1
|
Liu P, Luo N, Liu D, Ying F, Zhu D, Wen J, Zhao G, An B. Integrating GWAS and transcriptomics to identify candidate genes conferring relative growth rate trait in white-feathered broiler. Poult Sci 2024; 103:104338. [PMID: 39426221 PMCID: PMC11536000 DOI: 10.1016/j.psj.2024.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 10/21/2024] Open
Abstract
Broilers are a globally significant resource for food production, and their relative growth rate (RGR) has attracted increasing attention for improving broiler monitoring, feed management and feed conversion. The main objectives of this study were to identify key candidate genes affecting the RGR in white-feathered broiler by integrating genomic and transcriptomic datasets. This study reports a meta-analysis of genome-wide association studies (GWAS) using 3 purebred lines (n = 3,727) and 5,841,467 input SNPs to understand the genetic control of the RGR. A total of 101 associated SNPs located on 6 chromosomes were identified, 16 of which were common in the GWAS and meta cohorts. Fine mapping of a significant peak with 7 linked SNP (r2 > 0.94) located within the coding region of RAP2C revealed that chr4:3474286 (C > G) among these SNPs was a highly putative causal variant (PIP = 19%) and explained 2.26% of the RGR variation. Further analyses indicated that the surface expression level of the RAP2C gene in the blood, macrophage, lung tissue, and cecum tissue of commercial broiler breed (Ross) was higher than in the corresponding tissues of other egg-laying hens and local breeds. In addition, there was a significant difference in the expression of the RAP2C gene between the high (H, n = 5) and low (L, n = 4) RGR groups. A total of 301 differentially expressed genes (DEGs) related to the RGR in white-feathered broiler were identified by transcriptome differential analysis between the H and L populations, among which NFKBIA, CSF1R and TLR2A were important hub genes. Furthermore, the candidate genes identified based on GWASs, meta-analysis and DEGs analysis were significantly enriched for gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in the growth cone, integrated-mediated signaling pathway, and MAPK signaling pathway. Overall, the RAP2C, NFKBIA, CSF1R and TLR2A genes are considered the most important candidate genes influencing RGR trait in white-feathered broiler. These findings provide valuable insights into the complex system that regulates broiler growth.
Collapse
Affiliation(s)
- Peihao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Na Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dawei Liu
- MiLe Xinguang Agricultural and Animal Industrials Corporation, MiLe, 652300, China
| | - Fan Ying
- MiLe Xinguang Agricultural and Animal Industrials Corporation, MiLe, 652300, China
| | - Dan Zhu
- MiLe Xinguang Agricultural and Animal Industrials Corporation, MiLe, 652300, China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bingxing An
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, 8000, Denmark.
| |
Collapse
|
2
|
Qiu F, Yu G, Li M, Li Z, Zhang Q, Mu X, Cheng Y, Zhai P, Liu Q. Identification and Verification of a Glycolysis-Related lncRNA Prognostic Signature for Hepatocellular Carcinoma. Horm Metab Res 2024; 56:827-834. [PMID: 38772393 DOI: 10.1055/a-2314-0988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate. The search for a new biomarker could help the prognosis of HCC patients. We identified the glycolytic gene set associated with HCC and the glycolytic lncRNA based on TCGA and MsigDB databases. According to these lncRNAs, K-means clustering, and regression analysis were performed on the patients. Two groups of HCC patients with different lncRNA expression levels were obtained based on K-means clustering results. The results of difference analysis and enrichment analysis showed that DEmRNA in the two HCC populations with significant survival differences was mainly enriched in transmembrane transporter complex, RNA polymerase II specificity, cAMP signaling pathway, and calcium signaling pathway. In addition, a prognostic model of HCC with 4 DElncRNAs was constructed based on regression analysis. ROC curve analysis showed that the model had good predictive performance. Drug predictionresults showed that the efficacy of JQ1, niraparib, and teniposide was higher in the low-risk group than in the high-risk group. In conclusion, this study preliminarily identified glycolytic-related prognostic features of lncRNAs in HCC and constructed a risk assessment model. The results of this study are expected to guide the prognosis assessment of clinical HCC patients.
Collapse
Affiliation(s)
- Fakai Qiu
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Guozheng Yu
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Mei Li
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Zhubin Li
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Qinyang Zhang
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Xudong Mu
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Yuan Cheng
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Pengtao Zhai
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Qunyi Liu
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| |
Collapse
|
3
|
Wright CA, Gordon ER, Cooper SJ. Genomic analysis reveals HDAC1 regulates clinically relevant transcriptional programs in Pancreatic cancer. BMC Cancer 2023; 23:1137. [PMID: 37996815 PMCID: PMC10666341 DOI: 10.1186/s12885-023-11645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Novel strategies are needed to combat multidrug resistance in pancreatic ductal adenocarcinoma (PDAC). We applied genomic approaches to understand mechanisms of resistance in order to better inform treatment and precision medicine. Altered function of chromatin remodeling complexes contribute to chemoresistance. Our study generates and analyzes genomic and biochemical data from PDAC cells overexpressing HDAC1, a histone deacetylase involved in several chromatin remodeling complexes. We characterized the impact of overexpression on drug response, gene expression, HDAC1 binding, and chromatin structure using RNA-sequencing and ChIP-sequencing for HDAC1 and H3K27 acetylation. Integrative genomic analysis shows that HDAC1 overexpression promotes activation of key resistance pathways including epithelial to mesenchymal transition, cell cycle, and apoptosis through global chromatin remodeling. Target genes are similarly altered in patient tissues and show correlation with patient survival. We also demonstrate that direct targets of HDAC1 that also show altered chromatin are enriched near genes associated with altered GTPase activity. HDAC1 target genes identified using in vitro methods and observed in patient tissues were used to develop a clinically relevant nine-transcript signature associated with patient prognosis. Integration of multiple genomic and biochemical data types enables understanding of multidrug resistance and tumorigenesis in PDAC, a disease in desperate need of novel treatment strategies.
Collapse
Affiliation(s)
- Carter A Wright
- The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Emily R Gordon
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA.
| |
Collapse
|
4
|
Hall A, Mattison D, Singh N, Chatzistamou I, Zhang J, Nagarkatti M, Nagarkatti P. Effect of TCDD exposure in adult female and male mice on the expression of miRNA in the ovaries and testes and associated reproductive functions. FRONTIERS IN TOXICOLOGY 2023; 5:1268293. [PMID: 37854252 PMCID: PMC10579805 DOI: 10.3389/ftox.2023.1268293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant found widely across the world. While animal and human studies have shown that exposure to TCDD may cause significant alterations in the reproductive tract, the effect of TCDD on the expression of miRNA in the reproductive organs has not been previously tested. In the current study, we exposed adult female or male mice to TCDD or vehicle and bred them to study the impact on reproduction. The data showed that while TCDD treatment of females caused no significant change in litter size, it did alter the survival of the pups. Also, TCDD exposure of either the male or female mice led to an increase in the gestational period. While TCDD did not alter the gross morphology of the ovaries and testes, it induced significant alterations in the miRNA expression. The ovaries showed the differential expression of 426 miRNAs, of which 315 miRNAs were upregulated and 111 miRNA that were downregulated after TCDD exposure when compared to the vehicle controls. In the testes, TCDD caused the differential expression of 433 miRNAs, with 247 miRNAs upregulated and 186 miRNAs downregulated. Pathway analysis showed that several of these dysregulated miRNAs targeted reproductive functions. The current study suggests that the reproductive toxicity of TCDD may result from alterations in the miRNA expression in the reproductive organs. Because miRNAs also represent one of the epigenetic pathways of gene expression, our studies suggest that the transgenerational toxicity of TCDD may also result from dysregulation in the miRNAs.
Collapse
Affiliation(s)
- Alina Hall
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Donald Mattison
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Narendra Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Jiajia Zhang
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
5
|
Li J, Ramzan F, Zhong G. Investigating novel biomarkers in uterine corpus endometrial carcinoma: in silico analysis and clinical specimens validation via RT-qPCR and immunohistochemistry. Am J Cancer Res 2023; 13:4376-4400. [PMID: 37818076 PMCID: PMC10560950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/17/2023] [Indexed: 10/12/2023] Open
Abstract
The rising incidence and mortality rate of Uterine Corpus Endometrial Carcinoma (UCEC) pose significant health concerns. CC and CXC chemokines have been linked to tumorigenesis and cancer progression. Recognizing the growing significance of CC and CXC chemokines' diagnostic and prognostic significance in diverse cancer types, our objective was to comprehensively analyze the diagnostic and prognostic values of hub genes from the CC and CXC chemokines in UCEC, utilizing both in silico and clinical samples and cell lines-based approaches. In silico analyses include STRING, Cytoscape, Cytohubba, The Cancer Genome Atlas (TCGA) datasets analysis via the UALCAN, GEPIA, OncoDB, and MuTarget, SurvivalGenie, MEXPRESS, cBioPoratal, TIMER, ENCORI, and DrugBank. Meanwhile, clinical samples and cell lines based analyses include Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), targeted bisulfite sequencing (bisulfite-seq) analysis, and immunohistochemistry (IHC). Through present study, we identified CCL25 (CC motif chemokine ligand 25), CXCL10 (C-X-C motif chemokine ligand 10), CXCL12 (C-X-C motif chemokine ligand 12), and CXCL16 (C-X-C motif chemokine ligand 16) as crucial hub genes among the CC and CXC chemokines. Analyzing the expression data from TCGA, we observed a significant up-regulation of CCL25, CXCL10, and CXCL16 in UCEC samples compared to controls. In contrast, we noted a significant down-regulation of CXCL12 expression in UCEC samples. On clinical UCEC samples and cell lines analysis, the significant higher expression of CCL25, CXCL10, and CXCL16 and significant lower expression of CXCL12 were also denoted in UCEC samples than the controls via RT-qPCR and IHC analyses. Moreover, in silico analysis also confirmed the abnormal promoter methylation levels of the hub genes in TCGA UCEC samples, which was later validated by the clinical samples using targeted based bisulfite-seq analysis. In addition, various additional aspects of the CCL25, CXCL10, CXCL12, and CXCL16 have also been uncovered in UCEC during the present study. Our findings offer novel insights that contribute to the clinical utility of CCL25, CXCL10, CXCL12, and CXCL16 chemokines as potential diagnostic and prognostic biomarkers in UCEC.
Collapse
Affiliation(s)
- Jie Li
- Health Management Center, The Second Affiliated Hospital of Hainan Medical UniversityHaikou 570311, Hainan, China
| | - Faiqah Ramzan
- Gomal Center of Bio-Chemistry and Biotechnology (GCBB), Gomal UniversityDera Ismail Khan 29050, Pakistan
| | - Guiping Zhong
- Health Management Center, The Second Affiliated Hospital of Hainan Medical UniversityHaikou 570311, Hainan, China
| |
Collapse
|
6
|
Angot L, Schneider P, Vannier JP, Abdoul-Azize S. Beyond Corticoresistance, A Paradoxical Corticosensitivity Induced by Corticosteroid Therapy in Pediatric Acute Lymphoblastic Leukemias. Cancers (Basel) 2023; 15:2812. [PMID: 37345151 DOI: 10.3390/cancers15102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Known as a key effector in relapse of acute lymphoblastic leukemia (ALL), resistance to drug-induced apoptosis, is tightly considered one of the main prognostic factors for the disease. ALL cells are constantly developing cellular strategies to survive and resist therapeutic drugs. Glucocorticoids (GCs) are one of the most important agents used in the treatment of ALL due to their ability to induce cell death. The mechanisms of GC resistance of ALL cells are largely unknown and intense research is currently focused on this topic. Such resistance can involve different cellular and molecular mechanisms, including the modulation of signaling pathways involved in the regulation of proliferation, apoptosis, autophagy, metabolism, epigenetic modifications and tumor suppressors. Recently, several studies point to the paradoxical role of GCs in many survival processes that may lead to therapy-induced resistance in ALL cells, which we called "paradoxical corticosensitivity". In this review, we aim to summarize all findings on cell survival pathways paradoxically activated by GCs with an emphasis on previous and current knowledge on gene expression and signaling pathways.
Collapse
Affiliation(s)
- Laure Angot
- Normandie University, UNIROUEN, IRIB, Inserm, U1234, 76183 Rouen, France
| | - Pascale Schneider
- Normandie University, UNIROUEN, IRIB, Inserm, U1234, 76183 Rouen, France
- Department of Pediatric Immuno-Hemato-Oncology, Rouen University Hospital, 76038 Rouen, France
| | | | | |
Collapse
|
7
|
Tatavosian R, Donovan MG, Galbraith MD, Duc HN, Szwarc MM, Joshi MU, Frieman A, Bilousova G, Cao Y, Smith KP, Song K, Rachubinski AL, Andrysik Z, Espinosa JM. Cell differentiation modifies the p53 transcriptional program through a combination of gene silencing and constitutive transactivation. Cell Death Differ 2023; 30:952-965. [PMID: 36681780 PMCID: PMC10070495 DOI: 10.1038/s41418-023-01113-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
The p53 transcription factor is a master regulator of cellular responses to stress that is commonly inactivated in diverse cancer types. Despite decades of research, the mechanisms by which p53 impedes tumorigenesis across vastly different cellular contexts requires further investigation. The bulk of research has been completed using in vitro studies of cancer cell lines or in vivo studies in mouse models, but much less is known about p53 action in diverse non-transformed human tissues. Here, we investigated how different cellular states modify the p53 transcriptional program in human cells through a combination of computational analyses of publicly available large-scale datasets and in vitro studies using an isogenic system consisting of induced pluripotent stem cells (iPSCs) and two derived lineages. Analysis of publicly available mRNA expression and genetic dependency data demonstrated wide variation in terms of expression and function of a core p53 transcriptional program across various tissues and lineages. To monitor the impact of cell differentiation on the p53 transcriptome within an isogenic cell culture system, we activated p53 by pharmacological inhibition of its negative regulator MDM2. Using cell phenotyping assays and genome wide transcriptome analyses, we demonstrated that cell differentiation confines and modifies the p53 transcriptional network in a lineage-specific fashion. Although hundreds of p53 target genes are transactivated in iPSCs, only a small fraction is transactivated in each of the differentiated lineages. Mechanistic studies using small molecule inhibitors and genetic knockdowns revealed the presence of two major regulatory mechanisms contributing to this massive heterogeneity across cellular states: gene silencing by epigenetic regulatory complexes and constitutive transactivation by lineage-specific transcription factors. Altogether, these results illuminate the impact of cell differentiation on the p53 program, thus advancing our understanding of how this tumor suppressor functions in different contexts.
Collapse
Affiliation(s)
- Roubina Tatavosian
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Micah G Donovan
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Huy N Duc
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria M Szwarc
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Molishree U Joshi
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Amy Frieman
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ganna Bilousova
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yingqiong Cao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Joaquin M Espinosa
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
8
|
Lee SHT, Kim JY, Kim P, Dong Z, Su CY, Ahn EH. Changes of Mutations and Copy-Number and Enhanced Cell Migration during Breast Tumorigenesis. Adv Biol (Weinh) 2023; 7:e2200072. [PMID: 36449747 PMCID: PMC10836759 DOI: 10.1002/adbi.202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/14/2022] [Indexed: 12/02/2022]
Abstract
Although cancer stem cells (CSCs) play a major role in tumorigenesis and metastasis, the role of genetic alterations in invasiveness of CSCs is still unclear. Tumor microenvironment signals, such as extracellular matrix (ECM) composition, significantly influence cell behaviors. Unfortunately, these signals are often lost in in vitro cell culture. This study determines putative CSC populations, examines genetic changes during tumorigenesis of human breast epithelial stem cells, and investigates single-cell migration properties on ECM-mimetic platforms. Whole exome sequencing data indicate that tumorigenic cells have a higher somatic mutation burden than non-tumorigenic cells, and that mutations exclusive to tumorigenic cells exhibit higher predictive deleterious scores. Tumorigenic cells exhibit distinct somatic copy number variations (CNVs) including gain of duplications in chromosomes 5 and 8. ECM-mimetic topography selectively enhances migration speed of tumorigenic cells, but not of non-tumorigenic cells, and results in a wide distribution of tumorigenic single-cell migration speeds, suggesting heterogeneity in cellular sensing of contact guidance cues. This study identifies mutations and CNVs acquired during breast tumorigenesis, which can be associated with enhanced migration of breast tumorigenic cells, and demonstrates that a nanotopographically-defined platform can be applied to recapitulate an ECM structure for investigating cellular migration in the simulated tumor microenvironment.
Collapse
Affiliation(s)
- Seung Hyuk T. Lee
- Department of Pathology, University of Washington, Seattle,
WA 98195, USA
| | - Joon Yup Kim
- Department of Pathology, University of Washington, Seattle,
WA 98195, USA
| | - Peter Kim
- Department of Bioengineering, University of Washington,
Seattle, WA 98195, USA
| | - Zhipeng Dong
- Department of Biomedical Engineering, Johns Hopkins
University, Baltimore, MD 21205, USA
| | - Chia-Yi Su
- Department of Biomedical Engineering, Johns Hopkins
University, Baltimore, MD 21205, USA
| | - Eun Hyun Ahn
- Department of Biomedical Engineering, Johns Hopkins
University, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Comparative Transcriptomics and Proteomics of Cancer Cell Lines Cultivated by Physiological and Commercial Media. Biomolecules 2022; 12:biom12111575. [DOI: 10.3390/biom12111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Aiming to reduce the gap between in vitro and in vivo environment, a complex culture medium, Plasmax, was introduced recently, which includes nutrients and metabolites with concentrations normally found in human plasma. Herein, to study the influence of this medium on cellular behaviors, we utilized Plasmax to cultivate two cancer cell lines, including one breast cancer cell line, MDA-MB-231BR, and one brain cancer cell line, CRL-1620. Cancer cells were harvested and prepared for transcriptomics and proteomics analyses to assess the discrepancies caused by the different nutritional environments of Plasmax and two commercial media: DMEM, and EMEM. Total RNAs of cells were extracted using mammalian total RNA extract kits and analyzed by next-generation RNA sequencing; proteomics analyses were performed using LC-MS/MS. Gene oncology and pathway analysis were employed to study the affected functions. The cellular invasion and cell death were inhibited in MDA-MB-231BR cell line when cultured in Plasmax compared to DMEM and EMEM, whereas the invasion, migration and protein synthesis of CRL-1620 cell line were activated in Plasmax in relative to both commercial media. The expression changes of some proteins were more significant compared to their corresponding transcripts, indicating that Plasmax has more influence upon regulatory processes of proteins after translation. This work provides complementary information to the original study of Plasmax, aiming to facilitate the selection of appropriate media for in vitro cancer cell studies.
Collapse
|
10
|
Olascoaga-Caso EM, Tamariz-Domínguez E, Rodríguez-Alba JC, Juárez-Aguilar E. Exogenous growth hormone promotes an epithelial-mesenchymal hybrid phenotype in cancerous HeLa cells but not in non-cancerous HEK293 cells. Mol Cell Biochem 2022; 478:1117-1128. [PMID: 36222986 DOI: 10.1007/s11010-022-04583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
Abstract
In cancer, the Epithelial to Mesenchymal Transition (EMT) is the process in which epithelial cells acquire mesenchymal features that allow metastasis, and chemotherapy resistance. Growth hormone (GH) has been associated with melanoma, breast, and endometrial cancer progression through an autocrine regulation of EMT. Since exogenous and autocrine expression of GH is known to have different molecular effects, we investigated whether exogenous GH is capable of regulating the EMT of cancer cells. Furthermore, we investigated whether exogenous GH could promote EMT in non-cancerous cells. To study the effect of GH (100 ng/ml) on cancer and non-cancer cells, we used HeLa and HEK293 cell lines, respectively. We evaluated the loss of cell-cell contacts, by cell scattering assay and migration by wound-healing assay. Additionally, we evaluated the morphological changes by phalloidin-staining. Finally, we evaluated the molecular markers E-cadherin and vimentin by flow cytometry. GH enhances cell scattering and the migratory rate and promotes morphological changes such as cell area increase and actin cytoskeleton filaments formation on HeLa cell line. Moreover, we found that GH favors the expression of the mesenchymal protein vimentin, followed by an increase in E-cadherin's epithelial protein expression, characteristics of an epithelial-mesenchymal hybrid phenotype that is associated with metastasis. On HEK293cells, GH promotes morphological changes, including cell area increment and filopodia formation, but not affects scattering, migration, nor EMT markers expression. Our results suggest that exogenous GH might participate in cervical cancer progression favoring a hybrid EMT phenotype but not on non-cancerous HEK293 cells.
Collapse
Affiliation(s)
- E M Olascoaga-Caso
- PhD Health Sciences Program. Universidad Veracruzana, Xalapa, Veracruz, Mexico.,Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico
| | - E Tamariz-Domínguez
- Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico
| | - J C Rodríguez-Alba
- Flow Cytometry Unity, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Médicos y odontólogos s/n, Unidad del Bosque, 91010, Xalapa, Veracruz, Mexico
| | - E Juárez-Aguilar
- Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico.
| |
Collapse
|
11
|
van Dyk L, Verhoog NJD, Louw A. Combinatorial treatments of tamoxifen and SM6Met, an extract from Cyclopia subternata Vogel, are superior to either treatment alone in MCF-7 cells. Front Pharmacol 2022; 13:1017690. [PMID: 36210845 PMCID: PMC9535530 DOI: 10.3389/fphar.2022.1017690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Synergistic drug combinations are not only popular in antibiotic, anti-microbial, immune disease (i.e., AIDS) and viral infection studies, but has also gained traction in the field of cancer research as a multi-targeted approach. It has the potential to lower the doses needed of standard of care (SOC) therapeutic agents, whilst maintaining an effective therapeutic level. Lower dosages could ameliorate the fundamental problems such as drug resistance and metastasis associated with current SOC therapies. In the current study, we show that the combination of SM6Met with (2)-4-hydroxytamoxifen (4-OH-Tam, the active metabolite of tamoxifen) produces a strong synergistic effect in terms of inhibiting MCF7 ER-positive (ER+) breast cancer cell proliferation and that a 20 times lower dose of 4-OH-Tam in combination with SM6Met is required to produce the same inhibitory effect on cell proliferation as 4-OH-Tam on its own. Cell cycle analyses of the best combination ratios of SM6Met and 4-OH-Tam also suggests that the combination results in increased accumulation of cells in the S-phase and in the apoptotic phase. Moreover, the best combination ratio (20:1) of SM6Met with 4-OH-Tam displayed greater anti-metastatic potential in terms of inhibiting ER+ breast cancer cell migration, invasion, and colony formation than the SOC therapy alone, suggesting that SM6Met together with 4-OH-Tam could be a viable drug combination for not only delaying resistance and ameliorating the negative side-effects associated with current SOC therapies, like tamoxifen, but could also provide a novel, more affordable therapeutic alternative for treating or preventing ER+ breast cancer metastasis.
Collapse
|
12
|
Combined Curcumin and Luteolin Synergistically Inhibit Colon Cancer Associated with Notch1 and TGF-β Signaling Pathways in Cultured Cells and Xenograft Mice. Cancers (Basel) 2022; 14:cancers14123001. [PMID: 35740666 PMCID: PMC9221484 DOI: 10.3390/cancers14123001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to select a combination of curcumin and luteolin, two phytochemicals from food, at lower concentrations with a higher inhibitory effect on colon cancer growth and investigate possible molecular mechanisms of this anti-colon cancer effect. By pairwise combination screening, we identified that the combination of curcumin (CUR) at 15 μM and luteolin (LUT) at 30 μM (C15L30) synergistically suppressed the proliferation of human colon cancer CL-188 cells, but the individual chemicals had a little inhibitory effect at the selected concentrations. This result was also confirmed in other colon cancer DLD-1cells, suggesting that this synergistic inhibitory effect of C15L30 applies to different colon cancer cells. The combination C15L30 synergistically suppressed the wound closure (wound healing assay) in CL-188 cells. We also found that the combination of CUR and LUT (at 20 mg/kg/day and 10 mg/kg/day, respectively, IP injection, 5 days for 2 weeks) synergistically suppressed tumor growth in CL-188 cell-derived xenograft mice. Western blot results showed that protein levels of Notch1 and TGF-β were synergistically reduced by the combination, both in CL-188 cells and xenograft tumors. Tumor pathological analysis revealed that combined CUR and LUT synergistically increased necrosis, but the individual treatment with CUR and LUT had no significant effect on tumor necrosis. Therefore, combined curcumin and luteolin synergically inhibit colon cancer development by suppressing cell proliferation, necrosis, and migration associated with Notch1 and TGF-β pathways. This study provides evidence that colon cancer may be prevented/treated by consuming foods having high levels of luteolin and curcumin in humans.
Collapse
|
13
|
Duncan ED, Han KJ, Trout MA, Prekeris R. Ubiquitylation by Rab40b/Cul5 regulates Rap2 localization and activity during cell migration. J Cell Biol 2022; 221:213068. [PMID: 35293963 PMCID: PMC8931537 DOI: 10.1083/jcb.202107114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
Cell migration is a complex process that involves coordinated changes in membrane transport and actin cytoskeleton dynamics. Ras-like small monomeric GTPases, such as Rap2, play a key role in regulating actin cytoskeleton dynamics and cell adhesions. However, how Rap2 function, localization, and activation are regulated during cell migration is not fully understood. We previously identified the small GTPase Rab40b as a regulator of breast cancer cell migration. Rab40b contains a suppressor of cytokine signaling (SOCS) box, which facilitates binding to Cullin5, a known E3 ubiquitin ligase component responsible for protein ubiquitylation. In this study, we show that the Rab40b/Cullin5 complex ubiquitylates Rap2. Importantly, we demonstrate that ubiquitylation regulates Rap2 activation as well as recycling of Rap2 from the endolysosomal compartment to the lamellipodia of migrating breast cancer cells. Based on these data, we propose that Rab40b/Cullin5 ubiquitylates and regulates Rap2-dependent actin dynamics at the leading edge, a process that is required for breast cancer cell migration and invasion.
Collapse
Affiliation(s)
- Emily D Duncan
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Margaret A Trout
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
14
|
Jin K, Liu C, Cheng H, Fei Q, Huang Q, Xiao Z, Yu X, Wu W. TGF-β1-induced RAP2 regulates invasion in pancreatic cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:361-369. [PMID: 35538031 PMCID: PMC9828032 DOI: 10.3724/abbs.2022015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer is highly lethal due to its aggressive invasive properties and capacity for metastatic dissemination. Additional therapeutic targets and effective treatment options for patients with tumours of high invasive capacity are required. Ras-related protein-2a (RAP2) is a member of the GTP-binding proteins. RAP2 has been reported to be widely upregulated in many types of cancers via regulating cytoskeleton reorganization, cell proliferation, migration, and adhesion, as well as inflammation. As a member of the RAS oncogene family, which has been demonstrated to drive pancreatic cancer oncogenesis and many other malignancies, the physiological roles of RAP2 in pancreatic cancer have seldom been discussed. In the present study, we explored the correlation between RAP2 expression and the prediction of overall survival of pancreatic cancer patients. Mechanistic studies were carried out to shed light on the role of RAP2 in pancreatic cancer invasion and how RAP2 is regulated in the invasive process. Our results demonstrated that patients with higher RAP2 expression showed unfavourable prognoses. studies demonstrated that silencing of inhibited the invasion of pancreatic cancer cells. Moreover, our results demonstrated that transforming growth factor-β1 (TGF-β1), an inducer of the metastatic potential of pancreatic cancer cells, regulates the expression of RAP2 via the transcription factor c-Myc. In conclusion, the present study uncovered RAP2 as a novel predictive marker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Kaizhou Jin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Chen Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - He Cheng
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Qinglin Fei
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Qiuyi Huang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Zhiwen Xiao
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Weiding Wu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| |
Collapse
|
15
|
Li J, Song Y, Zhang C, Wang R, Hua L, Guo Y, Gan D, Zhu L, Li S, Ma P, Yang C, Li H, Yang J, Shi J, Liu X, Su H. TMEM43 promotes pancreatic cancer progression by stabilizing PRPF3 and regulating RAP2B/ERK axis. Cell Mol Biol Lett 2022; 27:24. [PMID: 35260078 PMCID: PMC8903684 DOI: 10.1186/s11658-022-00321-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Transmembrane protein 43 (TMEM43), a member of the transmembrane protein subfamily, plays a critical role in the initiation and development of cancers. However, little is known concerning the biological function and molecular mechanisms of TMEM43 in pancreatic cancer. METHODS In this study, TMEM43 expression levels were analyzed in pancreatic cancer samples compared with control samples. The relationship of TMEM43 expression and disease-free survival (DFS) and overall survival (OS) were assessed in pancreatic cancer patients. In vitro and in vivo assays were performed to explore the function and role of TMEM43 in pancreatic cancer. Coimmunoprecipitation (co-IP) followed by protein mass spectrometry was applied to analyze the molecular mechanisms of TMEM43 in pancreatic cancer. RESULTS We demonstrated that TMEM43 expression level is elevated in pancreatic cancer samples compared with control group, and is correlated with poor DFS and OS in pancreatic cancer patients. Knockdown of TMEM43 inhibited pancreatic cancer progression in vitro, decreased the percentage of S phase, and inhibited the tumorigenicity of pancreatic cancer in vivo. Moreover, we demonstrated that TMEM43 promoted pancreatic cancer progression by stabilizing PRPF3 and regulating the RAP2B/ERK axis. CONCLUSIONS The present study suggests that TMEM43 contributes to pancreatic cancer progression through the PRPF3/RAP2B/ERK axis, and might be a novel therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Junqiang Li
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Yang Song
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Chao Zhang
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Ronglin Wang
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Lei Hua
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Yongdong Guo
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Dongxue Gan
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Liaoliao Zhu
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Shanshan Li
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Peixiang Ma
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Cheng Yang
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Hong Li
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Jing Yang
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Jingjie Shi
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| | - Xiaonan Liu
- grid.233520.50000 0004 1761 4404Ambulatory Surgery Center, Xijing Hospital, Air Force Medical University, Xi’an, 710032 Shaanxi China
| | - Haichuan Su
- grid.233520.50000 0004 1761 4404Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, 710038 Shaanxi China
| |
Collapse
|
16
|
Alhadrami HA, Alkhatabi H, Abduljabbar FH, Abdelmohsen UR, Sayed AM. Anticancer Potential of Green Synthesized Silver Nanoparticles of the Soft Coral Cladiella pachyclados Supported by Network Pharmacology and In Silico Analyses. Pharmaceutics 2021; 13:1846. [PMID: 34834261 PMCID: PMC8621232 DOI: 10.3390/pharmaceutics13111846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Cladiella-derived natural products have shown promising anticancer properties against many human cancer cell lines. In the present investigation, we found that an ethyl acetate extract of Cladiella pachyclados (CE) collected from the Red Sea could inhibit the human breast cancer (BC) cells (MCF and MDA-MB-231) in vitro (IC50 24.32 ± 1.1 and 9.55 ± 0.19 µg/mL, respectively). The subsequent incorporation of the Cladiella extract into the green synthesis of silver nanoparticles (AgNPs) resulted in significantly more activity against both cancer cell lines (IC50 5.62 ± 0.89 and 1.72 ± 0.36, respectively); the efficacy was comparable to that of doxorubicin with much-enhanced selectivity. To explore the mode of action of this extract, various in silico and network-pharmacology-based analyses were performed in the light of the LC-HRESIMS-identified compounds in the CE extract. Firstly, using two independent machine-learning-based prediction software platforms, most of the identified compounds in CE were predicted to inhibit both MCF7 and MDA-MB-231. Moreover, they were predicted to have low toxicity towards normal cell lines. Secondly, approximately 242 BC-related molecular targets were collected from various databases and used to construct a protein-protein interaction (PPI) network, which revealed the most important molecular targets and signaling pathways in the pathogenesis of BC. All the identified compounds in the extract were then subjected to inverse docking against all proteins hosted in the Protein Data bank (PDB) to discover the BC-related proteins that these compounds can target. Approximately, 10.74% of the collected BC-related proteins were potential targets for 70% of the compounds identified in CE. Further validation of the docking results using molecular dynamic simulations (MDS) and binding free energy calculations revealed that only 2.47% of the collected BC-related proteins could be targeted by 30% of the CE-derived compounds. According to docking and MDS experiments, protein-pathway and compound-protein interaction networks were constructed to determine the signaling pathways that the CE compounds could influence. This paper highlights the potential of marine natural products as effective anticancer agents and reports the discovery of novel anti-breast cancer AgNPs.
Collapse
Affiliation(s)
- Hani A. Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (H.A.)
- Molecular Diagnostic Lab., King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Special Infectious Agent Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (H.A.)
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad H. Abduljabbar
- Department of Orthopedic Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| |
Collapse
|
17
|
Rio-Vilariño A, del Puerto-Nevado L, García-Foncillas J, Cebrián A. Ras Family of Small GTPases in CRC: New Perspectives for Overcoming Drug Resistance. Cancers (Basel) 2021; 13:3757. [PMID: 34359657 PMCID: PMC8345156 DOI: 10.3390/cancers13153757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer remains among the cancers with the highest incidence, prevalence, and mortality worldwide. Although the development of targeted therapies against the EGFR and VEGFR membrane receptors has considerably improved survival in these patients, the appearance of resistance means that their success is still limited. Overactivation of several members of the Ras-GTPase family is one of the main actors in both tumour progression and the lack of response to cytotoxic and targeted therapies. This fact has led many resources to be devoted over the last decades to the development of targeted therapies against these proteins. However, they have not been as successful as expected in their move to the clinic so far. In this review, we will analyse the role of these Ras-GTPases in the emergence and development of colorectal cancer and their relationship with resistance to targeted therapies, as well as the status and new advances in the design of targeted therapies against these proteins and their possible clinical implications.
Collapse
Affiliation(s)
| | | | - Jesús García-Foncillas
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| | - Arancha Cebrián
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| |
Collapse
|
18
|
Kumari S, Arora M, Singh J, Kadian LK, Yadav R, Chauhan SS, Chopra A. Molecular Associations and Clinical Significance of RAPs in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:677979. [PMID: 34235179 PMCID: PMC8255377 DOI: 10.3389/fmolb.2021.677979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive gastrointestinal malignancy with a high rate of mortality. Multiple studies have individually recognized members of RAP gene family as critical regulators of tumor progression in several cancers, including hepatocellular carcinoma. These studies suffer numerous limitations including a small sample size and lack of analysis of various clinicopathological and molecular features. In the current study, we utilized authoritative multi-omics databases to determine the association of RAP gene family expression and detailed molecular and clinicopathological features in hepatocellular carcinoma (HCC). All five RAP genes were observed to harbor dysregulated expression in HCC compared to normal liver tissues. RAP2A exhibited strongest ability to differentiate tumors from the normal tissues. RAP2A expression was associated with progressive tumor grade, TP53 and CTNNB1 mutation status. Additionally, RAP2A expression was associated with the alteration of its copy numbers and DNA methylation. RAP2A also emerged as an independent marker for patient prognosis. Further, pathway analysis revealed that RAP2A expression is correlated with tumor-infiltrating immune cell composition and oncogenic molecular pathways, such as cell cycle and cellular metabolism.
Collapse
Affiliation(s)
- Sarita Kumari
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jay Singh
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Lokesh K Kadian
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Su X, Yu Z, Zhang Y, Chen J, Wei L, Sun L. Construction and Analysis of the Dysregulated ceRNA Network and Identification of Risk Long Noncoding RNAs in Breast Cancer. Front Genet 2021; 12:664393. [PMID: 34149805 PMCID: PMC8212960 DOI: 10.3389/fgene.2021.664393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Breast cancer (BRCA) is the second leading cause of cancer-related mortality in women worldwide. However, the molecular mechanism involved in the development of BRCA is not fully understood. In this study, based on the miRNA-mediated long non-coding RNA (lncRNA)-protein coding gene (PCG) relationship and lncRNA-PCG co-expression information, we constructed and analyzed a specific dysregulated lncRNA-PCG co-expression network in BRCA. Then, we performed the random walk with restart (RWR) method to prioritize BRCA-related lncRNAs through comparing their RWR score and significance. As a result, we identified 30 risk lncRNAs for BRCA, which can distinguish normal and tumor samples. Moreover, through gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we found that these risk lncRNAs mainly synergistically exerted functions related to cell cycle and DNA separation and replication. At last, we developed a four-lncRNA prognostic signature (including AP000851.1, LINC01977, MAFG-DT, SIAH2-AS1) and assessed the survival accuracy of the signature by performing time-dependent receiver operating characteristic (ROC) analysis. The areas under the ROC curve for 1, 3, 5, and 10 years of survival prediction were 0.68, 0.61, 0.62, and 0.63, respectively. The multivariable Cox regression results verified that the four-lncRNA signature could be used as an independent prognostic biomarker in BRCA. In summary, these results have important reference value for the study of diagnosis, treatment, and prognosis evaluation of BRCA.
Collapse
Affiliation(s)
- Xiaojie Su
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| | - Zhaoyan Yu
- Department of Otorhinolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuexin Zhang
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Jiaxin Chen
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Ling Wei
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Liang Sun
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
20
|
Lee D, Hong JH. Ca 2+ Signaling as the Untact Mode during Signaling in Metastatic Breast Cancer. Cancers (Basel) 2021; 13:1473. [PMID: 33806911 PMCID: PMC8004807 DOI: 10.3390/cancers13061473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 01/06/2023] Open
Abstract
Metastatic features of breast cancer in the brain are considered a common pathology in female patients with late-stage breast cancer. Ca2+ signaling and the overexpression pattern of Ca2+ channels have been regarded as oncogenic markers of breast cancer. In other words, breast tumor development can be mediated by inhibiting Ca2+ channels. Although the therapeutic potential of inhibiting Ca2+ channels against breast cancer has been demonstrated, the relationship between breast cancer metastasis and Ca2+ channels is not yet understood. Thus, we focused on the metastatic features of breast cancer and summarized the basic mechanisms of Ca2+-related proteins and channels during the stages of metastatic breast cancer by evaluating Ca2+ signaling. In particular, we highlighted the metastasis of breast tumors to the brain. Thus, modulating Ca2+ channels with Ca2+ channel inhibitors and combined applications will advance treatment strategies for breast cancer metastasis to the brain.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Korea;
| |
Collapse
|
21
|
Shi G, Zhang Z. Rap2B promotes the proliferation and migration of human glioma cells via activation of the ERK pathway. Oncol Lett 2021; 21:314. [PMID: 33692846 PMCID: PMC7933773 DOI: 10.3892/ol.2021.12575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Glioma is one of the most common primary brain tumors and has a poor prognosis. Rap2B, a member of the Ras family of oncogenes, is highly expressed and promotes the progression of several tumors, including glioma. However, the mechanism underlying the role of Rap2B in glioma is not fully understood. In the present study, after transfection, Rap2B expression was detected by reverse transcription PCR and western blot analysis. Cell proliferation and cell migration assays were performed to determine the effects of Rap2B on the malignant biological behaviors of glioma cells. The changes of ERK pathway-associated proteins were examined by western blot analysis. Enzyme-linked immunosorbent assay (ELISA) and western blot analysis were utilized to detect the protein levels of matrix metalloproteinase (MMP)2 and MMP9. Then, The Cancer Genome Atlas database was used to determine the association between Rap2B expression and clinical parameters in patients with glioblastoma multiforme and low-grade glioma (LGG). Results revealed that Rap2B was highly expressed in human glioma compared with that in adjacent normal tissues and normal human astrocytes, and that silenced Rap2B led to a reduction of cell proliferation and migration ability in glioma cells. Conversely, overexpressed Rap2B in both U87 and U251 cells significantly enhanced these malignant activities. In addition, ELISA assay and western blotting showed that Rap2B increased MMP2 and MMP9 expression. The western blot assay revealed that Rap2B induced the phosphorylation of ERK in glioma cells. Furthermore, silencing the ERK pathway by SCH772984 led to the inhibition of Rap2B-mediated proliferation, migration and the reduction of MMP2 and MMP9 expression. Kaplan-Meier analysis revealed that increased Rap2B expression was associated with poorer survival of patients with LGG. These results demonstrated that Rap2B may participate in the processes of glioma cell proliferation and migration through enhancing MMP2 and MMP9 expression via the ERK pathway. Thus, Rap2B could potentially be used as a promising therapeutic target and prognostic biomarker in glioma.
Collapse
Affiliation(s)
- Guohong Shi
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhen Zhang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
22
|
Yin L, He Z, Yi B, Xue L, Sun J. Simvastatin Suppresses Human Breast Cancer Cell Invasion by Decreasing the Expression of Pituitary Tumor-Transforming Gene 1. Front Pharmacol 2020; 11:574068. [PMID: 33250768 PMCID: PMC7672329 DOI: 10.3389/fphar.2020.574068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Statins, or 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, have been widely used to lower cholesterol and prevent cardiovascular diseases. Recent preclinical and clinical studies have shown that statins exert beneficial effects in the management of breast cancer, while the underlying mechanisms remain to be elucidated. Herein, we sought to investigate the effect of statins on the expression of pituitary tumor-transforming gene 1 (PTTG1), a critical gene involved in human breast cancer invasion and metastasis. Our results showed that PTTG1 is highly expressed in malignant Hs578T and MDA-MB-231 breast cancer cell lines as compared with normal or less malignant breast cancer cells. Furthermore, we found that the expression of PTTG1 was markedly suppressed by lipophilic statins, such as simvastatin, fluvastatin, mevastatin, and lovastatin, but not by hydrophilic pravastatin. In a dose and time dependent manner, simvastatin suppressed PTTG1 expression by decreasing PTTG1 mRNA stability in MDA-MB-231 cells. Both siRNA-mediated knockdown of PTTG1 expression and simvastatin treatment markedly inhibited MDA-MB-231 cell invasion, MMP-2 and MMP-9 activity, and the expression of PTTG1 downstream target genes, while ectopic expression of PTTG1 promoted cancer cell invasion, and partly reversed simvastatin-mediated inhibition of cell invasion. Mechanistically, we found that inhibition of PTTG1 expression by simvastatin was reversed by geranylgeranyl pyrophosphate, but not by farnesyl pyrophosphate, suggesting the involvement of geranylgeranyl synthesis in regulating PTTG1 expression. Our results identified statins as novel inhibitors of PTTG1 expression in breast cancer cells and provide mechanistic insights into how simvastatin prevent breast cancer metastasis as observed in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Litian Yin
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States.,Key Laboratory for Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhongmei He
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States.,Key Laboratory for Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Bing Yi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Linyuan Xue
- Key Laboratory for Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
23
|
Ke D, Guo Q, Fan TY, Xiao X. Analysis of the Role and Regulation Mechanism of hsa-miR-147b in Lung Squamous Cell Carcinoma Based on The Cancer Genome Atlas Database. Cancer Biother Radiopharm 2020; 36:280-291. [PMID: 33112657 DOI: 10.1089/cbr.2020.4187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: This study aimed to explore the role and regulatory mechanism of hsa-miR-147b in lung squamous cell carcinoma (LUSC) through The Cancer Genome Atlas (TCGA) database. Methods: The expression and clinical value of miR-147b in LUSC were analyzed in the TCGA database. The target genes of miR-147b were screened via miRWalk 2.0 and verified in TCGA database. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to analyzed the differential target genes of miR-147b. Kaplan-Meier survival analysis and Cox regression were used to screen the prognosis-related target genes. Results: The expression of miR-147b in LUSC tissues increased, and was associated with poor prognosis, gender, and stage of LUSC patients. The area under the curve (AUC) of miR-147b was 0.8478 by the receiver-operating characteristic curve. There were 428 differentially expressed genes of miR-147b that played a critical role in drug transport, DNA binding, calcium signaling pathway, and Ras signaling pathway through GO and KEGG. PTGIS, SUSD4, ARC, HTR2C, SHISA9, and PLA2G4D were independent risk factors for poor prognosis in LUSC patients. LUSC patients in the high-risk group had a higher risk of death. The time-dependent AUC was 0.673. Conclusions: MiR-147b might be a potential molecular marker for poor prognosis in patients with LUSC.
Collapse
Affiliation(s)
- Di Ke
- Department of General Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qiang Guo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Teng-Yang Fan
- Department of General Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xue Xiao
- Department of General Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
24
|
Du X, Todorov P, Isachenko E, Rahimi G, Mallmann P, Meng Y, Isachenko V. Increasing of malignancy of breast cancer cells after cryopreservation: molecular detection and activation of angiogenesis after CAM-xenotransplantation. BMC Cancer 2020; 20:753. [PMID: 32787800 PMCID: PMC7425039 DOI: 10.1186/s12885-020-07227-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background Ovarian tissue cryopreservation has a wide range of cancerous indications. Avoiding relapse becomes a specific concern that clinicians frequently encounter. The data about the comparative viability of cancer cells after cryopreservation are limited. This study aimed to evaluate the effect of cryopreservation on breast cancer cells. Methods We used in-vitro cultured ZR-75-1 and MDA-MB-231 cell lines. Cell samples of each lineage were distributed into the non-intervened and cryopreserved groups. The cryopreservation procedures comprised programmed slow freezing followed by thawing at 100 °C, 60 s. Biological phenotypes and the related protein markers were compared between the two groups. The EVOS FL Auto 2 Cell Image System was used to monitor cell morphology. Cell proliferation, motility, and penetration were characterized by CCK-8, wound-healing, and transmembrane assay, respectively. The expression of Ki-67, P53, GATA3, E-cadherin, Vimentin, and F-Actin was captured by immunofluorescent staining and western blotting as the proxy measurements of the related properties. The chorioallantoic membrane (CAM) xenotransplantation was conducted to explore angiogenesis induced by cancer cells. Results After 5 days in vitro culture, the cell concentration of cryopreserved and non-intervened groups was 15.7 × 104 vs. 14.4 × 104cells/ml, (ZR-75-1, p > 0.05), and 25.1 × 104 vs. 26.6 × 104 cells/ml (MDA-MB-231, p > 0.05). Some cryopreserved ZR-75-1 cells presented spindle shape with filopodia and lamellipodia and dissociated from the cell cluster after cryopreservation. Both cell lines demonstrated increased cell migrating capability and invasion after cryopreservation. The expression of Ki-67 and P53 did not differ between the cryopreserved and non-intervened groups. E-cadherin and GATA3 expression downregulated in the cryopreserved ZR-75-1 cells. Vimentin and F-actin exhibited an upregulated level in cryopreserved ZR-75-1 and MDA-MB-231 cells. The cryopreserved MDA-MB-231 cells induced significant angiogenesis around the grafts on CAM with the vascular density 0.313 ± 0.03 and 0.342 ± 0.04, compared with that of non-intervened cells of 0.238 ± 0.05 and 0.244 ± 0.03, p < 0.0001. Conclusions Cryopreservation promotes breast cancer cells in terms of epithelial-mesenchymal transition and angiogenesis induction, thus increasing metastasis risk.
Collapse
Affiliation(s)
- Xinxin Du
- Research Group for Reproductive Medicine, IVF-Laboratory and Department of Gynecology, University of Cologne, Kerpener str. 34, 50931, Cologne, NRW, Germany.,Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, China
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Evgenia Isachenko
- Research Group for Reproductive Medicine, IVF-Laboratory and Department of Gynecology, University of Cologne, Kerpener str. 34, 50931, Cologne, NRW, Germany
| | - Gohar Rahimi
- Research Group for Reproductive Medicine, IVF-Laboratory and Department of Gynecology, University of Cologne, Kerpener str. 34, 50931, Cologne, NRW, Germany
| | - Peter Mallmann
- Research Group for Reproductive Medicine, IVF-Laboratory and Department of Gynecology, University of Cologne, Kerpener str. 34, 50931, Cologne, NRW, Germany
| | - Yuanguang Meng
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, China
| | - Vladimir Isachenko
- Research Group for Reproductive Medicine, IVF-Laboratory and Department of Gynecology, University of Cologne, Kerpener str. 34, 50931, Cologne, NRW, Germany.
| |
Collapse
|
25
|
Li P, Ge D, Li P, Hu F, Chu J, Chen X, Song W, Wang A, Tian G, Gu X. CXXC finger protein 4 inhibits the CDK18-ERK1/2 axis to suppress the immune escape of gastric cancer cells with involvement of ELK1/MIR100HG pathway. J Cell Mol Med 2020; 24:10151-10165. [PMID: 32715641 PMCID: PMC7520267 DOI: 10.1111/jcmm.15625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/28/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer, is the fourth most common tumour type yet, ranks second in terms of the prevalence of cancer‐related deaths worldwide. CXXC finger protein 4 (CXXC4) has been considered as a novel cancer suppressive factor, including gastric cancer. This study attempted to investigate the possible function of CXXC4 in gastric cancer and the underlying mechanism. The binding of the ETS domain‐containing protein‐1 (ELK1) to the long non‐coding RNA MIR100HG promoter region was identified. Then, their expression patterns in gastric cancer tissues and cells (SGC7901) were detected. A CCK‐8 assay was used to detect SGC7901 cell proliferation. Subsequently, SGC7901 cells were co‐cultured with CD3+ T cells, followed by measurement of CD3+ T cell proliferation, magnitude of IFN‐γ+ T cell population and IFN‐γ secretion. A nude mouse model was subsequently developed for in vivo validation of the in vitro results. Low CXXC4 expression was found in SGC7901 cells. Nuclear entry of ELK1 can be inhibited by suppression of the extent of ELK1 phosphorylation. Furthermore, ELK1 is able to bind the MIR100HG promoter. Overexpression of CXXC4 resulted in weakened binding of ELK1 to the MIR100HG promoter, leading to a reduced proliferative potential of SGC7901 cells, and an increase in IFN‐γ secretion from CD3+ T cells. Moreover, in vivo experiments revealed that CXXC4 inhibited immune escape of gastric cancer cells through the ERK1/2 axis. Inhibition of the CXXC4/ELK1/MIR100HG pathway suppressed the immune escape of gastric cancer cells, highlighting a possible therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ping Li
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China.,Department of General Surgery, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China.,Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University, Mannheim, Germany
| | - Dongfang Ge
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China
| | - Pengfei Li
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China
| | - Fangyong Hu
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China
| | - Junfeng Chu
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, China
| | - Xiaojun Chen
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, China
| | - Wenbo Song
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, China
| | - Ali Wang
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, China
| | - Xiang Gu
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, China
| |
Collapse
|
26
|
Wang X, Wang C, Xi L, Yu Z. Rap2c as a Novel Biomarker for Predicting Poor Prognosis in Glioma. Onco Targets Ther 2020; 13:3073-3083. [PMID: 32341653 PMCID: PMC7166057 DOI: 10.2147/ott.s247731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/26/2020] [Indexed: 02/02/2023] Open
Abstract
Objective Rap2c is a member of the Ras superfamily that has been implicated in various types of cancers. However, its role in glioma remains elusive. This study aimed to elucidate the role of Rap2c in glioma and its specific molecular mechanism. Methods We determined the expression of Rap2c in glioma tissues by Western blotting and immunohistochemistry (IHC) assays. The proliferation and apoptosis of cells were explored using CCK-8 and flow cytometry assay, whereas the migration and invasion of glioma cells were determined using transwell assay. The potential mechanism of Rap2c in the migration of glioma cell lines was investigated through Western blotting analysis and transwell assay. BALB/c nude mice were used to establish tumor models to test the effect of Rap2c on cancer metastasis in vivo. Results Our data showed that the protein expression of Rap2c was significantly up-regulated in glioma tissues compared with normal brain tissues, and Rap2c overexpression negatively correlated with 5-year overall survival rate. However, there was no correlation between Rap2c expression and clinicopathological parameters of glioma patients. Overexpression of Rap2c promoted the migration and invasion abilities of glioma cells but had no significant effect on the proliferation of glioma cells. Western blotting analysis revealed that Rap2c overexpression increased the phosphorylation level of extracellular signal-related kinase1/2 (ERK1/2), and this effect was abolished with U0126, a selective MEK inhibitor. Furthermore, overexpression of Rap2c induced lung metastasis of glioma cells in xenograft models. Conclusion These findings indicate that high Rap2c expression predicts poor prognosis in glioma. Rap2c-mediated ERK1/2 phosphorylation initiates EMT cascade and promotes migration and invasion of glioma cells. Thus, targeting Rap2c and ERK signaling pathway could be a novel treatment modality for glioma.
Collapse
Affiliation(s)
- Xiucun Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Cheng Wang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Lin Xi
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Zhengquan Yu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| |
Collapse
|
27
|
Zhu L, Sun Y, Zhang S, Wang L. Rap2B knockdown suppresses malignant progression of hepatocellular carcinoma by inactivating the PTEN/PI3K/Akt and ERK1/2 pathways. Mol Cell Biochem 2020; 466:55-63. [PMID: 32052247 DOI: 10.1007/s11010-020-03687-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/18/2020] [Indexed: 01/06/2023]
Abstract
Rap2B, belonging to the Ras superfamily of small guanosine triphosphate-binding proteins, is upregulated and contributes to the progression of several tumors by acting as an oncogene, including hepatocellular carcinoma (HCC). However, the mechanism underlying the functional roles of Rap2B in HCC remains unclear. In this study, the evaluation of Rap2B expression in HCC cells and tissues was achieved by qRT-PCR and western blot assays. The effects of Rap2B on the malignant biological behaviors in HCC were explored by means of MTT assay, flow cytometry analysis, and Transwell invasion assay, respectively. Protein levels of Ki67, matrix metalloproteinase (MMP)-2, MMP-9, and cleaved caspase-3, together with the alternations of the ERK1/2 and PTEN/PI3K/Akt pathways were qualified by western blot assay. Further verification of the Rap2B function on HCC tumorigenesis was attained by performing in vivo assays. We found that Rap2B levels were upregulated in HCC tissues and cells. Rap2B silencing led to a reduction of cell-proliferative and invasive abilities, and an increase of apoptosis in HCC cells. In addition, xenograft tumor assay demonstrated that Rap2B silencing repressed HCC xenograft tumor growth in vivo. In addition, we found that Rap2B knockdown significantly inhibited the ERK1/2 and PTEN/PI3K/Akt cascades in HCC cells and xenograft tumor tissues. Together, Rap2B knockdown inhibited HCC-malignant progression, which was involved in inhibiting the ERK1/2 and PTEN/PI3K/Akt pathways. Our findings contribute to understanding of the molecular mechanism of Rap2B in HCC progression.
Collapse
Affiliation(s)
- Linchao Zhu
- Department of Pediatric Surgery, Henan Provincial People's Hospital, No.7, Wei Wu Road, Zhengzhou, 450003, Henan, People's Republic of China.
| | - Ying Sun
- Department of Clinical Laboratory, Third People's Hospital of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Shufeng Zhang
- Department of Pediatric Surgery, Henan Provincial People's Hospital, No.7, Wei Wu Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Lin Wang
- Department of Pediatric Surgery, Henan Provincial People's Hospital, No.7, Wei Wu Road, Zhengzhou, 450003, Henan, People's Republic of China
| |
Collapse
|
28
|
Somchai P, Phongkitkarun K, Kueanjinda P, Jamnongsong S, Vaeteewoottacharn K, Luvira V, Okada S, Jirawatnotai S, Sampattavanich S. Novel Analytical Platform For Robust Identification of Cell Migration Inhibitors. Sci Rep 2020; 10:931. [PMID: 31969633 PMCID: PMC6976598 DOI: 10.1038/s41598-020-57806-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Wound healing assay is a simple and cost-effective in vitro assay for assessing therapeutic impacts on cell migration. Its key limitation is the possible confoundment by other cellular phenotypes, causing misinterpretation of the experimental outcome. In this study, we attempted to address this problem by developing a simple analytical approach for scoring therapeutic influences on both cell migration and cell death, while normalizing the influence of cell growth using Mitomycin C pre-treatment. By carefully mapping the relationship between cell death and wound closure rate, contribution of cell death and cell migration on the observed wound closure delay can be quantitatively separated at all drug dosing. We showed that both intrinsic cell motility difference and extrinsic factors such as cell seeding density can significantly affect final interpretation of therapeutic impacts on cellular phenotypes. Such discrepancy can be rectified by using the actual wound closure time of each treatment condition for the calculation of phenotypic scores. Finally, we demonstrated a screen for strong pharmaceutical inhibitors of cell migration in cholangiocarcinoma cell lines. Our approach enables accurate scoring of both migrastatic and cytotoxic effects, and can be easily implemented for high-throughput drug screening.
Collapse
Affiliation(s)
- Parinyachat Somchai
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kriengkrai Phongkitkarun
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Patipark Kueanjinda
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Supawan Jamnongsong
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Vor Luvira
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Seiji Okada
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Siwanon Jirawatnotai
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Somponnat Sampattavanich
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
29
|
Sborchia M, Keun HC, Phillips DH, Arlt VM. The Impact of p53 on Aristolochic Acid I-Induced Gene Expression In Vivo. Int J Mol Sci 2019; 20:ijms20246155. [PMID: 31817608 PMCID: PMC6940885 DOI: 10.3390/ijms20246155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
Exposure to aristolochic acid (AA) is linked to kidney disease and urothelial cancer in humans. The major carcinogenic component of the AA plant extract is aristolochic acid I (AAI). The tumour suppressor p53 is frequently mutated in AA-induced tumours. We previously showed that p53 protects from AAI-induced renal proximal tubular injury, but the underlying mechanism(s) involved remain to be further explored. In the present study, we investigated the impact of p53 on AAI-induced gene expression by treating Trp53(+/+), Trp53(+/-), and Trp53(-/-) mice with 3.5 mg/kg body weight (bw) AAI daily for six days. The Clariom™ S Assay microarray was used to elucidate gene expression profiles in mouse kidneys after AAI treatment. Analyses in Qlucore Omics Explorer showed that gene expression in AAI-exposed kidneys is treatment-dependent. However, gene expression profiles did not segregate in a clear-cut manner according to Trp53 genotype, hence further investigations were performed by pathway analysis with MetaCore™. Several pathways were significantly altered to varying degrees for AAI-exposed kidneys. Apoptotic pathways were modulated in Trp53(+/+) kidneys; whereas oncogenic and pro-survival pathways were significantly altered for Trp53(+/-) and Trp53(-/-) kidneys, respectively. Alterations of biological processes by AAI in mouse kidneys could explain the mechanisms by which p53 protects from or p53 loss drives AAI-induced renal injury in vivo.
Collapse
Affiliation(s)
- Mateja Sborchia
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London SE1 9NH, UK; (M.S.); (D.H.P.)
| | - Hector C. Keun
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, UK;
| | - David H. Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London SE1 9NH, UK; (M.S.); (D.H.P.)
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London SE1 9NH, UK; (M.S.); (D.H.P.)
- Correspondence:
| |
Collapse
|
30
|
Aspirin enhances cisplatin sensitivity of resistant non-small cell lung carcinoma stem-like cells by targeting mTOR-Akt axis to repress migration. Sci Rep 2019; 9:16913. [PMID: 31729456 PMCID: PMC6858356 DOI: 10.1038/s41598-019-53134-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Conventional chemotherapeutic regimens are unable to prevent metastasis of non-small cell lung carcinoma (NSCLC) thereby leaving cancer incurable. Cancer stem cells (CSCs) are considered to be the origin of this therapeutic limitation. In the present study we report that the migration potential of NSCLCs is linked to its CSC content. While cisplatin alone fails to inhibit the migration of CSC-enriched NSCLC spheroids, in a combination with non-steroidal anti inflammatory drug (NSAID) aspirin retards the same. A search for the underlying mechanism revealed that aspirin pre-treatment abrogates p300 binding both at TATA-box and initiator (INR) regions of mTOR promoter of CSCs, thereby impeding RNA polymerase II binding at those sites and repressing mTOR gene transcription. As a consequence of mTOR down-regulation, Akt is deactivated via dephosphorylation at Ser473 residue thereby activating Gsk3β that in turn causes destabilization of Snail and β-catenin, thus reverting epithelial to mesenchymal transition (EMT). However, alone aspirin fails to hinder migration since it does not inhibit the Integrin/Fak pathway, which is highly activated in NSCLC stem cells. On the other hand, in aspirin pre-treated CSCs, cisplatin stalls migration by hindering the integrin pathway. These results signify the efficacy of aspirin in sensitizing NSCLC stem cells towards the anti-migration effect of cisplatin. Cumulatively, our findings raise the possibility that aspirin might emerge as a promising drug in combinatorial therapy with the existing chemotherapeutic agents that fail to impede migration of NSCLC stem cells otherwise. This may consequently lead to the advancement of remedial outcome for the metastatic NSCLCs.
Collapse
|
31
|
Electrochemical live monitoring of tumor cell migration out of micro-tumors on an innovative multiwell high-dense microelectrode array. Sci Rep 2019; 9:13875. [PMID: 31554899 PMCID: PMC6761180 DOI: 10.1038/s41598-019-50326-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 09/10/2019] [Indexed: 02/08/2023] Open
Abstract
Understanding of cell migration and spreading out of tumor tissue is of great interest concerning the mechanism and causes of tumor malignancy and metastases. Although there are methods available for studying cell migration on monolayer cell cultures like transwell assays, novel techniques for monitoring cell spreading out of 3D organoids or tumor tissue samples are highly required. In this context, we developed an innovative high-dense microelectrode array for impedimetric monitoring of cell migration from 3D tumor cultures. For a proof of concept, a strongly migrating breast cancer cell line (MDA-MB-231) and two malignant melanoma cell lines (T30.6.9, T12.8.10ZII) were used for generating viable micro-tumor models. The migration propensity was determined by impedimetric monitoring over 144 hours, correlated by microscopy and validated by transwell assays. The impedimetric analysis of covered electrodes and the relative impedance maximum values revealed extended information regarding the contribution of proliferative effects. More strikingly, using reference populations of mitomycin C treated spheroids where proliferation was suppressed, distinction of proliferation and migration was possible. Therefore, our high-dense microelectrode array based impedimetric migration monitoring has the capability for an automated quantitative analysis system that can be easily scaled up as well as integrated in lab on chip devices.
Collapse
|
32
|
Li Y, Sun W, Sun D, Yin D. Retracted: Ras-ERK1/2 signaling promotes the development of uveal melanoma by downregulating H3K14ac. J Cell Physiol 2019; 234:16011-16020. [PMID: 30770563 DOI: 10.1002/jcp.28259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Ras-extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) signaling has been proposed as the crucial regulators in the development of various cancers. Histone acetylation at H3 lysine 14 (H3K14ac) is closely associated with gene expression and DNA damage. However, whether H3K14ac participates in mediating Ras-ERK1/2-induced cell proliferation and migration in uveal melanoma cells remains unknown. The purpose of this study is to investigate the effect of H3K14ac on Ras-ERK1/2 affected uveal melanoma cell phenotypes. MP65 cells were transfected with Ras WT and Ras G12V/T35S , the unloaded plasmid of pEGFP-N1 served as a negative control. Protein levels of phosphorylated ERK1/2 Thr202 and H3K14ac were assessed by western blot assay. Cell viability, number of colonies, migration, and the downstream genes of ERK1/2 were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2-H-tetrazolium bromide, soft-agar colony formation, transwell, and chromatin immunoprecipitation assays. HA-tag vectors of CLR3 and TIP60 and the small interfering RNAs that specific for CLR3 and MDM2 were transfected into MP65 cells to uncover the effects of CLR3, TIP60, and MDM2 on Ras-ERK1/2 mediated H3K14ac expression and MP65 cell phenotypes. We found that, Ras-ERK1/2 decreased H3K14ac expression in MP65 cells, and H3K14ac significantly suppressed Ras-ERK1/2-induced cell viability, colony formation, and migration in MP65 cells. Moreover, the transcription of CYR61, IGFBP3, WNT16B, NT5E, GDF15, and CARD16 was regulated by H3K14ac. Additionally, CLR3 silence recovered H3K14ac expression and reversed the effect of Ras-ERK1/2 on MP65 cell proliferation, migration and the mRNAs of ERK1/2 downstream genes. Besides, Ras-ERK1/2 decreased H3K14ac expression by MDM2-mediated TIP60 degradation. In conclusion, Ras-ERK1/2 promoted uveal melanoma cells growth and migration by downregulating H3K14ac via MDM2-mediated TIP60 degradation.
Collapse
Affiliation(s)
- Yaping Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Weixuan Sun
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dajun Sun
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dexin Yin
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Liu Y, Ye F. Construction and integrated analysis of crosstalking ceRNAs networks in laryngeal squamous cell carcinoma. PeerJ 2019; 7:e7380. [PMID: 31367490 PMCID: PMC6657684 DOI: 10.7717/peerj.7380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumours of the head and neck. Recent evidence has demonstrated that lncRNAs play important roles in tumour progression and could be used as biomarkers for early diagnosis, prognosis, and potential therapeutic targets. The "competitive endogenous RNA (ceRNA)" hypothesis states that lncRNAs competitively bind to miRNAs through their intramolecular miRNA reaction elements (MREs) to construct a wide range of ceRNA regulatory networks. This study aims to predict the role of ceRNA network in LSCC, for advancing the understanding of underlying mechanisms of tumorigenesis. Material and Methods In this study, the functions of lncRNAs as ceRNAs in LSCC and their prognostic significance were investigated via comprehensive integrated expression profiles data of lncRNAs, mRNAs, and miRNAs obtained from The Cancer Genome Atlas (TCGA). Protein-protein interaction, gene ontology, pathway, and Kaplan-Meier curves analysis were used to profile the expression and function of altered RNAs in LSCC. Results As a result, 889 lncRNAs, 55 miRNAs and 1946 mRNAs were found to be differentially expressed in LSCC. These altered mRNAs were mainly involved in extracellular matrix organization, calcium signaling, and metabolic pathways. To study the regulatory function of lncRNAs, an lncRNA-mediated ceRNA network was constructed. This ceRNA network included 61 lncRNAs, seven miRNAs and seven target mRNAs. Of these RNAs, lncRNAs (TSPEAR-AS, CASK-AS1, MIR137HG, PART1, LSAMP-AS1), miRNA (has-mir-210) and mRNAs (HOXC13, STC2, DIO1, FOXD4L1) had a significant effect on the prognosis of LSCC. Conclusion The results of this study broaden the understanding of the mechanisms by which lncRNAs are involved in tumorigenesis. Furthermore, five lncRNAs (TSPEAR-AS, CASK-AS1, MIR137HG, PART1, LSAMP-AS1) were identified as potential prognostic biomarkers and therapeutic targets for LSCC. These results provide a basis for further experimental and clinical research.
Collapse
Affiliation(s)
- Yuehui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Fan Ye
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
34
|
Yi L, Zhong X, Chen Z, Wang Q, Yan Y, Wang J, Deng X. MicroRNA-147b Promotes Proliferation and Invasion of Human Colorectal Cancer by Targeting RAS Oncogene Family (RAP2B). Pathobiology 2019; 86:173-181. [PMID: 31121595 DOI: 10.1159/000495253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/05/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs), a class of small-regulatory RNA molecules, were closely involved in the pathogenesis of a broad-spectrum of colorectal cancer (CRC). But role of miR-147b in CRC still remains unclear. METHODS Real-time RT-PCR or Western blotting was utilized to detect the expressions of miR-147b and RAP2B in CRC cell lines and tissues. Luciferase reporter assays were conducted to detect the associations between miR-147b and 3'UTRs of RAP2B. A series of assays were performed to evaluate the effect of miR-147b on proliferation, migration, and invasion of CRC in vitro and in vivo. RESULTS We found that the level of miR-147b was significantly lower in CRC tissues than in normal tissues (p = 0.0006). Enforced expression of miR-147b led to suppression of CRC cell proliferation in vitro and tumor growth in vivo. Specifically, miR-147b promoted proliferation by arresting CRC cells in the G1/G0 phase. Mechanically, RAP2B was identified as a direct target gene of miR-147b and RAP2B rescued the suppression of proliferation and invasion reduced by miR-147b in CRC cells. CONCLUSIONS miR-147b not only plays important roles in the regulation of cell proliferation and tumor growth in CRC, which might be a potential prognostic marker or therapeutic target for CRC.
Collapse
Affiliation(s)
- Lizhi Yi
- Department of Gastroenterology, People's Hospital of Leshan, Leshan City, China
| | - Xianfei Zhong
- Department of Gastroenterology, People's Hospital of Leshan, Leshan City, China
| | - Zhengyu Chen
- Department of Gastroenterology, People's Hospital of Leshan, Leshan City, China
| | - Qin Wang
- Department of Gastroenterology, People's Hospital of Leshan, Leshan City, China
| | - Yongrong Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China,
| | - Xuejie Deng
- Department of Gastroenterology, People's Hospital of Leshan, Leshan City, China
| |
Collapse
|
35
|
Oncogenic Signaling in Tumorigenesis and Applications of siRNA Nanotherapeutics in Breast Cancer. Cancers (Basel) 2019; 11:cancers11050632. [PMID: 31064156 PMCID: PMC6562835 DOI: 10.3390/cancers11050632] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
Overexpression of oncogenes and cross-talks of the oncoproteins-regulated signaling cascades with other intracellular pathways in breast cancer could lead to massive abnormal signaling with the consequence of tumorigenesis. The ability to identify the genes having vital roles in cancer development would give a promising therapeutics strategy in combating the disease. Genetic manipulations through siRNAs targeting the complementary sequence of the oncogenic mRNA in breast cancer is one of the promising approaches that can be harnessed to develop more efficient treatments for breast cancer. In this review, we highlighted the effects of major signaling pathways stimulated by oncogene products on breast tumorigenesis and discussed the potential therapeutic strategies for targeted delivery of siRNAs with nanoparticles in suppressing the stimulated signaling pathways.
Collapse
|
36
|
Rap2B promotes cell adhesion, proliferation, migration and invasion of human glioma. J Neurooncol 2019; 143:221-229. [PMID: 30997639 DOI: 10.1007/s11060-019-03163-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/02/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE Rap2B, a member of the GTP-binding proteins, is generally up-regulated in numerous types of tumors. Nevertheless, the influence and regulatory mechanisms of Rap2B in gliomas are still not corroborated. Therefore, we analyzed the expression of Rap2B in glioma tissues and cells, and researched its significance in adhesion, proliferation, migration and invasion of the glioma cell line. METHODS We analyzed the expression of Rap2B in different pathologic grades of glioma tissues by tissue microarray and immunohistochemistry. We assessed the expression of Rap2B in glioma tissue and non-tumor tissue by Western blot. And the expression of Rap2b protein in glioma cells and normal human astrocytes (NHA) was detected by Western blot. In addition, we disclosed the effect of Rap2B knockdown on cell adhesion, proliferation, migration and invasion by using cell attachment assay, CCK-8 assay, cell migration assay and Wound Healing assay, cell invasion assay, respectively. Western blot was used to detect the changes of expression level of NF-kB, MMP-2 and MMP-9 protein when downregulated the expression of Rap2B. RESULTS The tissue microarray immunohistochemical results of glioma showed that the expression of Rap2B had no significant correlations between Rap2B expression and the clinicopathologic variables, including patient age (P = 0.352), gender (P = 0.858), WHO Grade (P = 0.693) and histology type (P = 0.877). Western blot analysis showed that the glioma tissue had a dramatically increase of Rap2B expression compared with the non-tumor tissues (P < 0.01). And the expression of Rap2B was markedly up-regulated in all 5 glioma cell lines compared with that in normal human astrocytes (NHA) (P < 0.01). We found that the ability of adhesion, proliferation, migration and invasion of glioma cells were significantly decreased after downregulated Rap2B expression compared with the control group (P < 0.05). In addition, Western blot results showed that the expression levels of NF-kB, MMP-2 and MMP-9 in the interference group were significantly lower than those in the negative control group (P < 0.05). CONCLUSIONS Rap2B expression is up-regulated in glioma tissues and glioma cell lines. Knockdown of Rap2B inhibits glioma cells' adhesion and proliferation in vitro. Knockdown of Rap2B inhibits glioma cells' migration in vitro. Knockdown of Rap2B inhibits glioma cells' invasion and MMPs activity through NF-kB pathway.
Collapse
|
37
|
Li J, Rong MH, Dang YW, He RQ, Lin P, Yang H, Li XJ, Xiong DD, Zhang LJ, Qin H, Feng CX, Chen XY, Zhong JC, Ma J, Chen G. Differentially expressed gene profile and relevant pathways of the traditional Chinese medicine cinobufotalin on MCF‑7 breast cancer cells. Mol Med Rep 2019; 19:4256-4270. [PMID: 30896874 PMCID: PMC6471831 DOI: 10.3892/mmr.2019.10062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Cinobufotalin is a chemical compound extracted from the skin of dried bufo toads that may have curative potential for certain malignancies through different mechanisms; however, these mechanisms remain unexplored in breast cancer. The aim of the present study was to investigate the antitumor mechanism of cinobufotalin in breast cancer by using microarray data and in silico analysis. The microarray data set GSE85871, in which cinobufotalin exerted influences on the MCF‑7 breast cancer cells, was acquired from the Gene Expression Omnibus database, and the differentially expressed genes (DEGs) were analyzed. Subsequently, protein interaction analysis was conducted, which clarified the clinical significance of core genes, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to analyze cinobufotalin‑related pathways. The Connectivity Map (CMAP) database was used to select existing compounds that exhibited curative properties similar to those of cinobufotalin. A total of 1,237 DEGs were identified from breast cancer cells that were treated with cinobufotalin. Two core genes, SRC proto‑oncogene non‑receptor tyrosine kinase and cyclin‑dependent kinase inhibitor 2A, were identified as serving a vital role in the onset and development of breast cancer, and their expression levels were markedly reduced following cinobufotalin treatment as detected by the microarray of GSE85871. It also was revealed that the 'neuroactive ligand‑receptor interaction' and 'calcium signaling' pathways may be crucial for cinobufotalin to perform its functions in breast cancer. Conducting a matching search in CMAP, miconazole and cinobufotalin were indicated to possessed similar molecular mechanisms. In conclusion, cinobufotalin may serve as an effective compound for the treatment of a subtype of breast cancer that is triple positive for the presence of estrogen, progesterone and human epidermal growth factor receptor‑2 receptors, and its mechanism may be related to different pathways. In addition, cinobufotalin is likely to exert its antitumor influences in a similar way as miconazole in MCF‑7 cells.
Collapse
Affiliation(s)
- Jie Li
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China
| | - Min-Hua Rong
- Research Department, The Affiliated Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Jiao Li
- PET‑CT, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Jie Zhang
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hui Qin
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Cai-Xia Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Yi Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
38
|
Prieto-Dominguez N, Parnell C, Teng Y. Drugging the Small GTPase Pathways in Cancer Treatment: Promises and Challenges. Cells 2019; 8:E255. [PMID: 30884855 PMCID: PMC6468615 DOI: 10.3390/cells8030255] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Small GTPases are a family of low molecular weight GTP-hydrolyzing enzymes that cycle between an inactive state when bound to GDP and an active state when associated to GTP. Small GTPases regulate key cellular processes (e.g., cell differentiation, proliferation, and motility) as well as subcellular events (e.g., vesicle trafficking), making them key participants in a great array of pathophysiological processes. Indeed, the dysfunction and deregulation of certain small GTPases, such as the members of the Ras and Arf subfamilies, have been related with the promotion and progression of cancer. Therefore, the development of inhibitors that target dysfunctional small GTPases could represent a potential therapeutic strategy for cancer treatment. This review covers the basic biochemical mechanisms and the diverse functions of small GTPases in cancer. We also discuss the strategies and challenges of inhibiting the activity of these enzymes and delve into new approaches that offer opportunities to target them in cancer therapy.
Collapse
Affiliation(s)
- Néstor Prieto-Dominguez
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Institute of Biomedicine (IBIOMED), University of León, León 24010, Spain.
| | | | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Department of Medical laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
39
|
Nazim UMD, Park SY. Attenuation of autophagy flux by 6-shogaol sensitizes human liver cancer cells to TRAIL-induced apoptosis via p53 and ROS. Int J Mol Med 2019; 43:701-708. [PMID: 30483736 PMCID: PMC6317668 DOI: 10.3892/ijmm.2018.3994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor (TNF)‑related apoptosis‑inducing ligand (TRAIL) is a member of the TNF superfamily and is an antitumor drug that induces apoptosis in tumor cells with minimal or no effects on normal cells. Here, it is demonstrated that 6‑shogaol (6‑sho), a bioactive component of ginger, exerted anti‑inflammatory and anticancer properties, attenuated tumor cell propagation and induced TRAIL‑mediated cell death in liver cancer cells. The current study identified a potential pathway by revealing that TRAIL and 6‑sho or chloroquine acted together to trigger reactive oxygen species (ROS) production, to upregulate tumor‑suppressor protein 53 (p53) expression and to change the mitochondrial transmembrane potential (MTP). Treatment with N‑acetyl‑L‑cysteine reversed these effects, restoring the MTP and attenuated ROS production and p53 expression. Interestingly, treatment with 6‑sho increased p62 and microtubule‑associated proteins 1A/1B light chain 3B‑II levels, indicating an inhibited autophagy flux. In conclusion, attenuation of 6‑sho‑induced autophagy flux sensitized cells to TRAIL‑induced apoptosis via p53 and ROS, suggesting that the administration of TRAIL in combination with 6‑sho may be a suitable therapeutic method for the treatment of TRAIL‑resistant Huh7 liver cells.
Collapse
Affiliation(s)
- Uddin MD. Nazim
- Department of Biochemistry, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang-Youel Park
- Department of Biochemistry, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
40
|
Manjappa AS, Ramachandra Murthy RS. Unravelling the anticancer efficacy of 10-oxo-7-epidocetaxel: in vitro and in vivo results. Drug Dev Ind Pharm 2019; 45:474-484. [PMID: 30599774 DOI: 10.1080/03639045.2018.1562461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE To prepare 7-epidocetaxel (7ED) and 10-oxo-7-epidocetaxel (10-O-7ED) formulations as like marketed Taxotere® (TXT) injection and to screen them for in vitro and in vivo anticancer efficacy including their in vivo toxicity behavior. METHODS The 7ED and 10-O-7ED formulations were screened for in vitro anti-proliferative, anti-metastatic and cell cycle arresting behaviors. Further, in vivo acute toxicity of TXT injection containing 10% of 7ED and 10-O-7ED separately and the therapeutic study of 10-O-7ED alone were studied in B16F10 experimental metastasis mouse model. RESULTS 10-O-7ED caused significantly higher cytotoxicity after 48 and 72 h than 22 h study. 10-O-7ED showed significantly increased in vitro anti-metastatic activity than TXT. The TXT caused more arrest of cells at S phase, whereas 10-O-7ED arrested more at G2-M phase and vice versa at higher concentration. In vivo acute toxicity study revealed better therapeutic effect with reduced toxicity of TXT containing 10% 10-O-7ED than TXT alone. Similarly, the therapeutic study revealed significantly less number of surface metastatic nodules formation with 10-O-7ED treated group (107 ± 49) (***p < .0001) than control group (348 ± 56). Also, the control group showed significant weight loss at the end (20th day) of the experiment (*p < .05, p = .041) than 10-O-7ED treated group which showed about 4% increased mean group weight. CONCLUSION Our study revealed the significantly higher in vivo anti-metastatic behavior, with no toxicity, of 10-O-7ED. However, it is a preliminary observation being noticed but further investigations are needed to address the potential of 10-O-7ED in cancer treatment with mechanisms behind the improved therapeutic efficacy with no toxicity.
Collapse
Affiliation(s)
- Arehalli S Manjappa
- a Department of Pharmaceutcs , Tatyasaheb Kore College of Pharmacy , Kolhapur , India.,b TIFAC Centre of Relevance and Excellence in New Drug Delivery Systems, G.H. Patel Pharmacy Building, Pharmacy Department , The Maharaja Sayajirao University of Baroda , Vadodara , India.,c Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre , Kharghar , India
| | - Rayasa S Ramachandra Murthy
- b TIFAC Centre of Relevance and Excellence in New Drug Delivery Systems, G.H. Patel Pharmacy Building, Pharmacy Department , The Maharaja Sayajirao University of Baroda , Vadodara , India
| |
Collapse
|
41
|
Leal-Orta E, Ramirez-Ricardo J, Cortes-Reynosa P, Galindo-Hernandez O, Salazar EP. Role of PI3K/Akt on migration and invasion of MCF10A cells treated with extracellular vesicles from MDA-MB-231 cells stimulated with linoleic acid. J Cell Commun Signal 2018; 13:235-244. [PMID: 30361980 DOI: 10.1007/s12079-018-0490-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/04/2018] [Indexed: 12/30/2022] Open
Abstract
In breast cancer cells, the linoleic acid (LA), an ω-6 essential polyunsaturated fatty acid, induces a variety of biological processes, including migration and invasion. Extracellular vesicles (EVs) are structures released by normal and malignant cells into extracellular space, and their function is dependent on their cargo and the cell type from which are secreted. Particularly, the EVs from MDA-MB-231 breast cancer cells treated with LA promote an epithelial-mesenchymal-transition (EMT)-like process in mammary non-tumorigenic epithelial cells MCF10A. Here, we found that EVs isolated from supernatants of MDA-MB-231 breast cancer cells stimulated with 90 μM LA induces activation of Akt2, FAK and ERK1/2 in MCF10A cells. In addition, EVs induces migration through a PI3K, Akt and ERK1/2-dependent pathway, whereas invasion is dependent on PI3K activity.
Collapse
Affiliation(s)
- Elizabeth Leal-Orta
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Javier Ramirez-Ricardo
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | | | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
42
|
Chen X, Pei Z, Peng H, Zheng Z. Exploring the molecular mechanism associated with breast cancer bone metastasis using bioinformatic analysis and microarray genetic interaction network. Medicine (Baltimore) 2018; 97:e12032. [PMID: 30212931 PMCID: PMC6156059 DOI: 10.1097/md.0000000000012032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bone metastases are common in advanced breast cancer patients and frequently leading to skeletal-related morbidity and deterioration in the quality of life. Although chemotherapy and hormone therapy are able to control the symptoms caused by bone destruction, the underlying molecular mechanisms for the affinity of breast cancer cells towards skeletal bones are still not completely understood. METHODS In this study, bioinformatic analysis was performed on patients' microarray gene expression data to explore the molecular mechanism associated with breast cancer bone metastasis. Microarray gene expression profile regarding patients with breast cancer and disseminated tumor cells was downloaded from Gene Expression Omnibus (GEO) database (NCBI, NIH). Raw data were normalized and differently expressed genes were identified by using Significance Analysis of Microarrays (SAM) methods. Protein interaction networks were expanded using String. Moreover, molecular functions, biological processes and signaling pathway enrichment analysis were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS We identified 66 differentially expressed genes. After submitting the set of genes to String, genetic interaction network was expanded, which consisted of 110 nodes and 869 edges. Pathway enrichment analysis suggested that adhesion kinase, ECM-receptor interaction, calcium signaling, Wnt pathways, and PI3K/AKT signaling pathway are highly associated with breast cancer bone metastasis. CONCLUSION In this study, we established a microarray genetic interaction network associated with breast cancer bone metastasis. This information provides some potential molecular therapeutic targets for breast cancer initiation and progression.
Collapse
Affiliation(s)
- Xinhua Chen
- Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Zhe Pei
- Duke University Medical School, Durham, NC
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi, China
| | - Zhihong Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
43
|
Matana A, Brdar D, Torlak V, Boutin T, Popović M, Gunjača I, Kolčić I, Boraska Perica V, Punda A, Polašek O, Barbalić M, Hayward C, Zemunik T. Genome-wide meta-analysis identifies novel loci associated with parathyroid hormone level. Mol Med 2018; 24:15. [PMID: 30134803 PMCID: PMC6016867 DOI: 10.1186/s10020-018-0018-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023] Open
Abstract
Background Parathyroid hormone (PTH) is one of the principal regulators of calcium homeostasis. Although serum PTH level is mostly accounted by genetic factors, genetic background underlying PTH level is insufficiently known. Therefore, the aim of this study was to identify novel genetic variants associated with PTH levels. Methods We performed GWAS meta-analysis within two genetically isolated Croatian populations followed by replication analysis in a Croatian mainland population and we also combined results across all three analyzed populations. The analyses included 2596 individuals. A total of 7,411,206 variants, imputed using the 1000 Genomes reference panel, were analysed for the association. In addition, a sex-specific GWAS meta-analyses were performed. Results Polymorphisms with the lowest P-values were located on chromosome 4 approximately 84 kb of the 5′ of RASGEF1B gene. The most significant SNP was rs11099476 (P = 1.15 × 10−8). Sex-specific analysis identified genome-wide significant association of the variant rs77178854, located within DPP10 gene in females only (P = 2.21 × 10− 9). There were no genome-wide significant findings in the meta-analysis of males. Conclusions We identified two biologically plausible novel loci associated with PTH levels, providing us with further insights into the genetics of this complex trait. Electronic supplementary material The online version of this article (10.1186/s10020-018-0018-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonela Matana
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - Dubravka Brdar
- Department of Nuclear Medicine, University Hospital Split, Spinciceva 1, Split, Croatia
| | - Vesela Torlak
- Department of Nuclear Medicine, University Hospital Split, Spinciceva 1, Split, Croatia
| | - Thibaud Boutin
- MRC Human Genetics Unit, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Marijana Popović
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - Ivana Gunjača
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - Ivana Kolčić
- Department of Public Health, University of Split, School of Medicine Split, Šoltanska 2, Split, Croatia
| | - Vesna Boraska Perica
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - Ante Punda
- Department of Nuclear Medicine, University Hospital Split, Spinciceva 1, Split, Croatia
| | - Ozren Polašek
- Department of Public Health, University of Split, School of Medicine Split, Šoltanska 2, Split, Croatia
| | - Maja Barbalić
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Tatijana Zemunik
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia.
| |
Collapse
|
44
|
Abdoul-Azize S, Dubus I, Vannier JP. Improvement of dexamethasone sensitivity by chelation of intracellular Ca2+ in pediatric acute lymphoblastic leukemia cells through the prosurvival kinase ERK1/2 deactivation. Oncotarget 2018; 8:27339-27352. [PMID: 28423696 PMCID: PMC5432339 DOI: 10.18632/oncotarget.16039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/15/2017] [Indexed: 01/08/2023] Open
Abstract
Previous studies have demonstrated that glucocorticoid hormones, including dexamethasone, induced alterations in intracellular calcium homeostasis in acute lymphoblastic leukemia (ALL) cells. However, the mechanism by which intracellular calcium homeostasis participates in dexamethasone sensitivity and resistance on ALL cells remains elusive. Here, we found that treatment of cells with dexamethasone resulted in increased intracellular calcium concentrations through store-operated calcium entry stimulation, which was curtailed by store-operated calcium channel blockers. We show that BAPTA-AM, an intracellular Ca2+ chelator, synergistically enhances dexamethasone lethality in two human ALL cell lines and in three primary specimens. This effect correlated with the inhibition of the prosurvival kinase ERK1/2 signaling pathway. Chelating intracellular calcium with Bapta-AM or inhibiting ERK1/2 with PD98059 significantly potentiated dexamethasone-induced mitochondrial membrane potential collapse, reactive oxygen species production, cytochrome c release, caspase-3 activity, and cell death. Moreover, we show that thapsigargin elevates intracellular free calcium ion level, and activates ERK1/2 signaling, resulting in the inhibition of dexamethasone-induced ALL cells apoptosis. Together, these results indicate that calcium-related ERK1/2 signaling pathway contributes to protect cells from dexamethasone sensitivity by limiting mitochondrial apoptotic pathway. This report provides a novel resistance pathway underlying the regulatory effect of dexamethasone on ALL cells.
Collapse
Affiliation(s)
- Souleymane Abdoul-Azize
- Micro-Environnement et Renouvellement Cellulaire Intégré, MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.,Current address: Unité Inserm U1234/Université de Rouen/IRIB, Rouen, France
| | - Isabelle Dubus
- Micro-Environnement et Renouvellement Cellulaire Intégré, MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.,Current address: Unité Inserm U1234/Université de Rouen/IRIB, Rouen, France
| | - Jean-Pierre Vannier
- Micro-Environnement et Renouvellement Cellulaire Intégré, MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.,Service Immuno-Hémato-Oncologie Pédiatrique, CHU Charles Nicolle, 76031 ROUEN Cedex, France.,Current address: Unité Inserm U1234/Université de Rouen/IRIB, Rouen, France
| |
Collapse
|
45
|
Kumar M, Irungbam K, Kataria M. Depletion of membrane cholesterol compromised caspase-8 imparts in autophagy induction and inhibition of cell migration in cancer cells. Cancer Cell Int 2018; 18:23. [PMID: 29467593 PMCID: PMC5819249 DOI: 10.1186/s12935-018-0520-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/12/2018] [Indexed: 01/08/2023] Open
Abstract
Background Cholesterol in lipid raft plays crucial role on cancer cell survival during metastasis of cancer cells. Cancer cells are reported to enrich cholesterol in lipid raft which make them more susceptible to cell death after cholesterol depletion than normal cells. Methyl-β-cyclodextrin (MβCD), an amphipathic polysaccharide known to deplete the membrane cholesterol, induces cell death selectively in cancer cells. Present work was designed to identify the major form of programmed cell death in membrane cholesterol depleted cancer cells (MDA-MB 231 and 4T1) and its impact on migration efficiency of cancer cells. Methods Membrane cholesterol alteration and morphological changes in 4T1 and MDA-MB 231 cancer cells by MβCD were measured by fluorescent microscopy. Cell death and cell proliferation were observed by PI, AO/EB and MTT assay respectively. Programme cell death was confirmed by flow cytometer. Caspase activation was assessed by MTT and PI after treatments with Z-VAD [OME]-FMK, mitomycin c and cycloheximide. Necroptosis, autophagy, pyroptosis and paraptosis were examined by cell proliferation assay and flow cytometry. Relative quantitation of mRNA of caspase-8, necroptosis and autophagy genes were performed. Migration efficiency of cancer cells were determined by wound healing assay. Results We found caspase independent cell death in cholesterol depleted MDA-MB 231 cells which was reduced by (3-MA) an autophagy inhibitor. Membrane cholesterol depletion neither induces necroptosis, paraptosis nor pyroptosis in MDA-MB 231 cells. Subsequent activation of caspase-8 after co-incubation of mitomycin c and cycloheximide separately, restored the cell viability in cholesterol depleted MDA-MB 231 cells. Down regulation of caspase-8 mRNA in cholesterol depleted cancer cells ensures that caspase-8 indirectly promotes the induction of autophagy. In another experiment we have demonstrated that membrane cholesterol depletion reduces the migration efficiency in cancer cells. Conclusion Together our experimental data suggests that membrane cholesterol is the crucial for the recruitment and activation of caspase-8 as well as its non-apoptotic functions in cancer cells. Enriched cholesterol in lipid raft of cancer cells may be regulating the cross talk between caspase-8 and autophagy machineries to promote their survival and migration. Therefore it can be explored to understand and address the issues of chemotherapeutic and drugs resistance.
Collapse
Affiliation(s)
- Mukesh Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | | | - Meena Kataria
- Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
46
|
Kong Q, Ma Y, Yu J, Chen X. Predicted molecular targets and pathways for germacrone, curdione, and furanodiene in the treatment of breast cancer using a bioinformatics approach. Sci Rep 2017; 7:15543. [PMID: 29138518 PMCID: PMC5686110 DOI: 10.1038/s41598-017-15812-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022] Open
Abstract
Germacrone, curdione, and furanodiene have been shown to be useful in the treatment of breast cancer but the pharmacological mechanism of action is unclear. In this paper, we explored a new method to study the molecular network and function of Traditional Chinese Medicine (TCM) herbs and their corresponding ingredients with bioinformatics tools, including PubChem Compound Database, BATMAN-TCM, SystemsDock, Coremine Medical, Gene ontology, and KEGG. Eleven targeted genes/proteins, 4 key pathways, and 10 biological processes were identified to participate in the mechanism of action in treating breast cancer with germacrone, curdione, and furanodiene. The information achieved by the bioinformatics tools was useful to interpretation the molecular mechanism for the treatment of germacrone, curdione, and furanodiene on breast cancers.
Collapse
Affiliation(s)
- Qi Kong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC); Key Laboratory of Human Disease Comparative Medicine, National Health and Family Planning Commission; Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine; Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China.
| | - Yong Ma
- Department of Urology, Shanxian Central Hospital, Heze, Shandong, 274300, China
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, China
| |
Collapse
|
47
|
Di J, Tang J, Qian H, Franklin DA, Deisenroth C, Itahana Y, Zheng J, Zhang Y. p53 upregulates PLCε-IP3-Ca 2+ pathway and inhibits autophagy through its target gene Rap2B. Oncotarget 2017; 8:64657-64669. [PMID: 29029384 PMCID: PMC5630284 DOI: 10.18632/oncotarget.18112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/08/2017] [Indexed: 01/04/2023] Open
Abstract
The tumor suppressor p53 plays a pivotal role in numerous cellular responses as it regulates cell proliferation, metabolism, cellular growth, and autophagy. In order to identify novel p53 target genes, we utilized an unbiased microarray approach and identified Rap2B as a robust candidate, which belongs to the Ras-related GTP-binding protein superfamily and exhibits increased expression in various human cancers. We demonstrated that p53 increases the intracellular IP3 and Ca2+ levels and decreases the LC3 protein levels through its target gene Rap2B, suggesting that p53 can inhibit the autophagic response triggered by starvation via upregulation of the Rap2B-PLCε-IP3-Ca2+ pathway. As a confirmed target gene of p53, we believe that further investigating potential functions of Rap2B in autophagy and tumorigenesis will provide a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Juanjuan Tang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Heya Qian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Derek A. Franklin
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chad Deisenroth
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, USA
| | - Yoko Itahana
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Cancer & Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- Center of Clinical Oncology and Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yanping Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
48
|
Di J, Gao K, Qu D, Wu Y, Yang J, Zheng J. Rap2B promotes angiogenesis via PI3K/AKT/VEGF signaling pathway in human renal cell carcinoma. Tumour Biol 2017; 39:1010428317701653. [PMID: 28691643 DOI: 10.1177/1010428317701653] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human renal cell carcinoma which is a highly vascular tumor is the leading cause of death from urologic cancers. Angiogenesis has a pivotal role in oncogenesis and in the viability and expansion of renal cell carcinoma. Rap2B, as a small guanosine triphosphate–binding protein of the Ras family, was first discovered in the early 1990s during the screening of a platelet complementary DNA library. Previous studies have shown that Rap2B aberrantly expressed in human carcinogenesis and promoted the development of tumors via multiple signaling pathways. However, the function of Rap2B in tumor angiogenesis that is necessary for tumor growth and metastasis remains unknown. In this study, we examined the role of Rap2B in angiogenesis in renal cell carcinoma by Western blot, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, human umbilical vascular endothelial cells growth assay, and endothelial cell tube formation assay. We found that Rap2B promoted angiogenesis in vitro and in vivo. Moreover, our data illustrated that phosphoinositide 3-kinase/AKT signaling pathway is involved in Rap2B-mediated upregulation of vascular endothelial growth factor and renal cell carcinoma angiogenesis. Taken together, these results revealed that Rap2B promotes renal cell carcinoma angiogenesis via phosphoinositide 3-kinase/AKT/vascular endothelial growth factor signaling pathway, which suggests that Rap2B is a novel therapeutic target for renal cell carcinoma anti-angiogenesis therapy.
Collapse
Affiliation(s)
- Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, P.R. China
- The School of Life Science and Technology, Harbin Institute of
Technology, Harbin, China
| | - Keyu Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, P.R. China
- Department of Urology, Affiliated Hospital of Xuzhou Medical
University, Xuzhou, China
| | - Debao Qu
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, P.R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yaoyao Wu
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, P.R. China
| | - Jing Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, P.R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, P.R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, P.R.China
| |
Collapse
|
49
|
You N, Tan Y, Zhou L, Huang X, Wang W, Wang L, Wu K, Mi N, Li J, Zheng L. Tg737 acts as a key driver of invasion and migration in liver cancer stem cells and correlates with poor prognosis in patients with hepatocellular carcinoma. Exp Cell Res 2017; 358:217-226. [PMID: 28663060 DOI: 10.1016/j.yexcr.2017.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/08/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022]
Abstract
We previously demonstrated that the Tg737 gene plays a critical role in the carcinogenesis of hepatocellular carcinoma (HCC). However, few systematic investigations have focused on the biological function of Tg737 in the invasion and migration of liver cancer stem cells (LCSCs) and on its clinical significance. In this study, Tg737 overexpression was achieved via gene transfection in MHCC97-H side population (SP) cells, which are considered a model for LCSCs in scientific studies. Tg737 overexpression significantly inhibited the invasion and migration of SP cells in an extracellular signal-regulated kinase1/2 (ERK1/2)/matrix metalloproteinase-2 (MMP-2)-dependent manner. Furthermore, Tg737 expression was frequently decreased in HCC tissues relative to that in adjacent noncancerous liver tissues. This decreased expression was significantly associated with tumor differentiation, the American Joint Committee on Cancer (AJCC) stage, metastasis, tumor size, vascular invasion, alpha-fetoprotein (AFP) levels, and tumor number. Moreover, multivariate Cox regression analyses demonstrated that Tg737 expression was an independent factor for predicting the overall survival of HCC patients. Notably, Kaplan-Meier analysis further showed that overall survival was significantly worse among patients with low Tg737 expression. Collectively, our findings demonstrated that Tg737 is a poor prognostic marker in patients with HCC, which may be due to its ability to promote LCSCs invasion and migration. These results provide a basis for investigating of Tg737 as a novel prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Nan You
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ye Tan
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Liang Zhou
- Department of General Surgery, The 155 Central Hospital of PLA, Kaifeng, He'nan 475000, China
| | - Xiaobing Huang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Weiwei Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ke Wu
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Na Mi
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
50
|
Lv GY, Miao J, Zhang XL. Long Noncoding RNA XIST Promotes Osteosarcoma Progression by Targeting Ras-Related Protein RAP2B via miR-320b. Oncol Res 2017; 26:837-846. [PMID: 28409547 PMCID: PMC7844768 DOI: 10.3727/096504017x14920318811721] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abnormal expression of long noncoding RNAs (lncRNAs) often contributes to the unrestricted growth and invasion of cancer cells. lncRNA X-inactive specific transcript (XIST) expression is upregulated in several cancers; however, its underlying mechanism in osteosarcoma (OS) has not been elucidated. In the present study, we found that XIST expression was significantly increased in OS tissues and cell lines by LncRNA Profiler and qRT-PCR. The effects of XIST and miR-320b on OS cell proliferation and invasion were studied by MTT and Transwell invasion assays. The competing relationship between XIST and miR-320b was confirmed by luciferase reporter assay. Our results showed that XIST knockdown strikingly inhibited cell proliferation and invasion. Furthermore, XIST could directly bind to miR-320b and repress miR-320b expression. Moreover, XIST overexpression significantly relieved the inhibition on OS cell proliferation and invasion mediated by miR-320b overexpression, which involved the derepression of Ras-related protein RAP2B. We propose that XIST is responsible for OS cell proliferation and invasion and that XIST exerts its function through the miR-320b/RAP2B axis. Our findings suggest that lncRNA XIST may be a candidate prognostic biomarker and a target for new therapies in OS patients.
Collapse
Affiliation(s)
- Gong-Yi Lv
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, P.R. China
| | - Jun Miao
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, P.R. China
| | - Xiao-Lin Zhang
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, P.R. China
| |
Collapse
|