1
|
Movert E, Bolarin JS, Valfridsson C, Velarde J, Skrede S, Nekludov M, Hyldegaard O, Arnell P, Svensson M, Norrby-Teglund A, Cho KH, Elhaik E, Wessels MR, Råberg L, Carlsson F. Interplay between human STING genotype and bacterial NADase activity regulates inter-individual disease variability. Nat Commun 2023; 14:4008. [PMID: 37414832 PMCID: PMC10326033 DOI: 10.1038/s41467-023-39771-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
Variability in disease severity caused by a microbial pathogen is impacted by each infection representing a unique combination of host and pathogen genomes. Here, we show that the outcome of invasive Streptococcus pyogenes infection is regulated by an interplay between human STING genotype and bacterial NADase activity. S. pyogenes-derived c-di-AMP diffuses via streptolysin O pores into macrophages where it activates STING and the ensuing type I IFN response. However, the enzymatic activity of the NADase variants expressed by invasive strains suppresses STING-mediated type I IFN production. Analysis of patients with necrotizing S. pyogenes soft tissue infection indicates that a STING genotype associated with reduced c-di-AMP-binding capacity combined with high bacterial NADase activity promotes a 'perfect storm' manifested in poor outcome, whereas proficient and uninhibited STING-mediated type I IFN production correlates with protection against host-detrimental inflammation. These results reveal an immune-regulating function for bacterial NADase and provide insight regarding the host-pathogen genotype interplay underlying invasive infection and interindividual disease variability.
Collapse
Affiliation(s)
- Elin Movert
- Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
| | | | | | - Jorge Velarde
- Division of Infectious Diseases, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Michael Nekludov
- Department of Anaesthesia, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Ole Hyldegaard
- Department of Anaesthesia, Head and Orthopedic Center, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Per Arnell
- Department of Anaesthesia and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mattias Svensson
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Norrby-Teglund
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kyu Hong Cho
- Department of Biology, Indiana State University, Terre Haute, USA
| | - Eran Elhaik
- Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
| | - Michael R Wessels
- Division of Infectious Diseases, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Lars Råberg
- Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
| | - Fredric Carlsson
- Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| |
Collapse
|
2
|
Chiang-Ni C, Chen YW, Chen KL, Jiang JX, Shi YA, Hsu CY, Chen YYM, Lai CH, Chiu CH. RopB represses the transcription of speB in the absence of SIP in group A Streptococcus. Life Sci Alliance 2023; 6:e202201809. [PMID: 37001914 PMCID: PMC10071013 DOI: 10.26508/lsa.202201809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
RopB is a quorum-sensing regulator that binds to the SpeB-inducing peptide (SIP) under acidic conditions. SIP is known to be degraded by the endopeptidase PepO, whose transcription is repressed by the CovR/CovS two-component regulatory system. Both SIP-bound RopB (RopB-SIP) and SIP-free RopB (apo-RopB) can bind to the speB promoter; however, only RopB-SIP activates speB transcription. In this study, we found that the SpeB expression was higher in the ropB mutant than in the SIP-inactivated (SIP*) mutant. Furthermore, the deletion of ropB in the SIP* mutant derepressed speB expression, suggesting that apo-RopB is a transcriptional repressor of speB Up-regulation of PepO in the covS mutant degraded SIP, resulting in the down-regulation of speB We demonstrate that deleting ropB in the covS mutant derepressed the speB expression, suggesting that the speB repression in this mutant was mediated not only by PepO-dependent SIP degradation but also by apo-RopB. These findings reveal a crosstalk between the CovR/CovS and RopB-SIP systems and redefine the role of RopB in regulating speB expression in group A Streptococcus.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yan-Wen Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Lin Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jian-Xian Jiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Yun Hsu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
3
|
Abstract
Necrotizing fasciitis is a severe infectious disease that results in significant mortality. Streptococcus pyogenes (group A Streptococcus, GAS) is one of the most common bacterial pathogens of monomicrobial necrotizing fasciitis. The early diagnosis of necrotizing fasciitis is crucial; however, the typical cutaneous manifestations are not always presented in patients with GAS necrotizing fasciitis, which would lead to miss- or delayed diagnosis. GAS with spontaneous inactivating mutations in the CovR/CovS two-component regulatory system is significantly associated with destructive diseases such as necrotizing fasciitis and toxic shock syndrome; however, no specific marker has been used to identify these invasive clinical isolates. This study evaluated the sensitivity and specificity of using CovR/CovS-controlled phenotypes to identify CovR/CovS-inactivated isolates. Results showed that the increase of hyaluronic acid capsule production and streptolysin O expression were not consistently presented in CovS-inactivated clinical isolates. The repression of SpeB is the phenotype with 100% sensitivity of identifying in CovS-inactivated isolates among 61 clinical isolates. Nonetheless, this phenotype failed to distinguish RopB-inactivated isolates from CovS-inactivated isolates and cannot be utilized to identify CovR-inactivated mutant and RocA (Regulator of Cov)-inactivated isolates. In this study, we identified and verified that PepO, the endopeptidase which regulates SpeB expression through degrading SpeB-inducing quorum-sensing peptide, was a bacterial marker to identify isolates with defects in the CovR/CovS pathway. These results also inform the potential strategy of developing rapid detection methods to identify invasive GAS variants during infection. IMPORTANCE Necrotizing fasciitis is rapidly progressive and life-threatening; if the initial diagnosis is delayed, deep soft tissue infection can progress to massive tissue destruction and toxic shock syndrome. Group A Streptococcus (GAS) with inactivated mutations in the CovR/CovS two-component regulatory system are related to necrotizing fasciitis and toxic shock syndrome; however, no bacterial marker is available to identify these invasive clinical isolates. Inactivation of CovR/CovS resulted in the increased expression of endopeptidase PepO. Our study showed that the upregulation of PepO mediates a decrease in SpeB-inducing peptide (SIP) in the covR mutant, indicating that CovR/CovS modulates SIP-dependent quorum-sensing activity through PepO. Importantly, the sensitivity and specificity of utilizing PepO to identify clinical isolates with defects in the CovR/CovS pathway, including its upstream RocA regulator, were 100%. Our results suggest that identification of invasive GAS by PepO may be a strategy for preventing severe manifestation or poor prognosis after GAS infection.
Collapse
|
4
|
Wijesundara NM, Lee SF, Rupasinghe HPV. Carvacrol inhibits Streptococcus pyogenes biofilms by suppressing the expression of genes associated with quorum-sensing and reducing cell surface hydrophobicity. Microb Pathog 2022; 169:105684. [PMID: 35863588 DOI: 10.1016/j.micpath.2022.105684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/25/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Streptococcus pyogenes is a leading cause of chronic and acute infections, including streptococcus pharyngitis. Biofilm formation by S. pyogenes can cause tolerance against antibiotics. Although penicillin remains the first choice of antibiotic for S. pyogenes, alternative approaches have gained interest due to treatment failures and hypersensitive individuals. Carvacrol is a monoterpenoid from herbal plants with selective biocidal activity on S. pyogenes. Therefore, the present study reveals the efficacy of carvacrol in inhibiting and eradicating S. pyogenes biofilm. The antibiofilm activities were investigated using colorimetric assays, microscopy, cell surface hydrophobicity, gene expression analysis, and in-silico analysis. Carvacrol also showed a minimum biofilm inhibitory concentration (MBIC) against S. pyogenes of 125 μg/mL. The electron microscopic and confocal microscopic analyses revealed a dose-dependent suppression of biofilm formation and a reduction in the biofilm thickness by carvacrol. Carvacrol also inhibited the biofilm-associated virulence factors such as cell surface hydrophobicity. Quantitative real-time polymerase chain reaction analysis showed the downregulation of speB, srtB, luxS, covS, dltA, ciaH, and hasA genes involved in biofilm formation. The results suggested the therapeutic potential of carvacrol against biofilm-associated streptococcal infections.
Collapse
Affiliation(s)
- Niluni M Wijesundara
- Department of Biology, Faculty of Science, Dalhousie University, Halifax, NS, Canada; Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka; Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Song F Lee
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada; Canadian Center for Vaccinology, Dalhousie University, Nova Scotia Health Authority, and the Izaak Walton Killam Health Centre, Halifax, NS, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
5
|
Oliveira LT, Alves LA, Harth-Chu EN, Nomura R, Nakano K, Mattos-Graner RO. VicRK and CovR polymorphisms in Streptococcus mutans strains associated with cardiovascular infections. J Med Microbiol 2021; 70. [PMID: 34939562 DOI: 10.1099/jmm.0.001457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction. Streptococcus mutans, a common species of the oral microbiome, expresses virulence genes promoting cariogenic dental biofilms, persistence in the bloodstream and cardiovascular infections.Gap statement. Virulence gene expression is variable among S. mutans strains and controlled by the transcription regulatory systems VicRK and CovR.Aim. This study investigates polymorphisms in the vicRK and covR loci in S. mutans strains isolated from the oral cavity or from the bloodstream, which were shown to differ in expression of covR, vicRK and downstream genes.Methodology. The transcriptional activities of covR, vicR and vicK were compared by RT-qPCR between blood and oral strains after exposure to human serum. PCR-amplified promoter and/or coding regions of covR and vicRK of 18 strains (11 oral and 7 blood) were sequenced and compared to the reference strain UA159.Results. Serum exposure significantly reduced covR and vicR/K transcript levels in most strains (P<0.05), but reductions were higher in oral than in blood strains. Single-nucleotide polymorphisms (SNPs) were detected in covR regulatory and coding regions, but SNPs affecting the CovR effector domain were only present in two blood strains. Although vicR was highly conserved, vicK showed several SNPs, and SNPs affecting VicK regions important for autokinase activity were found in three blood strains.Conclusions. This study reveals transcriptional and structural diversity in covR and vicR/K, and identifies polymorphisms of functional relevance in blood strains, indicating that covR and vicRK might be important loci for S. mutans adaptation to host selective pressures associated with virulence diversity.
Collapse
Affiliation(s)
- Letícia T Oliveira
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Lívia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
6
|
Li Y, Dominguez S, Nanduri SA, Rivers J, Mathis S, Li Z, McGee L, Chochua S, Metcalf BJ, Van Beneden CA, Beall B, Miller L. Genomic Characterization of Group A Streptococci Causing Pharyngitis and Invasive Disease in Colorado, USA, June 2016 - April 2017. J Infect Dis 2021; 225:1841-1851. [PMID: 34788828 PMCID: PMC9125432 DOI: 10.1093/infdis/jiab565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The genomic features and transmission link of circulating Group A streptococcus (GAS) strains causing different disease types, such as pharyngitis and invasive disease, are not well understood. METHODS We used whole-genome sequencing (WGS) to characterize GAS isolates recovered from persons with pharyngitis and invasive disease in the Denver metropolitan area from June 2016 to April 2017. RESULTS GAS isolates were cultured from 236 invasive and 417 pharyngitis infections. WGS identified 34 emm types. Compared to pharyngitis isolates, invasive isolates were more likely to carry the erm family genes (23% vs. 7.4%, p<0.001), which confer resistance to erythromycin and clindamycin (including inducible resistance), and covS gene inactivation (7% vs. 0.5%, p<0.001). WGS identified 97 genomic clusters (433 isolates; 2-65 isolates per cluster) that consisted of genomically closely related isolates (median SNP (IQR) = 3 (1-4) within cluster). Thirty genomic clusters (200 isolates; 31% of all isolates) contained both pharyngitis and invasive isolates and were found in 11 emm types. CONCLUSIONS In the Denver metropolitan population, mixed disease types were commonly seen in clusters of closely related isolates, indicative of overlapping transmission networks. Antibiotic-resistance and covS inactivation was disproportionally associated with invasive disease.
Collapse
Affiliation(s)
- Yuan Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samuel Dominguez
- University of Colorado School of Medicine Aurora, CO, USA; Children's Hospital Colorado Aurora, CO, USA
| | - Srinivas A Nanduri
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joy Rivers
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Saundra Mathis
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Zhongya Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lesley McGee
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin J Metcalf
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chris A Van Beneden
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernard Beall
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lisa Miller
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Identification of Group A Streptococcus Genes Directly Regulated by CsrRS and Novel Intermediate Regulators. mBio 2021; 12:e0164221. [PMID: 34253064 PMCID: PMC8406183 DOI: 10.1128/mbio.01642-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptation of group A Streptococcus (GAS) to its human host is mediated by two-component systems that transduce external stimuli to regulate bacterial physiology. Among such systems, CsrRS (also known as CovRS) is the most extensively characterized for its role in regulating ∼10% of the GAS genome, including several virulence genes. Here, we show that extracellular magnesium and the human antimicrobial peptide LL-37 have opposing effects on the phosphorylation of the response regulator CsrR by the receptor kinase CsrS. Genetic inactivation of CsrS phosphatase or kinase activity, respectively, had similar but more pronounced effects on CsrR phosphorylation compared to growth in magnesium or LL-37. These changes in CsrR phosphorylation were correlated with the repression or activation of CsrR-regulated genes as assessed by NanoString analysis. Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) revealed CsrR occupancy at CsrRS-regulated promoters and lower-affinity associations at many other locations on the GAS chromosome. Because ChIP-seq did not detect CsrR occupancy at promoters associated with some CsrR-regulated genes, we investigated whether these genes might be controlled indirectly by intermediate regulators whose expression is modulated by CsrR. Transcriptional profiling of mutant strains deficient in the expression of either of two previously uncharacterized transcription regulators in the CsrR regulon indicated that one or both proteins participated in the regulation of 22 of the 42 CsrR-regulated promoters for which no CsrR association was detected by ChIP-seq. Taken together, these results illuminate CsrRS-mediated regulation of GAS gene expression through modulation of CsrR phosphorylation, CsrR association with regulated promoters, and the control of intermediate transcription regulators. IMPORTANCE Group A Streptococcus (GAS) is an important public health threat as a cause of sore throat, skin infections, life-threatening invasive infections, and the postinfectious complications of acute rheumatic fever, a leading cause of acquired heart disease. This work characterizes CsrRS, a GAS system for the detection of environmental signals that enables adaptation of the bacteria for survival in the human throat by regulating the production of products that allow the bacteria to resist clearance by the human immune system. CsrRS consists of two proteins: CsrS, which is on the bacterial surface to detect specific stimuli, and CsrR, which receives signals from CsrS and, in response, represses or activates the expression of genes coding for proteins that enhance bacterial survival. Some of the genes regulated by CsrR encode proteins that are themselves regulators of gene expression, thereby creating a regulatory cascade.
Collapse
|
8
|
Wilde S, Johnson AF, LaRock CN. Playing With Fire: Proinflammatory Virulence Mechanisms of Group A Streptococcus. Front Cell Infect Microbiol 2021; 11:704099. [PMID: 34295841 PMCID: PMC8290871 DOI: 10.3389/fcimb.2021.704099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Group A Streptococcus is an obligate human pathogen that is a major cause of infectious morbidity and mortality. It has a natural tropism for the oropharynx and skin, where it causes infections with excessive inflammation due to its expression of proinflammatory toxins and other virulence factors. Inflammation directly contributes to the severity of invasive infections, toxic shock syndrome, and the induction of severe post-infection autoimmune disease caused by autoreactive antibodies. This review discusses what is known about how the virulence factors of Group A Streptococcus induce inflammation and how this inflammation can promote disease. Understanding of streptococcal pathogenesis and the role of hyper-immune activation during infection may provide new therapeutic targets to treat the often-fatal outcome of severe disease.
Collapse
Affiliation(s)
- Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Anders F Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Christopher N LaRock
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, and Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
9
|
Chiang-Ni C, Liu YS, Lin CY, Hsu CY, Shi YA, Chen YYM, Lai CH, Chiu CH. Incidence and Effects of Acquisition of the Phage-Encoded ssa Superantigen Gene in Invasive Group A Streptococcus. Front Microbiol 2021; 12:685343. [PMID: 34149675 PMCID: PMC8212969 DOI: 10.3389/fmicb.2021.685343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The acquisition of the phage-encoded superantigen ssa by scarlet fever-associated group A Streptococcus (Streptococcus pyogenes, GAS) is found in North Asia. Nonetheless, the impact of acquiring ssa by GAS in invasive infections is unclear. This study initially analyzed the prevalence of ssa+ GAS among isolates from sterile tissues and blood. Among 220 isolates in northern Taiwan, the prevalence of ssa+ isolates increased from 1.5% in 2008–2010 to 40% in 2017–2019. Spontaneous mutations in covR/covS, which result in the functional loss of capacity to phosphorylate CovR, are frequently recovered from GAS invasive infection cases. Consistent with this, Phostag western blot results indicated that among the invasive infection isolates studied, 10% of the ssa+ isolates lacked detectable phosphorylated CovR. Transcription of ssa is upregulated in the covS mutant. Furthermore, in emm1 and emm12 covS mutants, ssa deletion significantly reduced their capacity to grow in human whole blood. Finally, this study showed that the ssa gene could be transferred from emm12-type isolates to the emm1-type wild-type strain and covS mutants through phage infection and lysogenic conversion. As the prevalence of ssa+ isolates increased significantly, the role of streptococcal superantigen in GAS pathogenesis, particularly in invasive covR/covS mutants, should be further analyzed.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yen-Shan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chieh-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Yun Hsu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
10
|
Boukthir S, Moullec S, Cariou ME, Meygret A, Morcet J, Faili A, Kayal S. A prospective survey of Streptococcus pyogenes infections in French Brittany from 2009 to 2017: Comprehensive dynamic of new emergent emm genotypes. PLoS One 2020; 15:e0244063. [PMID: 33332468 PMCID: PMC7746304 DOI: 10.1371/journal.pone.0244063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pyogenes or group A Streptococcus (GAS) causes diseases ranging from uncomplicated pharyngitis to life-threatening infections. It has complex epidemiology driven by the diversity, the temporal and geographical fluctuations of the circulating strains. Despite the global burden of GAS diseases, there is currently no available vaccination strategy against GAS infections. This study, based on a longitudinal population survey, aimed to understand the dynamic of GAS emm types and to give leads to better recognition of underlying mechanisms for the emergence of successful clones. From 2009 to 2017, we conducted a systematic culture-based diagnosis of GAS infections in a French Brittany population with a prospective recovery of clinical data. The epidemiological analysis was performed using emm typing combined with the structural and functional cluster-typing system for all the recovered strains. Risk factors for the invasiveness, identified by univariate analysis, were computed in a multiple logistic regression analysis, and the only independent risk factor remaining in the model was the age (OR for the entire range [CI95%] = 6.35 [3.63, 11.10]; p<0.0001). Among the 61 different emm types identified, the most prevalent were emm28 (16%), emm89 (15%), emm1 (14%), and emm4 (8%), which accounted for more than 50% of circulating strains. During the study period, five genotypes identified as emm44, 66, 75, 83, 87 emerged successively and belonged to clusters D4, E2, E3, and E6 that were different from those gathering “Prevalent” emm types (clusters A-C3 to 5, E1 and E4). We previously reported significant genetic modifications for emm44, 66, 83 and 75 types resulting possibly from a short adaptive evolution. Herein we additionally observed that the emergence of a new genotype could occur in a susceptible population having specific risk factors or probably lacking a naturally-acquired cluster-specific immune cross-protection. Among emergent emm types, emm75 and emm87 tend to become prevalent with a stable annual incidence and the risk of a clonal expansion have to be considered.
Collapse
Affiliation(s)
- Sarrah Boukthir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
- Inserm, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
| | - Séverine Moullec
- Inserm, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
| | | | - Alexandra Meygret
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
| | - Jeff Morcet
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
- Inserm, CIC 1414, Rennes, France
| | - Ahmad Faili
- Inserm, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Pharmacie, Rennes, France
| | - Samer Kayal
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
- Inserm, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
- * E-mail:
| |
Collapse
|
11
|
Dissecting Streptococcus pyogenes interaction with human. Arch Microbiol 2020; 202:2023-2032. [PMID: 32504132 DOI: 10.1007/s00203-020-01932-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
Streptococcus pyogenes is a species of Gram-positive bacteria. It is also known as Group A Streptococcus (GAS) that causes pathogenesis to humans only. The GAS infection has several manifestations including invasive illness. Current research has linked the molecular modes of GAS virulence with substantial sequencing determinations for the isolation of genomes. These advances help to comprehend the molecular evolution resulting in the pandemic strains. Thus, it is indispensable to reconsider the philosophy that involves GAS pathogenesis. The recent investigations involve studying GAS in the nasopharynx and its capability to cause infection or asymptomatically reside in the host. These advances have been discussed in this article with an emphasis on the natural history of GAS and the evolutionary change in the pandemic strains. In addition, this review describes the unique functions for major pathogenicity determinants to comprehend their physiological effects.
Collapse
|
12
|
Otsuji K, Fukuda K, Maruoka T, Ogawa M, Saito M. Acquisition of genetic mutations in Group A Streptococci at infection site and subsequent systemic dissemination of the mutants with lethal mutations in a streptococcal toxic shock syndrome mouse model. Microb Pathog 2020; 143:104116. [PMID: 32135223 DOI: 10.1016/j.micpath.2020.104116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
Streptococcal toxic shock syndrome (STSS) is caused mainly by Streptococcus pyogenes (Group A Streptococci, GAS), and it has a fatality rate of 25%. Mutations in CsrRS and RopB, which suppress the transcription of many virulence factors, were recently found in clinical isolates from STSS patients, but it is not fully understood when and where GAS acquires the mutations in the host. To resolve this question, we used our mouse model of human STSS to recover GAS strains from injections sites, spleens and blood of moribund mice with STSS-like symptoms, and analyzed the sequence of the covR/covS genes and ropB gene that encode CsrRS and RopB. Fifteen out of twenty mice that were inoculated transdermally into muscles with GAS organisms became moribund with STSS-like symptoms after more than 20 days after inoculation. We found that all the disseminated GAS strains recovered from the blood and spleens of the moribund mice had mutations in either the covR genes or the covS genes. The mutation sites in the GAS strains recovered from the blood and spleen were identical in each mouse, whereas the strains recovered from the muscles included a mix of disseminated strains, other mutant strains, and the parent strain. The mutant strains killed mice significantly earlier than the parent strain. Our data indicated that GAS organisms remained at the injection site, and various mutants appeared there, among which the strain that acquires the mutation in the covR/S gene is expected to overexpress various virulence factors simultaneously and cause systemic infection such as STSS.
Collapse
Affiliation(s)
- Ken Otsuji
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan; Department of Critical Care Medicine, Hospital of the University of Occupational and Environmental Health, Japan.
| | - Kazumasa Fukuda
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Tsukasa Maruoka
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Midori Ogawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Mitsumasa Saito
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan
| |
Collapse
|
13
|
Lynskey NN, Velarde JJ, Finn MB, Dove SL, Wessels MR. RocA Binds CsrS To Modulate CsrRS-Mediated Gene Regulation in Group A Streptococcus. mBio 2019; 10:e01495-19. [PMID: 31311885 PMCID: PMC6635533 DOI: 10.1128/mbio.01495-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
The orphan regulator RocA plays a critical role in the colonization and pathogenesis of the obligate human pathogen group A Streptococcus Despite multiple lines of evidence supporting a role for RocA as an auxiliary regulator of the control of virulence two-component regulatory system CsrRS (or CovRS), the mechanism of action of RocA remains unknown. Using a combination of in vitro and in vivo techniques, we now find that RocA interacts with CsrS in the streptococcal membrane via its N-terminal region, which contains seven transmembrane domains. This interaction is essential for RocA-mediated regulation of CsrRS function. Furthermore, we demonstrate that RocA forms homodimers via its cytoplasmic domain. The serotype-specific RocA truncation in M3 isolates alters this homotypic interaction, resulting in protein aggregation and impairment of RocA-mediated regulation. Taken together, our findings provide insight into the molecular requirements for functional interaction of RocA with CsrS to modulate CsrRS-mediated gene regulation.IMPORTANCE Bacterial two-component regulatory systems, comprising a membrane-bound sensor kinase and cytosolic response regulator, are critical in coordinating the bacterial response to changing environmental conditions. More recently, auxiliary regulators which act to modulate the activity of two-component systems, allowing integration of multiple signals and fine-tuning of bacterial responses, have been identified. RocA is a regulatory protein encoded by all serotypes of the important human pathogen group A Streptococcus Although RocA is known to exert its regulatory activity via the streptococcal two-component regulatory system CsrRS, the mechanism by which it functions was unknown. Based on new experimental evidence, we propose a model whereby RocA interacts with CsrS in the streptococcal cell membrane to enhance CsrS autokinase activity and subsequent phosphotransfer to the response regulator CsrR, which mediates transcriptional repression of target genes.
Collapse
Affiliation(s)
- Nicola N Lynskey
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jorge J Velarde
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Meredith B Finn
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael R Wessels
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Phosphorylation at the D53 but Not the T65 Residue of CovR Determines the Repression of rgg and speB Transcription in emm1- and emm49-Type Group A Streptococci. J Bacteriol 2019; 201:JB.00681-18. [PMID: 30478086 DOI: 10.1128/jb.00681-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023] Open
Abstract
CovR/CovS is a two-component regulatory system in group A Streptococcus and primarily acts as a transcriptional repressor. The D53 residue of CovR (CovRD53) is phosphorylated by the sensor kinase CovS, and the phosphorylated CovRD53 protein binds to the intergenic region of rgg-speB to inhibit speB transcription. Nonetheless, the transcription of rgg and speB is suppressed in covS mutants. The T65 residue of CovR is phosphorylated in a CovS-independent manner, and phosphorylation at the D53 and T65 residues of CovR is mutually exclusive. Therefore, how phosphorylation at the D53 and T65 residues of CovR contributes to the regulation of rgg and speB expression was elucidated. The transcription of rgg and speB was suppressed in the strain that cannot phosphorylate the D53 residue of CovR (CovRD53A mutant) but restored to levels similar to those of the wild-type strain in the CovRT65A mutant. Nonetheless, inactivation of the T65 residue phosphorylation in the CovRD53A mutant cannot derepress the rgg and speB transcription, indicating that phosphorylation at the T65 residue of CovR is not required for repressing rgg and speB transcription. Furthermore, trans complementation of the CovRD53A protein in the strain that expresses the phosphorylated CovRD53 resulted in the repression of rgg and speB transcription. Unlike the direct binding of the phosphorylated CovRD53 protein and its inhibition of speB transcription demonstrated previously, the present study showed that inactivation of phosphorylation at the D53 residue of CovR contributes dominantly in suppressing rgg and speB transcription.IMPORTANCE CovR/CovS is a two-component regulatory system in group A Streptococcus (GAS). The D53 residue of CovR is phosphorylated by CovS, and the phosphorylated CovRD53 binds to the rgg-speB intergenic region and acts as the transcriptional repressor. Nonetheless, the transcription of rgg and Rgg-controlled speB is upregulated in the covR mutant but inhibited in the covS mutant. The present study showed that nonphosphorylated CovRD53 protein inhibits rgg and speB transcription in the presence of the phosphorylated CovRD53 in vivo, indicating that nonphosphorylated CovRD53 has a dominant role in suppressing rgg transcription. These results reveal the roles of nonphosphorylated CovRD53 in regulating rgg transcription, which could contribute significantly to invasive phenotypes of covS mutants.
Collapse
|
15
|
Galloway-Peña J, DebRoy S, Brumlow C, Li X, Tran TT, Horstmann N, Yao H, Chen K, Wang F, Pan BF, Hawke DH, Thompson EJ, Arias CA, Fowler VG, Bhatti MM, Kalia A, Flores AR, Shelburne SA. Hypervirulent group A Streptococcus emergence in an acaspular background is associated with marked remodeling of the bacterial cell surface. PLoS One 2018; 13:e0207897. [PMID: 30517150 PMCID: PMC6281247 DOI: 10.1371/journal.pone.0207897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/06/2018] [Indexed: 12/28/2022] Open
Abstract
Inactivating mutations in the control of virulence two-component regulatory system (covRS) often account for the hypervirulent phenotype in severe, invasive group A streptococcal (GAS) infections. As CovR represses production of the anti-phagocytic hyaluronic acid capsule, high level capsule production is generally considered critical to the hypervirulent phenotype induced by CovRS inactivation. There have recently been large outbreaks of GAS strains lacking capsule, but there are currently no data on the virulence of covRS-mutated, acapsular strains in vivo. We investigated the impact of CovRS inactivation in acapsular serotype M4 strains using a wild-type (M4-SC-1) and a naturally-occurring CovS-inactivated strain (M4-LC-1) that contains an 11bp covS insertion. M4-LC-1 was significantly more virulent in a mouse bacteremia model but caused smaller lesions in a subcutaneous mouse model. Over 10% of the genome showed significantly different transcript levels in M4-LC-1 vs. M4-SC-1 strain. Notably, the Mga regulon and multiple cell surface protein-encoding genes were strongly upregulated-a finding not observed for CovS-inactivated, encapsulated M1 or M3 GAS strains. Consistent with the transcriptomic data, transmission electron microscopy revealed markedly altered cell surface morphology of M4-LC-1 compared to M4-SC-1. Insertional inactivation of covS in M4-SC-1 recapitulated the transcriptome and cell surface morphology. Analysis of the cell surface following CovS-inactivation revealed that the upregulated proteins were part of the Mga regulon. Inactivation of mga in M4-LC-1 reduced transcript levels of multiple cell surface proteins and reversed the cell surface alterations consistent with the effect of CovS inactivation on cell surface composition being mediated by Mga. CovRS-inactivating mutations were detected in 20% of current invasive serotype M4 strains in the United States. Thus, we discovered that hypervirulent M4 GAS strains with covRS mutations can arise in an acapsular background and that such hypervirulence is associated with profound alteration of the cell surface.
Collapse
Affiliation(s)
- Jessica Galloway-Peña
- Department of Infectious Diseases Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Sruti DebRoy
- Department of Infectious Diseases Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Chelcy Brumlow
- Department of Infectious Diseases Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xiqi Li
- Department of Infectious Diseases Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Truc T. Tran
- Center for Antimicrobial Resistance and Microbial Genomics and Division of Infectious Diseases, UTHealth McGovern Medical School, Houston, Texas, United States of America
| | - Nicola Horstmann
- Department of Infectious Diseases Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Fang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Bih-Fang Pan
- The Proteomics and Metabolomics Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David H. Hawke
- The Proteomics and Metabolomics Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Erika J. Thompson
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Cesar A. Arias
- Center for Antimicrobial Resistance and Microbial Genomics and Division of Infectious Diseases, UTHealth McGovern Medical School, Houston, Texas, United States of America
- Center for Infectious Diseases, UTHealth School of Public Health, Houston, Texas, United States of America
- Molecular Genetics and Antimicrobial Resistance Unit-International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Vance G. Fowler
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Micah M. Bhatti
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Awdhesh Kalia
- Graduate Program in Diagnostic Genetics, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Anthony R. Flores
- Center for Antimicrobial Resistance and Microbial Genomics and Division of Infectious Diseases, UTHealth McGovern Medical School, Houston, Texas, United States of America
- Department of Pediatrics, University of Texas Health Science Center McGovern Medical School, Houston, Texas, United States of America
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- The Proteomics and Metabolomics Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
16
|
Chiang-Ni C, Shi YA, Lai CH, Chiu CH. Cytotoxicity and Survival Fitness of Invasive covS Mutant of Group A Streptococcus in Phagocytic Cells. Front Microbiol 2018; 9:2592. [PMID: 30425702 PMCID: PMC6218877 DOI: 10.3389/fmicb.2018.02592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/11/2018] [Indexed: 11/27/2022] Open
Abstract
Group A streptococci (GAS) with spontaneous mutations in the CovR/CovS regulatory system are more invasive and related to severe manifestations. GAS can replicate inside phagocytic cells; therefore, phagocytic cells could serve as the niche to select invasive covS mutants. Nonetheless, the encapsulated covS mutant is resistant to phagocytosis. The fate of intracellular covS mutant in phagocytic cells and whether the intracellular covS mutant contributes to invasive infections are unclear. In this study, capsule-deficient (cap-) strains were utilized to study how intracellular bacteria interacted with phagocytic cells. Results from the competitive infection model showed that the cap-covS mutant had better survival fitness than the cap- wild-type strain in the PMA-activated U937 cells. In addition, the cap-covS mutant caused more cell damages than the cap- wild-type strain and encapsulated covS mutant. Furthermore, treatments with infected cells with clindamycin to inhibit the intracellular bacteria growth was more effective to reduce bacterial toxicity than utilized penicillin to kill the extracellular bacteria. These results not only suggest that the covS mutant could be selected from the intracellular niche of phagocytic cells but also indicating that inactivating or killing intracellular GAS may be critical to prevent invasive infection.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung Children's Hospital, Taoyuan, Taiwan
| |
Collapse
|
17
|
Pato C, Melo-Cristino J, Ramirez M, Friães A. Streptococcus pyogenes Causing Skin and Soft Tissue Infections Are Enriched in the Recently Emerged emm89 Clade 3 and Are Not Associated With Abrogation of CovRS. Front Microbiol 2018; 9:2372. [PMID: 30356787 PMCID: PMC6189468 DOI: 10.3389/fmicb.2018.02372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/18/2018] [Indexed: 11/29/2022] Open
Abstract
Although skin and soft tissue infections (SSTI) are the most common focal infections associated with invasive disease caused by Streptococcus pyogenes (Lancefield Group A streptococci - GAS), there is scarce information on the characteristics of isolates recovered from SSTI in temperate-climate regions. In this study, 320 GAS isolated from SSTI in Portugal were characterized by multiple typing methods and tested for antimicrobial susceptibility and SpeB activity. The covRS and ropB genes of isolates with no detectable SpeB activity were sequenced. The antimicrobial susceptibility profile was similar to that of previously characterized isolates from invasive infections (iGAS), presenting a decreasing trend in macrolide resistance. However, the clonal composition of SSTI between 2005 and 2009 was significantly different from that of contemporary iGAS. Overall, iGAS were associated with emm1 and emm3, while SSTI were associated with emm89, the dominant emm type among SSTI (19%). Within emm89, SSTI were only significantly associated with isolates lacking the hasABC locus, suggesting that the recently emerged emm89 clade 3 may have an increased potential to cause SSTI. Reflecting these associations between emm type and disease presentation, there were also differences in the distribution of emm clusters, sequence types, and superantigen gene profiles between SSTI and iGAS. According to the predicted ability of each emm cluster to interact with host proteins, iGAS were associated with the ability to bind fibrinogen and albumin, whereas SSTI isolates were associated with the ability to bind C4BP, IgA, and IgG. SpeB activity was absent in 79 isolates (25%), in line with the proportion previously observed among iGAS. Null covS and ropB alleles (predicted to eliminate protein function) were detected in 10 (3%) and 12 (4%) isolates, corresponding to an underrepresentation of mutations impairing CovRS function in SSTI relative to iGAS. Overall, these results indicate that the isolates responsible for SSTI are genetically distinct from those recovered from normally sterile sites, supporting a role for mutations impairing CovRS activity specifically in invasive infection and suggesting that this role relies on a differential regulation of other virulence factors besides SpeB.
Collapse
Affiliation(s)
- Catarina Pato
- Author Affiliations: Centro Hospitalar do Barlavento Algarvio; Centro Hospitalar de Entre Douro e Vouga; Centro Hospitalar de Leiria; Centro Hospitalar de Vila Nova de Gaia/Espinho; Centro Hospitalar do Alto Ave; Centro Hospitalar do Porto; Centro Hospitalar da Póvoa do Varzim/Vila do Conde; Hospital Central do Funchal; Centro Hospitalar de Lisboa Central; Centro Hospitalar Lisboa Norte; Centro Hospitalar Lisboa Ocidental; Centro Hospitalar do Baixo Vouga; Hospital de Vila Real; Hospitais da Universidade de Coimbra; Hospital de Cascais; Hospital de São João, Porto; Hospital de Braga; Hospital de Santa Luzia, Elvas; Hospital dos SAMS, Lisboa; Hospital Dr. Fernando da Fonseca, Amadora/Sintra; Hospital do Espírito Santo, Évora; Hospital Garcia de Orta, Almada; Hospital Pedro Hispano, Matosinhos; Unidade Local de Saúde do Baixo Alentejo, Beja.,Faculdade de Medicina, Instituto de Microbiologia, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - José Melo-Cristino
- Author Affiliations: Centro Hospitalar do Barlavento Algarvio; Centro Hospitalar de Entre Douro e Vouga; Centro Hospitalar de Leiria; Centro Hospitalar de Vila Nova de Gaia/Espinho; Centro Hospitalar do Alto Ave; Centro Hospitalar do Porto; Centro Hospitalar da Póvoa do Varzim/Vila do Conde; Hospital Central do Funchal; Centro Hospitalar de Lisboa Central; Centro Hospitalar Lisboa Norte; Centro Hospitalar Lisboa Ocidental; Centro Hospitalar do Baixo Vouga; Hospital de Vila Real; Hospitais da Universidade de Coimbra; Hospital de Cascais; Hospital de São João, Porto; Hospital de Braga; Hospital de Santa Luzia, Elvas; Hospital dos SAMS, Lisboa; Hospital Dr. Fernando da Fonseca, Amadora/Sintra; Hospital do Espírito Santo, Évora; Hospital Garcia de Orta, Almada; Hospital Pedro Hispano, Matosinhos; Unidade Local de Saúde do Baixo Alentejo, Beja.,Faculdade de Medicina, Instituto de Microbiologia, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Mario Ramirez
- Author Affiliations: Centro Hospitalar do Barlavento Algarvio; Centro Hospitalar de Entre Douro e Vouga; Centro Hospitalar de Leiria; Centro Hospitalar de Vila Nova de Gaia/Espinho; Centro Hospitalar do Alto Ave; Centro Hospitalar do Porto; Centro Hospitalar da Póvoa do Varzim/Vila do Conde; Hospital Central do Funchal; Centro Hospitalar de Lisboa Central; Centro Hospitalar Lisboa Norte; Centro Hospitalar Lisboa Ocidental; Centro Hospitalar do Baixo Vouga; Hospital de Vila Real; Hospitais da Universidade de Coimbra; Hospital de Cascais; Hospital de São João, Porto; Hospital de Braga; Hospital de Santa Luzia, Elvas; Hospital dos SAMS, Lisboa; Hospital Dr. Fernando da Fonseca, Amadora/Sintra; Hospital do Espírito Santo, Évora; Hospital Garcia de Orta, Almada; Hospital Pedro Hispano, Matosinhos; Unidade Local de Saúde do Baixo Alentejo, Beja.,Faculdade de Medicina, Instituto de Microbiologia, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Friães
- Author Affiliations: Centro Hospitalar do Barlavento Algarvio; Centro Hospitalar de Entre Douro e Vouga; Centro Hospitalar de Leiria; Centro Hospitalar de Vila Nova de Gaia/Espinho; Centro Hospitalar do Alto Ave; Centro Hospitalar do Porto; Centro Hospitalar da Póvoa do Varzim/Vila do Conde; Hospital Central do Funchal; Centro Hospitalar de Lisboa Central; Centro Hospitalar Lisboa Norte; Centro Hospitalar Lisboa Ocidental; Centro Hospitalar do Baixo Vouga; Hospital de Vila Real; Hospitais da Universidade de Coimbra; Hospital de Cascais; Hospital de São João, Porto; Hospital de Braga; Hospital de Santa Luzia, Elvas; Hospital dos SAMS, Lisboa; Hospital Dr. Fernando da Fonseca, Amadora/Sintra; Hospital do Espírito Santo, Évora; Hospital Garcia de Orta, Almada; Hospital Pedro Hispano, Matosinhos; Unidade Local de Saúde do Baixo Alentejo, Beja.,Faculdade de Medicina, Instituto de Microbiologia, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | | |
Collapse
|
18
|
Buckley SJ, Timms P, Davies MR, McMillan DJ. In silico characterisation of the two-component system regulators of Streptococcus pyogenes. PLoS One 2018; 13:e0199163. [PMID: 29927994 PMCID: PMC6013163 DOI: 10.1371/journal.pone.0199163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/02/2018] [Indexed: 12/14/2022] Open
Abstract
Bacteria respond to environmental changes through the co-ordinated regulation of gene expression, often mediated by two-component regulatory systems (TCS). Group A Streptococcus (GAS), a bacterium which infects multiple human body sites and causes multiple diseases, possesses up to 14 TCS. In this study we examined genetic variation in the coding sequences and non-coding DNA upstream of these TCS as a method for evaluating relationships between different GAS emm-types, and potential associations with GAS disease. Twelve of the 14 TCS were present in 90% of the genomes examined. The length of the intergenic regions (IGRs) upstream of TCS coding regions varied from 39 to 345 nucleotides, with an average nucleotide diversity of 0.0064. Overall, IGR allelic variation was generally conserved with an emm-type. Subsequent phylogenetic analysis of concatenated sequences based on all TCS IGR sequences grouped genomes of the same emm-type together. However grouping with emm-pattern and emm-cluster-types was much weaker, suggesting epidemiological and functional properties associated with the latter are not due to evolutionary relatedness of emm-types. All emm5, emm6 and most of the emm18 genomes, all historically considered rheumatogenic emm-types clustered together, suggesting a shared evolutionary history. However emm1, emm3 and several emm18 genomes did not cluster within this group. These latter emm18 isolates were epidemiologically distinct from other emm18 genomes in study, providing evidence for local variation. emm-types associated with invasive disease or nephritogenicity also did not cluster together. Considering the TCS coding sequences (cds), correlation with emm-type was weaker than for the IGRs, and no strong correlation with disease was observed. Deletion of the malate transporter, maeP, was identified that serves as a putative marker for the emm89.0 subtype, which has been implicated in invasive outbreaks. A recombination-related, subclade-forming DNA motif was identified in the putative receiver domain of the Spy1556 response regulator that correlated with throat-associated emm-pattern-type A-C strains.
Collapse
Affiliation(s)
- Sean J. Buckley
- Inflammation and Healing Biomedical Research Cluster, and School of Health and Sports Sciences, Faculty of Science, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Peter Timms
- Inflammation and Healing Biomedical Research Cluster, and School of Health and Sports Sciences, Faculty of Science, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mark R. Davies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - David J. McMillan
- Inflammation and Healing Biomedical Research Cluster, and School of Health and Sports Sciences, Faculty of Science, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
19
|
Endopeptidase PepO Regulates the SpeB Cysteine Protease and Is Essential for the Virulence of Invasive M1T1 Streptococcus pyogenes. J Bacteriol 2018; 200:JB.00654-17. [PMID: 29378883 DOI: 10.1128/jb.00654-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]) causes a wide range of human infections. The pathogenesis of GAS infections is dependent on the temporal expression of numerous secreted and surface-associated virulence factors that interact with host proteins. Streptococcal pyrogenic exotoxin B (SpeB) is one of the most extensively studied toxins produced by GAS, and the coordinate growth phase-dependent regulation of speB expression is linked to disease severity phenotypes. Here, we identified the endopeptidase PepO as a novel growth phase-dependent regulator of SpeB in the invasive GAS M1 serotype strain 5448. By using transcriptomics followed by quantitative reverse transcriptase PCR and Western blot analyses, we demonstrate through targeted mutagenesis that PepO influences growth phase-dependent induction of speB gene expression. Compared to wild-type and complemented mutant strains, we demonstrate that the 5448ΔpepO mutant strain is more susceptible to killing by human neutrophils and is attenuated in virulence in a murine model of invasive GAS infection. Our results expand the complex regulatory network that is operating in GAS to control SpeB production and suggest that PepO is a virulence requirement during GAS M1T1 strain 5448 infections.IMPORTANCE Despite the continuing susceptibility of S. pyogenes to penicillin, this bacterial pathogen remains a leading infectious cause of global morbidity and mortality. A particular subclone of the M1 serotype (M1T1) has persisted globally for decades as the most frequently isolated serotype from patients with invasive and noninvasive diseases in Western countries. One of the key GAS pathogenicity factors is the potent broad-spectrum cysteine protease SpeB. Although there has been extensive research interest on the regulatory mechanisms that control speB gene expression, its genetic regulation is not fully understood. Here, we identify the endopeptidase PepO as a new regulator of speB gene expression in the globally disseminated M1T1 clone and as being essential for virulence.
Collapse
|
20
|
Akbar N, Siddiqui R, Iqbal M, Sagathevan K, Khan NA. Gut bacteria of cockroaches are a potential source of antibacterial compound(s). Lett Appl Microbiol 2018; 66:416-426. [PMID: 29457249 DOI: 10.1111/lam.12867] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/19/2022]
Abstract
Here, we hypothesized that the microbial gut flora of animals/pests living in polluted environments, produce substances to thwart bacterial infections. The overall aim of this study was to source microbes inhabiting unusual environmental niches for potential antimicrobial activity. Two cockroach species, Gromphadorhina portentosa (Madagascar) and Blaptica dubia (Dubia) were selected. The gut bacteria from these species were isolated and grown in RPMI 1640 and conditioned media were prepared. Conditioned media were tested against a panel of Gram-positive (Methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, Bacillus cereus) and Gram-negative (Escherichia coli K1, Salmonella enterica, Serratia marcescens, Pseudomonas aeruginosa, Klebsiella pneumoniae) bacteria, as well as the protist pathogen, Acanthamoeba castellanii. The results revealed that the gut bacteria of cockroaches produce active molecule(s) with potent antibacterial properties, as well as exhibit antiamoebic effects. However, heat-inactivation at 95°C for 10 min had no effect on conditioned media-mediated antibacterial and antiamoebic properties. These results suggest that bacteria from novel sources i.e. from the cockroach's gut produce molecules with bactericidal as well as amoebicidal properties that can ultimately lead to the development of therapeutic drugs. SIGNIFICANCE AND IMPACT OF THE STUDY The bacteria isolated from unusual dwellings such as the cockroaches' gut are a useful source of antibacterial and antiamoebal molecules. These are remarkable findings that will open several avenues in our search for novel antimicrobials from unique sources. Furthermore studies will lead to the identification of molecules to develop future antibacterials from insects.
Collapse
Affiliation(s)
- N Akbar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - R Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - M Iqbal
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - K Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - N A Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
21
|
Gherardi G, Vitali LA, Creti R. Prevalent emm Types among Invasive GAS in Europe and North America since Year 2000. Front Public Health 2018; 6:59. [PMID: 29662874 PMCID: PMC5890186 DOI: 10.3389/fpubh.2018.00059] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Streptococcus pyogenes or group A streptococcus (GAS) is an important human pathogen responsible for a broad range of infections, from uncomplicated to more severe and invasive diseases with high mortality and morbidity. Epidemiological surveillance has been crucial to detect changes in the geographical and temporal variation of the disease pattern; for this purpose the M protein gene (emm) gene typing is the most widely used genotyping method, with more than 200 emm types recognized. Molecular epidemiological data have been also used for the development of GAS M protein-based vaccines. METHODS The aim of this paper was to provide an updated scenario of the most prevalent GAS emm types responsible for invasive infections in developed countries as Europe and North America (US and Canada), from 1st January 2000 to 31st May 2017. The search, performed in PubMed by the combined use of the terms ("emm") and ("invasive") retrieved 264 articles, of which 38 articles (31 from Europe and 7 from North America) met the inclusion criteria and were selected for this study. Additional five papers cited in the European articles but not retrieved by the search were included. RESULTS emm1 represented the dominant type in both Europe and North America, replaced by other emm types in only few occasions. The seven major emm types identified (emm1, emm28, emm89, emm3, emm12, emm4, and emm6) accounted for approximately 50-70% of the total isolates; less common emm types accounted for the remaining 30-50% of the cases. Most of the common emm types are included in either one or both the 26-valent and 30-valent vaccines, though some well-represented emm types found in Europe are not. CONCLUSION This study provided a picture of the prevalent emm types among invasive GAS (iGAS) in Europe and North America since the year 2000 onward. Continuous surveillance on the emm-type distribution among iGAS infections is strongly encouraged also to determine the potential coverage of the developing multivalent vaccines.
Collapse
Affiliation(s)
- Giovanni Gherardi
- Microbiology Unit, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | | | - Roberta Creti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
22
|
Flores AR, Luna RA, Runge JK, Shelburne SA, Baker CJ. Cluster of Fatal Group A Streptococcal emm87 Infections in a Single Family: Molecular Basis for Invasion and Transmission. J Infect Dis 2017; 215:1648-1652. [PMID: 28383686 DOI: 10.1093/infdis/jix177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/03/2017] [Indexed: 11/15/2022] Open
Abstract
Hypervirulent disease due to group A Streptococcus (GAS) can result from strains with mutations that enhance virulence gene expression but reduce subsequent transmission. We used whole-genome sequencing to investigate intrafamilial spread among 4 siblings of infection due to a hypervirulent GAS strain that resulted in a fatality. All invasive and pharyngeal GAS isolates had an identical mutation in a gene encoding a key regulatory protein that yielded a hyperinvasive phenotype. These data challenge the prevailing theory of reduced transmission induced by mutations that lead to hypervirulent GAS by showing that spread of hypervirulent GAS may lead to clusters of invasive disease.
Collapse
Affiliation(s)
- Anthony R Flores
- Section of Infectious Diseases, Department of Pediatrics.,Department of Molecular Virology and Microbiology, Baylor College of Medicine
| | - Ruth Ann Luna
- Department of Pathology and Immunology.,Texas Children's Microbiome Center, Texas Children's Hospital
| | - Jessica K Runge
- Department of Pathology and Immunology.,Texas Children's Microbiome Center, Texas Children's Hospital
| | - Samuel A Shelburne
- Infectious Diseases.,Genomic Medicine, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston
| | - Carol J Baker
- Section of Infectious Diseases, Department of Pediatrics.,Department of Molecular Virology and Microbiology, Baylor College of Medicine
| |
Collapse
|
23
|
Chiang-Ni C, Tseng HC, Hung CH, Chiu CH. Acidic stress enhances CovR/S-dependent gene repression through activation of the covR/S promoter in emm1-type group A Streptococcus. Int J Med Microbiol 2017. [PMID: 28648357 DOI: 10.1016/j.ijmm.2017.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus) is a clinically important gram-positive bacterium that causes severe diseases with high mortality. Spontaneous mutations in genes encoding the CovR/CovS two-component regulatory system have been shown to derepress expression of virulence factors and are significantly associated with invasiveness of infections. Sensor kinase CovS senses environmental signals and then regulates the levels of phosphorylated CovR. In addition, CovS is responsible for survival of group A Streptococcus under acidic stress. How this system regulates the expression of CovR-controlled genes under acidic stress is not clear. This study shows that the expression of CovR-controlled genes, including hasA, ska, and slo, is repressed under acidic conditions by a CovS-dependent mechanism. Inactivation of CovS kinase activity or CovR protein phosphorylation derepresses the transcription of these genes under acidic conditions, suggesting that the phosphorylation of CovR is required for the repression of the CovR-controlled genes. Furthermore, the promoter activity of the covR/covS operon (pcov) was upregulated after 15min of incubation under acidic conditions. Replacement of pcov with a constitutively activated promoter abrogated the acidic-stress-dependent repression of the genes, indicating that the pH-dependent pcov activity is directly involved in the repression of CovR-controlled genes. In summary, the present study shows that inactivation of CovS not only derepresses CovR-controlled genes but also abrogates the acidic-stress-dependent repression of the genes; these phenomena may significantly increase bacterial virulence during infection.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Tao-yuan, Taiwan.
| | - Huei-Chuan Tseng
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-yuan, Taiwan
| | - Chia-Hui Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Tao-yuan, Taiwan; Department of Pediatrics, Chang Gung Children's Hospital, Tao-yuan, Taiwan
| |
Collapse
|
24
|
Kuo CF, Tsao N, Hsieh IC, Lin YS, Wu JJ, Hung YT. Immunization with a streptococcal multiple-epitope recombinant protein protects mice against invasive group A streptococcal infection. PLoS One 2017; 12:e0174464. [PMID: 28355251 PMCID: PMC5371370 DOI: 10.1371/journal.pone.0174464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/09/2017] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) causes clinical diseases, including pharyngitis, scarlet fever, impetigo, necrotizing fasciitis and streptococcal toxic shock syndrome. A number of group A streptococcus vaccine candidates have been developed, but only one 26-valent recombinant M protein vaccine has entered clinical trials. Differing from the design of a 26-valent recombinant M protein vaccine, we provide here a vaccination using the polyvalence epitope recombinant FSBM protein (rFSBM), which contains four different epitopes, including the fibronectin-binding repeats domain of streptococcal fibronectin binding protein Sfb1, the C-terminal immunogenic segment of streptolysin S, the C3-binding motif of streptococcal pyrogenic exotoxin B, and the C-terminal conserved segment of M protein. Vaccination with the rFSBM protein successfully prevented mortality and skin lesions caused by several emm strains of GAS infection. Anti-FSBM antibodies collected from the rFSBM-immunized mice were able to opsonize at least six emm strains and can neutralize the hemolytic activity of streptolysin S. Furthermore, the internalization of GAS into nonphagocytic cells is also reduced by anti-FSBM serum. These findings suggest that rFSBM can be applied as a vaccine candidate to prevent different emm strains of GAS infection.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Nina Tsao
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - I-Chen Hsieh
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Hung
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
25
|
Wilkening RV, Federle MJ. Evolutionary Constraints Shaping Streptococcus pyogenes-Host Interactions. Trends Microbiol 2017; 25:562-572. [PMID: 28216292 DOI: 10.1016/j.tim.2017.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/15/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Research on the Gram-positive human-restricted pathogen Streptococcus pyogenes (Group A Streptococcus, GAS) has long focused on invasive illness, the most severe manifestations of GAS infection. Recent advances in descriptions of molecular mechanisms of GAS virulence, coupled with massive sequencing efforts to isolate genomes, have allowed the field to better understand the molecular and evolutionary changes leading to pandemic strains. These findings suggest that it is necessary to rethink the dogma involving GAS pathogenesis, and that the most productive avenues for research going forward may be investigations into GAS in its 'normal' habitat, the nasopharynx, and its ability to either live with its host in an asymptomatic lifestyle or as an agent of superficial infections. This review will consider these advances, focusing on the natural history of GAS, the evolution of pandemic strains, and novel roles for several key virulence factors that may allow the field to better understand their physiological role.
Collapse
Affiliation(s)
- Reid V Wilkening
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60607, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
26
|
Sarkar P, Sumby P. Regulatory gene mutation: a driving force behind group a Streptococcus strain- and serotype-specific variation. Mol Microbiol 2016; 103:576-589. [PMID: 27868255 DOI: 10.1111/mmi.13584] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 01/13/2023]
Abstract
Data from multiple bacterial pathogens are consistent with regulator-encoding genes having higher mutation frequencies than the genome average. Such mutations drive both strain- and type- (e.g., serotype, haplotype) specific phenotypic heterogeneity, and may challenge public health due to the potential of variants to circumvent established treatment and/or preventative regimes. Here, using the human bacterial pathogen the group A Streptococcus (GAS; S. pyogenes) as a model organism, we review the types and regulatory-, phenotypic-, and disease-specific consequences of naturally occurring regulatory gene mutations. Strain-specific regulator mutations that will be discussed include examples that transform isolates into hyper-invasive forms by enhancing expression of immunomodulatory virulence factors, and examples that promote asymptomatic carriage of the organism. The discussion of serotype-specific regulator mutations focuses on serotype M3 GAS isolates, and how the identified rewiring of regulatory networks in this serotype may be contributing to a decades old epidemiological association of M3 isolates with particularly severe invasive infections. We conclude that mutation plays an outsized role in GAS pathogenesis and has clinical relevance. Given the phenotypic variability associated with regulatory gene mutations, the rapid examination of these genes in infecting isolates may inform with respect to potential patient complications and treatment options.
Collapse
Affiliation(s)
- Poulomee Sarkar
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Paul Sumby
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
27
|
Chiang-Ni C, Chu TP, Wu JJ, Chiu CH. Repression of Rgg But Not Upregulation of LacD.1 in emm1-type covS Mutant Mediates the SpeB Repression in Group A Streptococcus. Front Microbiol 2016; 7:1935. [PMID: 27965655 PMCID: PMC5126071 DOI: 10.3389/fmicb.2016.01935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/17/2016] [Indexed: 01/02/2023] Open
Abstract
CovR/CovS is an important two-component regulatory system in human pathogen group A Streptococcus (GAS). Epidemiological studies have shown that inactivation of the sensor kinase CovS is correlated with invasive clinical manifestations. The phosphorylation level of response regulator CovR decreases dramatically in the absence of CovS, resulting in the derepression of virulence factor expression and an increase in bacterial invasiveness. Streptococcal pyrogenic exotoxin B (SpeB) is a cysteine protease and is negatively regulated by CovR; however, the expression of SpeB is almost completely repressed in the covS mutant. The present study found that in the emm1-type A20 strain, non-phosphorylated CovR acts as a transcriptional repressor for SpeB-positive regulator Rgg. In addition, the expression of Rgg-negative regulator LacD.1 is upregulated in the covS mutant. These results suggest that inactivation of Rgg in the covS mutant would directly mediate speB repression. The current study showed that overexpression of rgg but not inactivation of lacD.1 in the covS mutant partially restores speB expression, indicating that only rgg repression, but not lacD.1 upregulation, contributes to the speB repression in the covS mutant.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung UniversityTao-yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial HospitalTao-yuan, Taiwan
| | - Teng-Ping Chu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University Tao-yuan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming UniversityTaipei, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial HospitalTao-yuan, Taiwan; Department of Pediatrics, Chang Gung Children's HospitalTao-yuan, Taiwan
| |
Collapse
|
28
|
Genome Sequence of the Uncommon Streptococcus pyogenes M/emm66 Strain STAB13021, Isolated from Clonal Clustered Cases in French Brittany. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00689-16. [PMID: 27445380 PMCID: PMC4956453 DOI: 10.1128/genomea.00689-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we announce the complete annotated genome sequence of the invasive Streptococcus pyogenes strain M/emm66, isolated in 2013 from a subcutaneous abscess in new clustered cases in French Brittany.
Collapse
|
29
|
Streptococcal pyrogenic exotoxin B inhibits apoptotic cell clearance by macrophages through protein S cleavage. Sci Rep 2016; 6:26026. [PMID: 27181595 PMCID: PMC4867609 DOI: 10.1038/srep26026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/25/2016] [Indexed: 11/08/2022] Open
Abstract
Clearance of apoptotic cells by macrophages plays an important role in maintaining tissue homeostasis. Previous study indicated that streptococcal pyrogenic exotoxin B (SPE B) reduces phagocytic activity in group A streptococcus (GAS) infection. Here, we demonstrate that SPE B causes an inhibitory effect on protein S-mediated phagocytosis. In the presence of SPE B, serum- and purified protein S-mediated phagocytosis of apoptotic cells were significantly inhibited. The binding abilities of protein S to apoptotic cells were decreased by treatment with SPE B. Bacterial culture supernatants from GAS NZ131 strain also caused a reduction of protein S binding to apoptotic cells, but speB mutant strain did not. SPE B directly cleaved protein S in vitro and in vivo, whereas a lower level of cleavage occurred in mice infected with a speB isogenic mutant strain. SPE B-mediated initial cleavage of protein S caused a disruption of phagocytosis, and also resulted in a loss of binding ability of protein S-associated C4b-binding protein to apoptotic cells. Taken together, these results suggest a novel pathogenic role of SPE B that initiates protein S degradation followed by the inhibition of apoptotic cell clearance by macrophages.
Collapse
|
30
|
Watanabe S, Takemoto N, Ogura K, Miyoshi-Akiyama T. Severe invasive streptococcal infection by Streptococcus pyogenes
and Streptococcus dysgalactiae
subsp. equisimilis. Microbiol Immunol 2016; 60:1-9. [DOI: 10.1111/1348-0421.12334] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/15/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Shinya Watanabe
- Division of Bacteriology; Department of Infection and Immunity; School of Medicine; Jichi Medical University; 3311-1 Yakushiji Shimotsuke-shi Tochigi 329-0498
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory; Research Institute; National Center for Global Health and Medicine; 1-21-1 Toyama Shinjuku Tokyo 162-8655, Japan
| | - Kohei Ogura
- Pathogenic Microbe Laboratory; Research Institute; National Center for Global Health and Medicine; 1-21-1 Toyama Shinjuku Tokyo 162-8655, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory; Research Institute; National Center for Global Health and Medicine; 1-21-1 Toyama Shinjuku Tokyo 162-8655, Japan
| |
Collapse
|