaghefi N, Bar I, Lawley JW, Sambasivam PT, Christie M, Ford R. Population-level whole-genome sequencing of Ascochyta rabiei identifies genomic loci associated with isolate aggressiveness. Microb Genom 2024; 10. [PMID: 39576742 DOI: 10.1099/mgen.0.001326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Ascochyta blight caused by the ascomycete Ascochyta rabiei poses a major biotic threat to chickpea (Cicer arietinum) industries worldwide and incurs substantial costs to the Australian multimillion-dollar chickpea industry in both disease control and yield loss. The fungus was introduced to Australia in the 1970s from an unknown source population and, within a few decades, successfully established in all Australian agroecological chickpea-growing regions. Although genetically highly clonal, a broad range of phenotypic variation in terms of aggressiveness exists among the Australian A. rabiei isolates. More recently, highly aggressive isolates capable of causing severe disease symptoms on moderate to highly resistant chickpea cultivars have increased in frequency. To identify genetic loci potentially associated with A. rabiei aggressiveness on Australian chickpea cultivars, we performed deep genome sequencing of 230 isolates collected from a range of agroecological chickpea-growing regions between 2013 and 2020. Population genetic analyses using genome-wide SNP data identified three main clusters of genetically closely related isolates in Australia. Phylogenetic analyses showed that highly aggressive phenotypes developed multiple times independently throughout the phylogeny. The results point to a minor contribution of multiple genetic regions and most likely epigenomic variations to aggressiveness of A. rabiei isolates on Australian chickpea cultivars.
Collapse
Affiliation(s)
- Niloofar Vaghefi
- Faculty of Science, University of Melbourne, Parkville, Vic 3010, Australia
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Qld 4350, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| | - Jonathan Wanderley Lawley
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| | - Prabhakaran Thanjavur Sambasivam
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| | - Melody Christie
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| |
Collapse
|
3
|
Wang H, Zhang J, Wang Y, Fang B, Ge W, Wang X, Zou J, Ji R. Transcriptome Analysis of Chinese Cabbage Infected with Plasmodiophora Brassicae in the Primary Stage. Sci Rep 2024; 14:26180. [PMID: 39477989 PMCID: PMC11525481 DOI: 10.1038/s41598-024-76634-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Clubroot disease caused by the infection of Plasmodiophora brassicae is widespread in China, and significantly reduces the yield of Chinese cabbage (Brassica rapa L. ssp. pekinensis). However, the resistance mechanism of Chinese cabbage against clubroot disease is still unclear. It is important to exploit the key genes that response to early infection of P. brassicae. In this study, it was found that zoospores were firstly invaded hair roots on the 8th day after inoculating with 1 × 107 spores/mL P. brassicae. Transcriptome analysis found that the early interaction between Chinese cabbage and P. brassicae caused the significant expression change of some defense genes, such as NBS-LRRs and pathogenesis-related genes, etc. The above results were verified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Otherwise, peroxidase (POD) salicylic acid (SA) and jasmonic acid (JA) were also found to be important signal molecules in the resistance to clubroot disease in Chinese cabbage. This study provides important clues for understanding the resistance mechanism of Chinese cabbage against clubroot disease.
Collapse
Affiliation(s)
- Huihui Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jing Zhang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yilian Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Academy of Agricultural Sciences, Vegetable Research Institute, Shenyang, 110161, Liaoning, China
| | - Bing Fang
- Foreign language teaching department, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Wenjie Ge
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xinlei Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jiawei Zou
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Ruiqin Ji
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
4
|
Ce F, Mei J, Zhao Y, Li Q, Ren X, Song H, Qian W, Si J. Comparative Analysis of Transcriptomes Reveals Pathways and Verifies Candidate Genes for Clubroot Resistance in Brassica oleracea. Int J Mol Sci 2024; 25:9189. [PMID: 39273138 PMCID: PMC11395044 DOI: 10.3390/ijms25179189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Clubroot, a soil-borne disease caused by Plasmodiophora brassicae, is one of the most destructive diseases of Brassica oleracea all over the world. However, the mechanism of clubroot resistance remains unclear. In this research, transcriptome sequencing was conducted on root samples from both resistant (R) and susceptible (S) B. oleracea plants infected by P. brassicae. Then the comparative analysis was carried out between the R and S samples at different time points during the infection stages to reveal clubroot resistance related pathways and candidate genes. Compared with 0 days after inoculation, a total of 4991 differential expressed genes were detected from the S pool, while only 2133 were found from the R pool. Gene function enrichment analysis found that the effector-triggered immunity played a major role in the R pool, while the pathogen-associated molecular pattern triggered immune response was stronger in the S pool. Simultaneously, candidate genes were identified through weighted gene co-expression network analysis, with Bol010786 (CNGC13) and Bol017921 (SD2-5) showing potential for conferring resistance to clubroot. The findings of this research provide valuable insights into the molecular mechanisms underlying clubroot resistance and present new avenues for further research aimed at enhancing the clubroot resistance of B. oleracea through breeding.
Collapse
Affiliation(s)
- Fuquan Ce
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400716, China
| | - Yu Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Qinfei Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Xuesong Ren
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Hongyuan Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400716, China
| | - Jun Si
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| |
Collapse
|
5
|
Feng Y, Yang X, Cai G, Wang S, Liu P, Li Y, Chen W, Li W. Identification and Characterization of High-Molecular-Weight Proteins Secreted by Plasmodiophora brassicae That Suppress Plant Immunity. J Fungi (Basel) 2024; 10:462. [PMID: 39057347 PMCID: PMC11278463 DOI: 10.3390/jof10070462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Plasmodiophora brassicae is an obligate intracellular parasitic protist that causes clubroot disease on cruciferous plants. So far, some low-molecular-weight secreted proteins from P. brassicae have been reported to play an important role in plant immunity regulation, but there are few reports on its high-molecular-weight secreted proteins. In this study, 35 putative high-molecular-weight secreted proteins (>300 amino acids) of P. brassicae (PbHMWSP) genes that are highly expressed during the infection stage were identified using transcriptome analysis and bioinformatics prediction. Then, the secretory activity of 30 putative PbHMWSPs was confirmed using the yeast signal sequence trap system. Furthermore, the genes encoding 24 PbHMWSPs were successfully cloned and their functions in plant immunity were studied. The results showed that ten PbHMWSPs could inhibit flg22-induced reactive oxygen burst, and ten PbHMWSPs significantly inhibited the expression of the SA signaling pathway marker gene PR1a. In addition, nine PbHMWSPs could inhibit the expression of a marker gene of the JA signaling pathway. Therefore, a total of 19 of the 24 tested PbHMWSPs played roles in suppressing the immune response of plants. Of these, it is worth noting that PbHMWSP34 can inhibit the expression of JA, ET, and several SA signaling pathway marker genes. The present study is the first to report the function of the high-molecular-weight secreted proteins of P. brassicae in plant immunity, which will enrich the theory of interaction mechanisms between the pathogens and plants.
Collapse
Affiliation(s)
- Yanqun Feng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Xiaoyue Yang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Gaolei Cai
- Institute of Plant Protection, Shiyan Academy of Agricultural Sciences, Shiyan 442000, China;
| | - Siting Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Pingu Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yan Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wang Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.F.); (X.Y.); (S.W.); (P.L.); (Y.L.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
6
|
Javed MA, Mukhopadhyay S, Normandeau E, Brochu AS, Pérez-López E. Telomere-to-telomere Genome Assembly of the Clubroot Pathogen Plasmodiophora Brassicae. Genome Biol Evol 2024; 16:evae122. [PMID: 38857178 PMCID: PMC11191646 DOI: 10.1093/gbe/evae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Plasmodiophora brassicae (Woronin, 1877), a biotrophic, obligate parasite, is the causal agent of clubroot disease in brassicas. The clubroot pathogen has been reported in more than 80 countries worldwide, causing economic losses of hundreds of millions every year. Despite its widespread impact, very little is known about the molecular strategies it employs to induce the characteristic clubs in the roots of susceptible hosts during infection, nor about the mechanisms it uses to overcome genetic resistance. Here, we provide the first telomere-to-telomere complete genome of P. brassicae. We generated ∼27 Gb of Illumina, Oxford Nanopore, and PacBio HiFi data from resting spores of strain Pb3A and produced a 25.3 Mb assembly comprising 20 chromosomes, with an N50 of 1.37 Mb. The BUSCO score, the highest reported for any member of the group Rhizaria (Eukaryota: 88.2%), highlights the limitations within the Eukaryota database for members of this lineage. Using available transcriptomic data and protein evidence, we annotated the Pb3A genome, identifying 10,521 protein-coding gene models. This high-quality, complete genome of P. brassicae will serve as a crucial resource for the plant pathology community to advance the much-needed understanding of the evolution of the clubroot pathogen.
Collapse
Affiliation(s)
- Muhammad Asim Javed
- Départment de Phytologie, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Plateforme de bio-informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Quebec City, Québec, Canada
- L’Institute EDS, Université Laval, Québec City, Québec, Canada
| | - Soham Mukhopadhyay
- Départment de Phytologie, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Plateforme de bio-informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Quebec City, Québec, Canada
- L’Institute EDS, Université Laval, Québec City, Québec, Canada
| | - Eric Normandeau
- Plateforme de bio-informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Quebec City, Québec, Canada
| | - Anne-Sophie Brochu
- Départment de Phytologie, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Plateforme de bio-informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Quebec City, Québec, Canada
- L’Institute EDS, Université Laval, Québec City, Québec, Canada
| | - Edel Pérez-López
- Départment de Phytologie, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Plateforme de bio-informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Quebec City, Québec, Canada
- L’Institute EDS, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
7
|
Mukhopadhyay S, Garvetto A, Neuhauser S, Pérez-López E. Decoding the Arsenal: Protist Effectors and Their Impact on Photosynthetic Hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:498-506. [PMID: 38551366 DOI: 10.1094/mpmi-11-23-0196-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Interactions between various microbial pathogens including viruses, bacteria, fungi, oomycetes, and their plant hosts have traditionally been the focus of phytopathology. In recent years, a significant and growing interest in the study of eukaryotic microorganisms not classified among fungi or oomycetes has emerged. Many of these protists establish complex interactions with photosynthetic hosts, and understanding these interactions is crucial in understanding the dynamics of these parasites within traditional and emerging types of farming, including marine aquaculture. Many phytopathogenic protists are biotrophs with complex polyphasic life cycles, which makes them difficult or impossible to culture, a fact reflected in a wide gap in the availability of comprehensive genomic data when compared to fungal and oomycete plant pathogens. Furthermore, our ability to use available genomic resources for these protists is limited by the broad taxonomic distance that these organisms span, which makes comparisons with other genomic datasets difficult. The current rapid progress in genomics and computational tools for the prediction of protein functions and interactions is revolutionizing the landscape in plant pathology. This is also opening novel possibilities, specifically for a deeper understanding of protist effectors. Tools like AlphaFold2 enable structure-based function prediction of effector candidates with divergent protein sequences. In turn, this allows us to ask better biological questions and, coupled with innovative experimental strategies, will lead into a new era of effector research, especially for protists, to expand our knowledge on these elusive pathogens and their interactions with photosynthetic hosts. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Soham Mukhopadhyay
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
- L'Institute EDS, Université Laval, Quebec City, Quebec, Canada
| | - Andrea Garvetto
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Sigrid Neuhauser
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Edel Pérez-López
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
- L'Institute EDS, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
8
|
Jia R, Yu L, Chen J, Hu L, Cao S, Dong X, Ma Q, Wang Y. Molecular evolution of methylesterase family genes and the BnMES34 is a positive regulator of Plasmodiophora brassicae stress response in Arabidopsis. Int J Biol Macromol 2024; 260:129333. [PMID: 38218279 DOI: 10.1016/j.ijbiomac.2024.129333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Methylesterases (MES) are involved in hydrolysis of carboxylic esters, which have substantial roles in plant metabolic activities and defense mechanisms. This study aimed to comprehensively investigate Brassica napus BnMESs and characterize their role in response to Plasmodiophora brassicae stress. Forty-four BnMES members were identified and categorized into three groups based on their phylogenetic relationships and structural similarities. Through functional predictions in the promoter regions and analysis of RNA-Seq data, BnMES emerged as pivotal in growth, development, and stress responses to B. napus, particularly BnMES34, was strongly induced in response to P. brassicae infection. Gene Ontology analyses highlighted BnMES34's role in regulation of plant disease resistance responses. Furthermore, overexpression of BnMES34 in A. thaliana exhibited milder clubroot symptoms, and reduced disease indices, suggesting positive regulatory role of BnMES34 in plant's response to P. brassicae stress. Molecular docking and enzyme activity verification indicated that BnMES34 has the ability to generate salicylic acid via methyl salicylate, and further experimentally validated in vivo. This discovery indicates that the overexpression of BnMES34 in Arabidopsis confers resistance against clubroot disease. Overall, our research suggests that BnMES34 has a beneficial regulatory role in enhancing stress resistance to P. brassicae in B. napus.
Collapse
Affiliation(s)
- Ruimin Jia
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ligang Yu
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jing Chen
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Lifang Hu
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shang Cao
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaomin Dong
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qing Ma
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China..
| |
Collapse
|
9
|
Li C, Luo S, Feng L, Wang Q, Cheng J, Xie J, Lin Y, Fu Y, Jiang D, Chen T. Protist ubiquitin ligase effector PbE3-2 targets cysteine protease RD21A to impede plant immunity. PLANT PHYSIOLOGY 2024; 194:1764-1778. [PMID: 38035763 DOI: 10.1093/plphys/kiad603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Clubroot, caused by the soil-borne protist pathogen Plasmodiophora brassicae, is one of the most devastating diseases of Brassica oil and vegetable crops worldwide. Understanding the pathogen infection strategy is crucial for the development of disease control. However, because of its obligate biotrophic nature, the molecular mechanism by which this pathogen promotes infection remains largely unknown. P. brassicae E3 ubiquitin ligase 2 (PbE3-2) is a Really Interesting New Gene (RING)-type E3 ubiquitin ligase in P. brassicae with E3 ligase activity in vitro. Yeast (Saccharomyces cerevisiae) invertase assay and apoplast washing fluid extraction showed that PbE3-2 harbors a functional signal peptide. Overexpression of PbE3-2 in Arabidopsis (Arabidopsis thaliana) resulted in higher susceptibility to P. brassicae and decreases in chitin-triggered reactive oxygen species burst and expression of marker genes in salicylic acid signaling. PbE3-2 interacted with and ubiquitinated host cysteine protease RESPONSIVE TO DEHYDRATION 21A (RD21A) in vitro and in vivo. Mutant plants deficient in RD21A exhibited similar susceptibility and compromised immune responses as in PbE3-2 overexpression plants. We show that PbE3-2, which targets RD21A, is an important virulence factor for P. brassicae. Two other secretory RING-type E3 ubiquitin ligases in P. brassicae performed the same function as PbE3-2 and ubiquitinated RD21A. This study reveals a substantial virulence functional role of protist E3 ubiquitin ligases and demonstrates a mechanism by which protist E3 ubiquitin ligases degrade host immune-associated cysteine proteases to impede host immunity.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shaofeng Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
10
|
Piao Y, Li S, Chen Y, Zhao S, Piao Z, Wang H. A Ca 2+ sensor BraCBL1.2 involves in BraCRa-mediated clubroot resistance in Chinese cabbage. HORTICULTURE RESEARCH 2024; 11:uhad261. [PMID: 38298901 PMCID: PMC10828780 DOI: 10.1093/hr/uhad261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/26/2023] [Indexed: 02/02/2024]
Abstract
Clubroot disease caused by Plasmodiophora brassicae (P. brassicae) severely threatens the cultivation of Cruciferous plants, especially Chinese cabbage. Recently, resistance genes in plants have been reported to encode for a Ca2+-permeable channel in the plasma membrane, which can mediate the cytosolic Ca2+ increase in plant cells upon pathogen attack. However, the downstream Ca2+ sensor and decoder are still unknown. In this study, we identified the virulent and avirulent P. brassicae isolates (Pbs) of two near isogenic lines, CR 3-2 and CS 3-2, with CR 3-2 harboring clubroot resistant gene BraCRa. The transcriptomic analysis was then conducted with CR 3-2 after inoculating with virulent isolate PbE and avirulent isolate Pb4. From the differentially expressed genes of transcriptomic data, we identified a Ca2+-sensor encoding gene, BraCBL1.2, that was highly induced in CR 3-2 during infection by Pb4 but not by PbE. Moreover, GUS histochemical staining and subcellular localization analysis revealed that BraCBL1.2 was specifically expressed in the root hair cells of Arabidopsis and encoded a putative Ca2+ sensor localized in the plasma membrane. We also developed an assay to investigate the BraCRa-mediated hypersensitive response (HR) in tobacco leaves. The results suggest that BraCBL1.2 is involved in the BraCRa-mediated plant ETI immune response against P. brassicae. In addition, we verified that overexpression of BraCBL1.2 enhanced clubroot resistance in Arabidopsis. Collectively, our data identified the involvement of a Ca2+ sensor in BraCRa-mediated clubroot resistance in Chinese cabbage, providing a theoretical basis for further research on the resistance of Chinese cabbage to P. brassicae.
Collapse
Affiliation(s)
- Yinglan Piao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shizhen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiduo Chen
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster 48143, Germany
| | - Sisi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiping Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Ando S, Otawara S, Tabei Y, Tsushima S. Plasmodiophora brassicae affects host gene expression by secreting the transcription factor-type effector PbZFE1. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:454-467. [PMID: 37738570 DOI: 10.1093/jxb/erad377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
The protist pathogen Plasmodiophora brassicae hijacks the metabolism and development of host cruciferous plants and induces clubroot formation, but little is known about its regulatory mechanisms. Previously, the Pnit2int2 sequence, a sequence around the second intron of the nitrilase gene (BrNIT2) involved in auxin biosynthesis in Brassica rapa ssp. pekinensis, was identified as a specific promoter activated during clubroot formation. In this study, we hypothesized that analysis of the transcriptional regulation of Pnit2int2 could reveal how P. brassicae affects the host gene regulatory system during clubroot development. By yeast one-hybrid screening, the pathogen zinc finger protein PbZFE1 was identified to specifically bind to Pnit2int2. Specific binding of PbZFE1 to Pnit2int2 was also confirmed by electrophoretic mobility shift assay. The binding site of PbZFE1 is essential for promoter activity of Pnit2int2 in clubbed roots of transgenic Arabidopsis thaliana (Pnit2int2-2::GUS), indicating that PbZFE1 is secreted from P. brassicae and functions within plant cells. Ectopic expression of PbZEF1 in A. thaliana delayed growth and flowering time, suggesting that PbZFE1 has significant impacts on host development and metabolic systems. Thus, P. brassicae appears to secrete PbZFE1 into host cells as a transcription factor-type effector during pathogenesis.
Collapse
Affiliation(s)
- Sugihiro Ando
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Shinsuke Otawara
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramakiaza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yutaka Tabei
- Division of Plant Sciences, The Institute of Agrobiological Sciences, NARO (NIAS), 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan
- Department of Food and Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Seiya Tsushima
- Strategic Planning Headquarters, National Agriculture and Food Research Organization (NARO), 3-1-1 Kan-nondai, Tsukuba, Ibaraki 305-8517, Japan
| |
Collapse
|
12
|
Hasan M, Hossain M, Jiang D. New endophytic strains of Trichoderma promote growth and reduce clubroot severity of rapeseed (Brassica napus). PLoS One 2023; 18:e0287899. [PMID: 37906546 PMCID: PMC10617699 DOI: 10.1371/journal.pone.0287899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/15/2023] [Indexed: 11/02/2023] Open
Abstract
Rapeseed (Brassica napus L.) is the world's third most important edible oilseed crop after soybean and palm. The clubroot disease caused by Plasmodiophora brassicae poses a significant risk and causes substantial yield losses in rapeseed. In this study, 13 endophytic fungal strains were isolated from the healthy roots of rapeseed (B. napus) grown in a clubroot-infested field and molecularly identified. Based on germination inhibition of resting spores of P. brassicae, two endophytic fungal antagonists, Trichoderma spp. ReTk1 and ReTv2 were selected to evaluate their potential for plant growth promotion and biocontrol of P. brassicae. The Trichoderma isolates were applied as a soil drench (1×107 spore/g soil) to a planting mix and field soil, in which plants were grown under non-infested and P. brassicae-infested (2×106 spore/g soil) conditions. The endophytic fungi were able to promote plant growth, significantly increasing shoot and root length, leaf diameter, and biomass production (shoots and root weight) both in the absence or presence of P. brassicae. The single and dual treatments with the endophytes were equally effective in significantly decreasing the root-hair infection, root index, and clubroot severity index. Both ReTk1 and ReTv2 inhibited the germination of resting spores of P. brassicae in root exudates. Moreover, the endophytic fungi colonized the roots of rapeseed extensively and possibly induced host resistance by up-regulated expression of defense-related genes involved in jasmonate (BnOPR2), ethylene (BnACO and BnSAM3), phenylpropanoid (BnOPCL and BnCCR), auxin (BnAAO1) and salicylic acid (BnPR2) pathways. Based on these findings, it is evident that the rapeseed root endophytes Trichoderma spp. ReTk1 and ReTv2 could suppress the gall formation on rapeseed roots via antibiosis, induced systemic resistance (ISR), and/or systemic acquired resistance (SAR). According to our knowledge, this is the first report of the endophytic Trichoderma spp. isolated from root tissues of healthy rapeseed plants (B. napus.), promoting plant growth and reducing clubroot severity.
Collapse
Affiliation(s)
- Mahmodol Hasan
- Plant Pathology Laboratory, Department of Agronomy and Agricultural Extension, University of Rajshahi, Rajshahi, Bangladesh
| | - Motaher Hossain
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Daohong Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
13
|
Sedaghatkish A, Gossen BD, McDonald MR. Characterization of a virulence factor in Plasmodiophora brassicae, with molecular markers for identification. PLoS One 2023; 18:e0289842. [PMID: 37708170 PMCID: PMC10501564 DOI: 10.1371/journal.pone.0289842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Symptom severity on differential host lines is currently used to characterize and identify pathotypes of Plasmodiophora brassicae, which is an obligate, soil-borne chromist pathogen that causes clubroot disease on canola (Brassica napus) and other brassica crops. This process is slow, variable and resource intensive; development of molecular markers could make identification of important pathotypes faster and more consistent for deployment of cultivars with pathotype-specific resistance. In the current study, a variant of gene 9171 was identified in the whole-genome sequences of only the highly virulent pathotypes of P. brassicae from around the world, including the new cohort of virulent pathotypes in Canada; its presence was confirmed using three KASP marker pairs. The gene was not present in the initial cohort of pathotypes identified in Canada. The putative structure, domains, and gene ontogeny of the protein product of gene 9171 were assessed using on-line software resources. Structural analysis of the putative protein produced by gene 9171 indicated that it was localized in the cytosol, and likely involved in cellular processes and catalytic activity. Identification of gene 9171 represents a potentially useful step toward molecular identification of the pathotypes of P. brassicae.
Collapse
Affiliation(s)
| | - Bruce D. Gossen
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK, Canada
| | - Mary Ruth McDonald
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
14
|
Garvetto A, Murúa P, Kirchmair M, Salvenmoser W, Hittorf M, Ciaghi S, Harikrishnan SL, Gachon CMM, Burns JA, Neuhauser S. Phagocytosis underpins the biotrophic lifestyle of intracellular parasites in the class Phytomyxea (Rhizaria). THE NEW PHYTOLOGIST 2023; 238:2130-2143. [PMID: 36810975 PMCID: PMC10953367 DOI: 10.1111/nph.18828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/06/2023] [Indexed: 05/04/2023]
Abstract
Phytomyxea are intracellular biotrophic parasites infecting plants and stramenopiles, including the agriculturally impactful Plasmodiophora brassicae and the brown seaweed pathogen Maullinia ectocarpii. They belong to the clade Rhizaria, where phagotrophy is the main mode of nutrition. Phagocytosis is a complex trait of eukaryotes, well documented for free-living unicellular eukaryotes and specific cellular types of animals. Data on phagocytosis in intracellular, biotrophic parasites are scant. Phagocytosis, where parts of the host cell are consumed at once, is seemingly at odds with intracellular biotrophy. Here we provide evidence that phagotrophy is part of the nutritional strategy of Phytomyxea, using morphological and genetic data (including a novel transcriptome of M. ectocarpii). We document intracellular phagocytosis in P. brassicae and M. ectocarpii by transmission electron microscopy and fluorescent in situ hybridization. Our investigations confirm molecular signatures of phagocytosis in Phytomyxea and hint at a small specialized subset of genes used for intracellular phagocytosis. Microscopic evidence confirms the existence of intracellular phagocytosis, which in Phytomyxea targets primarily host organelles. Phagocytosis seems to coexist with the manipulation of host physiology typical of biotrophic interactions. Our findings resolve long debated questions on the feeding behaviour of Phytomyxea, suggesting an unrecognized role for phagocytosis in biotrophic interactions.
Collapse
Affiliation(s)
- Andrea Garvetto
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Pedro Murúa
- Laboratorio de Macroalgas, Instituto de AcuiculturaUniversidad Austral de ChilePuerto Montt5480000Chile
| | - Martin Kirchmair
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Willibald Salvenmoser
- Institute of ZoologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Michaela Hittorf
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Stefan Ciaghi
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Srilakshmy L. Harikrishnan
- Centre for Plant Systems BiologyVIBZwijnaarde 71Ghent9052Belgium
- Department of Plant Biotechnology and BioinformaticsGhent UniversityZwijnaarde 71Ghent9052Belgium
| | - Claire M. M. Gachon
- Muséum National d'Histoire Naturelle, UMR 7245, CNRS CP 2657 rue Cuvier75005ParisFrance
- Scottish Association for Marine ScienceScottish Marine InstituteDunbegObanPA37 1QAUK
| | - John A. Burns
- Bigelow Laboratory for Ocean Sciences60 Bigelow Dr.East BoothbayME04544USA
| | - Sigrid Neuhauser
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| |
Collapse
|
15
|
The soil bacterial community regulates germination of Plasmodiophora brassicae resting spores rather than root exudates. PLoS Pathog 2023; 19:e1011175. [PMID: 36862655 PMCID: PMC9980788 DOI: 10.1371/journal.ppat.1011175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/03/2023] [Indexed: 03/03/2023] Open
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a severe soil-borne disease that restricts the production of cruciferous crops worldwide. A better understanding of biotic and abiotic factors regulating germination of P. brassicae resting spores in the soil is significant for developing novel control methods. Previous studies reported that root exudates can trigger P. brassicae resting spore germination, thus enabling a targeted attack of P. brassicae on host plant roots. However, we found that native root exudates collected under sterile conditions from host or non-host plants cannot stimulate the germination of sterile spores, indicating that root exudates may not be direct stimulation factors. Instead, our studies demonstrate that soil bacteria are essential for triggering germination. Through 16s rRNA amplicon sequencing analysis, we found that certain carbon sources and nitrate can reshape the initial microbial community to an inducing community leading to the germination of P. brassicae resting spores. The stimulating communities significantly differed in composition and abundance of bacterial taxa compared to the non-stimulating ones. Several enriched bacterial taxa in stimulating community were significantly correlated with spore germination rates and may be involved as stimulation factors. Based on our findings, a multi-factorial 'pathobiome' model comprising abiotic and biotic factors is proposed to represent the putative plant-microbiome-pathogen interactions associated with breaking spore dormancy of P. brassicae in soil. This study presents novel views on P. brassicae pathogenicity and lays the foundation for novel sustainable control strategies of clubroot.
Collapse
|
16
|
Vañó MS, Nourimand M, MacLean A, Pérez-López E. Getting to the root of a club - Understanding developmental manipulation by the clubroot pathogen. Semin Cell Dev Biol 2023; 148-149:22-32. [PMID: 36792438 DOI: 10.1016/j.semcdb.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Plasmodiophora brassicae Wor., the clubroot pathogen, is the perfect example of an "atypical" plant pathogen. This soil-borne protist and obligate biotrophic parasite infects the roots of cruciferous crops, inducing galls or clubs that lead to wilting, loss of productivity, and plant death. Unlike many other agriculturally relevant pathosystems, research into the molecular mechanisms that underlie clubroot disease and Plasmodiophora-host interactions is limited. After release of the first P. brassicae genome sequence and subsequent availability of transcriptomic data, the clubroot research community have implicated the involvement of phytohormones during the clubroot pathogen's manipulation of host development. Herein we review the main events leading to the formation of root galls and describe how modulation of select phytohormones may be key to modulating development of the plant host to the benefit of the pathogen. Effector-host interactions are at the base of different strategies employed by pathogens to hijack plant cellular processes. This is how we suspect the clubroot pathogen hijacks host plant metabolism and development to induce nutrient-sink roots galls, emphasizing a need to deepen our understanding of this master manipulator.
Collapse
Affiliation(s)
- Marina Silvestre Vañó
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Maryam Nourimand
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Allyson MacLean
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Edel Pérez-López
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
17
|
Bíbová J, Kábrtová V, Večeřová V, Kučerová Z, Hudeček M, Plačková L, Novák O, Strnad M, Plíhal O. The Role of a Cytokinin Antagonist in the Progression of Clubroot Disease. Biomolecules 2023; 13:biom13020299. [PMID: 36830668 PMCID: PMC9953476 DOI: 10.3390/biom13020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Plasmodiophora brassicae is an obligate biotrophic pathogen causing clubroot disease in cruciferous plants. Infected plant organs are subject to profound morphological changes, the roots form characteristic galls, and the leaves are chlorotic and abscise. The process of gall formation is governed by timely changes in the levels of endogenous plant hormones that occur throughout the entire life cycle of the clubroot pathogen. The homeostasis of two plant hormones, cytokinin and auxin, appears to be crucial for club development. To investigate the role of cytokinin and auxin in gall formation, we used metabolomic and transcriptomic profiling of Arabidopsis thaliana infected with clubroot, focusing on the late stages of the disease, where symptoms were more pronounced. Loss-of-function mutants of three cytokinin receptors, AHK2, AHK3, and CRE1/AHK4, were employed to further study the homeostasis of cytokinin in response to disease progression; ahk double mutants developed characteristic symptoms of the disease, albeit with varying intensity. The most susceptible to clubroot disease was the ahk3 ahk4 double mutant, as revealed by measuring its photosynthetic performance. Quantification of phytohormone levels and pharmacological treatment with the cytokinin antagonist PI-55 showed significant changes in the levels of endogenous cytokinin and auxin, which was manifested by both enhanced and reduced development of disease symptoms in different genotypes.
Collapse
Affiliation(s)
- Jana Bíbová
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Veronika Kábrtová
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Veronika Večeřová
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Zuzana Kučerová
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Martin Hudeček
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
- Correspondence: (M.S.); (O.P.)
| | - Ondřej Plíhal
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
- Correspondence: (M.S.); (O.P.)
| |
Collapse
|
18
|
Javed MA, Schwelm A, Zamani‐Noor N, Salih R, Silvestre Vañó M, Wu J, González García M, Heick TM, Luo C, Prakash P, Pérez‐López E. The clubroot pathogen Plasmodiophora brassicae: A profile update. MOLECULAR PLANT PATHOLOGY 2023; 24:89-106. [PMID: 36448235 PMCID: PMC9831288 DOI: 10.1111/mpp.13283] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Plasmodiophora brassicae is the causal agent of clubroot disease of cruciferous plants and one of the biggest threats to the rapeseed (Brassica napus) and brassica vegetable industry worldwide. DISEASE SYMPTOMS In the advanced stages of clubroot disease wilting, stunting, yellowing, and redness are visible in the shoots. However, the typical symptoms of the disease are the presence of club-shaped galls in the roots of susceptible hosts that block the absorption of water and nutrients. HOST RANGE Members of the family Brassicaceae are the primary host of the pathogen, although some members of the family, such as Bunias orientalis, Coronopus squamatus, and Raphanus sativus, have been identified as being consistently resistant to P. brassicae isolates with variable virulence profile. TAXONOMY Class: Phytomyxea; Order: Plasmodiophorales; Family: Plasmodiophoraceae; Genus: Plasmodiophora; Species: Plasmodiophora brassicae (Woronin, 1877). DISTRIBUTION Clubroot disease is spread worldwide, with reports from all continents except Antarctica. To date, clubroot disease has been reported in more than 80 countries. PATHOTYPING Based on its virulence on different hosts, P. brassicae is classified into pathotypes or races. Five main pathotyping systems have been developed to understand the relationship between P. brassicae and its hosts. Nowadays, the Canadian clubroot differential is extensively used in Canada and has so far identified 36 different pathotypes based on the response of a set of 13 hosts. EFFECTORS AND RESISTANCE After the identification and characterization of the clubroot pathogen SABATH-type methyltransferase PbBSMT, several other effectors have been characterized. However, no avirulence gene is known, hindering the functional characterization of the five intercellular nucleotide-binding (NB) site leucine-rich-repeat (LRR) receptors (NLRs) clubroot resistance genes validated to date. IMPORTANT LINK Canola Council of Canada is constantly updating information about clubroot and P. brassicae as part of their Canola Encyclopedia: https://www.canolacouncil.org/canola-encyclopedia/diseases/clubroot/. PHYTOSANITARY CATEGORIZATION PLADBR: EPPO A2 list; Annex designation 9E.
Collapse
Affiliation(s)
- Muhammad Asim Javed
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Arne Schwelm
- Department of Plant ScienceWageningen University and ResearchWageningenNetherlands
- Teagasc, Crops Research CentreCarlowIreland
| | - Nazanin Zamani‐Noor
- Julius Kühn‐Institute, Institute for Plant Protection in Field Crops and GrasslandBraunschweigGermany
| | - Rasha Salih
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Marina Silvestre Vañó
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Jiaxu Wu
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Melaine González García
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | | | - Chaoyu Luo
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| | - Priyavashini Prakash
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- K. S. Rangasamy College of TechnologyNamakkalIndia
| | - Edel Pérez‐López
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| |
Collapse
|
19
|
Kong L, Liu J, Zhang W, Li X, Zhang Y, Chen X, Zhan Z, Piao Z. Genome-Wide Identification and Characterization of the Trehalose-6-Phosphate Synthetase Gene Family in Chinese Cabbage ( Brassica rapa) and Plasmodiophora brassicae during Their Interaction. Int J Mol Sci 2023; 24:929. [PMID: 36674458 PMCID: PMC9864397 DOI: 10.3390/ijms24020929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Trehalose is a nonreducing disaccharide that is widely distributed in various organisms. Trehalose-6-phosphate synthase (TPS) is a critical enzyme responsible for the biosynthesis of trehalose, which serves important functions in growth and development, defense, and stress resistance. Although previous studies have found that the clubroot pathogen Plasmodiophora brassicae can lead to the accumulation of trehalose in infected Arabidopsis organs, it has been proposed that much of the accumulated trehalose is derived from the pathogen. At present, there is very little evidence to verify this view. In this study, a comprehensive analysis of the TPS gene family was conducted in Brassica rapa and Plasmodiophora brassicae. A total of 14 Brassica rapa TPS genes (BrTPSs) and 3 P. brassicae TPS genes (PbTPSs) were identified, and the evolutionary characteristics, functional classification, and expression patterns were analyzed. Fourteen BrTPS genes were classified into two distinct classes according to phylogeny and gene structure. Three PbTPSs showed no significant differences in gene structure and protein conserved motifs. However, evolutionary analysis showed that the PbTPS2 gene failed to cluster with PbTPS1 and PbTPS3. Furthermore, cis-acting elements related to growth and development, defense and stress responsiveness, and hormone responsiveness were predicted in the promoter region of the BrTPS genes. Expression analysis of most BrTPS genes at five stages after P. brassicae interaction found no significant induction. Instead, the expression of the PbTPS genes of P. brassicae was upregulated, which was consistent with the period of trehalose accumulation. This study deepens our understanding of the function and evolution of BrTPSs and PbTPSs. Simultaneously, clarifying the biosynthesis of trehalose in the interaction between Brassica rapa and P. brassicae is also of great significance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
20
|
Advances in Biological Control and Resistance Genes of Brassicaceae Clubroot Disease-The Study Case of China. Int J Mol Sci 2023; 24:ijms24010785. [PMID: 36614228 PMCID: PMC9821010 DOI: 10.3390/ijms24010785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Clubroot disease is a soil-borne disease caused by Plasmodiophora brassicae. It occurs in cruciferous crops exclusively, and causes serious damage to the economic value of cruciferous crops worldwide. Although different measures have been taken to prevent the spread of clubroot disease, the most fundamental and effective way is to explore and use disease-resistance genes to breed resistant varieties. However, the resistance level of plant hosts is influenced both by environment and pathogen race. In this work, we described clubroot disease in terms of discovery and current distribution, life cycle, and race identification systems; in particular, we summarized recent progress on clubroot control methods and breeding practices for resistant cultivars. With the knowledge of these identified resistance loci and R genes, we discussed feasible strategies for disease-resistance breeding in the future.
Collapse
|
21
|
Lu J, Yang N, Zhu Y, Chai Z, Zhang T, Li W. Genome-wide survey of Calcium-Dependent Protein Kinases (CPKs) in five Brassica species and identification of CPKs induced by Plasmodiophora brassicae in B. rapa, B. oleracea, and B. napus. FRONTIERS IN PLANT SCIENCE 2022; 13:1067723. [PMID: 36479517 PMCID: PMC9720142 DOI: 10.3389/fpls.2022.1067723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Calcium-dependent protein kinase (CPK) is a class of Ser/Thr protein kinase that exists in plants and some protozoa, possessing Ca2+ sensing functions and kinase activity. To better reveal the roles that Brassica CPKs played during plant response to stresses, five Brassica species, namely Brassica rapa (B. rapa), Brassica nigra (B. nigra), Brassica oleracea (B. oleracea), Brassica juncea (B. juncea), and Brassica napus (B. napus) were selected and analyzed. In total, 51 BraCPK, 56 BniCPK, 56 BolCPK, 88 BjuCPK, and 107 BnaCPK genes were identified genome wide and phylogenetics, chromosomal mapping, collinearity, promoter analysis, and biological stress analysis were conducted. The results showed that a typical CPK gene was constituted by a long exon and tandem short exons. They were unevenly distributed on most chromosomes except chromosome A08 in B. napus and B. rapa, and almost all CPK genes were located on regions of high gene density as non-tandem form. The promoter regions of BraCPKs, BolCPKs, and BnaCPKs possessed at least three types of cis-elements, among which the abscisic acid responsive-related accounted for the largest proportion. In the phylogenetic tree, CPKs were clustered into four primary groups, among which group I contained the most CPK genes while group IV contained the fewest. Some clades, like AT5G23580.1(CPK12) and AT2G31500.1 (CPK24) contained much more gene members than others, indicating a possibility that gene expansion occurred during evolution. Furthermore, 4 BraCPKs, 14 BolCPKs, and 31 BnaCPKs involved in the Plasmodiophora brassicae (P. brassicae) defense response in resistant (R) or susceptible (S) materials were derived from online databases, leading to the discovery that some R-specific induced CPKs, such as BnaC02g08720D, BnaA03g03800D, and BolC04g018270.2J.m1 might be ideal candidate genes for P. brassicae resistant research. Overall, these results provide valuable information for research on the function and evolution of CDK genes.
Collapse
Affiliation(s)
- Junxing Lu
- Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Nan Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Yangyi Zhu
- Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Zhongxin Chai
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Tao Zhang
- Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Wei Li
- Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| |
Collapse
|
22
|
Decroës A, Mahillon M, Genard M, Lienard C, Lima-Mendez G, Gilmer D, Bragard C, Legrève A. Rhizomania: Hide and Seek of Polymyxa betae and the Beet Necrotic Yellow Vein Virus with Beta vulgaris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:989-1005. [PMID: 35816413 DOI: 10.1094/mpmi-03-22-0063-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The molecular interactions between Polymyxa betae, the protist vector of sugar beet viruses, beet necrotic yellow vein virus (BNYVV), the causal agent of rhizomania, and Beta vulgaris have not been extensively studied. Here, the transmission of BNYVV to sugar beet by P. betae zoospores was optimized using genetically characterized organisms. Molecular interactions of aviruliferous and viruliferous protist infection on sugar beet were highlighted by transcriptomic analysis. P. betae alone induced limited gene expression changes in sugar beet, as a biotrophic asymptomatic parasite. Most differentially expressed plant genes were down-regulated and included resistance gene analogs and cell wall peroxidases. Several enzymes involved in stress regulation, such as the glutathione-S-transferases, were significantly induced. With BNYVV, the first stages of the P. betae life cycle on sugar beet were accelerated with a faster increase of relative protist DNA level and an earlier appearance of sporangia and sporosori in plants roots. A clear activation of plant defenses and the modulation of genes involved in plant cell wall metabolism were observed. The P. betae transcriptome in the presence of BNYVV revealed induction of genes possibly involved in the switch to the survival stage. The interactions were different depending on the presence or absence of the virus. P. betae alone alleviates plant defense response, playing hide-and-seek with sugar beet and allowing for their mutual development. Conversely, BNYVV manipulates plant defense and promotes the rapid invasion of plant roots by P. betae. This accelerated colonization is accompanied by the development of thick-walled resting spores, supporting the virus survival. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Alain Decroës
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | | | - Margaux Genard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Charlotte Lienard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, 67084, France
| | - Claude Bragard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Anne Legrève
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| |
Collapse
|
23
|
Zhan Z, Liu H, Yang Y, Liu S, Li X, Piao Z. Identification and characterization of putative effectors from Plasmodiophora brassicae that suppress or induce cell death in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:881992. [PMID: 36204052 PMCID: PMC9530463 DOI: 10.3389/fpls.2022.881992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a major disease of crucifers. Effector proteins are important virulence factors in host recognition of pathogens and the interactions between pathogens and hosts. Secretory proteins, as effector candidates, have been studied in the interaction between Plasmodiophora brassicae and its hosts. In this study, 518 secretary proteins were screened from the Plasmodiophora brassicae genome. A total of 63 candidate effectors that induce or suppress cell death were identified using agroinfiltration-mediated transient expression in Nicothiana benthamiana. The candidate effectors, Pb4_102097 and Pb4_108104 showed high expressing level in the stage of rest spore maturity, could induce cell death and were associated with H2O2 accumulation in N. benthamiana leaves. In addition, 55 candidate effectors that could suppress BAX (Bcl-2-associated X protein) induced cell death, and 21 out of which could suppress the immunity caused by bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 in Arabidopsis. Based on the expression pattern in different stages, 28 candidate effectors showed high expression levels during the primary and secondary infection stage. Five candidate effectors containing the RXLR motif functioned in the cytoplasm and cell membrane.
Collapse
|
24
|
Tso HH, Galindo-González L, Locke T, Strelkov SE. Protocol: rhPCR and SNaPshot assays to distinguish Plasmodiophora brassicae pathotype clusters. PLANT METHODS 2022; 18:91. [PMID: 35780127 PMCID: PMC9250251 DOI: 10.1186/s13007-022-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Clubroot of canola (Brassica napus), caused by the soilborne pathogen Plasmodiophora brassicae, has become a serious threat to canola production in Canada. The deployment of clubroot-resistant (CR) cultivars is the most commonly used management strategy; however, the widespread cultivation of CR canola has resulted in the emergence of new pathotypes of P. brassicae capable of overcoming resistance. Several host differential sets have been reported for pathotype identification, but such testing is time-consuming, labor-intensive, and based on phenotypic classifications. The development of rapid and objective methods that allow for efficient, cost-effective and convenient pathotyping would enable testing of a much larger number of samples in shorter times. The aim of this study was to develop two pathotyping assays, an RNase H2-dependent PCR (rhPCR) assay and a SNaPshot assay, which could quickly differentiate P. brassicae pathotypes. RESULTS Both assays clearly distinguished between pathotype clusters in a collection of 38 single-spore isolates of P. brassicae. Additional isolates pathotyped from clubbed roots and samples from blind testing also were correctly clustered. The rhPCR assay generated clearly differentiating electrophoretic bands without non-specific amplification. The SNaPshot assay was able to detect down to a 10% relative allelic proportion in a 10:90 template mixture with both single-spore isolates and field isolates when evaluated in a relative abundance test. CONCLUSIONS This study describes the development of two rapid and sensitive technologies for P. brassicae pathotyping. The high-throughput potential and accuracy of both assays makes them promising as SNP-based pathotype identification tools for clubroot diagnostics. rhPCR is a highly sensitive approach that can be optimized into a quantitative assay, while the main advantages of SNaPshot are its ability to multiplex samples and alleles in a single reaction and the detection of up to four allelic variants per target site.
Collapse
Affiliation(s)
- Heather H Tso
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Leonardo Galindo-González
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Present Address: Ottawa Plant Laboratory, Science Branch, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON, K2H 8P9, Canada
| | - Troy Locke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Stephen E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
25
|
Wallenhammar AC, Vilvert E, Bergqvist S, Olson Å, Berlin A. Scientific evidence of sustainable plant disease protection strategies for oilseed rape (Brassica napus) in Sweden: a systematic map. ENVIRONMENTAL EVIDENCE 2022; 11:22. [PMID: 39294798 PMCID: PMC11378781 DOI: 10.1186/s13750-022-00277-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/07/2022] [Indexed: 09/21/2024]
Abstract
BACKGROUND Oilseed rape (OSR; Brassica napus L.) is a highly valued crop for food, feed and industrial use. It is primarily grown in temperate climates, and over recent decades, its area of production and profitability have increased. Concurrently, several diseases negatively impact OSR production. Diseases caused by soil-borne pathogens, pose a risk of substantial yield loss since crop rotation schemes have become narrow as the time lapse between OSR crops in a field has been shortened. The aims of this paper were to provide an overview of plant protection measures available for OSR production and to identify knowledge gaps and areas where more research is needed. METHODS This systematic map builds on a previously published protocol and follows the ROSES reporting standard. The search strategy was developed in collaboration with stakeholders and designed to cover available scientific evidence for OSR disease management in climate zones relevant for Scandinavian crop production (Dfc, Dfb, Cfb and Cfa in the Köppen-Geiger climate classification). Five scientific databases were used to identify peer-reviewed literature, complemented by additional searches performed in grey literature. Articles were screened at three stages: the title, abstract and full text. The eligible publications included studies of OSR crops, and all measures to control crop disease in agricultural fields were considered eligible interventions. The comparator was intervention and no intervention, and the yield per unit area, disease suppression or an increase in crop quality were determined to be outcomes of interventions. A basic assessment of the experimental design of each study was performed to assess its eligibility. All articles were coded based on the following categories: the location and climate zone, disease, pathogen, intervention and management method, outcome and study design. Articles not reporting original data but judged to be relevant (i.e., review papers, books and notes of registration of cultivars) were saved in a separate category called "books, reviews and reports". REVIEW FINDINGS A total of 4633 articles were collected through systematic searches. After duplicates were removed, 3513 articles were included in the screening process. After screening at the title and abstract levels, 897 articles were evaluated at the full text level, and 118 articles comprised the studies that met the eligibility criteria of the systematic map. The country (Canada) and region (Europe) with the largest OSR crop production areas also contributed the highest number of articles. In total, 17 different diseases were reported, with black leg (syn. Phoma stem canker) being the most studied disease. Nineteen different intervention methods or management types were examined. Cultivar resistance and pesticide application were the most studied control measures. CONCLUSION We report scientific studies on plant disease protection measures for OSR based on field trials where the results are intended to be directly implemented in crop production management. The map clearly provides an overview of research progress throughout the time period chosen, and it identifies knowledge gaps regarding important diseases where only a few studies have been published, for example, diseases caused by viruses.
Collapse
Affiliation(s)
| | - Elisa Vilvert
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07, Uppsala, Sweden
| | - Sanna Bergqvist
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07, Uppsala, Sweden
| | - Åke Olson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07, Uppsala, Sweden
| | - Anna Berlin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07, Uppsala, Sweden.
| |
Collapse
|
26
|
Ludwig-Müller J. What Can We Learn from -Omics Approaches to Understand Clubroot Disease? Int J Mol Sci 2022; 23:ijms23116293. [PMID: 35682976 PMCID: PMC9180986 DOI: 10.3390/ijms23116293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Clubroot is one of the most economically significant diseases worldwide. As a result, many investigations focus on both curing the disease and in-depth molecular studies. Although the first transcriptome dataset for the clubroot disease describing the clubroot disease was published in 2006, many different pathogen-host plant combinations have only recently been investigated and published. Articles presenting -omics data and the clubroot pathogen Plasmodiophora brassicae as well as different host plants were analyzed to summarize the findings in the richness of these datasets. Although genome data for the protist have only recently become available, many effector candidates have been identified, but their functional characterization is incomplete. A better understanding of the life cycle is clearly required to comprehend its function. While only a few proteome studies and metabolome analyses were performed, the majority of studies used microarrays and RNAseq approaches to study transcriptomes. Metabolites, comprising chemical groups like hormones were generally studied in a more targeted manner. Furthermore, functional approaches based on such datasets have been carried out employing mutants, transgenic lines, or ecotypes/cultivars of either Arabidopsis thaliana or other economically important host plants of the Brassica family. This has led to new discoveries of potential genes involved in disease development or in (partial) resistance or tolerance to P. brassicae. The overall contribution of individual experimental setups to a larger picture will be discussed in this review.
Collapse
|
27
|
Sugar Transporters in Plasmodiophora brassicae: Genome-Wide Identification and Functional Verification. Int J Mol Sci 2022; 23:ijms23095264. [PMID: 35563657 PMCID: PMC9099952 DOI: 10.3390/ijms23095264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/19/2023] Open
Abstract
Plasmodiophora brassicae, an obligate intracellular pathogen, can hijack the host’s carbohydrates for survival. When the host plant is infected by P. brassicae, a large amount of soluble sugar accumulates in the roots, especially glucose, which probably facilitates the development of this pathogen. Although a complete glycolytic and tricarboxylic acid cycle (TCA) cycle existed in P. brassicae, very little information about the hexose transport system has been reported. In this study, we screened 17 putative sugar transporters based on information about their typical domains. The structure of these transporters showed a lot of variation compared with that of other organisms, especially the number of transmembrane helices (TMHs). Phylogenetic analysis indicated that these sugar transporters were far from the evolutionary relationship of other organisms and were unique in P. brassicae. The hexose transport activity assay indicated that eight transporters transported glucose or fructose and could restore the growth of yeast strain EBY.VW4000, which was deficient in hexose transport. The expression level of these glucose transporters was significantly upregulated at the late inoculation time when resting spores and galls were developing and a large amount of energy was needed. Our study provides new insights into the mechanism of P. brassicae survival in host cells by hijacking and utilizing the carbohydrates of the host.
Collapse
|
28
|
Wang J, Hu T, Wang W, Hu H, Wei Q, Yan Y, He J, Hu J, Bao C. Comparative transcriptome analysis reveals distinct responsive biological processes in radish genotypes contrasting for Plasmodiophora brassicae interaction. Gene 2022; 817:146170. [PMID: 35031420 DOI: 10.1016/j.gene.2021.146170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Plasmodiophora brassicae is a protozoan pathogen that causes clubroot disease, which is one of the most destructive diseases for Brassica crops, including radish. However, little is known about the molecular mechanism of clubroot resistance in radish. In this study, we performed a comparative transcriptome analysis between resistant and susceptible radish inoculated with P. brassicae. More differentially expressed genes (DEGs) were identified at 28 days after inoculation (DAI) compared to 7 DAI in both genotypes. Gene ontology (GO) and KEGG enrichment indicated that stress/defense response, secondary metabolic biosynthesis, hormone metabolic process, and cell periphery are directly involved in the defense response process. Further analysis of the transcriptome revealed that effector-triggered immunity (ETI) plays key roles in the defense response. The plant hormones jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) related genes are activated in clubroot defense in the resistant line. Auxin (AUX) hormone related genes are activated in the developing galls of susceptible radish. Our study provides a global transcriptional overview for clubroot development for insights into the P. brassicae defense mechanisms in radish.
Collapse
Affiliation(s)
- Jinglei Wang
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tianhua Hu
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wuhong Wang
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haijiao Hu
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qingzhen Wei
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yaqin Yan
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiangming He
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jingfeng Hu
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Chonglai Bao
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
29
|
Ma Y, Choi SR, Wang Y, Chhapekar SS, Zhang X, Wang Y, Zhang X, Zhu M, Liu D, Zuo Z, Yan X, Gan C, Zhao D, Liang Y, Pang W, Lim YP. Starch content changes and metabolism-related gene regulation of Chinese cabbage synergistically induced by Plasmodiophora brassicae infection. HORTICULTURE RESEARCH 2022; 9:uhab071. [PMID: 35043157 PMCID: PMC9015896 DOI: 10.1093/hr/uhab071] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/31/2021] [Indexed: 05/10/2023]
Abstract
Clubroot is one of the major diseases adversely affecting Chinese cabbage (Brassica rapa) yield and quality. To precisely characterize the Plasmodiophora brassicae infection on Chinese cabbage, we developed a dual fluorescent staining method for simultaneously examining the pathogen, cell structures, and starch grains. The number of starch (amylopectin) grains increased in B. rapa roots infected by P. brassicae, especially from 14 to 21 days after inoculation. Therefore, the expression levels of 38 core starch metabolism genes were investigated by quantitative real-time PCR. Most genes related to starch synthesis were up-regulated at seven days after the P. brassicae inoculation, whereas the expression levels of the starch degradation-related genes increased at 14 days after the inoculation. Then genes encoding the core enzymes involved in starch metabolism were investigated by assessing their chromosomal distributions, structures, duplication events, and synteny among Brassica species. Genome comparisons indicated that 38 non-redundant genes belonging to six core gene families related to starch metabolism are highly conserved among Arabidopsis thaliana, B. rapa, Brassica nigra, and Brassica oleracea. Genome sequencing projects have revealed that P. brassicae obtained host nutrients by manipulating plant metabolism. Starch may serve as a carbon source for P. brassicae colonization as indicated by the histological observation and transcriptomic analysis. Results of this study may elucidate the evolution and expression of core starch metabolism genes and provide researchers with novel insights into the pathogenesis of clubroot in B. rapa.
Collapse
Affiliation(s)
- Yinbo Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Su Ryun Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Yu Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Sushil Satish Chhapekar
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Xue Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yingjun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xueying Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Meiyu Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Di Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhennan Zuo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xinyu Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Caixia Gan
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan 430070, China
| | - Di Zhao
- Analytical and Testing Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenxing Pang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
30
|
Liu X, Strelkov SE, Sun R, Hwang SF, Fredua-Agyeman R, Li F, Zhang S, Li G, Zhang S, Zhang H. Histopathology of the Plasmodiophora brassicae-Chinese Cabbage Interaction in Hosts Carrying Different Sources of Resistance. FRONTIERS IN PLANT SCIENCE 2022; 12:783550. [PMID: 35095958 PMCID: PMC8792839 DOI: 10.3389/fpls.2021.783550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/14/2021] [Indexed: 05/07/2023]
Abstract
Clubroot is a serious soil-borne disease of crucifers caused by the obligate parasite Plasmodiophora brassicae. The genetic basis and histopathology of clubroot resistance in two Chinese cabbage (Brassica rapa ssp. pekinensis) inbred lines Bap055 and Bap246, challenged with pathotype 4 of P. brassicae, was evaluated. The Chinese cabbage cultivar "Juxin" served as a susceptible check. The resistance in Bap055 was found to be controlled by the CRa gene, while resistance in Bap246 fit a model of control by unknown recessive gene. Infection of the roots by P. brassicae was examined by inverted microscopy. Despite their resistance, primary and secondary infection were observed to occur in Bap055 and Bap246. Primary infection was detected at 2 days post-inoculation (DPI) in "Juxin," at 4 DPI in Bap055, and at 6 DPI in Bap246. Infection occurred most quickly on "Juxin," with 60% of the root hairs infected at 10 DPI, followed by Bap055 (31% of the root hairs infected at 12 DPI) and Bap246 (20% of the root hairs infected at 14 DPI). Secondary infection of "Juxin" was first observed at 8 DPI, while in Bap055 and Bap246, secondary infection was first observed at 10 DPI. At 14 DPI, the percentage of cortical infection in "Juxin," Bap055 and Bap246 was 93.3, 20.0, and 11.1%, respectively. Although cortical infection was more widespread in Bap055 than in Bap246, secondary infection in both of these hosts was restricted relative to the susceptible check, and the vascular system remained intact. A large number of binucleate secondary plasmodia were observed in "Juxin" and the vascular system was disrupted at 16 DPI; in Bap055 and Bap246, only a few secondary plasmodia were visible, with no binucleate secondary plasmodia. The defense mechanisms and expression of resistance appears to differ between Chinese cabbage cultivars carrying different sources of resistance.
Collapse
Affiliation(s)
- Xitong Liu
- Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rifei Sun
- Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Fei Li
- Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shifan Zhang
- Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoliang Li
- Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shujiang Zhang
- Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhang
- Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Kim JY, Loo EPI, Pang TY, Lercher M, Frommer WB, Wudick MM. Cellular export of sugars and amino acids: role in feeding other cells and organisms. PLANT PHYSIOLOGY 2021; 187:1893-1914. [PMID: 34015139 PMCID: PMC8644676 DOI: 10.1093/plphys/kiab228] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 05/20/2023]
Abstract
Sucrose, hexoses, and raffinose play key roles in the plant metabolism. Sucrose and raffinose, produced by photosynthesis, are translocated from leaves to flowers, developing seeds and roots. Translocation occurs in the sieve elements or sieve tubes of angiosperms. But how is sucrose loaded into and unloaded from the sieve elements? There seem to be two principal routes: one through plasmodesmata and one via the apoplasm. The best-studied transporters are the H+/SUCROSE TRANSPORTERs (SUTs) in the sieve element-companion cell complex. Sucrose is delivered to SUTs by SWEET sugar uniporters that release these key metabolites into the apoplasmic space. The H+/amino acid permeases and the UmamiT amino acid transporters are hypothesized to play analogous roles as the SUT-SWEET pair to transport amino acids. SWEETs and UmamiTs also act in many other important processes-for example, seed filling, nectar secretion, and pollen nutrition. We present information on cell type-specific enrichment of SWEET and UmamiT family members and propose several members to play redundant roles in the efflux of sucrose and amino acids across different cell types in the leaf. Pathogens hijack SWEETs and thus represent a major susceptibility of the plant. Here, we provide an update on the status of research on intercellular and long-distance translocation of key metabolites such as sucrose and amino acids, communication of the plants with the root microbiota via root exudates, discuss the existence of transporters for other important metabolites and provide potential perspectives that may direct future research activities.
Collapse
Affiliation(s)
- Ji-Yun Kim
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Eliza P -I Loo
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Tin Yau Pang
- Institute for Computer Science and Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Martin Lercher
- Institute for Computer Science and Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Michael M Wudick
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Author for communication:
| |
Collapse
|
32
|
Lv M, Liu Y, Wu Y, Zhang J, Liu X, Ji R, Feng H. An Improved Technique for Isolation and Characterization of Single-Spore Isolates of Plasmodiophora brassicae. PLANT DISEASE 2021; 105:3932-3938. [PMID: 34455802 DOI: 10.1094/pdis-03-21-0480-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a soilborne disease that occurs in cruciferous crops worldwide. P. brassicae usually exists as a mixture of several pathotypes, which has hampered the research on resistance mechanisms of cruciferous crops against P. brassicae. In this study, clubroot galls were collected from a field in Shenyang, China, as a pathogen source to develop an efficient protocol for a single-spore isolation system of P. brassicae by optimizing the seedling age for inoculation, host inoculation method, and plant culture method. The operational steps of the single-spore isolation method were optimized as follows: the use of 2-day-old seedlings for inoculation, substituting a cryobox (100 × 2.0-ml vials) for culture dishes, the addition of nutrient solution culture, and microscopic observations of single spores. The rate of infection success was substantially improved, and single-spore isolates of four pathotypes (4, 8, 9, and 11) were acquired in this system. Subsequently, the optimized system was used to isolate and characterize the pathotypes of single-spore isolates of P. brassicae collected from five fields in regions in China. Approximately four to nine pathotypes were isolated from each region. Among these, pathotype 4 was the most prevalent. This study provides a source of valuable information that can eventually be used for the genetic analysis of host-P. brassicae interaction.
Collapse
Affiliation(s)
- Mingcan Lv
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Yifan Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Yue Wu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Jing Zhang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Xuyao Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Ruiqin Ji
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, P.R. China
| |
Collapse
|
33
|
Decroës A, Li JM, Richardson L, Mutasa-Gottgens E, Lima-Mendez G, Mahillon M, Bragard C, Finn RD, Legrève A. Metagenomics approach for Polymyxa betae genome assembly enables comparative analysis towards deciphering the intracellular parasitic lifestyle of the plasmodiophorids. Genomics 2021; 114:9-22. [PMID: 34798282 DOI: 10.1016/j.ygeno.2021.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/24/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022]
Abstract
Genomic knowledge of the tree of life is biased to specific groups of organisms. For example, only six full genomes are currently available in the rhizaria clade. Here, we have applied metagenomic techniques enabling the assembly of the genome of Polymyxa betae (Rhizaria, Plasmodiophorida) RES F41 isolate from unpurified zoospore holobiont and comparison with the A26-41 isolate. Furthermore, the first P. betae mitochondrial genome was assembled. The two P. betae nuclear genomes were highly similar, each with just ~10.2 k predicted protein coding genes, ~3% of which were unique to each isolate. Extending genomic comparisons revealed a greater overlap with Spongospora subterranea than with Plasmodiophora brassicae, including orthologs of the mammalian cation channel sperm-associated proteins, raising some intriguing questions about zoospore physiology. This work validates our metagenomics pipeline for eukaryote genome assembly from unpurified samples and enriches plasmodiophorid genomics; providing the first full annotation of the P. betae genome.
Collapse
Affiliation(s)
- Alain Decroës
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Lorna Richardson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Euphemia Mutasa-Gottgens
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK; University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Mathieu Mahillon
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anne Legrève
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
34
|
Galindo-González L, Hwang SF, Strelkov SE. Candidate Effectors of Plasmodiophora brassicae Pathotype 5X During Infection of Two Brassica napus Genotypes. Front Microbiol 2021; 12:742268. [PMID: 34803960 PMCID: PMC8595600 DOI: 10.3389/fmicb.2021.742268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/11/2021] [Indexed: 01/28/2023] Open
Abstract
Clubroot, caused by Plasmodiophora brassicae, is one of the most important diseases of canola (Brassica napus) in Canada. Disease management relies heavily on planting clubroot resistant (CR) cultivars, but in recent years, new resistance-breaking pathotypes of P. brassicae have emerged. Current efforts against the disease are concentrated in developing host resistance using traditional genetic breeding, omics and molecular biology. However, because of its obligate biotrophic nature, limited resources have been dedicated to investigating molecular mechanisms of pathogenic infection. We previously performed a transcriptomic study with the cultivar resistance-breaking pathotype 5X on two B. napus hosts presenting contrasting resistance/susceptibility, where we evaluated the mechanisms of host response. Since cultivar-pathotype interactions are very specific, and pathotype 5X is one of the most relevant resistance-breaking pathotypes in Canada, in this study, we analyze the expression of genes encoding putative secreted proteins from this pathotype, predicted using a bioinformatics pipeline, protein modeling and orthologous comparisons with effectors from other pathosystems. While host responses were found to differ markedly in our previous study, many common effectors are found in the pathogen while infecting both hosts, and the gene response among biological pathogen replicates seems more consistent in the effectors associated with the susceptible interaction, especially at 21 days after inoculation. The predicted effectors indicate the predominance of proteins with interacting domains (e.g., ankyrin), and genes bearing kinase and NUDIX domains, but also proteins with protective action against reactive oxygen species from the host. Many of these genes confirm previous predictions from other clubroot studies. A benzoic acid/SA methyltransferase (BSMT), which methylates SA to render it inactive, showed high levels of expression in the interactions with both hosts. Interestingly, our data indicate that E3 ubiquitin proteasome elements are also potentially involved in pathogenesis. Finally, a gene with similarity to indole-3-acetaldehyde dehydrogenase is a promising candidate effector because of its involvement in indole acetic acid synthesis, since auxin is one of the major players in clubroot development.
Collapse
Affiliation(s)
| | | | - Stephen E. Strelkov
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Askarian H, Akhavan A, González LG, Hwang SF, Strelkov SE. Genetic Structure of Plasmodiophora brassicae Populations Virulent on Clubroot Resistant Canola ( Brassica napus). PLANT DISEASE 2021; 105:3694-3704. [PMID: 33507096 DOI: 10.1094/pdis-09-20-1980-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae Woronin, is a significant threat to the canola (Brassica napus L.) industry in Canada. Clubroot resistance has been overcome in more than 200 fields since 2013, representing one of the biggest challenges to sustainable canola production. The genetic structure of 36 single-spore isolates derived from 12 field isolates of P. brassicae collected before and after the introduction of clubroot resistant (CR) canola cultivars (2005-2014) was evaluated by simple sequence repeat (SSR) marker analysis. Polymorphisms were detected in 32 loci with the identification of 93 distinct alleles. A low level of genetic diversity was found among the single-spore isolates. Haploid linkage disequilibrium and number of migrants suggested that recombination and migration were rare or almost absent in the tested P. brassicae population. A relatively clear relationship was found between the genetic structure and virulence phenotypes of the pathogen as defined on the differential hosts of Somé et al., Williams, and the Canadian Clubroot Differential (CCD) set. Although genetic variability within each pathotype group, as classified on each differential system, was low, significant genetic differentiation was observed among the pathotypes. The highest correlation between genetic structure and virulence was found among matrices produced with genetic data and the hosts of the CCD set, with a threshold index of disease of 50% to distinguish susceptible from resistant reactions. Genetically homogeneous single-spore isolates provided a more complete and clearer picture of the population genetic structure of P. brassicae, and the results suggest some promise for the development of pathotype-specific primers.
Collapse
Affiliation(s)
- Homa Askarian
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Alireza Akhavan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Leonardo Galindo González
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Stephen E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
36
|
Chen W, Li Y, Yan R, Ren L, Liu F, Zeng L, Sun S, Yang H, Chen K, Xu L, Liu L, Fang X, Liu S. SnRK1.1-mediated resistance of Arabidopsis thaliana to clubroot disease is inhibited by the novel Plasmodiophora brassicae effector PBZF1. MOLECULAR PLANT PATHOLOGY 2021; 22:1057-1069. [PMID: 34165877 PMCID: PMC8358996 DOI: 10.1111/mpp.13095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 05/27/2023]
Abstract
Plants have evolved a series of strategies to combat pathogen infection. Plant SnRK1 is probably involved in shifting carbon and energy use from growth-associated processes to survival and defence upon pathogen attack, enhancing the resistance to many plant pathogens. The present study demonstrated that SnRK1.1 enhanced the resistance of Arabidopsis thaliana to clubroot disease caused by the plant-pathogenic protozoan Plasmodiophora brassicae. Through a yeast two-hybrid assay, glutathione S-transferase pull-down assay, and bimolecular fluorescence complementation assay, a P. brassicae RxLR effector, PBZF1, was shown to interact with SnRK1.1. Further expression level analysis of SnRK1.1-regulated genes showed that PBZF1 inhibited the biological function of SnRK1.1 as indicated by the disequilibration of the expression level of SnRK1.1-regulated genes in heterogeneous PBZF1-expressing A. thaliana. Moreover, heterogeneous expression of PBZF1 in A. thaliana promoted plant susceptibility to clubroot disease. In addition, PBZF1 was found to be P. brassicae-specific and conserved. This gene was significantly highly expressed in resting spores. Taken together, our results provide new insights into how the plant-pathogenic protist P. brassicae employs an effector to overcome plant resistance, and they offer new insights into the genetic improvement of plant resistance against clubroot disease.
Collapse
Affiliation(s)
- Wang Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Yan Li
- Hubei Collaborative Innovation Center for Grain IndustryYangtze UniversityJingzhouChina
- School of Biological and Pharmaceutical EngineeringWuhan Polytechnic UniversityWuhanHubeiChina
| | - Ruibin Yan
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Li Ren
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Fan Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Lingyi Zeng
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Shengnan Sun
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Huihui Yang
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Kunrong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Li Xu
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Lijiang Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Xiaoping Fang
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Shengyi Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| |
Collapse
|
37
|
Grechkin AN, Lantsova NV, Khairutdinov BI, Toporkova YY. Hydroperoxide bicyclase CYP50918A1 of Plasmodiophora brassicae (Rhizaria, SAR): Detection of novel enzyme of oxylipin biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159042. [PMID: 34450267 DOI: 10.1016/j.bbalip.2021.159042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
The genome of the cabbage clubroot pathogen Plasmodiophora brassicae Woronin 1877 (Cercozoa, Rhizaria, SAR), possesses two expressed genes encoding the P450s that are phylogenetically related to the enzymes of oxylipin biosynthesis of the CYP74 clan. The cDNA of one of these genes (CYP50918A1) has been expressed in E. coli. The preferred substrate for the recombinant protein, the 13-hydroperoxide of α-linolenic acid (13-HPOT), was converted to the novel heterobicyclic oxylipins, plasmodiophorols A and B (1 and 2) at the ratio ca. 12:1. Compounds 1 and 2 were identified as the substituted 6-oxabicyclo[3.1.0]hexane and 2-oxabicyclo[2.2.1]heptane (respectively) using the MS and NMR spectroscopy, as well as the chemical treatments. The 18O labelling experiments revealed the incorporation of a single 18O atom from [18O2]13-HPOT into the epoxide and ether functions of products 1 and 2 (respectively), but not into their OH groups. In contrast, the 18O from [18O2]water was incorporated only into the hydroxyl functions. One more minor polar product, plasmodiophorol C (3), identified as the cyclopentanediol, was formed through the hydrolysis of compounds 1 and 2. Plasmodiophorols A-C are the congeners of egregiachlorides, hybridalactone, ecklonialactones and related bicyclic oxylipins detected before in some brown and red algae. The mechanism of 13-HPOT conversions to plasmodiophorols A and B involving the epoxyallylic cation intermediate is proposed. The hydroperoxide bicyclase CYP50918A1 is the first enzyme controlling this kind of fatty acid hydroperoxide conversion.
Collapse
Affiliation(s)
- Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia.
| | - Natalia V Lantsova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Bulat I Khairutdinov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| |
Collapse
|
38
|
McIntyre KE, Bush DR, Argueso CT. Cytokinin Regulation of Source-Sink Relationships in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:677585. [PMID: 34504504 PMCID: PMC8421792 DOI: 10.3389/fpls.2021.677585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 06/01/2023]
Abstract
Cytokinins are plant hormones known for their role in mediating plant growth. First discovered for their ability to promote cell division, this class of hormones is now associated with many other cellular and physiological functions. One of these functions is the regulation of source-sink relationships, a tightly controlled process that is essential for proper plant growth and development. As discovered more recently, cytokinins are also important for the interaction of plants with pathogens, beneficial microbes and insects. Here, we review the importance of cytokinins in source-sink relationships in plants, with relation to both carbohydrates and amino acids, and highlight a possible function for this regulation in the context of plant biotic interactions.
Collapse
Affiliation(s)
- Kathryn E. McIntyre
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Daniel R. Bush
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Cristiana T. Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
39
|
Balotf S, Wilson R, Tegg RS, Nichols DS, Wilson CR. Quantitative proteomics provides an insight into germination-related proteins in the obligate biotrophic plant pathogen Spongospora subterranea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:521-532. [PMID: 33928759 DOI: 10.1111/1758-2229.12955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The soil-borne and obligate plant-associated nature of S. subterranea has hindered a detailed study of this pathogen and in particular, the regulatory pathways driving the germination of S. subterranea remain unknown. To better understand the mechanisms that control the transition from dormancy to germination, protein profiles between dormant and germination stimulant-treated resting spores were compared using label-free quantitative proteomics. Among the ~680 proteins identified 20 proteins were found to be differentially expressed during the germination of S. subterranea resting spores. Elongation factor Tu, histones (H2A and H15), proteasome and DJ-1_PfpI, involved in transcription and translation, were upregulated during the germination of resting spores. Downregulation of both actin and beta-tubulin proteins occurred in the germinating spores, indicating that the changes in the cell wall cytoskeleton may be necessary for the morphological changes during the germination of the resting spore in S. subterranea. Our findings provide new approaches for the study of these and similar recalcitrant micro-organisms provide the first insights into the basic protein components of S. subterranea spores. A better understanding of S. subterranea biology may lead to the development of novel approaches for the management of persistent soil inoculum.
Collapse
Affiliation(s)
- Sadegh Balotf
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, Tas., 7008, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Robert S Tegg
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, Tas., 7008, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Calum R Wilson
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, Tas., 7008, Australia
| |
Collapse
|
40
|
Gazengel K, Aigu Y, Lariagon C, Humeau M, Gravot A, Manzanares-Dauleux MJ, Daval S. Nitrogen Supply and Host-Plant Genotype Modulate the Transcriptomic Profile of Plasmodiophora brassicae. Front Microbiol 2021; 12:701067. [PMID: 34305867 PMCID: PMC8298192 DOI: 10.3389/fmicb.2021.701067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Nitrogen fertilization can affect the susceptibility of Brassica napus to the telluric pathogen Plasmodiophora brassicae. Our previous works highlighted that the influence of nitrogen can strongly vary regarding plant cultivar/pathogen strain combinations, but the underlying mechanisms are unknown. The present work aims to explore how nitrogen supply can affect the molecular physiology of P. brassicae through its life epidemiological cycle. A time-course transcriptome experiment was conducted to study the interaction, under two conditions of nitrogen supply, between isolate eH and two B. napus genotypes (Yudal and HD-018), harboring (or not harboring) low nitrogen-conditional resistance toward this isolate (respectively). P. brassicae transcriptional patterns were modulated by nitrogen supply, these modulations being dependent on both host-plant genotype and kinetic time. Functional analysis allowed the identification of P. brassicae genes expressed during the secondary phase of infection, which may play a role in the reduction of Yudal disease symptoms in low-nitrogen conditions. Candidate genes included pathogenicity-related genes ("NUDIX," "carboxypeptidase," and "NEP-proteins") and genes associated to obligate biotrophic functions of P. brassicae. This work illustrates the importance of considering pathogen's physiological responses to get a better understanding of the influence of abiotic factors on clubroot resistance/susceptibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stéphanie Daval
- IGEPP, INRAE, Institut Agro, Université Rennes 1, Le Rheu, France
| |
Collapse
|
41
|
Park SG, Noh E, Choi S, Choi B, Shin IG, Yoo SI, Lee DJ, Ji S, Kim HS, Hwang YJ, Kim JS, Batley J, Lim YP, Edwards D, Hong CP. Draft Genome Assembly and Transcriptome Dataset for European Turnip ( Brassica rapa L. ssp. rapifera), ECD4 Carrying Clubroot Resistance. Front Genet 2021; 12:651298. [PMID: 34276765 PMCID: PMC8285094 DOI: 10.3389/fgene.2021.651298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Eonji Noh
- Theragen Bio Co., Ltd., Suwon, South Korea
| | - SuRyun Choi
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Boram Choi
- Theragen Bio Co., Ltd., Suwon, South Korea
| | | | | | | | - Sumin Ji
- Theragen Bio Co., Ltd., Suwon, South Korea
| | | | - Yoon-Jung Hwang
- Department of Chemistry Life Science, Sahmyook University, Seoul, South Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Yong Pyo Lim
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | | |
Collapse
|
42
|
Hossain MM, Pérez-López E, Todd CD, Wei Y, Bonham-Smith PC. Endomembrane-Targeting Plasmodiophora brassicae Effectors Modulate PAMP Triggered Immune Responses in Plants. Front Microbiol 2021; 12:651279. [PMID: 34276588 PMCID: PMC8282356 DOI: 10.3389/fmicb.2021.651279] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodiophora brassicae is a devastating obligate, intracellular, biotrophic pathogen that causes clubroot disease in crucifer plants. Disease progression is regulated by effector proteins secreted by P. brassicae. Twelve P. brassicae putative effectors (PbPEs), expressed at various stages of disease development [0, 2, 5, 7, 14, 21, and 28 days post inoculation (DPI)] in Arabidopsis and localizing to the plant endomembrane system, were studied for their roles in pathogenesis. Of the 12 PbPEs, seven showed an inhibitory effect on programmed cell death (PCD) as triggered by the PCD inducers, PiINF1 (Phytophthora infestans Infestin 1) and PiNPP1 (P. infestans necrosis causing protein). Showing the strongest level of PCD suppression, PbPE15, a member of the 2-oxoglutarate (2OG) and Fe (II)-dependent oxygenase superfamily and with gene expression during later stages of infection, appears to have a role in tumorigenesis as well as defense signaling in plants. PbPE13 produced an enhanced PiINF1-induced PCD response. Transient expression, in Nicotiana benthamiana leaves of these PbPEs minus the signal peptide (SP) (Δsp PbPEGFPs), showed localization to the endomembrane system, targeting the endoplasmic reticulum (ER), Golgi bodies and nucleo-cytoplasm, suggesting roles in manipulating plant cell secretion and vesicle trafficking. Δsp PbPE13GFP localized to plasma membrane (PM) lipid rafts with an association to plasmodesmata, suggesting a role at the cell-to-cell communication junction. Membrane relocalization of Δsp PbPE13GFP, triggered by flagellin N-terminus of Pseudomonas aeruginosa (flg22 - known to elicit a PAMP triggered immune response in plants), supports its involvement in raft-mediated immune signaling. This study is an important step in deciphering P. brassicae effector roles in the disruption of plant immunity to clubroot disease.
Collapse
Affiliation(s)
| | - Edel Pérez-López
- Department of Plant Sciences, Laval University, CRIV, Quebec City, QC, Canada
| | - Christopher D Todd
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
43
|
Balotf S, Tegg RS, Nichols DS, Wilson CR. Spore Germination of the Obligate Biotroph Spongospora subterranea: Transcriptome Analysis Reveals Germination Associated Genes. Front Microbiol 2021; 12:691877. [PMID: 34234764 PMCID: PMC8256667 DOI: 10.3389/fmicb.2021.691877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022] Open
Abstract
For soilborne pathogens, germination of the resting or dormant propagule that enables persistence within the soil environment is a key point in pathogenesis. Spongospora subterranea is an obligate soilborne protozoan that infects the roots and tubers of potato causing root and powdery scab disease for which there are currently no effective controls. A better understanding of the molecular basis of resting spore germination of S. subterranea could be important for development of novel disease interventions. However, as an obligate biotroph and soil dwelling organism, the application of new omics techniques for the study of the pre-infection process in S. subterranea has been problematic. Here, RNA sequencing was used to analyse the reprogramming of S. subterranea resting spores during the transition to zoospores in an in-vitro model. More than 63 million mean high-quality reads per sample were generated from the resting and germinating spores. By using a combination of reference-based and de novo transcriptome assembly, 6,664 unigenes were identified. The identified unigenes were subsequently annotated based on known proteins using BLAST search. Of 5,448 annotated genes, 570 genes were identified to be differentially expressed during the germination of S. subterranea resting spores, with most of the significant genes belonging to transcription and translation, amino acids biosynthesis, transport, energy metabolic processes, fatty acid metabolism, stress response and DNA repair. The datasets generated in this study provide a basic knowledge of the physiological processes associated with spore germination and will facilitate functional predictions of novel genes in S. subterranea and other plasmodiophorids. We introduce several candidate genes related to the germination of an obligate biotrophic soilborne pathogen which could be applied to the development of antimicrobial agents for soil inoculum management.
Collapse
Affiliation(s)
- Sadegh Balotf
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, TAS, Australia
| | - Robert S Tegg
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, TAS, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - Calum R Wilson
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, TAS, Australia
| |
Collapse
|
44
|
Jin C, Liao R, Zheng J, Fang X, Wang W, Fan J, Yuan S, Du J, Yang H. Mitogen-Activated Protein Kinase MAPKKK7 from Plasmodiophora brassicae Regulates Low-Light-Dependent Nicotiana benthamiana Immunity. PHYTOPATHOLOGY 2021; 111:1017-1028. [PMID: 33258412 DOI: 10.1094/phyto-08-20-0323-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MAPKKK is the largest family of mitogen-activated protein kinase (MAPK) cascades and is known to play important roles in plant pathogen interaction by regulating fungal cell proliferation, growth, and pathogenicity. Thus far, only a few have been characterized because of the functional redundancy of MAPKKKs. In this study, it is interesting that Plasmodiophora brassicae (Pb)MAPKKK7 was clustered into the A3 subgroup of plant MAPKKKs by a phylogenetic analysis and also with the BCK1 and STE groups of fungal MAPKKKs. PbMAPKKK7 function in reactive oxygen species accumulation and cell death in Nicotiana benthamiana was characterized. Agroinfiltration with the PbMAPKKK7 mutated protein kinase domain relieved these changes. Interestingly, the induction of cell death was dependent on light intensity. Transcriptional profiling analysis demonstrated that PbMAPKKK7 was highly expressed during cortex infection stages, indicating its important role in P. brassicae infection. These functional analyses of PbMAPKKK7 build knowledge of new roles of the MAPK cascade pathway in N. benthamiana and P. brassicae interactions.
Collapse
Affiliation(s)
- Chuang Jin
- College of Agronomy, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| | - Rong Liao
- College of Agronomy, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| | - Jing Zheng
- College of Agronomy, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
- The Agricultural Technology Popularization Station of Chengdu, Chengdu Agricultural and Rural Bureau, Chengdu 610041, China
| | - Xingyan Fang
- College of Agronomy, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| | - Wenming Wang
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| | - Jing Fan
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| | - Hui Yang
- College of Agronomy, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| |
Collapse
|
45
|
Influence of Soil-Borne Inoculum of Plasmodiophora brassicae Measured by qPCR on Disease Severity of Clubroot-Resistant Cultivars of Winter Oilseed Rape ( Brassica napus L.). Pathogens 2021; 10:pathogens10040433. [PMID: 33917357 PMCID: PMC8067420 DOI: 10.3390/pathogens10040433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 11/17/2022] Open
Abstract
Use of resistant cultivars is considered the most effective tool in managing clubroot. Three clubroot-resistant commercial winter oilseed rape (OSR) cultivars and a susceptible ‘Cultivar mix’ were evaluated for disease severity index (DSI) and yield performance in field soils, selected for varying abundance of natural inoculum of Plasmodiophora brassicae. Seven field trials were carried out during 2017–2019 in winter OSR crops, and comparative bioassays were performed in a growth chamber. Substantial variation in clubroot infection between years was observed in the field trials. For Cultivar mix, a negative correlation (y = −252.3ln(x) + 58,897.6) was found between inoculum density and seed yield in five trials, whereas no correlation was found for the resistant cultivars. In bioassays, Cultivar mix exhibited a significantly high correlation between DSIb and number of gene copies g−1 soil (R2 = 0.72). For resistant cvs., Mentor and Alister, correlation was R2 = 0.45 and 0.58, respectively, indicating that resistance was under pressure. In field trials, DSIf of the resistant cultivars was lower (<27). The recommendation is thus to use clubroot-resistant cultivars of OSR as part of Integrated Pest Management in situations where abundance of P. brassicae DNA exceeds 1300 gene copies g−1 soil.
Collapse
|
46
|
Prior MJ, Selvanayagam J, Kim JG, Tomar M, Jonikas M, Mudgett MB, Smeekens S, Hanson J, Frommer WB. Arabidopsis bZIP11 Is a Susceptibility Factor During Pseudomonas syringae Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:439-447. [PMID: 33400562 DOI: 10.1094/mpmi-11-20-0310-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The induction of plant nutrient secretion systems is critical for successful pathogen infection. Some bacterial pathogens (e.g., Xanthomonas spp.) use transcription activator-like (TAL) effectors to induce transcription of SWEET sucrose efflux transporters. Pseudomonas syringae pv. tomato strain DC3000 lacks TAL effectors yet is able to induce multiple SWEETs in Arabidopsis thaliana by unknown mechanisms. Because bacteria require other nutrients in addition to sugars for efficient reproduction, we hypothesized that Pseudomonas spp. may depend on host transcription factors involved in secretory programs to increase access to essential nutrients. Bioinformatic analyses identified the Arabidopsis basic-leucine zipper transcription factor bZIP11 as a potential regulator of nutrient transporters, including SWEETs and UmamiT amino acid transporters. Inducible downregulation of bZIP11 expression in Arabidopsis resulted in reduced growth of P. syringae pv. tomato strain DC3000, whereas inducible overexpression of bZIP11 resulted in increased bacterial growth, supporting the hypothesis that bZIP11-regulated transcription programs are essential for maximal pathogen titer in leaves. Our data are consistent with a model in which a pathogen alters host transcription factor expression upstream of secretory transcription networks to promote nutrient efflux from host cells.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Matthew J Prior
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92507, U.S.A
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, U.S.A
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Jebasingh Selvanayagam
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, U.S.A
- Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Monika Tomar
- Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Martin Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, U.S.A
- Department of Molecular Biology, Princeton University, 119 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, U.S.A
| | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Sjef Smeekens
- Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Johannes Hanson
- Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, U.S.A
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
- Molecular Physiology, Heinrich Heine Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Schwelm A, Ludwig-Müller J. Molecular Pathotyping of Plasmodiophora brassicae-Genomes, Marker Genes, and Obstacles. Pathogens 2021; 10:259. [PMID: 33668372 PMCID: PMC7996130 DOI: 10.3390/pathogens10030259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022] Open
Abstract
Here we review the usefulness of the currently available genomic information for the molecular identification of pathotypes. We focused on effector candidates and genes implied to be pathotype specific and tried to connect reported marker genes to Plasmodiophora brassicae genome information. The potentials for practical applications, current obstacles and future perspectives are discussed.
Collapse
Affiliation(s)
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany;
| |
Collapse
|
48
|
Biocontrol arsenals of bacterial endophyte: An imminent triumph against clubroot disease. Microbiol Res 2020; 241:126565. [DOI: 10.1016/j.micres.2020.126565] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/18/2022]
|
49
|
Zhou Q, Galindo-González L, Manolii V, Hwang SF, Strelkov SE. Comparative Transcriptome Analysis of Rutabaga ( Brassica napus) Cultivars Indicates Activation of Salicylic Acid and Ethylene-Mediated Defenses in Response to Plasmodiophora brassicae. Int J Mol Sci 2020; 21:ijms21218381. [PMID: 33171675 PMCID: PMC7664628 DOI: 10.3390/ijms21218381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023] Open
Abstract
Clubroot, caused by Plasmodiophora brassicae Woronin, is an important soilborne disease of Brassica napus L. and other crucifers. To improve understanding of the mechanisms of resistance and pathogenesis in the clubroot pathosystem, the rutabaga (B. napus subsp. rapifera Metzg) cultivars ‘Wilhelmsburger’ (resistant) and ‘Laurentian’ (susceptible) were inoculated with P. brassicae pathotype 3A and their transcriptomes were analyzed at 7, 14, and 21 days after inoculation (dai) by RNA sequencing (RNA-seq). Thousands of transcripts with significant changes in expression were identified in each host at each time-point in inoculated vs. non-inoculated plants. Molecular responses at 7 and 14 dai supported clear differences in the clubroot response mechanisms of the two genotypes. Both the resistant and the susceptible cultivars activated receptor-like protein (RLP) genes, resistance (R) genes, and genes involved in salicylic acid (SA) signaling as clubroot defense mechanisms. In addition, genes related to calcium signaling and genes encoding leucine-rich repeat (LRR) receptor kinases, the respiratory burst oxidase homolog (RBOH) protein, and transcription factors such as WRKYs, ethylene responsive factors, and basic leucine zippers (bZIPs), appeared to be upregulated in ‘Wilhelmsburger’ to restrict P. brassicae development. Some of these genes are essential components of molecular defenses, including ethylene (ET) signaling and the oxidative burst. Our study highlights the importance of activation of genes associated with SA- and ET-mediated responses in the resistant cultivar. A set of candidate genes showing contrasting patterns of expression between the resistant and susceptible cultivars was identified and includes potential targets for further study and validation through approaches such as gene editing.
Collapse
|
50
|
Liu L, Qin L, Zhou Z, Hendriks WGHM, Liu S, Wei Y. Refining the Life Cycle of Plasmodiophora brassicae. PHYTOPATHOLOGY 2020; 110:1704-1712. [PMID: 32407251 DOI: 10.1094/phyto-02-20-0029-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As a soilborne protist pathogen, Plasmodiophora brassicae causes the devastating clubroot disease on Brassicaeae crops worldwide. Due to its intracellular obligate biotrophic nature, the life cycle of P. brassicae is still not fully understood. Here, we used fluorescent probe-based confocal microscopy and transmission electron microscopy (TEM) to investigate the infection process of P. brassicae on the susceptible host Arabidopsis under controlled conditions. We found that P. brassicae can initiate the primary infection in both root hairs and epidermal cells, producing the uninucleate primary plasmodium at 1 day postinoculation (dpi). After that, the developed multinucleate primary plasmodium underwent condensing and cytoplasm cleavage into uninucleate zoosporangia from 1 to 4 dpi. This was subsequently followed by the formation of multinucleate zoosporangia and the production of secondary zoospores within zoosporangium. Importantly, the secondary zoospores performed a conjugation in the root epidermal cells after their release. TEM revealed extensive uninucleate secondary plasmodium in cortical cells at 8 dpi, indicating the establishment of the secondary infection. The P. brassicae subsequently developed into binucleate, quadrinucleate, and multinucleate secondary plasmodia from 10 to 15 dpi, during which the clubroot symptoms appeared. The uninucleate resting spores were first observed in the cortical cells at 24 dpi, marking the completion of a life cycle. We also provided evidence that the secondary infection of P. brassicae may represent the diploid sexual life stage. From these findings, we propose a refined life cycle of P. brassicae which will contribute to understanding of the complicated infection biology of P. brassicae.
Collapse
Affiliation(s)
- Lijiang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Li Qin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Zhuqing Zhou
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | | | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|