1
|
O'Brien BM, Moulick R, Jiménez-Avalos G, Rajasekaran N, Kaiser CM, Woodson SA. Stick-slip unfolding favors self-association of expanded HTT mRNA. Nat Commun 2024; 15:8738. [PMID: 39384800 PMCID: PMC11464812 DOI: 10.1038/s41467-024-52764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024] Open
Abstract
In Huntington's Disease (HD) and related disorders, expansion of CAG trinucleotide repeats produces a toxic gain of function in affected neurons. Expanded huntingtin (expHTT) mRNA forms aggregates that sequester essential RNA binding proteins, dysregulating mRNA processing and translation. The physical basis of RNA aggregation has been difficult to disentangle owing to the heterogeneous structure of the CAG repeats. Here, we probe the folding and unfolding pathways of expHTT mRNA using single-molecule force spectroscopy. Whereas normal HTT mRNAs unfold reversibly and cooperatively, expHTT mRNAs with 20 or 40 CAG repeats slip and unravel non-cooperatively at low tension. Slippage of CAG base pairs is punctuated by concerted rearrangement of adjacent CCG trinucleotides, trapping partially folded structures that readily base pair with another RNA strand. We suggest that the conformational entropy of the CAG repeats, combined with stable CCG base pairs, creates a stick-slip behavior that explains the aggregation propensity of expHTT mRNA.
Collapse
Affiliation(s)
- Brett M O'Brien
- Chemical Biology Interface Program, Johns Hopkins University, Baltimore, MD, USA
| | - Roumita Moulick
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| | - Sarah A Woodson
- Chemical Biology Interface Program, Johns Hopkins University, Baltimore, MD, USA.
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
O'Brien BM, Moulick R, Jiménez-Avalos G, Rajasekaran N, Kaiser CM, Woodson SA. Stick-slip unfolding favors self-association of expanded HTT mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596809. [PMID: 38895475 PMCID: PMC11185545 DOI: 10.1101/2024.05.31.596809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In Huntington's Disease (HD) and related disorders, expansion of CAG trinucleotide repeats produces a toxic gain of function in affected neurons. Expanded huntingtin (expHTT) mRNA forms aggregates that sequester essential RNA binding proteins, dysregulating mRNA processing and translation. The physical basis of RNA aggregation has been difficult to disentangle owing to the heterogeneous structure of the CAG repeats. Here, we probe the folding and unfolding pathways of expHTT mRNA using single-molecule force spectroscopy. Whereas normal HTT mRNAs unfold reversibly and cooperatively, expHTT mRNAs with 20 or 40 CAG repeats slip and unravel non-cooperatively at low tension. Slippage of CAG base pairs is punctuated by concerted rearrangement of adjacent CCG trinucleotides, trapping partially folded structures that readily base pair with another RNA strand. We suggest that the conformational entropy of the CAG repeats, combined with stable CCG base pairs, creates a stick-slip behavior that explains the aggregation propensity of expHTT mRNA.
Collapse
Affiliation(s)
- Brett M O'Brien
- Chemical Biology Interface Program, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Roumita Moulick
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Gabriel Jiménez-Avalos
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | | | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218 USA
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Sarah A Woodson
- Chemical Biology Interface Program, Johns Hopkins University, Baltimore, MD 21218 USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
3
|
Bahat A, Itzhaki E, Weiss B, Tolmasov M, Tsoory M, Kuperman Y, Brandis A, Shurrush KA, Dikstein R. Lowering mutant huntingtin by small molecules relieves Huntington's disease symptoms and progression. EMBO Mol Med 2024; 16:523-546. [PMID: 38374466 PMCID: PMC10940305 DOI: 10.1038/s44321-023-00020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 02/21/2024] Open
Abstract
Huntington's disease (HD) is an incurable inherited disorder caused by a repeated expansion of glutamines in the huntingtin gene (Htt). The mutant protein causes neuronal degeneration leading to severe motor and psychological symptoms. Selective downregulation of the mutant Htt gene expression is considered the most promising therapeutic approach for HD. We report the identification of small molecule inhibitors of Spt5-Pol II, SPI-24 and SPI-77, which selectively lower mutant Htt mRNA and protein levels in HD cells. In the BACHD mouse model, their direct delivery to the striatum diminished mutant Htt levels, ameliorated mitochondrial dysfunction, restored BDNF expression, and improved motor and anxiety-like phenotypes. Pharmacokinetic studies revealed that these SPIs pass the blood-brain-barrier. Prolonged subcutaneous injection or oral administration to early-stage mice significantly delayed disease deterioration. SPI-24 long-term treatment had no side effects or global changes in gene expression. Thus, lowering mutant Htt levels by small molecules can be an effective therapeutic strategy for HD.
Collapse
Affiliation(s)
- Anat Bahat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Elad Itzhaki
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Benjamin Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Michael Tolmasov
- The Mina & Everard Goodman Faculty of Life-Sciences and The Leslie & Susan Gonda Multidisciplinary Brain Research Center Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Khriesto A Shurrush
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
4
|
Anderson R, Das MR, Chang Y, Farenhem K, Schmitz CO, Jain A. CAG repeat expansions create splicing acceptor sites and produce aberrant repeat-containing RNAs. Mol Cell 2024; 84:702-714.e10. [PMID: 38295802 PMCID: PMC10923110 DOI: 10.1016/j.molcel.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Expansions of CAG trinucleotide repeats cause several rare neurodegenerative diseases. The disease-causing repeats are translated in multiple reading frames and without an identifiable initiation codon. The molecular mechanism of this repeat-associated non-AUG (RAN) translation is not known. We find that expanded CAG repeats create new splice acceptor sites. Splicing of proximal donors to the repeats produces unexpected repeat-containing transcripts. Upon splicing, depending on the sequences surrounding the donor, CAG repeats may become embedded in AUG-initiated open reading frames. Canonical AUG-initiated translation of these aberrant RNAs may account for proteins that have been attributed to RAN translation. Disruption of the relevant splice donors or the in-frame AUG initiation codons is sufficient to abrogate RAN translation. Our findings provide a molecular explanation for the abnormal translation products observed in CAG trinucleotide repeat expansion disorders and add to the repertoire of mechanisms by which repeat expansion mutations disrupt cellular functions.
Collapse
Affiliation(s)
- Rachel Anderson
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Michael R Das
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Yeonji Chang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Kelsey Farenhem
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Cameron O Schmitz
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Ankur Jain
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Zhou C, Liu HB, Jahanbakhsh F, Deng L, Wu B, Ying M, Margolis RL, Li PP. Bidirectional Transcription at the PPP2R2B Gene Locus in Spinocerebellar Ataxia Type 12. Mov Disord 2023; 38:2230-2240. [PMID: 37735923 PMCID: PMC10840700 DOI: 10.1002/mds.29605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene. OBJECTIVE In this study, we tested the hypothesis that the PPP2R2B antisense (PPP2R2B-AS1) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific reverse transcription polymerase chain reaction. The tendency of expanded PPP2R2B-AS1 (expPPP2R2B-AS1) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The apoptotic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS The repeat region in the PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts induce apoptosis in SK-N-MC cells, and the apoptotic effect may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the alanine open reading frame (ORF) via repeat-associated non-ATG translation, which is diminished by single-nucleotide interruptions within the CUG repeat and MBNL1 overexpression. CONCLUSIONS These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis and may therefore provide a novel therapeutic target for the disease. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Chengqian Zhou
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fatemeh Jahanbakhsh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Leon Deng
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Russell L. Margolis
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pan P. Li
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Anderson R, Das M, Chang Y, Farenhem K, Jain A. CAG repeat expansions create splicing acceptor sites and produce aberrant repeat-containing RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562581. [PMID: 37904984 PMCID: PMC10614865 DOI: 10.1101/2023.10.16.562581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Expansions of CAG trinucleotide repeats cause several rare neurodegenerative diseases. The disease-causing repeats are translated in multiple reading frames, without an identifiable initiation codon. The molecular mechanism of this repeat-associated non-AUG (RAN) translation is not known. We find that expanded CAG repeats create new splice acceptor sites. Splicing of proximal donors to the repeats produces unexpected repeat-containing transcripts. Upon splicing, depending on the sequences surrounding the donor, CAG repeats may become embedded in AUG-initiated open reading frames. Canonical AUG-initiated translation of these aberrant RNAs accounts for proteins that are attributed to RAN translation. Disruption of the relevant splice donors or the in-frame AUG initiation codons is sufficient to abrogate RAN translation. Our findings provide a molecular explanation for the abnormal translation products observed in CAG trinucleotide repeat expansion disorders and add to the repertoire of mechanisms by which repeat expansion mutations disrupt cellular functions.
Collapse
Affiliation(s)
- Rachel Anderson
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Michael Das
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Yeonji Chang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Kelsey Farenhem
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Ankur Jain
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Zhou C, Liu HB, Bakhsh FJ, Wu B, Ying M, Margolis RL, Li PP. Bidirectional transcription at the PPP2R2B gene locus in spinocerebellar ataxia type 12. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535298. [PMID: 37066173 PMCID: PMC10103964 DOI: 10.1101/2023.04.02.535298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
OBJECTIVE Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene . Here we tested the hypothesis that the PPP2R2B antisense ( PPP2R2B-AS1 ) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific RT-PCR (SS-RT-PCR). The tendency of expanded PPP2R2B-AS1 ( expPPP2R2B-AS1 ) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The toxic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated (RAN) translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS The repeat region in PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts are toxic to SK-N-MC cells, and the toxicity may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the Alanine ORF via repeat-associated non-ATG (RAN) translation, which is diminished by single nucleotide interruptions within the CUG repeat, and MBNL1 overexpression. INTERPRETATION These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis, and may therefore provide a novel therapeutic target for the disease.
Collapse
|
8
|
Wright SE, Todd PK. Native functions of short tandem repeats. eLife 2023; 12:e84043. [PMID: 36940239 PMCID: PMC10027321 DOI: 10.7554/elife.84043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/08/2023] [Indexed: 03/21/2023] Open
Abstract
Over a third of the human genome is comprised of repetitive sequences, including more than a million short tandem repeats (STRs). While studies of the pathologic consequences of repeat expansions that cause syndromic human diseases are extensive, the potential native functions of STRs are often ignored. Here, we summarize a growing body of research into the normal biological functions for repetitive elements across the genome, with a particular focus on the roles of STRs in regulating gene expression. We propose reconceptualizing the pathogenic consequences of repeat expansions as aberrancies in normal gene regulation. From this altered viewpoint, we predict that future work will reveal broader roles for STRs in neuronal function and as risk alleles for more common human neurological diseases.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Neuroscience, Picower InstituteCambridgeUnited States
| | - Peter K Todd
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- VA Ann Arbor Healthcare SystemAnn ArborUnited States
| |
Collapse
|
9
|
Repeat-associated non-AUG translation induces cytoplasmic aggregation of CAG repeat-containing RNAs. Proc Natl Acad Sci U S A 2023; 120:e2215071120. [PMID: 36623192 PMCID: PMC9934169 DOI: 10.1073/pnas.2215071120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
CAG trinucleotide repeat expansions cause several neurodegenerative diseases, including Huntington's disease and spinocerebellar ataxia. RNAs with expanded CAG repeats contribute to disease in two unusual ways. First, these repeat-containing RNAs may agglomerate in the nucleus as foci that sequester several RNA-binding proteins. Second, these RNAs may undergo aberrant repeat-associated non-AUG (RAN) translation in multiple frames and produce aggregation-prone proteins. The relationship between RAN translation and RNA foci, and their relative contributions to cellular dysfunction, are unclear. Here, we show that CAG repeat-containing RNAs that undergo RAN translation first accumulate at nuclear foci and, over time, are exported to the cytoplasm. In the cytoplasm, these RNAs are initially dispersed but, upon RAN translation, aggregate with the RAN translation products. These RNA-RAN protein agglomerates sequester various RNA-binding proteins and are associated with the disruption of nucleocytoplasmic transport and cell death. In contrast, RNA accumulation at nuclear foci alone does not produce discernable defects in nucleocytoplasmic transport or cell viability. Inhibition of RAN translation prevents cytoplasmic RNA aggregation and alleviates cell toxicity. Our findings demonstrate that RAN translation-induced RNA-protein aggregation correlates with the key pathological hallmarks observed in disease and suggest that cytoplasmic RNA aggregation may be an underappreciated phenomenon in CAG trinucleotide repeat expansion disorders.
Collapse
|
10
|
Ly S, Didiot MC, Ferguson CM, Coles AH, Miller R, Chase K, Echeverria D, Wang F, Sadri-Vakili G, Aronin N, Khvorova A. Mutant huntingtin messenger RNA forms neuronal nuclear clusters in rodent and human brains. Brain Commun 2022; 4:fcac248. [PMID: 36458209 PMCID: PMC9707646 DOI: 10.1093/braincomms/fcac248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/14/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
Mutant messenger RNA (mRNA) and protein contribute to the clinical manifestation of many repeat-associated neurological disorders, with the presence of nuclear RNA clusters being a common pathological feature. Yet, investigations into Huntington's disease-caused by a CAG repeat expansion in exon 1 of the huntingtin (HTT) gene-have primarily focused on toxic protein gain-of-function as the primary disease-causing feature. To date, mutant HTT mRNA has not been identified as an in vivo hallmark of Huntington's disease. Here, we report that, in two Huntington's disease mouse models (YAC128 and BACHD-97Q-ΔN17), mutant HTT mRNA is retained in the nucleus. Widespread formation of large mRNA clusters (∼0.6-5 µm3) occurred in 50-75% of striatal and cortical neurons. Cluster formation was independent of age and driven by expanded repeats. Clusters associate with chromosomal transcriptional sites and quantitatively co-localize with the aberrantly processed N-terminal exon 1-intron 1 mRNA isoform, HTT1a. HTT1a mRNA clusters are observed in a subset of neurons from human Huntington's disease post-mortem brain and are likely caused by somatic expansion of repeats. In YAC128 mice, clusters, but not individual HTT mRNA, are resistant to antisense oligonucleotide treatment. Our findings identify mutant HTT/HTT1a mRNA clustering as an early, robust molecular signature of Huntington's disease, providing in vivo evidence that Huntington's disease is a repeat expansion disease with mRNA involvement.
Collapse
Affiliation(s)
| | | | | | - Andrew H Coles
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Rachael Miller
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kathryn Chase
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Feng Wang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ghazaleh Sadri-Vakili
- Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neil Aronin
- Correspondence may also be addressed to: Neil Aronin 368 Plantation Street, Albert Sherman Center Worcester, MA 01655, USA. E-mail:
| | - Anastasia Khvorova
- Correspondence to: Anastasia Khvorova 368 Plantation Street, Albert Sherman Center Worcester, MA 01655, USA E-mail:
| |
Collapse
|
11
|
Kaczynski TJ, Au ED, Farkas MH. Oxidative stress alters transcript localization of disease-associated genes in the retinal pigment epithelium. Mol Vis 2022; 28:340-351. [PMID: 36338668 PMCID: PMC9603899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Nuclear retention is a mechanism whereby excess RNA transcripts are stored in the event that a cell needs to quickly respond to a stimulus; maintaining proper nuclear-to-cytoplasmic balance is important for cellular homeostasis and cell function. There are many mechanisms that are employed to determine whether to retain a transcript or export it to the cytoplasm, although the extent to which tissue or cell type, internal and external stressors, and disease pathogenesis affect this process is not yet clear. As the most biochemically active tissue in the body, the retina must mitigate endogenous and exogenous stressors to maintain cell health and tissue function. Oxidative stress, believed to contribute to the pathogenesis or progression of age-related macular degeneration (AMD) and inherited retinal dystrophies (IRDs), is produced both internally from biochemical processes as well as externally from environmental insult. Here, we evaluate the effect of oxidative stress on transcript localization in the retinal pigment epithelium (RPE), with specific focus on transcripts related to RPE function and disease. METHODS We performed poly(A) RNA sequencing on nuclear and cytoplasmic fractions from human induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) cells exposed to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), as well as on untreated controls. RESULTS Under normal conditions, the number of mRNA transcripts retained in the nucleus exceeded that found in studies on other tissues. Further, the nuclear-to-cytoplasmic ratio of transcripts was altered following oxidative stress, as was the retention of genes associated with AMD and IRDs, as well as those that are important for RPE physiology. CONCLUSIONS These results provide a localization catalog of all expressed mRNA in iPSC-RPE under normal conditions and after exposure to H<sub>2</sub>O<sub>2</sub>, shedding light on the extent to which H<sub>2</sub>O<sub>2</sub> alters transcript localization and potentially offering insight into one mechanism through which oxidative stress may contribute to the progression of visual disorders.
Collapse
Affiliation(s)
- Tadeusz J. Kaczynski
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY,Research Service, VA Medical Center, Buffalo, NY
| | - Elizabeth D. Au
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY
| | - Michael H. Farkas
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY,Research Service, VA Medical Center, Buffalo, NY,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY
| |
Collapse
|
12
|
van der Bent ML, Evers MM, Vallès A. Emerging Therapies for Huntington's Disease - Focus on N-Terminal Huntingtin and Huntingtin Exon 1. Biologics 2022; 16:141-160. [PMID: 36213816 PMCID: PMC9532260 DOI: 10.2147/btt.s270657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/12/2022]
Abstract
Huntington's disease is a devastating heritable neurodegenerative disorder that is caused by the presence of a trinucleotide CAG repeat expansion in the Huntingtin gene, leading to a polyglutamine tract in the protein. Various mechanisms lead to the production of N-terminal Huntingtin protein fragments, which are reportedly more toxic than the full-length protein. In this review, we summarize the current knowledge on the production and toxicity of N-terminal Huntingtin protein fragments. Further, we expand on various therapeutic strategies targeting N-terminal Huntingtin on the protein, RNA and DNA level. Finally, we compare the therapeutic approaches that are clinically most advanced, including those that do not target N-terminal Huntingtin, discussing differences in mode of action and translational applicability.
Collapse
Affiliation(s)
| | - Melvin M Evers
- uniQure biopharma B.V., Department of Research and Development, Amsterdam, the Netherlands
| | - Astrid Vallès
- uniQure biopharma B.V., Department of Research and Development, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Baud A, Derbis M, Tutak K, Sobczak K. Partners in crime: Proteins implicated in
RNA
repeat expansion diseases. WIRES RNA 2022; 13:e1709. [PMID: 35229468 PMCID: PMC9539487 DOI: 10.1002/wrna.1709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Baud
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Magdalena Derbis
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Katarzyna Tutak
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Krzysztof Sobczak
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| |
Collapse
|
14
|
Ratovitski T, Jiang M, O'Meally RN, Rauniyar P, Chighladze E, Faragó A, Kamath SV, Jin J, Shevelkin AV, Cole RN, Ross CA. Interaction of huntingtin with PRMTs and its subsequent arginine methylation affects HTT solubility, phase transition behavior and neuronal toxicity. Hum Mol Genet 2022; 31:1651-1672. [PMID: 34888656 PMCID: PMC9122652 DOI: 10.1093/hmg/ddab351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Huntington's disease (HD) is an incurable neurodegenerative disorder caused by a CAG expansion in the huntingtin gene (HTT). Post-translational modifications of huntingtin protein (HTT), such as phosphorylation, acetylation and ubiquitination, have been implicated in HD pathogenesis. Arginine methylation/dimethylation is an important modification with an emerging role in neurodegeneration; however, arginine methylation of HTT remains largely unexplored. Here we report nearly two dozen novel arginine methylation/dimethylation sites on the endogenous HTT from human and mouse brain and human cells suggested by mass spectrometry with data-dependent acquisition. Targeted quantitative mass spectrometry identified differential arginine methylation at specific sites in HD patient-derived striatal precursor cell lines compared to normal controls. We found that HTT can interact with several type I protein arginine methyltransferases (PRMTs) via its N-terminal domain. Using a combination of in vitro methylation and cell-based experiments, we identified PRMT4 (CARM1) and PRMT6 as major enzymes methylating HTT at specific arginines. Alterations of these methylation sites had a profound effect on biochemical properties of HTT rendering it less soluble in cells and affected its liquid-liquid phase separation and phase transition patterns in vitro. We found that expanded HTT 1-586 fragment can form liquid-like assemblies, which converted into solid-like assemblies when the R200/205 methylation sites were altered. Methyl-null alterations increased HTT toxicity to neuronal cells, while overexpression of PRMT 4 and 6 was beneficial for neuronal survival. Thus, arginine methylation pathways that involve specific HTT-modifying PRMT enzymes and modulate HTT biochemical and toxic properties could provide targets for HD-modifying therapies.
Collapse
Affiliation(s)
- Tamara Ratovitski
- To whom correspondence should be addressed at: or Christopher Ross, Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 9-123, 600 North Wolfe Street, Baltimore, MD 21287, USA. Fax: +1 4106140013; ,
| | | | | | | | - Ekaterine Chighladze
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Anikó Faragó
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Siddhi V Kamath
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jing Jin
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexey V Shevelkin
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christopher A Ross
- To whom correspondence should be addressed at: or Christopher Ross, Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 9-123, 600 North Wolfe Street, Baltimore, MD 21287, USA. Fax: +1 4106140013; ,
| |
Collapse
|
15
|
Gu X, Richman J, Langfelder P, Wang N, Zhang S, Bañez-Coronel M, Wang HB, Yang L, Ramanathan L, Deng L, Park CS, Choi CR, Cantle JP, Gao F, Gray M, Coppola G, Bates GP, Ranum LPW, Horvath S, Colwell CS, Yang XW. Uninterrupted CAG repeat drives striatum-selective transcriptionopathy and nuclear pathogenesis in human Huntingtin BAC mice. Neuron 2022; 110:1173-1192.e7. [PMID: 35114102 PMCID: PMC9462388 DOI: 10.1016/j.neuron.2022.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/30/2021] [Accepted: 01/06/2022] [Indexed: 02/08/2023]
Abstract
In Huntington's disease (HD), the uninterrupted CAG repeat length, but not the polyglutamine length, predicts disease onset. However, the underlying pathobiology remains unclear. Here, we developed bacterial artificial chromosome (BAC) transgenic mice expressing human mutant huntingtin (mHTT) with uninterrupted, and somatically unstable, CAG repeats that exhibit progressive disease-related phenotypes. Unlike prior mHTT transgenic models with stable, CAA-interrupted, polyglutamine-encoding repeats, BAC-CAG mice show robust striatum-selective nuclear inclusions and transcriptional dysregulation resembling those in murine huntingtin knockin models and HD patients. Importantly, the striatal transcriptionopathy in HD models is significantly correlated with their uninterrupted CAG repeat length but not polyglutamine length. Finally, among the pathogenic entities originating from mHTT genomic transgenes and only present or enriched in the uninterrupted CAG repeat model, somatic CAG repeat instability and nuclear mHTT aggregation are best correlated with early-onset striatum-selective molecular pathogenesis and locomotor and sleep deficits, while repeat RNA-associated pathologies and repeat-associated non-AUG (RAN) translation may play less selective or late pathogenic roles, respectively.
Collapse
Affiliation(s)
- Xiaofeng Gu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey Richman
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Langfelder
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nan Wang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shasha Zhang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Monica Bañez-Coronel
- Center for Neurogenetics, Department of Molecular Genetics and Microbiology, College of Medicine, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute of Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Huei-Bin Wang
- Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lucia Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lalini Ramanathan
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Linna Deng
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chang Sin Park
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher R Choi
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey P Cantle
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fuying Gao
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michelle Gray
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Giovanni Coppola
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gillian P Bates
- Huntington's Disease Centre, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Laura P W Ranum
- Center for Neurogenetics, Department of Molecular Genetics and Microbiology, College of Medicine, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute of Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher S Colwell
- Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Li PP, Moulick R, Feng H, Sun X, Arbez N, Jin J, Marque LO, Hedglen E, Chan HE, Ross CA, Pulst SM, Margolis RL, Woodson S, Rudnicki DD. RNA Toxicity and Perturbation of rRNA Processing in Spinocerebellar Ataxia Type 2. Mov Disord 2021; 36:2519-2529. [PMID: 34390268 PMCID: PMC8884117 DOI: 10.1002/mds.28729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by expansion of a CAG repeat in Ataxin-2 (ATXN2) gene. The mutant ATXN2 protein with a polyglutamine tract is known to be toxic and contributes to the SCA2 pathogenesis. OBJECTIVE Here, we tested the hypothesis that the mutant ATXN2 transcript with an expanded CAG repeat (expATXN2) is also toxic and contributes to SCA2 pathogenesis. METHODS The toxic effect of expATXN2 transcripts on SK-N-MC neuroblastoma cells and primary mouse cortical neurons was evaluated by caspase 3/7 activity and nuclear condensation assay, respectively. RNA immunoprecipitation assay was performed to identify RNA binding proteins (RBPs) that bind to expATXN2 RNA. Quantitative PCR was used to examine if ribosomal RNA (rRNA) processing is disrupted in SCA2 and Huntington's disease (HD) human brain tissue. RESULTS expATXN2 RNA induces neuronal cell death, and aberrantly interacts with RBPs involved in RNA metabolism. One of the RBPs, transducin β-like protein 3 (TBL3), involved in rRNA processing, binds to both expATXN2 and expanded huntingtin (expHTT) RNA in vitro. rRNA processing is disrupted in both SCA2 and HD human brain tissue. CONCLUSION These findings provide the first evidence of a contributory role of expATXN2 transcripts in SCA2 pathogenesis, and further support the role of expHTT transcripts in HD pathogenesis. The disruption of rRNA processing, mediated by aberrant interaction of RBPs with expATXN2 and expHTT transcripts, suggest a point of convergence in the pathogeneses of repeat expansion diseases with potential therapeutic implications. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pan P. Li
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Roumita Moulick
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Hongxuan Feng
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Xin Sun
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Nicolas Arbez
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jing Jin
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Leonard O. Marque
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Erin Hedglen
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - H.Y. Edwin Chan
- Biochemistry Program, School of Life SciencesThe Chinese University of Hong KongHong KongChina
| | - Christopher A. Ross
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Stefan M. Pulst
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
| | - Russell L. Margolis
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sarah Woodson
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dobrila D. Rudnicki
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
17
|
da Costa RT, dos Santos MB, Silva ICS, de Almeida RP, Teruel MS, Carrettiero DC, Ribeiro CAJ. Methylmalonic Acid Compromises Respiration and Reduces the Expression of Differentiation Markers of SH-SY5Y Human Neuroblastoma Cells. ACS Chem Neurosci 2021; 12:2608-2618. [PMID: 34191487 DOI: 10.1021/acschemneuro.1c00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Methylmalonic acidemia is a rare metabolic disorder caused by the deficient activity of l-methylmalonyl-CoA mutase or its cofactor 5-deoxyadenosylcobalamin and is characterized by accumulation of methylmalonic acid (MMA) and alternative metabolites. The brain is one of the most affected tissues and neurologic symptoms, characterized by seizures, mental retardation, psychomotor abnormalities, and coma, commonly appear in newborns. The molecular mechanisms of neuropathogenesis in methylmalonic acidemia are still poorly understood, specifically regarding the impairments in neuronal development, maturation, and differentiation. In this study, we investigated the effects of MMA in both undifferentiated and differentiated phenotypes of SH-SY5Y human neuroblastoma cells. We observed an increase in glucose consumption and reduction in respiratory parameters of both undifferentiated and differentiated cells after exposition to MMA, suggesting that differentiated cells are slightly more prone to perturbations in respiratory parameters by MMA than undifferentiated cells. Next, we performed qPCR of mature neuronal-specific gene markers and measured mitochondrial functioning to evaluate the role of MMA during differentiation. Our results showed that MMA impairs the respiratory parameters only at the late stage of differentiation and downregulates the transcriptional gene profile of mature neuronal markers neuron-specific enolase (ENO2) and synaptophysin (SYP). Altogether, our findings point out important changes observed during neuronal maturation and energetic stress vulnerability that can play a role in the neurological clinical symptoms at the newborn period and reveal important molecular mechanisms that could help the screening of targets to new approaches in the therapies of this disease.
Collapse
Affiliation(s)
- Renata T. da Costa
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Marcella B. dos Santos
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Izabel C. S. Silva
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Raquel P. de Almeida
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Marcela S. Teruel
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - Daniel C. Carrettiero
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| | - César A. J. Ribeiro
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP 09606-070, Brazil
| |
Collapse
|
18
|
A high-throughput screening to identify small molecules that suppress huntingtin promoter activity or activate huntingtin-antisense promoter activity. Sci Rep 2021; 11:6157. [PMID: 33731741 PMCID: PMC7969751 DOI: 10.1038/s41598-021-85279-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of huntingtin (HTT). While there are currently no disease-modifying treatments for HD, recent efforts have focused on the development of nucleotide-based therapeutics to lower HTT expression. As an alternative to siRNA or oligonucleotide methods, we hypothesized that suppression of HTT expression might be accomplished by small molecules that either (1) directly decrease HTT expression by suppressing HTT promoter activity or (2) indirectly decrease HTT expression by increasing the promoter activity of HTT-AS, the gene antisense to HTT that appears to inhibit expression of HTT. We developed and employed a high-throughput screen for modifiers of HTT and HTT-AS promoter activity using luminescent reporter HEK293 cells; of the 52,041 compounds tested, we identified 898 replicable hits. We used a rigorous stepwise approach to assess compound toxicity and the capacity of the compounds to specifically lower huntingtin protein in 5 different cell lines, including HEK293 cells, HD lymphoblastoid cells, mouse primary neurons, HD iPSCs differentiated into cortical-like neurons, and HD hESCs. We found no compounds which were able to lower huntingtin without lowering cell viability in all assays, though the potential efficacy of a few compounds at non-toxic doses could not be excluded. Our results suggest that more specific targets may facilitate a small molecule approach to HTT suppression.
Collapse
|
19
|
Abstract
The subcellular localization of RNAs correlates with their function and how they are regulated. Most protein-coding mRNAs are exported into the cytoplasm for protein synthesis, while some mRNA species, long noncoding RNAs, and some regulatory element-associated unstable transcripts tend to be retained in the nucleus, where they function as a regulatory unit and/or are regulated by nuclear surveillance pathways. While the mechanisms regulating mRNA export and localization have been well summarized, the mechanisms governing nuclear retention of RNAs, especially of noncoding RNAs, are seldomly reviewed. In this review, we summarize recent advances in the mechanistic study of RNA nuclear retention, especially for noncoding RNAs, from the angle of cis-acting elements embedded in RNA transcripts and their interaction with trans-acting factors. We also try to illustrate the general principles of RNA nuclear retention and we discuss potential areas for future investigation.
Collapse
Affiliation(s)
- Chong Tong
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Castro AF, Loureiro JR, Bessa J, Silveira I. Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes (Basel) 2020; 11:E1418. [PMID: 33261024 PMCID: PMC7760973 DOI: 10.3390/genes11121418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Unstable repeat expansions and insertions cause more than 30 neurodegenerative and neuromuscular diseases. Remarkably, bidirectional transcription of repeat expansions has been identified in at least 14 of these diseases. More remarkably, a growing number of studies has been showing that both sense and antisense repeat RNAs are able to dysregulate important cellular pathways, contributing together to the observed clinical phenotype. Notably, antisense repeat RNAs from spinocerebellar ataxia type 7, myotonic dystrophy type 1, Huntington's disease and frontotemporal dementia/amyotrophic lateral sclerosis associated genes have been implicated in transcriptional regulation of sense gene expression, acting either at a transcriptional or posttranscriptional level. The recent evidence that antisense repeat RNAs could modulate gene expression broadens our understanding of the pathogenic pathways and adds more complexity to the development of therapeutic strategies for these disorders. In this review, we cover the amazing progress made in the understanding of the pathogenic mechanisms associated with repeat expansion neurodegenerative and neuromuscular diseases with a focus on the impact of antisense repeat transcription in the development of efficient therapies.
Collapse
Affiliation(s)
- Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| | - José Bessa
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- Vertebrate Development and Regeneration Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| |
Collapse
|
21
|
Palomino‐Hernandez O, Margreiter MA, Rossetti G. Challenges in RNA Regulation in Huntington's Disease: Insights from Computational Studies. Isr J Chem 2020. [DOI: 10.1002/ijch.202000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Oscar Palomino‐Hernandez
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM-9)/Instute for advanced simulations (IAS-5)Forschungszentrum Juelich 52425 Jülich Germany
- Faculty 1RWTH Aachen 52425 Aachen Germany
- Computation-based Science and Technology Research CenterThe Cyprus Institute Nicosia 2121 Cyprus
- Institute of Life ScienceThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Michael A. Margreiter
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM-9)/Instute for advanced simulations (IAS-5)Forschungszentrum Juelich 52425 Jülich Germany
- Faculty 1RWTH Aachen 52425 Aachen Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM-9)/Instute for advanced simulations (IAS-5)Forschungszentrum Juelich 52425 Jülich Germany
- Jülich Supercomputing Centre (JSC)Forschungszentrum Jülich 52425 Jülich Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation University Hospital AachenRWTH Aachen University Pauwelsstraße 30 52074 Aachen Germany
| |
Collapse
|
22
|
Banez-Coronel M, Ranum LPW. Repeat-associated non-AUG (RAN) translation: insights from pathology. J Transl Med 2019; 99:929-942. [PMID: 30918326 PMCID: PMC7219275 DOI: 10.1038/s41374-019-0241-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
More than 40 different neurological diseases are caused by microsatellite repeat expansions. Since the discovery of repeat-associated non-AUG (RAN) translation by Zu et al. in 2011, nine expansion disorders have been identified as RAN-positive diseases. RAN proteins are translated from different types of nucleotide repeat expansions and can be produced from both sense and antisense transcripts. In some diseases, RAN proteins have been shown to accumulate in affected brain regions. Here we review the pathological and molecular aspects associated with RAN protein accumulation for each particular disorder, the correlation between disease pathology and the available in vivo models and the common aspects shared by some of the newly discovered RAN proteins.
Collapse
Affiliation(s)
- Monica Banez-Coronel
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA.
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
23
|
Zong X, Zhao J, Wang H, Lu Z, Wang F, Du H, Wang Y. Mettl3 Deficiency Sustains Long-Chain Fatty Acid Absorption through Suppressing Traf6-Dependent Inflammation Response. THE JOURNAL OF IMMUNOLOGY 2018; 202:567-578. [PMID: 30567729 DOI: 10.4049/jimmunol.1801151] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/13/2018] [Indexed: 01/24/2023]
Abstract
A better understanding of the molecular mechanism of intestinal fatty acid absorption could lead to novel approaches to treatment and prevention of fatty acid-related metabolic diseases. Although it is confirmed that absorption of long-chain fatty acids (LCFAs) decreases during the pathological processes, the genetic basis and molecular mechanisms remain largely unknown. N 6-methyladenosine (m6A) is the most prevalent internal modification on eukaryotic mRNA. Recently, m6A has been found to play important roles in inflammation and antiviral responses. In this study, we show that deficiency of Mettl3, the core methyltransferase of m6A, exerts antimalabsorption of LCFA activity in vitro through inhibiting the inflammation response mediated by LPS. To substantiate this finding further, we found the levels of triglycerides were also sustained in cells with depleted Mettl3, which were cultured in Transwell to polarize with villus formation to simulate the situation in vivo. Mechanistically, depletion of Mettl3 decreases the m6A level of Traf6 mRNA, thereby its transcripts are entrapped in the nucleus, followed by the decreased expression of Traf6, leading to the suppression of NF-κB and MAPK signaling pathway. Thus, the inflammation response was suppressed, resulting in the sustained absorption of LCFA. Moreover, we found that ectopic expression of Traf6 largely abolishes the sustained absorption LCFA in Mettl3 depletion cells. Collectively, silencing Mettl3 could sustain LCFA absorption through blocking the TRAF6-dependent inflammation response. Our work uncovers a critical function of m6A methylation and provides insight into critical roles of Mettl3 in LCFA absorption and inflammatory disease.
Collapse
Affiliation(s)
- Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, People's Republic of China; and
| | - Jing Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, People's Republic of China; and
| | - Hong Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, People's Republic of China; and
| | - Zeqing Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, People's Republic of China; and.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province 310058, People's Republic of China
| | - Fengqin Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, People's Republic of China; and.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province 310058, People's Republic of China
| | - Huahua Du
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, People's Republic of China; and.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province 310058, People's Republic of China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, People's Republic of China; and .,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province 310058, People's Republic of China
| |
Collapse
|
24
|
Neueder A, Bates GP. RNA Related Pathology in Huntington's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:85-101. [PMID: 29427099 DOI: 10.1007/978-3-319-71779-1_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter summarises research investigating the expression of huntingtin sense and anti-sense transcripts, the effect of the mutation on huntingtin processing as well as the more global effect of the mutation on the coding and non-coding transcriptomes. The huntingtin gene is ubiquitously expressed, although expression levels vary between tissues and cell types. A SNP that affects NF-ĸB binding in the huntingtin promoter modulates the expression level of huntingtin transcripts and is associated with the age of disease onset. Incomplete splicing between exon 1 and exon 2 has been shown to result in the expression of a small polyadenylated mRNA that encodes the highly pathogenic exon 1 huntingtin protein. This occurs in a CAG-repeat length dependent manner in all full-length mouse models of HD as well as HD patient post-mortem brains and fibroblasts. An antisense transcript to huntingtin is generated that contains a CUG repeat that is expanded in HD patients. In myotonic dystrophy, expanded CUG repeats form RNA foci in cell nuclei that bind specific proteins (e.g. MBL1). Short, pure CAG RNAs of approximately 21 nucleotides that have been processed by DICER can inhibit the translation of other CAG repeat containing mRNAs. The HD mutation affects the transcriptome at the level of mRNA expression, splicing and the expression of non-coding RNAs. Finally, expanded repetitive stretched of nucleotides can lead to RAN translation, in which the ribosome translates from the expanded repeat in all possible reading frames, producing proteins with various poly-amino acid tracts. The extent to which these events contribute to HD pathogenesis is largely unknown.
Collapse
Affiliation(s)
- Andreas Neueder
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Gillian P Bates
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
25
|
Hautbergue GM. RNA Nuclear Export: From Neurological Disorders to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1007:89-109. [PMID: 28840554 DOI: 10.1007/978-3-319-60733-7_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The presence of a nuclear envelope, also known as nuclear membrane, defines the structural framework of all eukaryotic cells by separating the nucleus, which contains the genetic material, from the cytoplasm where the synthesis of proteins takes place. Translation of proteins in Eukaryotes is thus dependent on the active transport of DNA-encoded RNA molecules through pores embedded within the nuclear membrane. Several mechanisms are involved in this process generally referred to as RNA nuclear export or nucleocytoplasmic transport of RNA. The regulated expression of genes requires the nuclear export of protein-coding messenger RNA molecules (mRNAs) as well as non-coding RNAs (ncRNAs) together with proteins and pre-assembled ribosomal subunits. The nuclear export of mRNAs is intrinsically linked to the co-transcriptional processing of nascent transcripts synthesized by the RNA polymerase II. This functional coupling is essential for the survival of cells allowing for timely nuclear export of fully processed transcripts, which could otherwise cause the translation of abnormal proteins such as the polymeric repeat proteins produced in some neurodegenerative diseases. Alterations of the mRNA nuclear export pathways can also lead to genome instability and to various forms of cancer. This chapter will describe the molecular mechanisms driving the nuclear export of RNAs with a particular emphasis on mRNAs. It will also review their known alterations in neurological disorders and cancer, and the recent opportunities they offer for the potential development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guillaume M Hautbergue
- RNA Biology Laboratory, Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
26
|
Martí E. RNA toxicity induced by expanded CAG repeats in Huntington's disease. Brain Pathol 2018; 26:779-786. [PMID: 27529325 DOI: 10.1111/bpa.12427] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) belongs to the group of inherited polyglutamine (PolyQ) diseases caused by an expanded CAG repeat in the coding region of the Huntingtin (HTT) gene that results in an elongated polyQ stretch. Abnormal function and aggregation of the mutant protein has been typically delineated as the main molecular cause underlying disease development. However, the most recent advances have revealed novel pathogenic pathways directly dependent on an RNA toxic gain-of-function. Expanded CAG repeats within exon 1 of the HTT mRNA induce toxicity through mechanisms involving, at least in part, gene expression perturbations. This has important implications not only for basic and translational research in HD, but also for other types of diseases carrying the expanded CAG in other genes, which likely share pathogenic aspects. Here I will review the evidence and mechanisms underlying RNA toxicity in CAG repeat expansions, with particular focus on HD. These comprise abnormal subcellular localization of the transcripts containing the expanded CAG repeats; sequestration of several types of proteins by the expanded CAG repeat which results in defects of alternative splicing events and gene expression; and aberrant biogenesis and detrimental activity of small CAG repeated RNAs (sCAG) that produce altered gene silencing. Although these altered pathways have been detected in HD models, their contribution to disease development and progress requires further study.
Collapse
Affiliation(s)
- Eulàlia Martí
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, 08003, Spain.,Centro de Investigacion Biomedica en Red (CIBERESP), Madrid, Spain
| |
Collapse
|
27
|
Pathogenic insights from Huntington's disease-like 2 and other Huntington's disease genocopies. Curr Opin Neurol 2018; 29:743-748. [PMID: 27749395 DOI: 10.1097/wco.0000000000000386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Huntington's disease-like 2 (HDL2) is a rare, progressive, autosomal dominant neurodegenerative disorder that genetically, clinically, and pathologically closely resembles Huntington's disease. We review HDL2 pathogenic mechanisms and examine the implications of these mechanisms for Huntington's disease and related diseases. RECENT FINDINGS HDL2 is caused by a CTG/CAG repeat expansion in junctophilin-3. Available data from cell and animal models and human brain suggest that HDL2 is a complex disease in which transcripts and proteins expressed bidirectionally from the junctophilin-3 locus contribute to pathogenesis through both gain-and loss-of-function mechanisms. Recent advances indicate that the pathogenesis of Huntington's disease is equally complex, despite the emphasis on toxic gain-of-function properties of the mutant huntingtin protein. SUMMARY Studies examining in parallel the genetic, clinical, neuropathological, and mechanistic similarities between Huntington's disease and HDL2 have begun to identify points of convergence between the pathogenic pathways of the two diseases. Comparisons to other diseases that are phenotypically or genetically related to Huntington's disease and HDL2 will likely reveal additional common pathways. The ultimate goal is to identify shared therapeutic targets and eventually develop therapies that may, at least in part, be effective across multiple similar rare diseases, an essential approach given the scarcity of resources for basic and translational research.
Collapse
|
28
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
29
|
Wegener M, Müller-McNicoll M. Nuclear retention of mRNAs - quality control, gene regulation and human disease. Semin Cell Dev Biol 2017; 79:131-142. [PMID: 29102717 DOI: 10.1016/j.semcdb.2017.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
Abstract
Nuclear retention of incompletely spliced or mature mRNAs emerges as a novel, previously underappreciated layer of gene regulation, which enables the cell to rapidly respond to stress, viral infection, differentiation cues or changing environmental conditions. Focusing on mammalian cells, we discuss recent insights into the mechanisms and functions of nuclear retention, describe retention-promoting features in protein-coding transcripts and propose mechanisms for their regulated release into the cytoplasm. Moreover, we discuss examples of how aberrant nuclear retention of mRNAs may lead to human diseases.
Collapse
Affiliation(s)
- Marius Wegener
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
30
|
Zu T, Cleary JD, Liu Y, Bañez-Coronel M, Bubenik JL, Ayhan F, Ashizawa T, Xia G, Clark HB, Yachnis AT, Swanson MS, Ranum LPW. RAN Translation Regulated by Muscleblind Proteins in Myotonic Dystrophy Type 2. Neuron 2017; 95:1292-1305.e5. [PMID: 28910618 DOI: 10.1016/j.neuron.2017.08.039] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 05/31/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022]
Abstract
Several microsatellite-expansion diseases are characterized by the accumulation of RNA foci and RAN proteins, raising the possibility of a mechanistic connection. We explored this question using myotonic dystrophy type 2, a multisystemic disease thought to be primarily caused by RNA gain-of-function effects. We demonstrate that the DM2 CCTG⋅CAGG expansion expresses sense and antisense tetrapeptide poly-(LPAC) and poly-(QAGR) RAN proteins, respectively. In DM2 autopsy brains, LPAC is found in neurons, astrocytes, and glia in gray matter, and antisense QAGR proteins accumulate within white matter. LPAC and QAGR proteins are toxic to cells independent of RNA gain of function. RNA foci and nuclear sequestration of CCUG transcripts by MBNL1 is inversely correlated with LPAC expression. These data suggest a model that involves nuclear retention of expansion RNAs by RNA-binding proteins (RBPs) and an acute phase in which expansion RNAs exceed RBP sequestration capacity, are exported to the cytoplasm, and undergo RAN translation. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Tao Zu
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - John D Cleary
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Yuanjing Liu
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Monica Bañez-Coronel
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Jodi L Bubenik
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Fatma Ayhan
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Tetsuo Ashizawa
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Neurology, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Neurological Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Guangbin Xia
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Neurology, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Anthony T Yachnis
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Maurice S Swanson
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA; Department of Neurology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
31
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
32
|
The RNA helicase DDX46 inhibits innate immunity by entrapping m 6A-demethylated antiviral transcripts in the nucleus. Nat Immunol 2017; 18:1094-1103. [PMID: 28846086 DOI: 10.1038/ni.3830] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 08/07/2017] [Indexed: 12/15/2022]
Abstract
DEAD-box (DDX) helicases are vital for the recognition of RNA and metabolism and are critical for the initiation of antiviral innate immunity. Modification of RNA is involved in many biological processes; however, its role in antiviral innate immunity has remained unclear. Here we found that nuclear DDX member DDX46 inhibited the production of type I interferons after viral infection. DDX46 bound Mavs, Traf3 and Traf6 transcripts (which encode signaling molecules involved in antiviral responses) via their conserved CCGGUU element. After viral infection, DDX46 recruited ALKBH5, an 'eraser' of the RNA modification N6-methyladenosine (m6A), via DDX46's DEAD helicase domain to demethylate those m6A-modified antiviral transcripts. It consequently enforced their retention in the nucleus and therefore prevented their translation and inhibited interferon production. DDX46 also suppressed antiviral innate immunity in vivo. Thus, DDX46 inhibits antiviral innate responses by entrapping selected antiviral transcripts in the nucleus by erasing their m6A modification, a modification normally required for export from the nucleus and translation.
Collapse
|
33
|
Ratovitski T, O’Meally RN, Jiang M, Chaerkady R, Chighladze E, Stewart JC, Wang X, Arbez N, Roby E, Alexandris A, Duan W, Vijayvargia R, Seong IS, Lavery DJ, Cole RN, Ross CA. Post-Translational Modifications (PTMs), Identified on Endogenous Huntingtin, Cluster within Proteolytic Domains between HEAT Repeats. J Proteome Res 2017; 16:2692-2708. [PMID: 28653853 PMCID: PMC5560079 DOI: 10.1021/acs.jproteome.6b00991] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Post-translational modifications (PTMs) of proteins regulate various cellular processes. PTMs of polyglutamine-expanded huntingtin (Htt) protein, which causes Huntington's disease (HD), are likely modulators of HD pathogenesis. Previous studies have identified and characterized several PTMs on exogenously expressed Htt fragments, but none of them were designed to systematically characterize PTMs on the endogenous full-length Htt protein. We found that full-length endogenous Htt, which was immunoprecipitated from HD knock-in mouse and human post-mortem brain, is suitable for detection of PTMs by mass spectrometry. Using label-free and mass tag labeling-based approaches, we identified near 40 PTMs, of which half are novel (data are available via ProteomeXchange with identifier PXD005753). Most PTMs were located in clusters within predicted unstructured domains rather than within the predicted α-helical structured HEAT repeats. Using quantitative mass spectrometry, we detected significant differences in the stoichiometry of several PTMs between HD and WT mouse brain. The mass-spectrometry identification and quantitation were verified using phospho-specific antibodies for selected PTMs. To further validate our findings, we introduced individual PTM alterations within full-length Htt and identified several PTMs that can modulate its subcellular localization in striatal cells. These findings will be instrumental in further assembling the Htt PTM framework and highlight several PTMs as potential therapeutic targets for HD.
Collapse
Affiliation(s)
- Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Robert N. O’Meally
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 371 BRB, Baltimore, Maryland 21287, United States
| | - Mali Jiang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Raghothama Chaerkady
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 371 BRB, Baltimore, Maryland 21287, United States
| | - Ekaterine Chighladze
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Jacqueline C. Stewart
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Xiaofang Wang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Elaine Roby
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Athanasios Alexandris
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Ravi Vijayvargia
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ihn Sik Seong
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Daniel J. Lavery
- CHDI Foundation/CHDI Management, Inc., Princeton, New Jersey 08540, United States
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 371 BRB, Baltimore, Maryland 21287, United States
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
34
|
Li PP, Sun X, Xia G, Arbez N, Paul S, Zhu S, Peng HB, Ross CA, Koeppen AH, Margolis RL, Pulst SM, Ashizawa T, Rudnicki DD. ATXN2-AS, a gene antisense to ATXN2, is associated with spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis. Ann Neurol 2017; 80:600-15. [PMID: 27531668 DOI: 10.1002/ana.24761] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by a CAG repeat expansion in the gene ataxin-2 (ATXN2). ATXN2 intermediate-length CAG expansions were identified as a risk factor for amyotrophic lateral sclerosis (ALS). The ATXN2 CAG repeat is translated into polyglutamine, and SCA2 pathogenesis has been thought to derive from ATXN2 protein containing an expanded polyglutamine tract. However, recent evidence of bidirectional transcription at multiple CAG/CTG disease loci has led us to test whether additional mechanisms of pathogenesis may contribute to SCA2. METHODS In this work, using human postmortem tissue, various cell models, and animal models, we provide the first evidence that an antisense transcript at the SCA2 locus contributes to SCA2 pathogenesis. RESULTS We demonstrate the expression of a transcript, containing the repeat as a CUG tract, derived from a gene (ATXN2-AS) directly antisense to ATXN2. ATXN2-AS transcripts with normal and expanded CUG repeats are expressed in human postmortem SCA2 brains, human SCA2 fibroblasts, induced SCA2 pluripotent stem cells, SCA2 neural stem cells, and lymphoblastoid lines containing an expanded ATXN2 allele associated with ALS. ATXN2-AS transcripts with a CUG repeat expansion are toxic in an SCA2 cell model and form RNA foci in SCA2 cerebellar Purkinje cells. Finally, we detected missplicing of amyloid beta precursor protein and N-methyl-D-aspartate receptor 1 in SCA2 brains, consistent with findings in other diseases characterized by RNA-mediated pathogenesis. INTERPRETATION These results suggest that ATXN2-AS has a role in SCA2 and possibly ALS pathogenesis, and may therefore provide a novel therapeutic target for these diseases. Ann Neurol 2016;80:600-615.
Collapse
Affiliation(s)
- Pan P Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xin Sun
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Research and Neurology Services, Veterans Affairs Medical Center, Albany, NY
| | - Guangbin Xia
- Department of Neurology, College of Medicine, and McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Shanshan Zhu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - H Benjamin Peng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Arnulf H Koeppen
- Research and Neurology Services, Veterans Affairs Medical Center, Albany, NY.,Department of Neurology and Pathology, Albany Medical College, Albany, NY
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Tetsuo Ashizawa
- Department of Neurology, College of Medicine, and McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Dobrila D Rudnicki
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD. .,Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
35
|
Ciesiolka A, Jazurek M, Drazkowska K, Krzyzosiak WJ. Structural Characteristics of Simple RNA Repeats Associated with Disease and their Deleterious Protein Interactions. Front Cell Neurosci 2017; 11:97. [PMID: 28442996 PMCID: PMC5387085 DOI: 10.3389/fncel.2017.00097] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Short Tandem Repeats (STRs) are frequent entities in many transcripts, however, in some cases, pathological events occur when a critical repeat length is reached. This phenomenon is observed in various neurological disorders, such as myotonic dystrophy type 1 (DM1), fragile X-associated tremor/ataxia syndrome, C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), and polyglutamine diseases, such as Huntington's disease (HD) and spinocerebellar ataxias (SCA). The pathological effects of these repeats are triggered by mutant RNA transcripts and/or encoded mutant proteins, which depend on the localization of the expanded repeats in non-coding or coding regions. A growing body of recent evidence revealed that the RNA structures formed by these mutant RNA repeat tracts exhibit toxic effects on cells. Therefore, in this review article, we present existing knowledge on the structural aspects of different RNA repeat tracts as revealed mainly using well-established biochemical and biophysical methods. Furthermore, in several cases, it was shown that these expanded RNA structures are potent traps for a variety of RNA-binding proteins and that the sequestration of these proteins from their normal intracellular environment causes alternative splicing aberration, inhibition of nuclear transport and export, or alteration of a microRNA biogenesis pathway. Therefore, in this review article, we also present the most studied examples of abnormal interactions that occur between mutant RNAs and their associated proteins.
Collapse
Affiliation(s)
- Adam Ciesiolka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Karolina Drazkowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| |
Collapse
|
36
|
Ross CA, Kronenbuerger M, Duan W, Margolis RL. Mechanisms underlying neurodegeneration in Huntington disease: applications to novel disease-modifying therapies. HANDBOOK OF CLINICAL NEUROLOGY 2017; 144:15-28. [PMID: 28947113 DOI: 10.1016/b978-0-12-801893-4.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The CAG repeat expansion mutation that causes Huntington Disease (HD) was discovered more than 20 years ago, yet no treatment has yet been developed to stop the relentless course of the disease. Nonetheless, substantial progress has been made in understanding HD pathogenesis. We review insights that have been gleaned from HD genetics, metabolism, and pathology; HD mouse and cell models; the structure, function and post-translational modification of normal and mutant huntingtin (htt) protein; gene expression profiles in HD cells and tissue; the neurotoxicy of mutant htt RNA; and the expression of an antisense transcript from the HD locus. We conclude that rationale therapeutics for HD is within sight, though many questions remain to be answered.
Collapse
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Departments of Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Martin Kronenbuerger
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Neurobiology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Neurobiology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Laboratory of Genetic Neurobiology and Johns Hopkins Schizophrenia Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
37
|
Miranda DR, Wong M, Romer SH, McKee C, Garza-Vasquez G, Medina AC, Bahn V, Steele AD, Talmadge RJ, Voss AA. Progressive Cl- channel defects reveal disrupted skeletal muscle maturation in R6/2 Huntington's mice. J Gen Physiol 2016; 149:55-74. [PMID: 27899419 PMCID: PMC5217084 DOI: 10.1085/jgp.201611603] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/03/2016] [Accepted: 11/16/2016] [Indexed: 12/14/2022] Open
Abstract
The R6/2 mouse model of Huntington’s disease exhibits reduced skeletal muscle ClC-1 currents. Miranda et al. investigate early stages of disease in these mice and find an early and progressive disruption of ClC-1 as well as altered muscle maturation based on myosin heavy chain isoform expression. Huntington’s disease (HD) patients suffer from progressive and debilitating motor dysfunction. Previously, we discovered reduced skeletal muscle chloride channel (ClC-1) currents, inwardly rectifying potassium (Kir) channel currents, and membrane capacitance in R6/2 transgenic HD mice. The ClC-1 loss-of-function correlated with increased aberrant mRNA processing and decreased levels of full-length ClC-1 mRNA (Clcn1 gene). Physiologically, the resulting muscle hyperexcitability may help explain involuntary contractions of HD. In this study, the onset and progression of these defects are investigated in R6/2 mice, ranging from 3 wk old (presymptomatic) to 9–13 wk old (late-stage disease), and compared with age-matched wild-type (WT) siblings. The R6/2 ClC-1 current density and level of aberrantly spliced Clcn1 mRNA remain constant with age. In contrast, the ClC-1 current density increases, and the level of aberrantly spliced Clcn1 mRNA decreases with age in WT mice. The R6/2 ClC-1 properties diverge from WT before the onset of motor symptoms, which occurs at 5 wk of age. The relative decrease in R6/2 muscle capacitance also begins in 5-wk-old mice and is independent of fiber atrophy. Kir current density is consistently lower in R6/2 compared with WT muscle. The invariable R6/2 ClC-1 properties suggest a disruption in muscle maturation, which we confirm by measuring elevated levels of neonatal myosin heavy chain (MyHC) in late-stage R6/2 skeletal muscle. Similar changes in ClC-1 and MyHC isoforms in the more slowly developing Q175 HD mice suggest an altered maturational state is relevant to adult-onset HD. Finally, we find nuclear aggregates of muscleblind-like protein 1 without predominant CAG repeat colocalization in R6/2 muscle. This is unlike myotonic dystrophy, another trinucleotide repeat disorder with similar ClC-1 defects, and suggests a novel mechanism of aberrant mRNA splicing in HD. These early and progressive skeletal muscle defects reveal much needed peripheral biomarkers of disease progression and better elucidate the mechanism underlying HD myopathy.
Collapse
Affiliation(s)
- Daniel R Miranda
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768.,Department of Biological Sciences, Wright State University, Dayton, OH 45435
| | - Monica Wong
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Shannon H Romer
- Department of Biological Sciences, Wright State University, Dayton, OH 45435
| | - Cynthia McKee
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Gabriela Garza-Vasquez
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Alyssa C Medina
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Volker Bahn
- Department of Biological Sciences, Wright State University, Dayton, OH 45435
| | - Andrew D Steele
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Robert J Talmadge
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768
| | - Andrew A Voss
- Department of Biological Sciences, Wright State University, Dayton, OH 45435
| |
Collapse
|
38
|
Jazurek M, Ciesiolka A, Starega-Roslan J, Bilinska K, Krzyzosiak WJ. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases. Nucleic Acids Res 2016; 44:9050-9070. [PMID: 27625393 PMCID: PMC5100574 DOI: 10.1093/nar/gkw803] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases.
Collapse
Affiliation(s)
- Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Adam Ciesiolka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julia Starega-Roslan
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Katarzyna Bilinska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
39
|
Ratovitski T, Chaerkady R, Kammers K, Stewart JC, Zavala A, Pletnikova O, Troncoso JC, Rudnicki DD, Margolis RL, Cole RN, Ross CA. Quantitative Proteomic Analysis Reveals Similarities between Huntington's Disease (HD) and Huntington's Disease-Like 2 (HDL2) Human Brains. J Proteome Res 2016; 15:3266-83. [PMID: 27486686 PMCID: PMC5555151 DOI: 10.1021/acs.jproteome.6b00448] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pathogenesis of HD and HDL2, similar progressive neurodegenerative disorders caused by expansion mutations, remains incompletely understood. No systematic quantitative proteomics studies, assessing global changes in HD or HDL2 human brain, were reported. To address this deficit, we used a stable isotope labeling-based approach to quantify the changes in protein abundances in the cortex of 12 HD and 12 control cases and, separately, of 6 HDL2 and 6 control cases. The quality of the tissues was assessed to minimize variability due to post mortem autolysis. We applied a robust median sweep algorithm to quantify protein abundance and performed statistical inference using moderated test statistics. 1211 proteins showed statistically significant fold changes between HD and control tissues; the differences in selected proteins were verified by Western blotting. Differentially abundant proteins were enriched in cellular pathways previously implicated in HD, including Rho-mediated, actin cytoskeleton and integrin signaling, mitochondrial dysfunction, endocytosis, axonal guidance, DNA/RNA processing, and protein transport. The abundance of 717 proteins significantly differed between control and HDL2 brain. Comparative analysis of the disease-associated changes in the HD and HDL2 proteomes revealed that similar pathways were altered, suggesting the commonality of pathogenesis between the two disorders.
Collapse
Affiliation(s)
- Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Raghothama Chaerkady
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 371 BRB, Baltimore, Maryland 21205, United States
| | - Kai Kammers
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Jacqueline C. Stewart
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Anialak Zavala
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Dobrila D. Rudnicki
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Russell L. Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 371 BRB, Baltimore, Maryland 21205, United States
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
40
|
Urbanek MO, Jazurek M, Switonski PM, Figura G, Krzyzosiak WJ. Nuclear speckles are detention centers for transcripts containing expanded CAG repeats. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1513-20. [PMID: 27239700 DOI: 10.1016/j.bbadis.2016.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/18/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022]
Abstract
The human genetic disorders caused by CAG repeat expansions in the translated sequences of various genes are called polyglutamine (polyQ) diseases because of the cellular "toxicity" of the mutant proteins. The contribution of mutant transcripts to the pathogenesis of these diseases is supported by several observations obtained from cellular models of these disorders. Here, we show that the common feature of cell lines modeling polyQ diseases is the formation of nuclear CAG RNA foci. We performed qualitative and quantitative analyses of these foci in numerous cellular models endogenously and exogenously expressing mutant transcripts by fluorescence in situ hybridization (FISH). We compared the CAG RNA foci of polyQ diseases with the CUG foci of myotonic dystrophy type 1 and found substantial differences in their number and morphology. Smaller differences within the polyQ disease group were also revealed and included a positive correlation between the foci number and the CAG repeat length. We show that expanded CAA repeats, also encoding glutamine, did not trigger RNA foci formation and foci formation is independent of the presence of mutant polyglutamine protein. Using FISH combined with immunofluorescence, we demonstrated partial co-localization of CAG repeat foci with MBNL1 alternative splicing factor, which explains the mild deregulation of MBNL1-dependent genes. We also showed that foci reside within nuclear speckles in diverse cell types: fibroblasts, lymphoblasts, iPS cells and neuronal progenitors and remain dependent on integrity of these nuclear structures.
Collapse
Affiliation(s)
- Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Pawel M Switonski
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Grzegorz Figura
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|
41
|
Niblock M, Smith BN, Lee YB, Sardone V, Topp S, Troakes C, Al-Sarraj S, Leblond CS, Dion PA, Rouleau GA, Shaw CE, Gallo JM. Retention of hexanucleotide repeat-containing intron in C9orf72 mRNA: implications for the pathogenesis of ALS/FTD. Acta Neuropathol Commun 2016; 4:18. [PMID: 26916632 PMCID: PMC4766718 DOI: 10.1186/s40478-016-0289-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The most common forms of amyotrophic lateral sclerosis and frontotemporal dementia are caused by a large GGGGCC repeat expansion in the first intron of the C9orf72 gene. The repeat-containing intron should be degraded after being spliced out, however GGGGCC repeat-containing RNA species either accumulate in nuclear foci or are exported to the cytoplasm where they are translated into potentially toxic dipeptide repeat proteins by repeat-associated non-AUG-initiated (RAN) translation. RESULTS In order to determine the mechanisms of repeat-containing intron misprocessing, we have analyzed C9orf72 transcripts in lymphoblasts from C9orf72 expansion carriers (n = 15) and control individuals (n = 15). We have identified polyadenylated C9orf72 RNA species retaining the repeat-containing intron and in which downstream exons are spliced correctly resulting in a C9orf72 mRNA with an enlarged 5'-UTR containing the GGGGCC repeats. Intron-retaining transcripts are produced from both wild-type and mutant alleles. Intron-retaining C9orf72 transcripts were also detected in brain with a 2.7 fold increase measured in the frontal cortex from heterozygous expansion carriers (n = 11) compared to controls (n = 10). The level of intron-retaining transcripts was increased 5.9 fold in a case homozygous for the expansion. We also show that a large proportion of intron 1-retaining C9orf72 transcripts accumulate in the nucleus. CONCLUSIONS Retention of the repeat-containing intron in mature C9orf72 mRNA can potentially explain nuclear foci formation as well as nuclear export of GGGGCC repeat RNA and suggests that the misprocessing of C9orf72 transcripts initiates the pathogenic process caused by C9orf72 hexanucleotide repeat expansions as well as provides the basis for novel therapeutic strategies.
Collapse
Affiliation(s)
- Michael Niblock
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Bradley N Smith
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Youn-Bok Lee
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Valentina Sardone
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Simon Topp
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
- London Neurodegenerative Disease Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Safa Al-Sarraj
- London Neurodegenerative Disease Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Claire S Leblond
- Montreal Neurological Institute and Hospital, McGill University, Ludmer Building, 1033 Pine Avenue West, Montreal, QC, H3A 1A1, Canada
| | - Patrick A Dion
- Montreal Neurological Institute and Hospital, McGill University, Ludmer Building, 1033 Pine Avenue West, Montreal, QC, H3A 1A1, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Ludmer Building, 1033 Pine Avenue West, Montreal, QC, H3A 1A1, Canada
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Jean-Marc Gallo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
42
|
Loureiro JR, Oliveira CL, Silveira I. Unstable repeat expansions in neurodegenerative diseases: nucleocytoplasmic transport emerges on the scene. Neurobiol Aging 2015; 39:174-83. [PMID: 26923414 DOI: 10.1016/j.neurobiolaging.2015.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
An astonishing number of neurological diseases result from expansion of unstable repetitive sequences causing alterations in key neuronal processes. Some are progressive late-onset conditions related to aging, such as the spinocerebellar ataxias. In several of these pathologies, the expanded repeat is transcribed, producing an expanded RNA repeat that causes neurodegeneration by a complex mechanism, comprising 3 main pathways. These include (1) accumulation in the nucleus of RNA foci, resulting from sequestration of RNA-binding proteins functioning in important neuronal cascades; (2) decrease in availability of RNA-binding proteins, such as splicing factors, causing alternative splicing misregulation with imbalance in the expression ratio of neuronal isoforms; and (3) generation of neurotoxic peptides, produced from repeat-associated non-ATG-initiated translation across the RNA repeat, in all reading frames. Recently, 2 pathologies characterized by impaired motor function, cognitive decline, or/and degeneration of motor neurons have been found that have broaden our understanding of these diseases. Moreover, the finding of compromised nucleocytoplasmic transport opens new avenues for research. This review will cover the amazing progress regarding these conditions.
Collapse
Affiliation(s)
- Joana R Loureiro
- Group Genetics of Cognitive Dysfunction, i3s- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; ICBAS, Universidade do Porto, Portugal
| | - Claudia L Oliveira
- Group Genetics of Cognitive Dysfunction, i3s- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; ICBAS, Universidade do Porto, Portugal
| | - Isabel Silveira
- Group Genetics of Cognitive Dysfunction, i3s- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; ICBAS, Universidade do Porto, Portugal.
| |
Collapse
|
43
|
Urbanek MO, Krzyzosiak WJ. RNA FISH for detecting expanded repeats in human diseases. Methods 2015; 98:115-123. [PMID: 26615955 DOI: 10.1016/j.ymeth.2015.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/18/2015] [Accepted: 11/21/2015] [Indexed: 12/14/2022] Open
Abstract
RNA fluorescence in situ hybridization (FISH) is a widely used technique for detecting transcripts in fixed cells and tissues. Many variants of RNA FISH have been proposed to increase signal strength, resolution and target specificity. The current variants of this technique facilitate the detection of the subcellular localization of transcripts at a single molecule level. Among the applications of RNA FISH are studies on nuclear RNA foci in diseases resulting from the expansion of tri-, tetra-, penta- and hexanucleotide repeats present in different single genes. The partial or complete retention of mutant transcripts forming RNA aggregates within the nucleoplasm has been shown in multiple cellular disease models and in the tissues of patients affected with these atypical mutations. Relevant diseases include, among others, myotonic dystrophy type 1 (DM1) with CUG repeats, Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3) with CAG repeats, fragile X-associated tremor/ataxia syndrome (FXTAS) with CGG repeats, myotonic dystrophy type 2 (DM2) with CCUG repeats, amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) with GGGGCC repeats and spinocerebellar ataxia type 32 (SCA32) with GGCCUG. In this article, we summarize the results obtained with FISH to examine RNA nuclear inclusions. We provide a detailed protocol for detecting RNAs containing expanded CAG and CUG repeats in different cellular models, including fibroblasts, lymphoblasts, induced pluripotent stem cells and murine and human neuronal progenitors. We also present the results of the first single-molecule FISH application in a cellular model of polyglutamine disease.
Collapse
Affiliation(s)
- Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|