1
|
Farajzadeh MA, Mohammad Mehri S, Afshar Mogaddam MR. Application of core-shell magnetic metal-organic framework in developing dispersive micro solid phase extraction combined with dispersive liquid-liquid microextraction for the extraction and enrichment of some pesticides in orange blossom, Aloysia Citrodora, and fennel herbal infusions. J Chromatogr A 2024; 1741:465608. [PMID: 39721402 DOI: 10.1016/j.chroma.2024.465608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
This paper introduces an innovative technique for extracting pesticides from herbal infusions using a core-shell magnetic adsorbent (i.e., Cu-BTC@Fe3O4) where achieving a notable enrichment factor for the target pesticides by coupling with a dispersive liquid-liquid microextraction method. To validate the successful synthesis of the adsorbent, a range of analytical techniques were utilized including vibrating sample magnetometer, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray, and Brunauer-Emmett-Teller analyses. A vortex agitation and an external magnetic field were used during the extraction process to aid the analytes' desorption and adsorbent separation, respectively. Also, a mixture of iso-propanol and deionized water was used to desorb the analytes from the adsorbent surface. The resulting supernatant containing the desorbed pesticides was mixed with 1,2-dibromoethane as the extraction solvent and then injected into an aqueous medium. After centrifugation, 1 μL of the sedimented phase was introduced into the gas chromatograph system equipped with a flame ionization detector. The reliability of the proposed methodology was confirmed by obtaining low relative standard deviations (1.0-8.5 %), acceptable extraction recoveries (39-93 %), substantial enrichment factors (195-475), calibration curve linearity (r2=0.993-0.998), and significantly low limits of quantification (0.34-3.0 μg L-1) and detection (1.1-9.9 μg L-1). Absence of matrix effects with relative recovery values of 80-120 % for real samples, minimal use of the adsorbent and extraction solvent, a reduction in extraction time due to the elimination of two centrifugation steps (facilitated by an external magnetic field), and the use of environmentally friendly solvents collectively highlight the advantages and significant values of this approach.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| | - Sina Mohammad Mehri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Li X, Xu K, Bi Y, He D, Wang X, Li K, Liu Q, Zhang Y. HKUST-1 in-situ loaded ultrastable covalently crosslinked agarose aerogel with solvothermal for highly efficient removal of methylene blue. Int J Biol Macromol 2024; 282:136837. [PMID: 39461634 DOI: 10.1016/j.ijbiomac.2024.136837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
A new HKUST-1@covalently crosslinked agarose aerogel (HKUST-1@CCAGA) was synthesized for the highly effective elimination of Methylene Blue (MB). Firstly, the covalently crosslinked agarose aerogel (CCAGA) was obtained by hydrothermal crosslinking reaction with epichlorohydrin (ECH) as crosslinker, which remained stabilized under hydrothermal and solvothermal conditions. Then, HKUST-1 was made to bind to CCAGA by in situ solvothermal assays, and the HKUST-1 loading rate reached 47.4 % based on thermogravimetric data and calculated using the cross over method. Meanwhile, the SEM exhibited the complete 3D honeycomb structure of CCAGA, and HKUST-1 particles uniformly distributed on its layers. Additionally, the specific surface area of HKUST-1@CCAGA can reached 648.59 m2·g-1. The HKUST-1@CCAGA composite was utilized for MB removal, achieving a high adsorption capacity of 424.30 mg·g-1 at pH 8. The adsorption of MB was also maintained at 80 % after 5 cycles of the experiment. The composite aerogel exhibits good recyclability and has excellent adsorption capacity.
Collapse
Affiliation(s)
- Xin Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Kun Xu
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yiyang Bi
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Dongjie He
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xin Wang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ke Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Qun Liu
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Yu Zhang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| |
Collapse
|
3
|
Liu TW, Nguyen Q, Dieng AB, Gómez-Gualdrón DA. Diversity-driven, efficient exploration of a MOF design space to optimize MOF properties. Chem Sci 2024:d4sc03609c. [PMID: 39464600 PMCID: PMC11499977 DOI: 10.1039/d4sc03609c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Metal-organic frameworks (MOFs) promise to engender technology-enabling properties for numerous applications. However, one significant challenge in MOF development is their overwhelmingly large design space, which is intractable to fully explore even computationally. To find diverse optimal MOF designs without exploring the full design space, we develop Vendi Bayesian optimization (VBO), a new algorithm that combines traditional Bayesian optimization with the Vendi score, a recently introduced interpretable diversity measure. Both Bayesian optimization and the Vendi score require a kernel similarity function, we therefore also introduce a novel similarity function in the space of MOFs that accounts for both chemical and structural features. This new similarity metric enables VBO to find optimal MOFs with properties that may depend on both chemistry and structure. We statistically assessed VBO by its ability to optimize three NH3-adsorption dependent performance metrics that depend, to different degrees, on MOF chemistry and structure. With ten simulated campaigns done for each metric, VBO consistently outperformed random search to find high-performing designs within a 1000-MOF subset for (i) NH3 storage, (ii) NH3 removal from membrane plasma reactors, and (iii) NH3 capture from air. Then, with one campaign dedicated to finding optimal MOFs for NH3 storage in a "hybrid" ∼10 000-MOF database, we identify twelve extant and eight hypothesized MOF designs with potentially record-breaking working capacity ΔN NH3 between 300 K and 400 K at 1 bar. Specifically, the best MOF designs are predicted to (i) achieve ΔN NH3 values between 23.6 and 29.3 mmol g-1, potentially surpassing those that MOFs previously experimentally tested for NH3 adsorption would have at the proposed operation conditions, (ii) be thermally stable at the operation conditions and (iii) require only ca. 10% of the energy content in NH3 to release the stored molecule from the MOF. Finally, the analysis of the generated simulation data during the search indicates that a pore size of around 10 Å, a heat of adsorption around 33 kJ mol-1, and the presence of Ca could be part of MOF design rules that could help optimize NH3 working capacity at the proposed operation conditions.
Collapse
Affiliation(s)
- Tsung-Wei Liu
- Department of Chemical and Biological Engineering, Colorado School of Mines 1601 Illinois St Golden CO 80401 USA
| | - Quan Nguyen
- Department of Computer Science and Engineering, Washington University in St. Louis 1 Brookings Dr St. Louis MO 63130 USA
| | - Adji Bousso Dieng
- Vertaix, Department of Computer Science, Princeton University 35 Olden St Princeton NJ 08540 USA
| | - Diego A Gómez-Gualdrón
- Department of Chemical and Biological Engineering, Colorado School of Mines 1601 Illinois St Golden CO 80401 USA
| |
Collapse
|
4
|
Kandelous YM, Nikpassand M, Fekri LZ. Recent Focuses in the Syntheses and Applications of Magnetic Metal-Organic Frameworks. Top Curr Chem (Cham) 2024; 382:30. [PMID: 39369352 DOI: 10.1007/s41061-024-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
In this article, we examine the recent uses of magnetic metal-organic frameworks (MMOFs). MMOFs can be used in various fields such as water purification, laboratory, food, environment, etc. Their materials can be composed of different metals and ligands, each of which has its own properties. Also, the presence of a magnetic property in these absorbents adds good features such as easy separation, faster absorption, and better interaction with other particles, which improves their application and performance. In recent years, various types of these compounds have been made, and, in this article, while classifying them, we will discuss the structure and application of some MMOFs.
Collapse
Affiliation(s)
| | - Mohammad Nikpassand
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Leila Zare Fekri
- Department of Chemistry, Payame Noor University (PNU), PO Box, Tehran, 19395-4697, Iran
| |
Collapse
|
5
|
Al-Wasidi AS, El-Feky HH, Shah RK, Saad FA, Abdelrahman EA. Simplified synthesis and identification of novel nanostructures consisting of cobalt borate and cobalt oxide for crystal violet dye removal from aquatic environments. Sci Rep 2024; 14:21631. [PMID: 39284822 PMCID: PMC11405839 DOI: 10.1038/s41598-024-71981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Crystal violet dye poses significant health risks to humans, including carcinogenic and mutagenic effects, as well as environmental hazards due to its persistence and toxicity in aquatic ecosystems. This study focuses on the efficient removal of crystal violet dye from aqueous media using novel Co3O4/Co3(BO3)2 nanostructures synthesized via the Pechini sol-gel approach. The nanostructures, which were abbreviated to EN600 and EN800, were fabricated at calcination temperatures of 600 and 800 °C, respectively. X-ray diffraction (XRD) analysis revealed that the synthesized samples have a cubic Co3O4 phase and an orthorhombic Co3(BO3)2 phase, with mean crystal sizes of 43.82 nm and 52.93 nm for EN600 and EN800 samples, respectively. The Brunauer-Emmett-Teller (BET) surface areas of EN600 and EN800 samples were 65.80 and 43.76 m2/g, respectively, indicating a significant surface area available for adsorption. Optimal removal of crystal violet dye was achieved at a temperature of 298 K, a contact time of 70 min, and a pH of 10. The maximum adsorption capacities were found to be 284.09 mg/g for EN600 and 256.41 mg/g for EN800, which are notably higher compared to many conventional adsorbents. The adsorption process followed the pseudo-second-order kinetic model and fitted well with the Langmuir isotherm. The adsorption was exothermic, spontaneous, and physical in nature. Moreover, the adsorbents exhibited excellent reusability, retaining high efficiency after multiple regeneration cycles using 6 mol/L hydrochloric acid. These findings highlight the potential of these Co3O4/Co3(BO3)2 nanostructures as effective and sustainable materials for water purification applications.
Collapse
Affiliation(s)
- Asma S Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Hesham H El-Feky
- Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| | - Reem K Shah
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Fawaz A Saad
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Ehab A Abdelrahman
- Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Hubab M, Al-Ghouti MA. Recent advances and potential applications for metal-organic framework (MOFs) and MOFs-derived materials: Characterizations and antimicrobial activities. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00837. [PMID: 38577654 PMCID: PMC10992724 DOI: 10.1016/j.btre.2024.e00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Microbial infections, particularly those caused by antibiotic-resistant pathogens, pose a critical global health threat. Metal-Organic Frameworks (MOFs), porous crystalline structures built from metal ions and organic linkers, initially developed for gas adsorption, have emerged as promising alternatives to traditional antibiotics. This review, covering research up to 2023, explores the potential of MOFs and MOF-based materials as broad-spectrum antimicrobial agents against bacteria, viruses, fungi, and even parasites. It delves into the historical context of antimicrobial agents, recent advancements in MOF research, and the diverse synthesis techniques employed for their production. Furthermore, the review comprehensively analyzes the mechanisms of action by which MOFs combat various microbial threats. By highlighting the vast potential of MOFs, their diverse synthesis methods, and their effectiveness against various pathogens, this study underscores their potential as a novel solution to the growing challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Muhammad Hubab
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| | - Mohammad A. Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| |
Collapse
|
7
|
Roy N, Das C, Paul M, Im J, Biswas G. Adsorptive Elimination of a Cationic Dye and a Hg (II)-Containing Antiseptic from Simulated Wastewater Using a Metal Organic Framework. Molecules 2024; 29:886. [PMID: 38398637 PMCID: PMC10892504 DOI: 10.3390/molecules29040886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Several types of pollutants have acute adverse effects on living bodies, and the effective removal of these pollutants remains a challenge. Safranin O (a biological dye) and merbromin (a topical mercury-containing antiseptic) are considered organic pollutants, and there are only a few reports on their removal. Synthesized and well-characterized (through PXRD, FTIR, FESEM, and EDS analysis) MOF-5 was used for the first time in the removal of safranin O and merbromin from simulated wastewater and real wastewater. In both cases, MOF-5 effectively removed contaminants. We found that in simulated wastewater, the highest efficiency of removal of safranin O was 53.27% (for 15 mg/L) at pH 10, and for merbromin, it was 41.49% (for 25 mg/L) at pH 6. In the case of real wastewater containing natural ions (Na+, K+, F-, Cl-, SO42-, PO43-, Mg2+, and Ca2+) and other molecules, the removal efficiencies of these two dyes decreased (34.00% and 26.28% for safranin O and merbromin, respectively) because of the presence of other ions and molecules. A plausible mechanism for the removal of these pollutants using MOF-5 was proposed.
Collapse
Affiliation(s)
- Nilanjan Roy
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar 736101, West Bengal, India; (N.R.); (C.D.)
| | - Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar 736101, West Bengal, India; (N.R.); (C.D.)
| | - Mohuya Paul
- Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic of Korea;
| | - Jungkyun Im
- Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic of Korea;
- Department of Chemical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar 736101, West Bengal, India; (N.R.); (C.D.)
| |
Collapse
|
8
|
Viltres H, Gupta NK, Paz R, Dhavale RP, Park HH, Leyva C, Srinivasan S, Rajabzadeh AR. Mercury remediation from wastewater through its spontaneous adsorption on non-functionalized inverse spinel magnetic ferrite nanoparticles. ENVIRONMENTAL TECHNOLOGY 2024; 45:1155-1168. [PMID: 36263910 DOI: 10.1080/09593330.2022.2138787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
In this study, inverse spinel cubic ferrites MFe2O4 (M = Fe2+, and Co2+) have been fabricated for the high-capacity adsorptive removal of Hg(II) ions. The PXRD analysis confirmed ferrites with the presence of residual NaCl. The surface area of Fe3O4 (Fe-F) and CoFe2O4 (Co-F) material was 69.1 and 45.2 m2 g-1, respectively. The Co-F and Fe-F showed the maximum Hg(II) adsorption capacity of 459 and 436 mg g-1 at pH 6. The kinetic and isotherms models suggested a spontaneous adsorption process involving chemical forces over the ferrite adsorbents. The Hg(II) adsorption process, probed by X-ray photoelectron spectroscopy (XPS), confirmed the interaction of Hg(II) ions with the surface hydroxyl groups via a complexation mechanism instead of proton exchange at pH 6 with the involvement of chloride ions. Thus, this study demonstrates a viable and cost-effective solution for the efficient remediation of Hg ions from wastewater using non-functionalized ferrite adsorbents. This study also systematically investigates the kinetics and isotherm mechanism of Hg(II) adsorption onto ferrites and reports one of the highest Hg(II) adsorption capacities among other ferrite-based adsorbents.
Collapse
Affiliation(s)
- Herlys Viltres
- School of Engineering Practice and Technology, McMaster University, Hamilton, Ontario, Canada
| | - Nishesh Kumar Gupta
- Department of Environmental Research, University of Science and Technology (UST), Daejeon, Korea
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Korea
| | - Roxana Paz
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, CDMX, Mexico
| | - Rushikesh P Dhavale
- Department of Materials Science and Engineering, Yonsei University, Seoul, South Korea
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, South Korea
| | - Carolina Leyva
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, CDMX, Mexico
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, Hamilton, Ontario, Canada
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Ramu S, Kainthla I, Chandrappa L, Shivanna JM, Kumaran B, Balakrishna RG. Recent advances in metal organic frameworks-based magnetic nanomaterials for waste water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:167-190. [PMID: 38044404 DOI: 10.1007/s11356-023-31162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Magnetic nanoparticle-incorporated metal organic frameworks (MOF) are potential composites for various applications such as catalysis, water treatment, drug delivery, gas storage, chemical sensing, and heavy metal ion removal. MOFs exhibits high porosity and flexibility enabling guest species like heavy metal ions to diffuse into bulk structure. Additionally, shape and size of the pores contribute to selectivity of the guest materials. Incorporation of magnetic materials allows easy collection of adsorbent materials from solution system making the process simple and cost-effective. In view of the above advantages in the present review article, we are discussing recent advances of different magnetic material-incorporated MOF (Mg-MOF) composite for application in photocatalytic degradation of dyes and toxic chemicals, adsorption of organic compounds, adsorption of heavy metal ions, and adsorption of dyes. The review initially discusses on properties of Mg-MOF, different synthesis techniques such as mechanochemical, sonochemical (ultrasound) synthesis, slow evaporation and diffusion methods, solvo(hydro)-thermal and iono-thermal method, microwave-assisted method, microemulsion method post-synthetic modification template strategies and followed by application in waste water treatment.
Collapse
Affiliation(s)
- Shwetharani Ramu
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Itika Kainthla
- School of Physics and Material Sciences, Shoolini University, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Lavanya Chandrappa
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Jyothi Mannekote Shivanna
- Department of Chemistry, AMC Engineering College, Bannerughatta Road, Bengaluru, Karnataka, 560083, India
| | - Brijesh Kumaran
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, 208016, India
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India.
| |
Collapse
|
10
|
Nagasaka CA, Ogiwara N, Kobayashi S, Uchida S. Reduction-Induced Uptake of Cs + in Metal-Organic Frameworks Loaded with Polyoxometalates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307004. [PMID: 38145347 DOI: 10.1002/smll.202307004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/19/2023] [Indexed: 12/26/2023]
Abstract
Materials for Cs+ adsorption continue to be important for the treatment of various solutions. Metal-organic frameworks (MOFs) with large specific surface areas promise adsorption properties for various gases, vapors, and ions. However, the utilization of MOFs for alkali ion capture, specifically, Cs+ capture is still in its infancy. Herein, MOFs are hybridized with polyoxometalates (POMs) to study the effect of i) MOF type, ii) POM type, and iii) POM loading amounts on Cs+ capture. In particular, the composite of ZIF-8 and [α-PMo12 O40 ]3- (PMo12 /ZIF-8) adsorbed Cs+ ions effectively when compared to pristine ZIF-8. In addition, the reduction of Mo within the POM from MoVI to MoV by ascorbic acid during the Cs+ uptake process doubled the Cs+ uptake capacity of PMo12 /ZIF-8. This observation can be attributed to the increased overall negative charge of the POM facilitating Cs+ uptake to compensate for the charge imbalance. Hybridization with other MOFs (MIL-101 and UiO-66) largely suppresses the Cs+ uptake, highlighting the importance of hydrophobicity in Cs+ capture. Furthermore, PMo12 /ZIF-8 led to an outstanding Cs+ uptake (291.5 mg g-1 ) with high selectivity (79.6%) from quinary mixtures of alkali metal cations even among other representative porous materials (Prussian blue and zeolites).
Collapse
Affiliation(s)
- Cocoro A Nagasaka
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Naoki Ogiwara
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Shunsuke Kobayashi
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya, 456-8587, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
11
|
Solanki S, Bisaria K, Iqbal HMN, Saxena R, Baxi S, Kothari AC, Singh R. Sugeno fuzzy inference system modeling and DFT calculations for the treatment of pesticide-laden water by newly developed arginine functionalized magnetic Mn-based metal organic framework. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123126-123147. [PMID: 37979110 DOI: 10.1007/s11356-023-30944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The uncontrolled utilization of pesticides poses a significant risk to the environment and human health, making its management essential. In this regard, a new arginine functionalized magnetic Mn-based metal-organic framework (Arg@m-Mn-MOF) was fabricated and assessed for the removal of cypermethrin (CYP) and chlorpyrifos (CHL) from aqueous system. The Arg@m-Mn-MOF was characterized by scanning electron microscopy, energy dispersive X-ray, Fourier transform infrared spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis. Various parameters were optimized in a series of batch experiments and the following conditions were found optimal: pH: 4 and 5, contact time: 20 min, adsorbent dosage: 0.6 and 0.8 g L-1 with initial concentration: 10 mg L-1 and temperature: 298 K for CYP and CHL, respectively. The composite attained a maximum removal capacity of 44.84 and 71.42 mg g-1 for CYP and CHL, respectively. The elucidated data was strongly fitted to the pseudo-second-order model of kinetics (R2 > 0.98) and Langmuir isotherm (R2 > 0.98). Based upon 350 experimental datasets obtained from batch studies and interpolated data, the adsorption capacity of the adsorbent was elucidated with R2 > 0.97 (CHL) and > 0.91 (CYP). The adsorption energy (- 11.67 kcal mol-1) calculated by Gaussian software suggests a good interaction between arginine and CHL through H-bonding. The present study's findings suggested the prepared Arg@m-Mn-MOF as a promising adsorbent for the efficient removal of pesticides from agriculture runoff.
Collapse
Affiliation(s)
- Swati Solanki
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Kavya Bisaria
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849, Monterrey, Mexico
| | - Reena Saxena
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India
| | - Shalini Baxi
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India
| | - Anil Chandra Kothari
- Light Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, Uttarakhand, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
12
|
Weyrich JN, Mason JR, Bazilevskaya EA, Yang H. Understanding the Mechanism for Adsorption of Pb(II) Ions by Cu-BTC Metal-Organic Frameworks. Molecules 2023; 28:5443. [PMID: 37513315 PMCID: PMC10384541 DOI: 10.3390/molecules28145443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
With the growing population, industrialization, and agriculture, water contamination not only affects people but entire ecosystems. Metal-organic frameworks (MOFs), because of their large surface area and porosity, show great potential as adsorbents for removing pollutants, such as heavy metals, from contaminated water. The current research aims at examining copper (II) benzene-1,3,5-tricarboxylate (Cu-BTC) MOFs and understanding the mechanism for their adsorption of Pb(II) from aqueous solution. The Cu-BTC samples were characterized using FTIR and XRD, and their surface area and porosity were determined based on N2 adsorption isotherms. The concentration of Pb(II) in the solutions was measured using atomic absorption spectroscopy (AAS). Both kinetic and equilibrium adsorption data were collected and then analyzed using numerical models. The analyses led to the findings that the limiting steps in the adsorption of Pb(II) on Cu-BTC are (a) pore diffusion of Pb(II) and (b) the availability of the active sites on Cu-BTC MOFs. It was further revealed that the former step is more dominant in the adsorption of Pb(II) when the lead concentration is low. The latter step, which is directly proportional to the surface areas of the MOFs, affects the adsorption to a greater extent when the lead concentration is high. The results also show that adsorption of Pb(II) ions on Cu-BTC is mainly a multi-layer heterogeneous process.
Collapse
Affiliation(s)
- Joanna N Weyrich
- Department of Chemistry, Widener University, One University Place, Chester, PA 19013, USA
| | - John R Mason
- Department of Chemistry and Biochemistry, University of Delaware, 102 Brown Laboratory, Newark, DE 19716, USA
| | - Ekaterina A Bazilevskaya
- Department of Ecosystem Science and Management, The Pennsylvania State University, 409 Agricultural Sciences and Industries Building, University Park, PA 16802, USA
| | - Hongwei Yang
- Department of Chemistry, Widener University, One University Place, Chester, PA 19013, USA
| |
Collapse
|
13
|
Kaur H, Devi N, Siwal SS, Alsanie WF, Thakur MK, Thakur VK. Metal-Organic Framework-Based Materials for Wastewater Treatment: Superior Adsorbent Materials for the Removal of Hazardous Pollutants. ACS OMEGA 2023; 8:9004-9030. [PMID: 36936323 PMCID: PMC10018528 DOI: 10.1021/acsomega.2c07719] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In previous years, different pollutants, for example, organic dyes, antibiotics, heavy metals, pharmaceuticals, and agricultural pollutants, have been of note to the water enterprise due to their insufficient reduction during standard water and wastewater processing methods. MOFs have been found to have potential toward wastewater management. This Review focused on the synthesis process (such as traditional, electrochemical, microwave, sonochemical, mechanochemical, and continuous-flow spray-drying method) of MOF materials. Moreover, the properties of the MOF materials have been discussed in detail. Further, MOF materials' applications for wastewater treatment (such as the removal of antibiotics, organic dyes, heavy metal ions, and agricultural waste) have been discussed. Additionally, we have compared the performances of some typical MOFs-based materials with those of other commonly used materials. Finally, the study's current challenges, future prospects, and outlook have been highlighted.
Collapse
Affiliation(s)
- Harjot Kaur
- Department
of Chemistry, M.M. Engineering College,
Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nishu Devi
- Mechanics
and Energy Laboratory, Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samarjeet Singh Siwal
- Department
of Chemistry, M.M. Engineering College,
Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Walaa F. Alsanie
- Department
of Clinical Laboratories Sciences, The Faculty of Applied Medical
Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Manju Kumari Thakur
- Department
of Chemistry, Government Degree College Sarkaghat, Himachal Pradesh University, Shimla 171005, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
- School of
Engineering, University of Petroleum &
Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
- Centre
for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| |
Collapse
|
14
|
Muslim M, Ahmad M, Jane Alam M, Ahmad S. Experimental and Density Functional Theory investigation on one- and two-dimensional coordination polymers and their ZnO-doped nanocomposites materials for wastewater remediation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
15
|
Cheng L, Huang R, Cao Q, Liu N, Li P, Sun M, Qin H, Wu L. Magnetic metal–organic frameworks as adsorbents for the detection of azo pigments in food matrices. Food Chem 2023; 402:134134. [DOI: 10.1016/j.foodchem.2022.134134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
|
16
|
A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules 2023; 28:molecules28031081. [PMID: 36770748 PMCID: PMC9918932 DOI: 10.3390/molecules28031081] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Dye and nitro-compound pollution has become a significant issue worldwide. The adsorption and degradation of dyes and nitro-compounds have recently become important areas of study. Different methods, such as precipitation, flocculation, ultra-filtration, ion exchange, coagulation, and electro-catalytic degradation have been adopted for the adsorption and degradation of these organic pollutants. Apart from these methods, adsorption, photocatalytic degradation, and chemical degradation are considered the most economical and efficient to control water pollution from dyes and nitro-compounds. In this review, different kinds of dyes and nitro-compounds, and their adverse effects on aquatic organisms and human beings, were summarized in depth. This review article covers the comprehensive analysis of the adsorption of dyes over different materials (porous polymer, carbon-based materials, clay-based materials, layer double hydroxides, metal-organic frameworks, and biosorbents). The mechanism and kinetics of dye adsorption were the central parts of this study. The structures of all the materials mentioned above were discussed, along with their main functional groups responsible for dye adsorption. Removal and degradation methods, such as adsorption, photocatalytic degradation, and chemical degradation of dyes and nitro-compounds were also the main aim of this review article, as well as the materials used for such degradation. The mechanisms of photocatalytic and chemical degradation were also explained comprehensively. Different factors responsible for adsorption, photocatalytic degradation, and chemical degradation were also highlighted. Advantages and disadvantages, as well as economic cost, were also discussed briefly. This review will be beneficial for the reader as it covers all aspects of dye adsorption and the degradation of dyes and nitro-compounds. Future aspects and shortcomings were also part of this review article. There are several review articles on all these topics, but such a comprehensive study has not been performed so far in the literature.
Collapse
|
17
|
Gharehdaghi Z, Naghib SM, Rahimi R, Bakhshi A, Kefayat A, shamaeizadeh A, Molaabasi F. Highly improved pH-Responsive anticancer drug delivery and T2-Weighted MRI imaging by magnetic MOF CuBTC-based nano/microcomposite. Front Mol Biosci 2023; 10:1071376. [PMID: 37091862 PMCID: PMC10114589 DOI: 10.3389/fmolb.2023.1071376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/26/2023] [Indexed: 04/25/2023] Open
Abstract
Cu-BTC framework has received a considerable attention in recent years as a drug carrier candidate for cancer treatment due to its unique structural properties and promising biocompatibility. However, its intrinsic deficiency for medical imaging potentially limits its bioapplications; To address this subject, a magnetic nano/microscale MOF has been successfully fabricated by introducing Fe3O4 nanoparticles as an imaging agent into the porous isoreticular MOF [Cu3(BTC)2] as a drug carrier. The synthesized magnetic MOFs exhibits a high loading capacity (40.5%) toward the model anticancer DOX with an excellent pH-responsive drug release. The proposed nanocomposite not only possesses large surface area, high magnetic response, large mesopore volume, high transverse relaxivity (r 2) and good stability but also exhibits superior biocompatibility, specific tumor cellular uptake, and significant cancer cell viability inhibitory effect without any targeting agent. It is expected that the synthesized magnetic nano/microcomposite may be used for clinical purposes and can also serve as a platform for photoactive antibacterial therapy ae well as pH/GSH/photo-triple-responsive nanocarrier.
Collapse
Affiliation(s)
- Zahra Gharehdaghi
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Rahmatollah Rahimi
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
- *Correspondence: Rahmatollah Rahimi, ; Fatemeh Molaabasi,
| | - Atin Bakhshi
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Amirhosein Kefayat
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Armin shamaeizadeh
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Fatemeh Molaabasi
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- *Correspondence: Rahmatollah Rahimi, ; Fatemeh Molaabasi,
| |
Collapse
|
18
|
The application of Bimetallic metal–organic frameworks for antibiotics adsorption. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Zhinzhilo VA, Uflyand IE. Magnetic Nanocomposites Based on Metal-Organic Frameworks: Preparation, Classification, Structure, and Properties (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Taghavi R, Rostamnia S, Farajzadeh M, Karimi-Maleh H, Wang J, Kim D, Jang HW, Luque R, Varma RS, Shokouhimehr M. Magnetite Metal-Organic Frameworks: Applications in Environmental Remediation of Heavy Metals, Organic Contaminants, and Other Pollutants. Inorg Chem 2022; 61:15747-15783. [PMID: 36173289 DOI: 10.1021/acs.inorgchem.2c01939] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to the increasing environmental pollution caused by human activities, environmental remediation has become an important subject for humans and environmental safety. The quest for beneficial pathways to remove organic and inorganic contaminants has been the theme of considerable investigations in the past decade. The easy and quick separation made magnetic solid-phase extraction (MSPE) a popular method for the removal of different pollutants from the environment. Metal-organic frameworks (MOFs) are a class of porous materials best known for their ultrahigh porosity. Moreover, these materials can be easily modified with useful ligands and form various composites with varying characteristics, thus rendering them an ideal candidate as adsorbing agents for MSPE. Herein, research on MSPE, encompassing MOFs as sorbents and Fe3O4 as a magnetic component, is surveyed for environmental applications. Initially, assorted pollutants and their threats to human and environmental safety are introduced with a brief introduction to MOFs and MSPE. Subsequently, the deployment of magnetic MOFs (MMOFs) as sorbents for the removal of various organic and inorganic pollutants from the environment is deliberated, encompassing the outlooks and perspectives of this field.
Collapse
Affiliation(s)
- Reza Taghavi
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Mustafa Farajzadeh
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, 611731 Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, 9477177870 Quchan, Iran
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering, Hanyang University, 15588 Ansan, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Cordoba, Spain.,Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya St., 117198 Moscow, Russia
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| |
Collapse
|
21
|
Payra S, Kanungo S, Roy S. Controlling C-C coupling in electrocatalytic reduction of CO 2 over Cu 1-xZn x/C. NANOSCALE 2022; 14:13352-13361. [PMID: 36069301 DOI: 10.1039/d2nr03634g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
From the perspective of sustainable environment and economic value, the electroreduction of CO2 to higher order multicarbon products is more coveted than that of C1 products, owing to their higher energy densities and a wider applicability. However, the reduction process remains extremely challenging due to the bottleneck of C-C coupling over the catalyst surfaces, and therefore designing a suitable catalyst for efficient and selective electrocatalytic reduction of CO2 is a need of the hour. With the target of producing C3+ products with higher selectivity, in this study we explored the nano-alloys of Cu1-xZnx as electrocatalysts for CO2 reduction. The nano-alloy Cu1-xZnx synthesized from the corresponding bimetallic metal organic framework materials demonstrated a gradual enhancement in the selectivity of acetone upon CO2 electroreduction with higher doping of Zn. The Cu1-xZnx alloy opened up a wide possibility of fine-tuning the electronic structure by shifting the position of the d-band centre and modulating the interaction with intermediate CO and thus enhanced the selectivity of desirable products, which might not have been accessible otherwise. The postulated molecular mechanism of CO2 electroreduction involving the desorption of the poorly adsorbed intermediate CO due to the presence of Zn and spilling over of free CO to Cu sites in the nano-alloy Cu1-xZnx for further C-C coupling to yield acetone was corroborated by the first principles studies.
Collapse
Affiliation(s)
- Soumitra Payra
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad-500078, India.
| | - Sayan Kanungo
- Electrical and Electronics Engineering Department, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad-500078, India
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad-500078, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad-500078, India.
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad-500078, India
| |
Collapse
|
22
|
Dong M, Gu JX, Sun CY, Wang XL, Su ZM. Photocatalytic reduction of low-concentration CO 2 by metal-organic frameworks. Chem Commun (Camb) 2022; 58:10114-10126. [PMID: 36017810 DOI: 10.1039/d2cc02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct conversion of diluted CO2 to value-added chemical stocks and fuels with solar energy is an energy-saving approach to relieve global warming and realize a carbon-neutral cycle. The exploration of catalysts with both efficient CO2 adsorption and reduction ability is significant to achieving this goal. Metal-organic frameworks (MOFs) are emerging in the field of low-concentration CO2 reduction due to their highly tunable structure, high porosity, abundant active sites and excellent CO2 adsorption capacity. This highlight outlines the advantages of MOFs for low-pressure CO2 adsorption and the strategies to improve the photocatalytic performance of MOF materials at low CO2 concentrations, including the functionalization of organic ligands, regulation of metal nodes and preparation of MOF composites or derivatives. This paper aims to provide possible avenues for the rational design and development of catalysts with the ability to reduce low-concentration CO2 efficiently for practical applications.
Collapse
Affiliation(s)
- Man Dong
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Institute of Functional Materials, Department of Chemistry, Northeast Normal University Changchun, Jilin, 130024, P. R. China.
| | - Jian-Xia Gu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Institute of Functional Materials, Department of Chemistry, Northeast Normal University Changchun, Jilin, 130024, P. R. China. .,Department of Chemistry, Xinzhou Teachers University, Xinzhou, 034000, P. R. China
| | - Chun-Yi Sun
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Institute of Functional Materials, Department of Chemistry, Northeast Normal University Changchun, Jilin, 130024, P. R. China.
| | - Xin-Long Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Institute of Functional Materials, Department of Chemistry, Northeast Normal University Changchun, Jilin, 130024, P. R. China.
| | - Zhong-Min Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130015, P. R. China
| |
Collapse
|
23
|
Kubo M, Matsumoto T, Shimada M. Spray synthesis of Pd nanoparticle incorporated HKUST-1, and its catalytic activity for 4-nitrophenol reduction. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
24
|
Design, synthesis, and characterization of a novel Zn(II)-2-phenyl benzimidazole framework for the removal of organic dyes. Sci Rep 2022; 12:12431. [PMID: 35858985 PMCID: PMC9300708 DOI: 10.1038/s41598-022-16753-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
A novel Zn (II) organic framework comprising 2-phenyl benzimidazole (ZPBIF-1) was synthesized by using a solvothermal method. The characterization of the synthesized MOF was performed utilizing XRD, SEM, FT-IR, 1H-NMR, 13C-NMR, MS, XPS, TG/DTA, and N2 sorption analysis. ZPBIF-1 was successfully utilized to remove Acid red 88, Basic Violet 14, Basic Blue 54, and Congo red dyes in aqueous solutions. In this study, some parameters, including adsorbent dosage, initial dye concentration, contact time, temperature, and pH, were examined. To evaluate the experimental data, Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich isotherm models were used. In this case, Langmuir is the most suitable model. Several kinetic models, including First-order, pseudo-first-order, second-order, and Pseudo-second-order kinetic models, Elovich's, and Weber's intraparticle diffusion models, were utilized to comprehend the detailed adsorption process. According to the pseudo-second-order kinetic model, dye sorption kinetics is best described. In addition, thermodynamic parameters like enthalpy (ΔH°), Gibbs free energy (ΔG°), and entropy (ΔS°) were also achieved and analyzed. The experimental studies thus suggest that Zn (II) metal-organic framework based on 2-phenyl benzimidazole could be a promising candidate for eliminating dyes from aqueous solution. Hence, the experimental studies suggest that a Zn (II) metal-organic framework based on 2-phenylbenzimidazole could be a promising candidate for eliminating dyes from aqueous solution. The maximum adsorption capacity of ZPBIF-1 was 1666.66, 1250, 1000, and 1250 mg/g for Acid red 88, Basic violet 14, Basic blue 54, and Congo red dyes, respectively. Furthermore, this method was used to remove contaminant dyes from textile wastewater, and an acceptable result was obtained.
Collapse
|
25
|
Ali A, Muslim M, Neogi I, Afzal M, Alarifi A, Ahmad M. Construction of a 3D Metal-Organic Framework and Its Composite for Water Remediation via Selective Adsorption and Photocatalytic Degradation of Hazardous Dye. ACS OMEGA 2022; 7:24438-24451. [PMID: 35874213 PMCID: PMC9301640 DOI: 10.1021/acsomega.2c01869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a new bimetallic Na(I)-Zn(II) metal-organic framework (MOF), formulated as [Na2Zn3(btc)2(μ-HCOO)2(μ-H2O)8] n (1) (H3btc = benzene tricarboxylic acid), and its composite (ZnO@1) have been successfully synthesized using solvothermal and mechanochemical solid grinding methods. 1 and ZnO@1 were characterized by diffraction [single-crystal X-ray diffraction (XRD) and powder XRD], spectroscopic (ultraviolet-visible diffuse reflectance spectroscopy and Fourier transform infrared spectroscopy), microscopic (transmission electron microscopy), and thermal (thermogravimetric analysis) methods. The surface area and porosity of 1 were determined using a Brunauer-Emmett-Teller analyzer. Single-crystal diffraction of 1 confirms that Na1 and Zn2 have octahedral coordination environments, whereas Zn1 has a tetrahedral coordination geometry. Topological simplification of 1 shows a 3,6-connected kgd net. Na(I)-Zn(II) MOF (1) is crystallized with slight porosity and exhibits good tendency toward the encapsulation of zinc oxide nanoparticles (ZnO NPs). The photocatalytic behaviors of 1 and its composite (ZnO@1) were investigated over MB dye under sunlight illumination with promising degradation efficiencies of 93.69% for 1 and 97.53% for ZnO@1 in 80 min.
Collapse
Affiliation(s)
- Arif Ali
- Department
of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Mohd Muslim
- Department
of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Ishita Neogi
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (NIIST), Industrial Estate PO, Thiruvananthapuram 695019, India
| | - Mohd Afzal
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alarifi
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Musheer Ahmad
- Department
of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| |
Collapse
|
26
|
Triphenylamine-based conjugated microporous polymers as dye adsorbents and supercapacitors. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Understanding the Working Mechanism of the NovelHKUST-1@BPS Composite Materials as Stationary Phases for Liquid Chromatography. Polymers (Basel) 2022; 14:polym14071373. [PMID: 35406247 PMCID: PMC9002510 DOI: 10.3390/polym14071373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
Composite materials have been used based on coordination polymers or microporous metal-organic frameworks (MOFs) combined with mesoporous matrices for adsorption-related techniques, which enable outflanking some adverse phenomena manifested during pristine components operation and enhance the performance and selectivity of the resulting materials. In this work, for the first time, the novel HKUST-1@BPS composites synthesized by the microwave-assisted (MW) technique starting from microporous HKUST-1 (Cu3(btc)2) MOF and biporous silica matrix (BPS) with bimodal mesopore size distribution were comparatively studied as materials for liquid-phase adsorption techniques utilizing the high-performance liquid chromatography (HPLC) method and benzene as a model adsorbate. It was established that the studied HKUST-1@BPS composites can function as stationary phases for HPLC, unlike the pristine HKUST-1 and bare BPS materials, due to the synergetic effect of both components based on the preliminary enhanced adsorbate mass transfer throughout the silica mesopores and, subsequently, its penetrating into HKUST-1 micropores. The suggested mechanism involves the initial deactivation of open metal Cu2+ sites in the HKUST-1 framework structure by isopropanol molecules upon adding this polar component into the mobile phase in the region of the isopropanol concentration of 0.0 to 0.2 vol.%. Thereafter, at the medium range of varying the isopropanol concentration in the eluent of 0.2 to 0.3 vol.%, there is an expansion of the previously inaccessible adsorption centers in the HKUST-1@BPS composites. Subsequently, while further increasing the isopropanol volume fraction in the eluent in the region of 0.3 to 5.0 vol.%, the observed behavior of the studied chromatographic systems is similar to the quasi-normal-phase HPLC pattern. According to the obtained thermodynamic data, benzene adsorption into HKUST-1 micropores from solutions with a vol.% of isopropanol in the range of 0.4 to 5.0 follows the unique entropy-driven mechanism previously described for the MIL-53(Al) framework. It was found that HKUST-1 loading in the composites and their preparation conditions have pronounced effects on their physicochemical properties and adsorption performance, including the adsorption mechanism.
Collapse
|
28
|
Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment. ENERGIES 2022. [DOI: 10.3390/en15062023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The adsorptive removal of dyes from industrial wastewater using commercially available adsorbents is not significantly efficient. Metal–organic frameworks (MOFs) offer outstanding properties which can boost the separation performance over current commercial adsorbents and hence, these materials represent a milestone in improving treatment methods for dye removal from water. Accordingly, in this paper, the recent studies in the modification of MOF structures in dye removal from the aquatic environment have been discussed. This study aims to elaborate on the synthetic strategies applied to improve the adsorption efficiency and to discuss the major adsorption mechanisms as well as the most influential parameters in the adsorptive removal of dyes using MOFs. More particularly, the advanced separation performance of MOF-based adsorbents will be comprehensively explained. The introduction of various functional groups and nanomaterials, such as amine functional groups, magnetic nanoparticles, and carbon-based materials such as graphene oxide and CNT, onto the MOFs can alter the removal efficiency of MOF-based adsorbents through enhancing the water stability, dispersion in water, interactions between the MOF structure and the contaminant, and the adsorption capacity. Finally, we summarize the challenges experienced by MOF-based materials for dye removal from water and propose future research outlooks to be considered.
Collapse
|
29
|
The Adsorption of Copper, Lead Metal Ions, and Methylene Blue Dye from Aqueous Solution by Pure and Treated Fennel Seeds. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/5787690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This research work reports on pure and acid-treated fennel seed biomaterials for the removal of metal ions of copper Cu(II), lead Pb(II), and methylene blue (MB) dye from aqueous solution by batch adsorption. Pure fennel seeds were labelled as PFS; nitric and sulphuric acid-treated seeds were designated as NAFS and SAFS, respectively. The adsorbents were characterised by SEM, EDX, FTIR, XRD, and BET. The SEM images revealed that the surface of the adsorbents was porous. However, physicochemical characterization further revealed that BET surface area, pore size, and pore width increased for NAFS and SAFS compared to PFS. FTIR results revealed that the peaks for cellulose −COC and −OH decreased considerably for NAFS and SAFS; this indicated that cellulose was hydrolyzed during acid treatment. Adsorption data showed that all biomaterials had a higher affinity for MB dye more than Pb(II) and Cu(II) metal ions. The maximum adsorption capacities onto PFS were 6.834, 4.179, and 2.902 mg/g and onto NAFS are 15.28, 14.44, and 4.475 mg/g, while those onto SAFS are 19.81, 18.79 and 6.707 mg/g respective for MB dye, Pb(II), and Cu(II) ions. Postadsorption analysis revealed that adsorption of Pb(II) and Cu(II) was controlled mainly by the electrostatic attraction, while that of MB was synergistic of electrostatic attraction, π-π interaction, and hydrogen bond. It was found that the uptake processes of MB dye onto all adsorbents fitted Freundlich while both cations were described by Langmuir model. The thermodynamic parameters
o and
o indicated the endothermic nature and spontaneity of the processes, respectively.
Collapse
|
30
|
Al’Abri AM, Sharhan O, Halim SNA, Bakar NKA, Sherino B, Kamboh MA, Nodeh HR, Mohamad S. Effect of framework metal ions of analogous magnetic porous coordination polymers on adsorption of cationic and anionic dyes from aqueous solution. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Khakbaz F, Mirzaei M, Mahani M. Enhanced adsorption of crystal violet using Bi 3+ – intercalated Cd-MOF: isotherm, kinetic and thermodynamic study. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2032890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Faeze Khakbaz
- Department of Chemistry, Shahid Bahonar University, Kerman, Iran
| | - Mohammad Mirzaei
- Department of Chemistry, Shahid Bahonar University, Kerman, Iran
| | - Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
32
|
Xing G, Wang C, Liu K, Luo B, Hou P, Wang X, Dong H, Wang J, Li A. A probe-free electrochemical immunosensor for methyl jasmonate based on a Cu-MOF–carboxylated graphene oxide platform. RSC Adv 2022; 12:16688-16695. [PMID: 35754916 PMCID: PMC9169702 DOI: 10.1039/d1ra07683c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
A probe-free electrochemical immunosensor for methyl jasmonate has been developed based on a Cu-MOF-carboxylated graphene oxide platform.
Collapse
Affiliation(s)
- Gengqi Xing
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Cheng Wang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ke Liu
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bin Luo
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Peichen Hou
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaodong Wang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hongtu Dong
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jianshu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Aixue Li
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
33
|
Karami K, Beram SM, Bayat P, Siadatnasab F, Ramezanpour A. A novel nanohybrid based on metal–organic framework MIL101 −Cr/PANI/Ag for the adsorption of cationic methylene blue dye from aqueous solution. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131352] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Removal of emerging contaminants from water by using Fe-MOF composite as a sorbent. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02264-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Amino acid-assisted ferrite/MOF composite formation for visible-light induced photocatalytic cascade C=C aerobic oxidative cleavage functionalization. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Far HS, Hasanzadeh M, Nashtaei MS, Rabbani M. Fast and efficient adsorption of palladium from aqueous solution by magnetic metal-organic framework nanocomposite modified with poly(propylene imine) dendrimer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62474-62486. [PMID: 34195949 DOI: 10.1007/s11356-021-15144-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, a magnetic metal-organic framework (MMOF) was synthesized and post-modified with poly(propyleneimine) dendrimer to fabricate a novel functional porous nanocomposite for adsorption and recovery of palladium (Pd(II)) from aqueous solution. The morphological and structural characteristics of the prepared material were identified by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmet-Teller (BET) isotherm, and vibrating sample magnetometer (VSM). The results confirmed the successful synthesis and post-modification of MMOF. Semispherical shape particles (20-50 nm) with appropriate magnetic properties and a high specific surface area of 120 m2/g were obtained. An experimental design approach was performed to show the effect of adsorption conditions on Pd(II) uptake efficiency of the dendrimer-modified magnetic adsorbent. The study showed that the Pd(II) uptake on dendrimer-modified MMOF was well described by the Langmuir isotherm model with the highest uptake capacity of 291 mg/g under optimal condition (adsorbent content of 12.5 mg, Pd ion concentration of 80 ppm, pH = 4, and contact time of 40 min). The adsorption kinetics of Pd(II) ions was suggested to be a pseudo-first-order model. The results revealed a faster adsorption rate and higher adsorption capacity (about 43%) for dendrimer-modified MMOF. Finally, the reusability of the provided adsorbent was evaluated. This work provides a valuable strategy for designing and developing efficient magnetic adsorbents based on MOFs for the adsorption and recovery of precious metals.
Collapse
Affiliation(s)
- Hossein Shahriyari Far
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran.
| | - Mohammad Shabani Nashtaei
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Mahboubeh Rabbani
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
37
|
Yu M, Dong H, Zheng Y, Liu W. Ternary metal oxide embedded carbon derived from metal organic frameworks for adsorption of methylene blue and acid red 73. CHEMOSPHERE 2021; 280:130567. [PMID: 33945901 DOI: 10.1016/j.chemosphere.2021.130567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Organic dyes can enter water bodies through industrial wastes and may pose a threat to the health of aquatic organisms and human. Metal organic framework derived carbon materials (CMOFs) have shown excellent performance for aqueous dye adsorption. However, few have studied multimetallic CMOFs for dye removal. Herein, a ternary metal oxide embedded carbon derived from amino-modified metal organic framework (CMOF(Fe/Al/Ni 8/7/5)-NH2) has been developed as an efficient adsorbent to remove aqueous methylene blue (MB) and acid red 73 (AR-73). CMOF(Fe/Al/Ni 8/7/5)-NH2 reached adsorption equilibrium for both MB and AR-73 within 30 min at neutral pH condition. It also achieved 18 and 24 times higher adsorption than commercial activated carbon (AC) in 10 min for MB and AR-73, respectively. Compared to other CMOFs-NH2, CMOF(Fe/Al/Ni 8/7/5)-NH2 had the highest adsorption capacity for both cationic MB and anionic AR-73. In addition, CMOF(Fe/Al/Ni 8/7/5)-NH2 had < 0.15% metal leaching in 90 min in the pH range of 4-10, and it also maintained 89% and 95% adsorption capacity for MB and AR-73 in five consecutive adsorption batches, respectively. Electrostatic interaction was identified as the primary interaction between CMOFs-NH2 and the dyes, and the embedded crystalline metal oxides with different points of zero charge (PZCs) were identified to be the key adsorption sites. A uniformly distributed surface charge model was proposed to explain the exceptional adsorption capacity of CMOF(Fe/Al/Ni 8/7/5)-NH2. With fast kinetics, high adsorption capacity, wide applicability and good stability, CMOF(Fe/Al/Ni 8/7/5)-NH2 may be an effective adsorbent for many other ionic organic pollutants.
Collapse
Affiliation(s)
- Menglin Yu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; Linde + Robinson Laboratories, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Heng Dong
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Yingdie Zheng
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Weiping Liu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
38
|
Shaheed N, Javanshir S, Esmkhani M, Dekamin MG, Naimi-Jamal MR. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions. Sci Rep 2021; 11:18553. [PMID: 34535724 PMCID: PMC8448726 DOI: 10.1038/s41598-021-97861-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
MOFs compounds with open metal sites, particularly Cu-BTC, have great potential for adsorption and catalysis applications. However, the powdery morphology limits their applications. One of the almost new ways to overcome this problem is to trap them in a standing and flexible aerogel matrix to form a hierarchical porous composite. In this work, Cu-BTC/CNC (crystalline nanocellulose) and Cu-BTC/NFC (nanofibrillated cellulose) aerogel composites were synthesized using a direct mixing method by the addition of Cu-BTC powder to the liquid precursor solution followed by gelation and freeze-drying. Also, pure nanocellulose aerogels (CNC and NFC aerogels) have been synthesized from cellulose isolated from peanut shells. Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra, and X-ray diffraction (XRD) were utilized to evaluate the structure and morphology of the prepared materials. The adsorption ability of pure CNC aerogel and Cu-BTC/NFC aerogel composite for organic dye (Congo Red) and heavy metal ion (Mn7+) was studied and determined by the UV-Vis spectrophotometry and inductively-coupled plasma optical emission spectrometry (ICP-OES), respectively. It was concluded that Cu-BTC/NFC aerogel composite shows excellent adsorption capacity for Congo Red. The adsorption process of this composite is better described by the pseudo-second-order kinetic model and Langmuir isotherm, with a maximum monolayer adsorption capacity of 39 mg/g for Congo Red. Nevertheless, CNC aerogel shows no adsorption for Congo Red. Both CNC aerogel and Cu-BTC/NFC aerogel composite act as a monolith standing solid reducer, which means they could remove permanganate ions from water by reducing it into manganese dioxide without releasing any secondary product in the solution.
Collapse
Affiliation(s)
- Nuhaa Shaheed
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Maryam Esmkhani
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, 16846, Tehran, Iran
| |
Collapse
|
39
|
Rego RM, Sriram G, Ajeya KV, Jung HY, Kurkuri MD, Kigga M. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125941. [PMID: 34492868 DOI: 10.1016/j.jhazmat.2021.125941] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Herein, we demonstrate the use of cerium (Ce)-UiO-66 metal organic framework (MOF) for the removal of a variety of potentially toxic pollutants. The Ce-UiO-66 MOF, with similar framework topologies to Zr-UiO-66, has not been explored for its adsorptive properties in water remediation. The replacement of Zr metal center with Ce yields a MOF that can be synthesized in shorter durations with lesser energy consumptions and with excellent multipollutant adsorption properties. Further, the Ce-UiO-66 MOF was also studied for its adsorption abilities in the binary component system. Interestingly, the adsorbent showed higher adsorption capacities in the presence of other pollutants. Removal studies for other potentially toxic anionic and cationic dyes showed that the Ce-UiO-66 MOF has a wide range of contaminant removal abilities. Investigations of individual adsorption capacities revealed that the Ce-UiO-66 MOF has a maximum adsorption capacity of 793.7 mg/g for congo red (CR), 110 mg/g for methylene blue (MB), 66.1 mg/g for fluoride (F-), 30 mg/g for Cr6+ and 485.4 mg/g for the pharmaceutical waste diclofenac sodium (DCF). To imply the practical applications of the Ce-UiO-66 MOF we have also demonstrated an adaptable filter that could separate all the potentially toxic pollutants.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Ganesan Sriram
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Kanalli V Ajeya
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India.
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India.
| |
Collapse
|
40
|
Akbarbandari F, Zabihi M, Faghihi M. Synthesis of the magnetic core-shell bi-metallic and tri-metallic metal-organic framework nanocomposites for dye adsorption. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:906-920. [PMID: 33190320 DOI: 10.1002/wer.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Bi-metallic and tri-metallic metal-organic frameworks (MOFs) supported on the magnetic activated carbon (MAC) were synthesized for the reduction of methylene blue (MB) concentration in the aqueous solutions. The adsorbent nanocomposites were characterized by applying the general tests including XRD, FTIR, FESEM, TEM, BET, and VSM. The XRD achievements demonstrated that crystalline structure of MOFs was derived on the MAC by the presented method. The core-shell morphology with nano-scale size of the magnetic carbonaceous MOFs was detected in TEM and FESEM micro-images. The acceptable magnetic strength of the prepared adsorbents was proved by using the VSM analysis. The important operating conditions including pH and temperature were also evaluated, while the other parameters were kept constant. The pseudo-second-order kinetic model was matched with the experimental data to show the kinetic behavior of the multi-component MOFs. The isotherm studies showed that the good agreement between the experimental data with both Langmuir model and the maximum capacities was calculated to be about 66.51 and 71.43 mg/g for the bi-metallic and tri-metallic nanocomposites, respectively. Regeneration experiments indicated that the fabricated adsorbents have an excellent reusing adsorption capacity which can be a proper selection for the industrial applications. PRACTITIONER POINTS: Bi-metallic and tri-metallic MOFs supported on the magnetic activated carbon were synthesized by the facile preparation method. Adsorption of methylene blue by using MOFs were successfully done. Nanocomposites were evaluated by XRD, FTIR, BET, FESEM, TEM, and VSM techniques. Maximum of adsorption capacity was observed for tri-metallic MOF as 71.43 mg/g.
Collapse
Affiliation(s)
| | - Mohammad Zabihi
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
| | - Morteza Faghihi
- Chemistry & Process Engineering Department, Niroo Research Institute, Tehran, Iran
| |
Collapse
|
41
|
Kumar S, Liu S, Mohan B, Zhang M, Tao Z, Wan Z, You H, Sun F, Li M, Ren P. Fluorine-Containing Triazole-Decorated Silver(I)-Based Cationic Metal-Organic Framework for Separating Organic Dyes and Removing Oxoanions from Water. Inorg Chem 2021; 60:7070-7081. [PMID: 33884866 DOI: 10.1021/acs.inorgchem.0c03688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four new triazole-decorated silver(I)-based cationic metal-organic frameworks (MOFs), {[Ag(L1)](BF4)}n (1), {[Ag(L1)](NO3)}n (2), {[Ag(L2)](BF4)}n (3), and {[Ag(L2)](NO3)}n (4), have been synthesized using two newly designed ligands, 3-fluoro-5-(4H-1,2,4-triazol-4-yl)pyridine (L1) and 3-(4H-1,2,4-triazol-4-yl)-5-(trifluoromethyl)pyridine (L2). When the fluorine atom was changed to a trifluoromethyl group at the same position, tremendous enhancement in the MOF dimensionality was achieved [two-dimensional to three-dimensional (3D)]. However, changing the metal salt (used for the synthesis) had no effect. The higher electron-withdrawing tendency of the trifluoromethyl group in L2 aided in the formation of higher-dimensional MOFs with different properties compared with those of the fluoro derivatives. The fluoride group was introduced in the ligand to make highly electron-deficient pores inside the MOFs that can accelerate the anion-exchange process. The concept was proved by density functional theory calculation of the MOFs. Both 3D cationic MOFs were used for dye adsorption, and a remarkable amount of dye was adsorbed in the MOFs. In addition, owing to their cationic nature, the MOFs selectively removed anionic dyes from a mixture of anionic, cationic, and neutral dyes in the aqueous phase. Interestingly, the present MOFs were also highly effective for the removal of oxoanions (MnO4- and Cr2O72-) from water.
Collapse
Affiliation(s)
- Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Songyuan Liu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mingjian Zhang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhiyu Tao
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhijian Wan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mu Li
- Shenzhen Environmental Engineering Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tshinghua University, Shenzhen 518055, China
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
42
|
Castañeda Ramírez AA, Rojas García E, López Medina R, Contreras Larios JL, Suárez Parra R, Maubert Franco AM. Selective Adsorption of Aqueous Diclofenac Sodium, Naproxen Sodium, and Ibuprofen Using a Stable Fe 3O 4-FeBTC Metal-Organic Frameworka. MATERIALS 2021; 14:ma14092293. [PMID: 33925167 PMCID: PMC8124272 DOI: 10.3390/ma14092293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
The FeBTC metal–organic framework (MOF) incorporated with magnetite is proposed as a novel material to solve water contamination with last generation pollutants. The material was synthesized by in situ solvothermal methods, and Fe3O4 nanoparticles were added during FeBTC MOF synthesis and used in drug adsorption. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy characterized the materials, with N2-physisorption at 77 K. Pseudo-second-order kinetic and Freundlich models were used to describe the adsorption process. The thermodynamic study revealed that the adsorption of three drugs was a feasible, spontaneous exothermic process. The incorporation of magnetite nanoparticles in the FeBTC increased the adsorption capacity of pristine FeBTC. The Fe3O4–FeBTC material showed a maximum adsorption capacity for diclofenac sodium (DCF), then by ibuprofen (IB), and to a lesser extent by naproxen sodium (NS). Additionally, hybridization of the FeBTC with magnetite nanoparticles reinforced the most vulnerable part of the MOF, increasing the stability of its thermal and aqueous media. The electrostatic interaction, H-bonding, and interactions in the open-metal sites played vital roles in the drug adsorption. The sites’ competition in the multicomponent mixture’s adsorption showed selective adsorption (DCF) and (NS). This work shows how superficial modification with a low-surface-area MOF can achieve significant adsorption results in water pollutants.
Collapse
Affiliation(s)
- Aldo Arturo Castañeda Ramírez
- Materials Chemistry, Basic Sciences, Metropolitan Autonomous University-Azcapotzalco, Mexico City 02200, Mexico;
- Correspondence: ; Tel.: +52-5571203078
| | - Elizabeth Rojas García
- Process Engineering and Hydraulics, Basic Sciences, Metropolitan Autonomous University-Iztapalapa, Mexico City 09340, Mexico;
| | - Ricardo López Medina
- Energy, Basic Sciences, Metropolitan Autonomous University-Azcapotzalco, Mexico City 02200, Mexico; (R.L.M.); (J.L.C.L.)
| | - José L. Contreras Larios
- Energy, Basic Sciences, Metropolitan Autonomous University-Azcapotzalco, Mexico City 02200, Mexico; (R.L.M.); (J.L.C.L.)
| | - Raúl Suárez Parra
- Institute of Renewable Energies, National Autonomous University of Mexico, Morelos 62580, Mexico;
| | - Ana Marisela Maubert Franco
- Materials Chemistry, Basic Sciences, Metropolitan Autonomous University-Azcapotzalco, Mexico City 02200, Mexico;
| |
Collapse
|
43
|
Wei F, Ren Q, Zhang H, Yang L, Chen H, Liang Z, Chen D. Removal of tetracycline hydrochloride from wastewater by Zr/Fe-MOFs/GO composites. RSC Adv 2021; 11:9977-9984. [PMID: 35423486 PMCID: PMC8695422 DOI: 10.1039/d1ra01027a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
Zirconium-iron metal-organic frameworks (Zr/Fe-MOFs) and Zr/Fe-MOF/graphene oxide (GO) composites were prepared via solvothermal synthesis using ferrous sulfate heptahydrate, zirconium acetate, and 1,3,5-benzenetricarboxylic acid. The MOFs and composites were measured using scanning electron microscopy (SEM), infrared spectrometry (IR), and thermogravimetric analysis (TGA). In this study, we explored the ability of Zr/Fe-MOFs and Zr/Fe-MOF/GO composites to adsorb tetracycline hydrochloride from an aqueous solution. Additionally, we optimized the adsorption performance by varying the ratio of MOFs and MOF composites to tetracycline hydrochloride solution, the concentration of tetracycline hydrochloride solution, and the pH of the solution. The results were investigated and fit to both pseudo-first-order and pseudo-second-order kinetic models. The results of the Freundlich and Langmuir isotherm models indicate that Zr/Fe-MOFs and Zr/Fe-MOF/GO composites have heterogeneous adsorption surfaces and that tetracycline hydrochloride is adsorbed over Zr/Fe-MOFs and Zr/Fe-MOF/GO by multilayer adsorption. Overall, our findings indicate that Zr/Fe-MOFs and Zr/Fe-MOF/GO composites can effectively treat wastewater, providing an inexpensive alternative to other methods.
Collapse
Affiliation(s)
- Fuhua Wei
- College of Chemistry and Chemical Engineering, Anshun University Guizhou Anshun 561000 PR China
| | - Qinhui Ren
- College of Chemistry and Chemical Engineering, Anshun University Guizhou Anshun 561000 PR China
| | - Huan Zhang
- College of Chemistry and Chemical Engineering, Anshun University Guizhou Anshun 561000 PR China
| | - Lili Yang
- College of Chemistry and Chemical Engineering, Anshun University Guizhou Anshun 561000 PR China
| | - Hongliang Chen
- College of Chemistry and Chemical Engineering, Anshun University Guizhou Anshun 561000 PR China
| | - Zhao Liang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University Changsha City 410082 P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University Changsha City 410082 P. R. China
| |
Collapse
|
44
|
Visible Light-Driven Photocatalytic Rhodamine B Degradation Using CdS Nanorods. Processes (Basel) 2021. [DOI: 10.3390/pr9020263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this work, highly crystalline CdS nanorods (NRs) were successfully synthesized by a facile, one-step solvothermal method. The as-prepared CdS NRs powder was characterized by XRD, FESEM, Raman, PL, XPS, BET, and UV-visible techniques to evaluate the structural, morphological, and optical properties. The photocatalytic performance of the as-synthesized CdS NRs was investigated for the photodegradation of RhB dye under visible light irradiations. It has been found that CdS NRs show maximum RhB degradation efficiency of 88.4% in 120 min. The excellent photodegradation ability of the CdS NRs can be attributed to their rod-like structure together with their large surface area and surface state. The kinetic study indicated that the photodegradation process was best described by the pseudo-first-order kinetic model. The possible mechanism for the photodegradation of RhB dye over CdS NRs was proposed in this paper.
Collapse
|
45
|
Tong H, Liu W. Highly Stable Three-Dimensional Silver (I) Chloride Cluster Based Coordination Polymer and Its Dye Removal Properties. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-01993-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
Ahmed I, Mondol MMH, Lee HJ, Jhung SH. Application of Metal‐Organic Frameworks in Adsorptive Removal of Organic Contaminants from Water, Fuel and Air. Chem Asian J 2021; 16:185-196. [DOI: 10.1002/asia.202001365] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Imteaz Ahmed
- Department of Chemistry and Green-Nano Materials Research Center Kyungpook National University Daegu 41566 Republic of Korea
| | - Md. Mahmudul Hassan Mondol
- Department of Chemistry and Green-Nano Materials Research Center Kyungpook National University Daegu 41566 Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center Kyungpook National University Daegu 41566 Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center Kyungpook National University Daegu 41566 Republic of Korea
| |
Collapse
|
47
|
Chen D, Cao Y, Chen N, Feng P. Synthesis and Characterization of Cobalt Metal Organic Frameworks Prepared by Ultrasonic Wave-Assisted Ball Milling for Adsorptive Removal of Congo Red Dye from Aqueous Solutions. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01832-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
48
|
Amayuelas E, Iacomi P, Fidalgo-Marijuan A, Bazán B, Urtiaga MK, Barandika G, Lezama L, Llewellyn PL, Arriortua MI. Multifunctionality of weak ferromagnetic porphyrin-based MOFs: selective adsorption in the liquid and gas phase. CrystEngComm 2021. [DOI: 10.1039/d1ce00046b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferromagnetic [Ni5(H2TCPP)2O(H2O)4]·nS exhibits selective adsorption towards cationic dyes in solution and gas separation calculations predict promising values for gas mixtures.
Collapse
Affiliation(s)
- Eder Amayuelas
- Department of Mineralogy and Petrology
- University of the Basque Country (UPV/EHU)
- Sarriena 48940
- Spain
| | - Paul Iacomi
- MADIREL UMR 7246
- Aix-Marseille University
- CNRS
- 13397 Marseille
- France
| | | | - Begoña Bazán
- Department of Mineralogy and Petrology
- University of the Basque Country (UPV/EHU)
- Sarriena 48940
- Spain
- BCMaterials
| | - Miren Karmele Urtiaga
- Department of Mineralogy and Petrology
- University of the Basque Country (UPV/EHU)
- Sarriena 48940
- Spain
| | - Gotzone Barandika
- BCMaterials
- Basque Center for Materials, Applications and Nanostructures
- Spain
- Department of Inorganic Chemistry
- University of the Basque Country (UPV/EHU)
| | - Luis Lezama
- Department of Inorganic Chemistry
- University of the Basque Country (UPV/EHU)
- Sarriena 48940
- Spain
| | | | - María Isabel Arriortua
- Department of Mineralogy and Petrology
- University of the Basque Country (UPV/EHU)
- Sarriena 48940
- Spain
- BCMaterials
| |
Collapse
|
49
|
Ghorbani-Choghamarani A, Taherinia Z. Fe 3O 4@GlcA@Cu-MOF: A Magnetic Metal-Organic Framework as a Recoverable Catalyst for the Hydration of Nitriles and Reduction of Isothiocyanates, Isocyanates, and Isocyanides. ACS COMBINATORIAL SCIENCE 2020; 22:902-909. [PMID: 33186013 DOI: 10.1021/acscombsci.0c00178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel magnetic metal-organic framework (Fe3O4@GlcA@Cu-MOF) has been prepared and characterized by spectroscopic, microscopic, and magnetic techniques. This magnetically separable catalyst exhibited high catalytic activity for nitrile hydration and the ability to reduce isothiocyanates, isocyanates, and isocyanides with excellent activity and selectivity without any additional reducing agent.
Collapse
Affiliation(s)
| | - Zahra Taherinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
- Department of Chemistry, Ilam University, and P.O. Box 69315516, Ilam, Iran
| |
Collapse
|
50
|
Jang HY, Kang JK, Park JA, Lee SC, Kim SB. Metal-organic framework MIL-100(Fe) for dye removal in aqueous solutions: Prediction by artificial neural network and response surface methodology modeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115583. [PMID: 33254689 DOI: 10.1016/j.envpol.2020.115583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
In this study, a metal organic framework MIL-100(Fe) was synthesized for rhodamine B (RB) removal from aqueous solutions. An experimental design was conducted using a central composite design (CCD) method to obtain the RB adsorption data (n = 30) from batch experiments. In the CCD approach, solution pH, adsorbent dose, and initial RB concentration were included as input variables, whereas RB removal rate was employed as an output variable. Response surface methodology (RSM) and artificial neural network (ANN) modeling were performed using the adsorption data. In RSM modeling, the cubic regression model was developed, which was adequate to describe the RB adsorption according to analysis of variance. Meanwhile, the ANN model with the topology of 3:8:1 (three input variables, eight neurons in one hidden layer, and one output variable) was developed. In order to further compare the performance between the RSM and ANN models, additional adsorption data (n = 8) were produced under experimental conditions, which were randomly selected in the range of the input variables employed in the CCD matrix. The analysis showed that the ANN model (R2 = 0.821) had better predictability than the RSM model (R2 = 0.733) for the RB removal rate. Based on the ANN model, the optimum RB removal rate (>99.9%) was predicted at pH 5.3, adsorbent dose 2.0 g L-1, and initial RB concentration 73 mg L-1. In addition, pH was determined to be the most important input variable affecting the RB removal rate. This study demonstrated that the ANN model could be successfully employed to model and optimize RB adsorption to the MIL-100(Fe).
Collapse
Affiliation(s)
- Ho-Young Jang
- Environmental Functional Materials and Water Treatment Laboratory, Department of Rural Systems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Kyu Kang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Chan Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Song-Bae Kim
- Environmental Functional Materials and Water Treatment Laboratory, Department of Rural Systems Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|