1
|
Liang Y, Shi C, Wang Y, Fan B, Song W, Shen R. MiR-363-3p induces tamoxifen resistance in breast cancer cells through PTEN modulation. Sci Rep 2024; 14:32135. [PMID: 39738797 DOI: 10.1038/s41598-024-83938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Nowadays, the investigation for overcoming tamoxifen (TAM) resistance is confronting a considerable challenge. Therefore, immediate attention is required to elucidate the mechanism underlying TAM resistance in breast cancer. This research primarily aimed to define how miRNA-363-3p facilitates resistance to TAM in breast cancer. High-throughput miRNA sequencing was performed using RNAs prepared from breast cancer MCF-7 cells and TAM-resistant MCF-7 cells (MCF-7-TAM). An increase in miRNA-363-3p levels was observed in MCF-7-TAM cells. In MCF-7 cells, miRNA-363-3p directly targeted and negatively regulated phosphatase and tensin homolog (PTEN). Reduction of miRNA-363-3p retarded cell growth and accelerated cell apoptosis, thereby enhancing the sensitivity of TAM. Moreover, analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway showed significant enrichment of target genes within the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Ultimately, miR-363-3p decreased the responsiveness of breast cancer cells to TAM by targeting and suppressing PTEN through a mechanism associated with the PI3K-Akt pathway. Therefore, these results suggest that miR-363-3p-dependent PTEN expression contributes to the mechanisms underlying breast cancer endocrine resistance.
Collapse
Affiliation(s)
- Yaning Liang
- Department of Minimally Invasive Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Cuiyu Shi
- Department of Minimally Invasive Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yu Wang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Bingjie Fan
- Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Wei Song
- Department of Minimally Invasive Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Rong Shen
- Department of Minimally Invasive Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Li R, Ji Y, Ye R, Tang G, Wang W, Chen C, Yang Q. Potential therapies for non-coding RNAs in breast cancer. Front Oncol 2024; 14:1452666. [PMID: 39372872 PMCID: PMC11449682 DOI: 10.3389/fonc.2024.1452666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Breast cancer (BC) is one of the frequent tumors that seriously endanger the physical and mental well-being in women with strong heterogeneity, and its pathogenesis involves multiple risk factors. Depending on the type of BC, hormonal therapy, targeted therapy, and immunotherapy are the current systemic treatment options along with conventional chemotherapy. Despite significant progress in understanding BC pathogenesis and therapeutic options, there is still a need to identify new therapeutic targets and develop more effective treatments. According to recent sequencing and profiling studies, non-coding (nc) RNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation, and similarly, the expression of many ncRNAs is altered in breast cancer cell lines and tissues. The ability of single ncRNAs to regulate the expression of multiple downstream gene targets and related pathways provides a theoretical basis for studying them for cancer therapeutic drug development and targeted delivery. Therefore, it is far-reaching to explore the role of ncRNAs in tumor development and their potential as therapeutic targets. Here, our review outlines the potential of two major ncRNAs, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) as diagnostic and prognostic biomarkers as well as targets for new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Ruonan Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Yuxin Ji
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Ruyin Ye
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Guohui Tang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Wenrui Wang
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Changjie Chen
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Qingling Yang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
3
|
Chida K, Kanazawa H, Kinoshita H, Roy AM, Hakamada K, Takabe K. The role of lidocaine in cancer progression and patient survival. Pharmacol Ther 2024; 259:108654. [PMID: 38701900 PMCID: PMC11162934 DOI: 10.1016/j.pharmthera.2024.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Since its development in 1943, lidocaine has been one of the most commonly used local anesthesia agents for surgical procedures. Lidocaine alters neuronal signal transmission by prolonging the inactivation of fast voltage-gated sodium channels in the cell membrane of neurons, which are responsible for action potential propagation. Recently, it has attracted attention due to emerging evidence suggesting its potential antitumor properties, particularly in the in vitro setting. Further, local administration of lidocaine around the tumor immediately prior to surgical removal has been shown to improve overall survival in breast cancer patients. However, the exact mechanisms driving these antitumor effects remain largely unclear. In this article, we will review the existing literature on the mechanism of lidocaine as a local anesthetic, its effects on the cancer cells and the tumor microenvironment, involved pathways, and cancer progression. Additionally, we will explore recent reports highlighting its impact on clinical outcomes in cancer patients. Taken together, there remains significant ambiguity surrounding lidocaine's functions and roles in cancer biology, particularly in perioperative setting.
Collapse
Affiliation(s)
- Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Hirofumi Kanazawa
- The University of Texas Health Science Center at Tyler School of Medicine, TX, USA.
| | - Hirotaka Kinoshita
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Arya Mariam Roy
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan; Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14263, USA; Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
4
|
Kavishahi NN, Rezaee A, Jalalian S. The Impact of miRNAs on the Efficacy of Tamoxifen in Breast Cancer Treatment: A Systematic Review. Clin Breast Cancer 2024; 24:341-350. [PMID: 38413339 DOI: 10.1016/j.clbc.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Seventy percent of breast cancer patients have an active estrogen receptor. Tamoxifen interferes with estrogen's ability to bind to cancer cells. The most challenging aspect of tamoxifen, however, is that breast cancer cells become resistant to its effects. Some studies have shown that alterations in miRNA expression contribute significantly to drug resistance in breast cancer. Therefore, the present systematic review aims to investigate miRNAs that significantly influence the response to tamoxifen treatment. The present study follows the PRISMA instructions. The Web of Science, PubMed, and Scopus databases were searched to retrieve English articles. The searches were conducted up to September 11, 2022. The search strategy included the terms "Tamoxifen", "Breast Neoplasm", and "MicroRNA". The inclusion criteria of this study are English, original, and experimental studies investigating miRNAs that are effective in the treatment efficacy of tamoxifen. A total of 565 articles were retrieved. After screening, 75 studies met our inclusion criteria. This systematic review study examined 105 miRNAs, of which 44 have a positive effect, and 47 miRNAs inhibit tamoxifen function. Fourteen miRNAs have a controversial effect, ie, some studies show positive and negative effects. The study of miRNAs affecting tamoxifen function in breast cancer patients may facilitate the identification of individuals at higher risk of disease recurrence. Conversely, it can potentially utilize appropriate interventions to defeat drug resistance effectively.
Collapse
Affiliation(s)
- Nima Nikbin Kavishahi
- Department of Medical Genetics, Student Research Committee, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Jalalian
- Medical Doctor Student, Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
5
|
Mosca N, Pezzullo M, De Leo I, Truda A, Marchese G, Russo A, Potenza N. A Novel ceRNET Relying on the lncRNA JPX, miR-378a-3p, and Its mRNA Targets in Lung Cancer. Cancers (Basel) 2024; 16:1526. [PMID: 38672608 PMCID: PMC11049386 DOI: 10.3390/cancers16081526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Non-coding RNAs are emerging as critical players for the onset and progression of cancer. Analyses of three different datasets revealed that the lncRNA JPX was overexpressed in adenocarcinoma tissues in comparison to normal lungs, as expected for an oncogene. Intriguingly, the predicted binding miR-378a-3p showed a significant inverse correlation with JPX expression. The lncRNA/miRNA physical interaction was validated by reporter vectors. Then, the oncogenic activity of JPX, the tumor-suppressive role of miR-378a-3p, and the contribution of their functional interaction to cancer hallmarks were demonstrated using assays for cell proliferation, migration, invasion, and 3D-spheroid formation. Finally, molecular circuits were investigated by boosting the expression of both JPX and miR-378a-3p, singularly and in combination, demonstrating that JPX counteracted miR-378a-3p silencing activity toward its oncogenic targets GLUT1, NRP1, YY1, and Wnt5a. Overall, the data unveil a novel ceRNET (competing endogenous RNA network), wherein JPX acts as a ceRNA by binding to miR-378a-3p, thus reducing the miRNA silencing activity toward its downstream targets, and eliciting oncogenic pathways driving lung cancer. The knowledge of the network may pave the way to develop new diagnostic panels, and innovative RNA-targeted and RNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (N.M.); (M.P.); (I.D.L.); (A.T.); (A.R.)
| | - Mariaceleste Pezzullo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (N.M.); (M.P.); (I.D.L.); (A.T.); (A.R.)
| | - Ilenia De Leo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (N.M.); (M.P.); (I.D.L.); (A.T.); (A.R.)
- Genomix4Life S.r.l., 84081 Baronissi, Italy;
| | - Anna Truda
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (N.M.); (M.P.); (I.D.L.); (A.T.); (A.R.)
- Genomix4Life S.r.l., 84081 Baronissi, Italy;
| | - Giovanna Marchese
- Genomix4Life S.r.l., 84081 Baronissi, Italy;
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (N.M.); (M.P.); (I.D.L.); (A.T.); (A.R.)
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (N.M.); (M.P.); (I.D.L.); (A.T.); (A.R.)
| |
Collapse
|
6
|
Pengjie Y, Rong J, Pengfei N. miR-378a-5p exerts tumor-suppressive effects on esophageal squamous cell carcinoma after neoadjuvant immunotherapy by downregulating APOC1/CEP55. Sci Rep 2024; 14:305. [PMID: 38172247 PMCID: PMC10764758 DOI: 10.1038/s41598-023-50938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Genetic assessment of tumors following neoadjuvant immunotherapy helps identifying targets that mediate anti-tumor immunity. In this study, we explored dysregulated RNAs in esophageal squamous cell carcinoma samples after neoadjuvant immunotherapy using deep sequencing and high-throughput screening. We identified 584 differentially expressed messenger RNAs (mRNAs), 67 differentially expressed microRNAs (miRNAs), and 1,047 differentially expressed long non-coding RNAs (lncRNAs) using differential expression analysis. Competing endogenous RNAs closely related to esophageal squamous cell carcinoma were selected via a combined Pearson's correlation test and weighted correlation network analysis. After validation using survival analysis and dry-lab and wet-lab-based studies, we identified the I-miR-378-5p-APOC1/CEP55 as a critical pathway for esophageal squamous cell carcinoma progression after neoadjuvant immunotherapy. Tumor immune infiltration analysis showed that APOC1 and CEP55 expression is associated with immune regulatory pathways and the function of multiple infiltrating immune cells. We investigated the mechanism of esophageal squamous carcinoma progression after neoadjuvant immunotherapy from the perspective of the mRNA-miRNA-lncRNA network. Furthermore, we identified accurate novel therapeutic targets and prognostic biomarkers, introduced novel perspectives to immunotherapy studies, and laid the foundation for the clinical treatment of patients with esophageal squamous carcinoma.
Collapse
Affiliation(s)
- Yang Pengjie
- Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, Inner Mongolia Autonomous Region, China
- Thoracic Surgery Department, Peking University Cancer Hospital Inner Mongolia Hospital (Cancer Hospital Affiliated to Inner Mongolia Medical University), Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Jia Rong
- Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Ning Pengfei
- Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
7
|
Arabkari V, Barua D, Hossain MM, Webber M, Smith T, Gupta A, Gupta S. miRNA-378 Is Downregulated by XBP1 and Inhibits Growth and Migration of Luminal Breast Cancer Cells. Int J Mol Sci 2023; 25:186. [PMID: 38203358 PMCID: PMC10778669 DOI: 10.3390/ijms25010186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
X-box binding protein 1 (XBP1) is a transcription factor that plays a crucial role in the unfolded protein response (UPR), a cellular stress response pathway involved in maintaining protein homeostasis in the endoplasmic reticulum (EnR). While the role of XBP1 in UPR is well-characterised, emerging evidence suggests its involvement in endocrine resistance in breast cancer. The transcriptional activity of spliced XBP1 (XBP1s) is a major component of its biological effects, but the targets of XBP1s in estrogen receptor (ER)-positive breast cancer are not well understood. Here, we show that the expression of miR-378 and PPARGC1B (host gene of miR-378) is downregulated during UPR. Using chemical and genetic methods, we show that XBP1s is necessary and sufficient for the downregulation of miR-378 and PPARGC1B. Our results show that overexpression of miR-378 significantly suppressed cell growth, colony formation, and migration of ER-positive breast cancer cells. Further, we found that expression of miR-378 sensitised the cells to UPR-induced cell death and anti-estrogens. The expression of miR-378 and PPARGC1B was downregulated in breast cancer, and higher expression of miR-378 is associated with better outcomes in ER-positive breast cancer. We found that miR-378 upregulates the expression of several genes that regulate type I interferon signalling. Analysis of separate cohorts of breast cancer patients showed that a gene signature derived from miR-378 upregulated genes showed a strong association with improved overall and recurrence-free survival in breast cancer. Our results suggest a growth-suppressive role for miR-378 in ER-positive breast cancer where downregulation of miR-378 by XBP1 contributes to endocrine resistance in ER-positive breast cancer.
Collapse
Affiliation(s)
- Vahid Arabkari
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - David Barua
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
| | - Muhammad Mosaraf Hossain
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mark Webber
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
| | - Terry Smith
- Molecular Diagnostic Research Group, College of Science, University of Galway, H91TK33 Galway, Ireland;
| | - Ananya Gupta
- Discipline of Physiology, School of Medicine, University of Galway, H91TK33 Galway, Ireland;
| | - Sanjeev Gupta
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91TK33 Galway, Ireland; (V.A.); (D.B.); (M.M.H.); (M.W.)
| |
Collapse
|
8
|
Tian B, Pang Y, Gao Y, Meng Q, Xin L, Sun C, Tang X, Wang Y, Li Z, Lin H, Wang L. A pan-cancer analysis of the oncogenic role of Golgi transport 1B in human tumors. J Transl Int Med 2023; 11:433-448. [PMID: 38130634 PMCID: PMC10732491 DOI: 10.2478/jtim-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Owing to the aggressiveness and treatment-refractory nature of cancer, ideal candidates for early diagnosis and treatment are needed. Golgi transport 1B (GOLT1B) has been associated with cellular malignant behaviors and immune responses in colorectal and lung cancer, but a systematic pan-cancer analysis on GOLT1B has not been conducted. Methods The expression status and clinical association of GOLT1B in The Cancer Genome Atlas (TCGA) were analyzed. Genetic and methylation alterations in GOLT1B were explored. The relationship between GOLT1B and immune cell infiltration was also investigated. Genes related to GOLT1B expression were selected and analyzed. Results GOLT1B was highly expressed in most tumors, and there was a positive correlation between GOLT1B expression and clinical pathological parameters. High expression levels of GOLT1B have been associated with poor prognosis of most cancers. Copy number amplification was the primary type of GOLT1B genetic alterations, which was related to the prognosis of pan-cancer cases. There were different levels of GOLT1B promoter methylation across cancer types. The methylation level of the probe cg07371838 and cg25816357 was closely associated with prognosis in diverse cancers. There was also a positive correlation between GOLT1B genetic alterations and CD4+ T lymphocytes, especially the Th2 subset, as well as between GOLT1B expression and the estimated infiltration value of cancer-associated fibroblasts. Serine/threonine kinase receptor-associated protein (STRAP), integrator complex subunit 13 (INTS13), and ethanolamine kinase 1 (ETNK1) were the most relevant genes for GOLT1B expression, and their interactions with GOLT1B were involved in regulating the transforming growth factor (TGF)-β receptor signaling pathway and epithelial-mesenchymal transition (EMT). Conclusions This pan-cancer analysis provided a comprehensive understanding of the oncogenic role of GOLT1B, highlighting a potential mechanism whereby GOLT1B influences the tumor microenvironment, as well as cancer immunotherapy.
Collapse
Affiliation(s)
- Bo Tian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Yanan Pang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai200433, China
| | - Ye Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Qianqian Meng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Lei Xin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Chang Sun
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Xin Tang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Yilin Wang
- Georgetown Preparatory School, North Bethesda20852, MD, USA
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Han Lin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Luowei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| |
Collapse
|
9
|
Kim HW, Baek M, Jung S, Jang S, Lee H, Yang SH, Kwak BS, Kim SJ. ELOVL2-AS1 suppresses tamoxifen resistance by sponging miR-1233-3p in breast cancer. Epigenetics 2023; 18:2276384. [PMID: 37908128 PMCID: PMC10621244 DOI: 10.1080/15592294.2023.2276384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Tamoxifen (Tam) has long been a top treatment option for breast cancer patients, but the challenge of eliminating cancer recurrence remains. Here, we identify a signalling pathway involving ELOVL2, ELOVL2-AS1, and miR-1233-3p, which contributes to drug resistance in Tam-resistant (TamR) breast cancer. ELOVL2-AS1, a long noncoding RNA, was significantly upregulated by its antisense gene, ELOVL2, which is known to be downregulated in TamR cells. Additionally, ELOVL2-AS1 underwent the most hypermethylation in MCF-7/TamR cells. Furthermore, patients with breast cancer who developed TamR during chemotherapy had significantly lower expression of ELOVL2-AS1 compared to those who responded to Tam. Ectopic downregulation of ELOVL2-AS1 by siRNA both stimulated cancer cell growth and deteriorated TamR. We also found that ELOVL2-AS1 sponges miR-1233-3p, which has pro-proliferative activity and elevates TamR, leading to the activation of potential target genes, such as MYEF2, NDST1, and PIK3R1. These findings suggest that ELOVL2-AS1, in association with ELOVL2, may contribute to the suppression of drug resistance by sponging miR-1233-3p in breast cancer.
Collapse
Affiliation(s)
- Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Minjae Baek
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sanghyun Jung
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Siyeon Jang
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyeonjin Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seung-Hoon Yang
- Department of Biomedical Engineering, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Beom Seok Kwak
- Department of Surgery, Ilsan Hospital, College of Medicine, Dongguk University, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
10
|
Wang H, Shi J, Wang J, Hu Y. MicroRNA‑378: An important player in cardiovascular diseases (Review). Mol Med Rep 2023; 28:172. [PMID: 37503766 PMCID: PMC10436248 DOI: 10.3892/mmr.2023.13059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/31/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is a common chronic clinical condition and is the main cause of death in humans worldwide. Understanding the genetic and molecular mechanisms involved in the development of CVD is essential to develop effective prevention strategies and therapeutic measures. An increasing number of CVD‑related genetic studies have been conducted, including those on the potential roles of microRNAs (miRs). These studies have demonstrated that miR‑378 is involved in the pathological processes of CVD, including those of myocardial infarction, heart failure and coronary heart disease. Despite the potential importance of miR‑378 CVD, a comprehensive summary of the related literature is lacking. Thus, the present review aimed to summarize the findings of previous studies on the roles and mechanisms of miR‑378 in a variety of CVDs and provide an up‑to date basis for further r research targeting the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Huan Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Jingjing Shi
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Jiuchong Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Yuanhui Hu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
11
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
12
|
Hosseini-Abgir A, Naghizadeh MM, Igder S, Miladpour B. Insilco prediction of the role of the FriZZled5 gene in colorectal cancer. Cancer Treat Res Commun 2023; 36:100751. [PMID: 37595345 DOI: 10.1016/j.ctarc.2023.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
INTRODUCTION In this study, we aimed to elucidate the crosstalk between the Wnt/β-catenin signaling pathway and colorectal cancer (CRC) associated with inflammatory bowel disease (IBD) using a bioinformatics analysis of putative common biomarkers and a systems biology approach. MATERIALS AND METHODS The following criteria were used to search the GEO and ArrayExpress databases for terms related to CRC and IBD: 1. The dataset containing the transcriptomic data, and 2. Untreated samples by medications or drugs. A total of 42 datasets were selected for additional analysis. The GEO2R identified the differentially expressed genes. The genes involved in the Wnt signaling pathway were extracted from the KEGG database. Enrichment analysis and miRNA target prediction were conducted through the ToppGene online tool. RESULTS In CRC datasets, there were 1168 up- and 998 down-regulated probes, whereas, in IBD datasets, there were 256 up- and 200 down-regulated probes. There were 65 upregulated and 57 downregulated genes shared by CRC and IBD. According to KEGG, there were 166 genes in the Wnt pathway. FriZZled5 (FZD5) was a down-regulated gene in both CRC and IBD, as determined by the intersection of CRC- and IBD-related DEGs with the Wnt pathway. It was also demonstrated that miR-191, miR-885-5p, miR-378a-3p, and miR-396-3p affect the FriZZled5 gene expression. CONCLUSION It is possible that increased expression of miR-191 and miR-885-5p, or decreased expression of miR-378a -3p and miR396-3, in IBD and CRC results in decreased expression of the FZD5 gene. Based on the function of this gene, FZD5 may be a potential therapeutic target in IBD that progresses to CRC.
Collapse
Affiliation(s)
| | | | - Somayeh Igder
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Behnoosh Miladpour
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
13
|
Qin Y, Liang R, Lu P, Lai L, Zhu X. Depicting the Implication of miR-378a in Cancers. Technol Cancer Res Treat 2022; 21:15330338221134385. [PMID: 36285472 PMCID: PMC9608056 DOI: 10.1177/15330338221134385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-378a (miR-378a), including miR-378a-3p and miR-378a-5p, are encoded in PPARGC1B gene. miR-378a is essential for tumorigenesis and is an independent prognostic biomarker for various malignant tumors. Aberrant expression of miR-378a affects several physiological and pathological processes, including proliferation, apoptosis, tumorigenesis, cancer invasion, metastasis, and therapeutic resistance. Interestingly, miR-378a has a dual functional role in either promoting or inhibiting tumorigenesis, independent of the cancer type. In this review, we comprehensively summarized the role and regulatory mechanisms of miR-378a in cancer development, hoping to provide a direction for its potential use in cancer therapy.
Collapse
Affiliation(s)
- Yuelan Qin
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Renba Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lin Lai
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China,Affiliated Wuming Hospital of Guangxi Medical University, Nanning, People's Republic of China,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, People's Republic of China,Xiaodong Zhu, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 22 Shuang Yong Road, Nanning 530021, People's Republic of China.
| |
Collapse
|
14
|
Ozyurt R, Ozpolat B. Molecular Mechanisms of Anti-Estrogen Therapy Resistance and Novel Targeted Therapies. Cancers (Basel) 2022; 14:5206. [PMID: 36358625 PMCID: PMC9655708 DOI: 10.3390/cancers14215206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women, constituting one-third of all cancers in women, and it is the second leading cause of cancer-related deaths in the United States. Anti-estrogen therapies, such as selective estrogen receptor modulators, significantly improve survival in estrogen receptor-positive (ER+) BC patients, which represents about 70% of cases. However, about 60% of patients inevitably experience intrinsic or acquired resistance to anti-estrogen therapies, representing a major clinical problem that leads to relapse, metastasis, and patient deaths. The resistance mechanisms involve mutations of the direct targets of anti-estrogen therapies, compensatory survival pathways, as well as alterations in the expression of non-coding RNAs (e.g., microRNA) that regulate the activity of survival and signaling pathways. Although cyclin-dependent kinase 4/6 and phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) inhibitors have significantly improved survival, the efficacy of these therapies alone and in combination with anti-estrogen therapy for advanced ER+ BC, are not curative in advanced and metastatic disease. Therefore, understanding the molecular mechanisms causing treatment resistance is critical for developing highly effective therapies and improving patient survival. This review focuses on the key mechanisms that contribute to anti-estrogen therapy resistance and potential new treatment strategies alone and in combination with anti-estrogen drugs to improve the survival of BC patients.
Collapse
Affiliation(s)
- Rumeysa Ozyurt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| |
Collapse
|
15
|
Castellani G, Buccarelli M, Lulli V, Ilari R, De Luca G, Pedini F, Boe A, Felli N, Biffoni M, Pilozzi E, Marziali G, Ricci-Vitiani L. MiR-378a-3p Acts as a Tumor Suppressor in Colorectal Cancer Stem-Like Cells and Affects the Expression of MALAT1 and NEAT1 lncRNAs. Front Oncol 2022; 12:867886. [PMID: 35814429 PMCID: PMC9263271 DOI: 10.3389/fonc.2022.867886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
MiR-378a-3p plays a critical role in carcinogenesis acting as a tumor suppressor, promoting apoptosis and cell cycle arrest and reducing invasion and drug resistance in several human cancers, including colorectal cancer (CRC), where its expression is significantly associated with histological classification and prognosis. In this study, we investigated the biological and cellular processes affected by miR-378a-3p in the context of CRC carcinogenesis. In agreement with the literature, miR-378a-3p is downregulated in our cohort of CRC patients as well as, in 15 patient-derived colorectal cancer stem-like cell (CRC-SC) lines and 8 CRC cell lines, compared to normal mucosae. Restoration of miR-378a-3p restrains tumorigenic properties of CRC and CRC-SC lines, as well as, significantly reduces tumor growth in two CRC-SC xenograft mouse models. We reported that miR-378a-3p modulates the expression of the lncRNAs MALAT1 and NEAT1. Their expression is inversely correlated with that of miR-378a-3p in patient-derived CRC-SC lines. Silencing of miR-378a-3p targets, MALAT1 and NEAT1, significantly impairs tumorigenic properties of CRC-SCs, supporting the critical role of miR-378a-3p in CRC carcinogenesis as a tumor-suppressor factor by establishing a finely tuned crosstalk with lncRNAs MALAT1 and NEAT1.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ramona Ilari
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Pedini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Boe
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Nadia Felli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, UOC Anatomia Patologica, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Giovanna Marziali
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Lucia Ricci-Vitiani,
| |
Collapse
|
16
|
Zi H, Chen L, Ruan Q. Lidocaine represses the malignant behavior of lung carcinoma cells via the circ_PDZD8/miR-516b-5p/GOLT1A axis. Histol Histopathol 2022; 37:461-474. [PMID: 35060113 DOI: 10.14670/hh-18-423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lung carcinoma is the most prevalent malignancy in adults. Lidocaine (Lido) has been confirmed to exert an anti-tumor role in many human cancers. However, the role and underlying mechanism of Lido in lung carcinoma remain poorly understood. Cell proliferation ability, migration, invasion, and apoptosis were measured by Colony formation, 5-ethynyl-2'-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), transwell, and flow cytometry assays. Circ_PDZD8, microRNA-516b-5p (miR-516b-5p), and Golgi transport 1A (GOLT1A) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Protein levels of proliferating cell nuclear antigen (PCNA) and GOLT1A were examined by western blot assay. The binding relationship between miR-516b-5p and circ_PDZD8 or GOLT1A was predicted by circular RNA Interactome or Starbase 3.0 and then verified by a dual-luciferase reporter assay. The biological roles of circ_PDZD8 and Lido on lung carcinoma cell growth were examined by the xenograft tumor model in vivo. Lido suppressed proliferation, migration, invasion, and induced apoptosis in lung carcinoma cells. Circ_PDZD8 and GOLT1A were increased, miR-516b-5p was decreased in lung carcinoma tissues and cell lines. Their expression presented the opposite trend in Lido-triggered lung carcinoma cells. Circ_PDZD8 might overturn the repression of Lido on cell growth ability and metastasis in this tumor. Mechanically, circ_PDZD8 might regulate GOLT1A expression by sponging miR-516b-5p. Circ_PDZD8 weakened the anti-lung carcinoma effect of Lido in vivo. Circ_PDZD8 might mitigate the inhibitory effect of Lido on tumor cell malignancy by modulating the miR-516b-5p/GOLT1A axis, providing a novel insight for lung carcinoma treatment.
Collapse
Affiliation(s)
- Huafen Zi
- Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Sichuan, PR China
| | - Li Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Sichuan, PR China
| | - Qian Ruan
- Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Sichuan, PR China.
| |
Collapse
|
17
|
Lin C, Zheng M, Yang Y, Chen Y, Zhang X, Zhu L, Zhang H. Knockdown of lncRNA ACTA2-AS1 reverses cisplatin resistance of ovarian cancer cells via inhibition of miR-378a-3p-regulated Wnt5a. Bioengineered 2022; 13:9829-9838. [PMID: 35412951 PMCID: PMC9161875 DOI: 10.1080/21655979.2022.2061181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cisplatin (DDP) resistance is a principal cause leading to poor prognosis in females suffering from ovarian cancer (OC). Long non-coding RNA (lncRNA) has been shown to have an involvement in regulating cellular processes; chemoresistance being one of them the precise object of this work was to probe into the role of lncRNA ACTA2-AS1 in OC cells that have developed DDP resistance. We developed DDP-resistant OC cell lines (A2780/DDP and SKOV3/DDP). The influence of the ACTA2-AS1/miR-378a-3p/Wnt5a axis on DDP chemoresistance of DDP-resistant OC cells was ascertained using real-time PCR, Elisa, and CCK-8, and dual-luciferase reporter assay. In DDP-resistant cells and tissues, ACTA2-AS1 was increased, while a substantial downregulation in miR-378a-3p was noticed. In cells manifesting DDP-resistance, knocking down ACTA2-AS1 boosted the expression of miR-378a-3p. Further research into the mechanism of ACTA2-AS1 revealed that it acted as a 'sponge' by getting involved in a competition against miR-378a-3p binding to modify its target Wnt5a. The suppression of DDP-resistance in OC cells caused by ACTA2-AS1 downregulation was reversed by silencing miR-378a-3p. Furthermore, via inhibition of Wnt5a, miR-378a-3p alleviated DDP resistance in OC cells. These findings show that for miR-378a-3p, ACTA2-AS1 works like a sponge thus preventing it from binding to Wnt5a and boosting OC cell DDP resistance. Our research will aid the expansion of plausible therapeutic options for treating OC.
Collapse
Affiliation(s)
- Chenxiao Lin
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Meiyun Zheng
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Youlin Yang
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Yi Chen
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Xiahui Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Lingping Zhu
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Haiyan Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| |
Collapse
|
18
|
Kong D, Hou Y, Li W, Ma X, Jiang J. LncRNA-ZXF1 stabilizes P21 expression in endometrioid endometrial carcinoma by inhibiting ubiquitination-mediated degradation and regulating the miR-378a-3p/PCDHA3 axis. Mol Oncol 2022; 16:813-829. [PMID: 33751805 PMCID: PMC8807357 DOI: 10.1002/1878-0261.12940] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/25/2021] [Accepted: 02/20/2021] [Indexed: 01/09/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have a profound effect on biological processes in various malignancies. However, few studies have investigated their functions and specific mechanisms in endometrial cancer. In this study, we focused on the role and mechanism of lncRNA-ZXF1 in endometrial cancer. Bioinformatics and in vitro and in vivo experiments were used to explore the expression and function of lncRNA-ZXF1. We found that lncRNA-ZXF1 altered the migration and invasion of endometrioid endometrial cancer (EEC) cells. Furthermore, our results suggest that lncRNA-ZXF1 regulates EEC cell proliferation. This regulation may be achieved by the lncRNA-ZXF1-mediated alteration in the expression of P21 through two mechanisms. One is that lncRNA-ZXF1 functions as a molecular sponge of miR-378a-3p to regulate PCDHA3 expression and then modulate the expression of P21. The other is that lncRNA-ZXF1 inhibits CDC20-mediated degradation of ubiquitination by directly binding to P21. To the best of our knowledge, this study is the first to explore lncRNA-ZXF1 functioning as a tumor-suppressing lncRNA in EEC. LncRNA-ZXF1 may become therapeutic, diagnostic, and prognostic indicator in the future.
Collapse
Affiliation(s)
- Deshui Kong
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinanChina
| | - Yixin Hou
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinanChina
| | - Wenzhi Li
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinanChina
| | - Xiaohong Ma
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinanChina
| | - Jie Jiang
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
19
|
Zhang J, Tang H, Jiang X, Huang N, Wei Q. Hypoxia-Induced miR-378a-3p Inhibits Osteosarcoma Invasion and Epithelial-to-Mesenchymal Transition via BYSL Regulation. Front Genet 2022; 12:804952. [PMID: 35154253 PMCID: PMC8831866 DOI: 10.3389/fgene.2021.804952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 11/26/2022] Open
Abstract
The bystin-like (BYSL) gene is expressed in a wide range of eukaryotes and is closely associated with tumor progression. However, its function and mechanism in osteosarcoma remain unclear. Herein, the protein expression and clinical role of BYSL in human osteosarcoma tissues were assessed. High expression of BYSL was positively related to the metastasis status and poor patient prognosis. Mechanistically, upregulation of BYSL enhanced Nrf2 expression under hypoxia in osteosarcoma cells. MicroRNAs are important epigenetic regulators of osteosarcoma development. Noteworthy, bioinformatics analysis, dual-luciferase reporter and rescue assays showed that miR-378a-3p inhibited BYSL expression by binding to its 3′-untranslated region. Analysis of miR-378a-3p function under hypoxia and normoxia showed that its upregulation suppressed osteosarcoma cells invasion and inhibited epithelial-to-mesenchymal transition by suppressing BYSL. Collectively, the results show that the miR-378a-3p/BYSL may associate with metastasis risk in osteosarcoma.
Collapse
Affiliation(s)
- Junlei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haijun Tang
- Department of Orthopedics, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohong Jiang
- Department of Orthopedics, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
| | - Nenggan Huang
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qingjun Wei
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Qingjun Wei,
| |
Collapse
|
20
|
Liu J, Zhang W, Cai W, Chen Y, Cai X, Tang D, Tang M, Dai Y. Multi-Omics Analyses Revealed GOLT1B as a Potential Prognostic Gene in Breast Cancer Probably Regulating the Immune Microenvironment. Front Oncol 2022; 11:805273. [PMID: 35127514 PMCID: PMC8815109 DOI: 10.3389/fonc.2021.805273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022] Open
Abstract
As recently reported by The International Agency for Research on Cancer (IARC), breast cancer has the highest incidence of all cancers in 2020. Many studies have revealed that golgi apparatus is closely associated with the development of breast cancer. However, the role of golgi apparatus in immune microenvironment is still not clear. In this study, using RNA-Seq datasets of breast cancer patients from the public database (n = 1080), we revealed that GOLT1B, encoding a golgi vesicle transporter protein, was significantly higher expressed in human breast cancer tissues versus normal tissues. Besides, we verified GOLT1B expression in five breast cancer cell line using our original data and found GOLT1B was significantly up-regulated in MDA-MB-231, MCF-7, SKBR3. Subsequently, we identified GOLT1B as a potential independent prognostic factor for breast cancer. After a multi-omics analysis, we uncovered that the higher expression of GOLT1B in breast cancer tissues versus normal tissues might be due to the amplification of GOLT1B and altered phosphorylation of its potential transcriptional factors, including JUN and SIN3A. Subsequently, we discovered that GOLT1B potentially regulated the immune microenvironment basing on the finding that its expression was closely related to the tumor microenvironment score and infiltration of immune cells. Moreover, we revealed that GOLT1B might affect the overall survival rates of breast cancer through regulating the immune cell infiltration. Finally, we disclosed the potential pathways involved in the functions of GOLT1B in breast cancer, including metabolism and ECM-receptor interaction pathways. To sum up, we identified GOLT1B as a potential prognostic gene for breast cancer and disclosed its role in regulating the immune microenvironment.
Collapse
Affiliation(s)
- Junping Liu
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wanxia Cai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Yumei Chen
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Xiaozhong Cai
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Donge Tang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- *Correspondence: Donge Tang, ; Min Tang, ; Yong Dai, ;
| | - Min Tang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- *Correspondence: Donge Tang, ; Min Tang, ; Yong Dai, ;
| | - Yong Dai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- *Correspondence: Donge Tang, ; Min Tang, ; Yong Dai, ;
| |
Collapse
|
21
|
Lin DL, Wang LL, Zhao P, Ran WW, Wang W, Zhang LX, Han M, Bao H, Liu K, Wu X, Shao Y, Xing XM. Gastrointestinal Goblet Cell Adenocarcinomas Harbor Distinctive Clinicopathological, Immune, and Genomic Landscape. Front Oncol 2021; 11:758643. [PMID: 34804955 PMCID: PMC8603204 DOI: 10.3389/fonc.2021.758643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Goblet cell adenocarcinoma (GCA) is a rare amphicrine tumor and difficult to diagnose. GCA is traditionally found in the appendix, but extra-appendiceal GCA may be underestimated. Intestinal adenocarcinoma with signet ring cell component is also very rare, and some signet ring cell carcinomas are well cohesive, having some similar morphological features to GCAs. It is necessary to differentiate GCA from intestinal adenocarcinomas with cohesive signet ring cell component (IACSRCC). The goal of this study is to find occurrence of extra-appendiceal GCA and characterize the histological, immunohistochemical, transcriptional, and immune landscape of GCA. We collected 12 cases of GCAs and 10 IACSRCCs and reviewed the clinicopathologic characters of these cases. Immunohistochemical stains were performed with synaptophysin, chromogranin A, CD56, somatostatin receptor (SSTR) 2, and Ki-67. Whole transcriptome RNA-sequencing was performed, and data were used to analyze differential gene expression and predict immune cell infiltration levels in GCA and IACSRCC. RNA-sequencing data for colorectal adenocarcinoma were gathered from TCGA data portal. Of the 12 patients with GCA, there were 4 women and 8 men. There were three appendiceal cases and nine extra-appendiceal cases. GCAs were immunohistochemically different from IACSRCC. GCA also had different levels of B-cell and CD8+ T-cell infiltration compared to both colorectal adenocarcinoma and cohesive IACSRCCs. Differential gene expression analysis showed distinct gene expression patterns in GCA compared to colorectal adenocarcinoma, with a number of cancer-related differentially expressed genes, including upregulation of TMEM14A, GOLT1A, DSCC1, and HSD17B8, and downregulation of KCNQ1OT1 and MXRA5. GCA also had several differentially expressed genes compared to IACSRCCs, including upregulation of PRSS21, EPPIN, RPRM, TNFRSF12A, and BZRAP1, and downregulation of HIST1H2BE, TCN1, AC069363.1, RP11-538I12.2, and REG4. In summary, the number of extra-appendiceal GCA was underestimated in Chinese patients. GCA can be seen as a distinct morphological, immunohistochemical, transcriptomic, and immunological entity. The classic low-grade component of GCA and the immunoreactivity for neuroendocrine markers are the key points to diagnosing GCA.
Collapse
Affiliation(s)
- Dong-Liang Lin
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li-Li Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-Wen Ran
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Long-Xiao Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming Han
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Kaihua Liu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China.,School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiao-Ming Xing
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Ghafouri-Fard S, Khanbabapour Sasi A, Abak A, Shoorei H, Khoshkar A, Taheri M. Contribution of miRNAs in the Pathogenesis of Breast Cancer. Front Oncol 2021; 11:768949. [PMID: 34804971 PMCID: PMC8602198 DOI: 10.3389/fonc.2021.768949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer among females. Gene expression profiling methods have shown the deregulation of several genes in breast cancer samples and have confirmed the heterogeneous nature of breast cancer at the genomic level. microRNAs (miRNAs) are among the recently appreciated contributors in breast carcinogenic processes. These small-sized transcripts have been shown to partake in breast carcinogenesis through modulation of apoptosis, autophagy, and epithelial-mesenchymal transition. Moreover, they can confer resistance to chemotherapy. Based on the contribution of miRNAs in almost all fundamental aspects of breast carcinogenesis, therapeutic intervention with their expression might affect the course of this disorder. Moreover, the presence of miRNAs in the peripheral blood of patients potentiates these transcripts as tools for non-invasive diagnosis of breast cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Khanbabapour Sasi
- Biochemistry Group, School of Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Khoshkar
- Department of Surgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Wang Y, Du J. miR-378a-3p regulates glioma cell chemosensitivity to cisplatin through IGF1R. Open Life Sci 2021; 16:1175-1181. [PMID: 34761108 PMCID: PMC8565595 DOI: 10.1515/biol-2021-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2022] Open
Abstract
Glioma is a type of common intracranial tumor. In this study, we investigated the molecular mechanism by which miR-378a-3p regulates cisplatin (CDDP) chemosensitivity in glioma cells via insulin-like growth factor 1 receptor (IGF1R). U251/CDDP cells were treated with CDDP and transfected with miR-378a-3p mimics, NC mimics, or pcDNA-IGF1R. qRT-PCR was used to measure the differential level of miR-378a-3p. CCK-8 assay was used to test cell proliferation, and flow cytometry was used to analyze apoptosis. The targeting relationship between miR-378a-3p and IGF1R was tested through a dual-luciferase reporter gene assay. In contrast to normal glial cells, the miR-378a-3p level decreased in human glioma U251 cells and had lower expression in U251/CDDP cells. Compared with the CDDP group, miR-378a-3p significantly caused the inhibition of U251/CDDP cell proliferation and enhanced apoptosis in the miR-378a-3p mimics + CDDP group. Another experiment confirmed that IGF1R was a target gene of miR-378a-3p, and overexpression of miR-378a-3p inhibited IGF1R expression. In addition, co-overexpression of miR-378a-3p and IGF1R induced the upregulation of the U251/CDDP cell proliferation and the inhibition of apoptosis in the miR-378a-3p mimics + pcDNA-IGF1R + CDDP group. This study confirmed that miR-378a-3p promoted the sensitivity of glioma cells to CDDP in glioma patients via targeting IGF1R to increase the therapeutic effect during chemotherapy.
Collapse
Affiliation(s)
- Yunjiang Wang
- Department of Neurosurgery, Yancheng Third People's Hospital, Yancheng City, Jiangsu Province, 224001, China
| | - Jia Du
- Cancer Center, Daping Hospital, Army Medical University, No. 10 Changjiang Zhilu, Daping Yuzhong District, Chongqing, 400042, China
| |
Collapse
|
24
|
Ogura T, Azuma K, Sato J, Kinowaki K, Takayama KI, Takeiwa T, Kawabata H, Inoue S. OCT1 Is a Poor Prognostic Factor for Breast Cancer Patients and Promotes Cell Proliferation via Inducing NCAPH. Int J Mol Sci 2021; 22:ijms222111505. [PMID: 34768935 PMCID: PMC8584020 DOI: 10.3390/ijms222111505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 01/17/2023] Open
Abstract
Octamer transcription factor 1 (OCT1) is a transcriptional factor reported to be a poor prognostic factor in various cancers. However, the clinical value of OCT1 in breast cancer is not fully understood. In the present study, an immunohistochemical study of OCT1 protein was performed using estrogen receptor (ER)-positive breast cancer tissues from 108 patients. Positive OCT1 immunoreactivity (IR) was associated with the shorter disease-free survival (DFS) of patients (p = 0.019). Knockdown of OCT1 inhibited cell proliferation in MCF-7 breast cancer cells as well as its derivative long-term estrogen-deprived (LTED) cells. On the other hand, the overexpression of OCT1 promoted cell proliferation in MCF-7 cells. Using microarray analysis, we identified the non-structural maintenance of chromosomes condensin I complex subunit H (NCAPH) as a novel OCT1-taget gene in MCF-7 cells. Immunohistochemical analysis showed that NCAPH IR was significantly positively associated with OCT1 IR (p < 0.001) and that positive NCAPH IR was significantly related to the poor DFS rate of patients (p = 0.041). The knockdown of NCAPH inhibited cell proliferation in MCF-7 and LTED cells. These results demonstrate that OCT1 and its target gene NCAPH are poor prognostic factors and potential therapeutic targets for patients with ER-positive breast cancer.
Collapse
Affiliation(s)
- Takuya Ogura
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
- Department of Breast and Endocrine Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan;
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kotaro Azuma
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
| | - Junichiro Sato
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan; (J.S.); (K.K.)
| | - Keiichi Kinowaki
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan; (J.S.); (K.K.)
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan;
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
- Correspondence: ; Tel.: +81-3-3964-3241
| |
Collapse
|
25
|
Identification of a Pyroptosis-Related Gene Signature for Prediction of Overall Survival in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2021; 2021:6365459. [PMID: 34630565 PMCID: PMC8497135 DOI: 10.1155/2021/6365459] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022]
Abstract
Pyroptosis is a kind of programmed cell death that is characterized by inflammation. However, the expression of pyroptosis-related genes and their connection with prognosis in lung adenocarcinoma (LUAD) remain unknown. The aim of this study is to create and validate a LUAD prediction signature based on genes associated with pyroptosis. The TCGA and GEO were used to collect gene sequencing data and clinical information for LUAD samples. To identify patients with LUAD from the TCGA cohort, consensus clustering by pyroptosis-related genes was employed. Our prognostic model was constructed using LASSO-Cox analysis after Cox regression using differentially expressed genes. To predict patient survival, we created a seven-mRNA signature. Additionally, reliability and validity were established in the GEO cohort. To assess its diagnostic and prognostic usefulness, an integrated bioinformatics method was used. Using a risk score with varying overall survival (OS) in two cohorts (all p < 0.001), a seven-gene signature was developed to categorize patients into two risk categories. The signature was shown to be an independent predictor of LUAD using multivariate regression analysis. The signature was linked to a variety of immune cell subtypes according to a study of immune cell infiltration. We constructed a signature consisting of seven genes as a robust biomarker with potential for clinical use in risk stratification and OS prediction in LUAD patients, as well as a potential indicator of immunotherapy in LUAD.
Collapse
|
26
|
Barazetti JF, Jucoski TS, Carvalho TM, Veiga RN, Kohler AF, Baig J, Al Bizri H, Gradia DF, Mader S, Carvalho de Oliveira J. From Micro to Long: Non-Coding RNAs in Tamoxifen Resistance of Breast Cancer Cells. Cancers (Basel) 2021; 13:3688. [PMID: 34359587 PMCID: PMC8345104 DOI: 10.3390/cancers13153688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality among women. Two thirds of patients are classified as hormone receptor positive, based on expression of estrogen receptor alpha (ERα), the main driver of breast cancer cell proliferation, and/or progesterone receptor, which is regulated by ERα. Despite presenting the best prognosis, these tumors can recur when patients acquire resistance to treatment by aromatase inhibitors or antiestrogen such as tamoxifen (Tam). The mechanisms that are involved in Tam resistance are complex and involve multiple signaling pathways. Recently, roles for microRNAs and lncRNAs in controlling ER expression and/or tamoxifen action have been described, but the underlying mechanisms are still little explored. In this review, we will discuss the current state of knowledge on the roles of microRNAs and lncRNAs in the main mechanisms of tamoxifen resistance in hormone receptor positive breast cancer. In the future, this knowledge can be used to identify patients at a greater risk of relapse due to the expression patterns of ncRNAs that impact response to Tam, in order to guide their treatment more efficiently and possibly to design therapeutic strategies to bypass mechanisms of resistance.
Collapse
Affiliation(s)
- Jéssica Fernanda Barazetti
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tayana Shultz Jucoski
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tamyres Mingorance Carvalho
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Rafaela Nasser Veiga
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Ana Flávia Kohler
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Jumanah Baig
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Hend Al Bizri
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Sylvie Mader
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jaqueline Carvalho de Oliveira
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| |
Collapse
|
27
|
MicroRNA-378a-3p is overexpressed in psoriasis and modulates cell cycle arrest in keratinocytes via targeting BMP2 gene. Sci Rep 2021; 11:14186. [PMID: 34244572 PMCID: PMC8270917 DOI: 10.1038/s41598-021-93616-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic autoimmune skin disease driven by dysregulations at the cellular, genomic and genetic levels. MicroRNAs are key mediators of gene expression regulation. However, how microRNAs control the pathogenesis of psoriasis is still unclear. Here, we reported a significant up-regulation of miR-378a-3p (miR-378a) in skin biopsies from active psoriatic lesions while it was down-regulated after treatment with methotrexate or narrow-band ultraviolet B phototherapy. Using the keratinocyte in vitro model, we showed that miR-378a disturbed the cell cycle progression, causing cell cycle arrest at G1 phase. Transcriptomic analysis of keratinocytes with miR-378a overexpression and depletion revealed several important biological mechanisms related to inflammation and tight junction. Target mRNA transcript assessed by luciferase assay identified bone morphogenetic protein 2 as a novel target gene of miR-378a. These findings offer a mechanistic model where miR-378a contributes to the pathogenesis of psoriasis.
Collapse
|
28
|
Dong Z, Gu H, Guo Q, Liang S, Xue J, Yao F, Liu X, Li F, Liu H, Sun L, Zhao K. Profiling of Serum Exosome MiRNA Reveals the Potential of a MiRNA Panel as Diagnostic Biomarker for Alzheimer's Disease. Mol Neurobiol 2021; 58:3084-3094. [PMID: 33629272 DOI: 10.1007/s12035-021-02323-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the older adults. Although much effort has been made in the analyses of diagnostic biomarkers, such as amyloid-β, tau, and neurofilament light chain, identifying peripheral blood-based biomarkers is in extremely urgent need for their minimal invasiveness and more convenience. Here we characterized the miRNA profile by RNA sequencing in human serum exosomes from AD patients and healthy controls (HC) to investigate its potential for AD diagnosis. Subsequently, Gene Ontology analysis and pathway analysis were performed for the targeted genes from the differentially expressed miRNAs. These basic functions were differentially enriched, including cell adhesion, regulation of transcription, and the ubiquitin system. Functional network analysis highlighted the pathways of proteoglycans in cancer, viral carcinogenesis, signaling pathways regulating pluripotency of stem cells, and cellular senescence in AD. A total of 24 miRNAs showed significantly differential expression between AD and HC with more than ± 2.0-fold change at p value < 0.05 and at least 50 reads for each sample. Logistic regression analysis established a model for AD prediction by serum exosomal miR-30b-5p, miR-22-3p, and miR-378a-3p. Sequencing results were validated using quantitative reverse transcription PCR. The data showed that miR-30b-5p, miR-22-3p, and miR-378a-3p were significantly deregulated in AD, with area under the curve (AUC) of 0.668, 0.637, and 0.718, respectively. The combination of the three miRs gained a better diagnostic capability with AUC of 0.880. This finding revealed a miR panel as potential biomarker in the peripheral blood to distinguish AD from HC.
Collapse
Affiliation(s)
- Zhiwu Dong
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China.
| | - Hongjun Gu
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Qiang Guo
- Department of Ultrasound Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 201599, China
| | - Shuang Liang
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Jian Xue
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Feng Yao
- Shanghai Jinshan Zhongren Aged Care Hospital, Shanghai, 201501, China
| | - Xianglu Liu
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Feifei Li
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Huiling Liu
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Li Sun
- Department of Laboratory Medicine, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 147 Jiankang Road, Jinshan District, Shanghai, 201599, People's Republic of China
| | - Kewen Zhao
- Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
29
|
Liu T, Liu B, Liu Y, Feng X, Jiang X, Long J, Gao Q, Yang Z. Vesicle transporter GOLT1B mediates the cell membrane localization of DVL2 and PD-L2 and promotes colorectal cancer metastasis. Cancer Cell Int 2021; 21:287. [PMID: 34059062 PMCID: PMC8166103 DOI: 10.1186/s12935-021-01991-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer (CRC) is the third most diagnosed and second leading cause of cancer death worldwide. Hallmark proteins processing is usually dysregulated in cancers. Finding key regulatory molecules is of great importance for CRC metastasis intervention. GOLT1B is a vesicle transport protein which is involved in cytosolic proteins trafficking. However, its role in cancer has never been addressed. Methods CRC cell lines and subcutaneous xenograft animal model were utilized to investigate the biological function of GOLT1B. Patients samples were used to validate the correlation between GOLT1B and clinical outcome. In vivo targeted delivery of GOLT1B-siRNA was investigated in PDX (Patient derived tumor xenograft) model. Results We found that GOLT1B was highly expressed in CRC, and was an independent prognostic marker of overall survival (OS) and progression free survival (PFS). GOLT1B could promote CRC metastasis in vitro and in vivo. GOLT1B overexpression could increase DVL2 level and enhance its plasma membrane translocation, which subsequently activated downstream Wnt/β-catenin pathway and increase the nuclear β-catenin level, hence induce epithelial-mesenchymal transition (EMT). In addition, GOLT1B could also interact with PD-L2 and increase its membrane level. Co-culture of GOLT1B-overexpresed CRC cells with Jurkat cells significantly induced T cells apoptosis, which might further promote cancer cell the migration and invasion. Further, targeted delivery of GOLT1B siRNA could significantly inhibit tumor progression in GOLT1B highly expressed PDX model. Conclusion Taken together, our findings suggest that the vesicle transporter GOLT1B could promote CRC metastasis not only by assisting DVL2 translocation and activating Wnt/β-catenin pathway, but also facilitating PD-L2 membrane localization to induce immune suppression. Targeted inhibition of GOLT1B could be a potential therapeutic strategy for CRC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01991-z.
Collapse
Affiliation(s)
- Tengfei Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Binbin Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Yiting Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Xingzhi Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Xuefei Jiang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Jiahui Long
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Qianling Gao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
30
|
Expression of Estrogen Receptor- and Progesterone Receptor-Regulating MicroRNAs in Breast Cancer. Genes (Basel) 2021; 12:genes12040582. [PMID: 33923732 PMCID: PMC8073827 DOI: 10.3390/genes12040582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
In ~70% of breast cancer (BC) cases, estrogen and progesterone receptors (ER and PR) are overexpressed, which can change during tumor progression. Expression changes of these receptors during cancer initiation and progression can be caused by alterations in microRNA (miR, miRNA) expression. To assess the association of BC progression with aberrant expression of miRNAs that target ER and PR mRNAs, we quantified miR-19b, -222, -22, -378a, and -181a in BC samples (n = 174) by real-time PCR. Underexpression of miR-222 and miR-378a in stage T2–T4 BC was characteristic for HER2-overexpressing tumors. In addition, the expression of miR-181a and miR-378a was higher in these tumors than in tumors with a HER2 IHC score of 0 or 1+. In tumors with a Ki-67 index ≥ 14%, all tested miRNAs were underexpressed in BC with a high Allred PR score (6–8). In ER-and-PR–negative tumors, miR-22, miR-222, miR-181a, and miR-378a underexpression was associated with Ki-67 index > 35% (median value). MiR-19b and miR-22 underexpression could be a marker of lymph node metastasis in ER- and/or PR-positive tumors with HER2 IHC score 0. Thus, the association of miR-19b, miR-22, miR-222, miR-378a, and miR-181a levels with BC characteristics is influenced by the status of tumor ER, PR, HER2, and Ki-67.
Collapse
|
31
|
Chanjiao Y, Chunyan C, Xiaoxin Q, Youjian H. MicroRNA-378a-3p contributes to ovarian cancer progression through downregulating PDIA4. Immun Inflamm Dis 2021; 9:108-119. [PMID: 33159506 PMCID: PMC7860521 DOI: 10.1002/iid3.350] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/18/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE MicroRNAs, as essential players in tumorigenesis, have been demonstrated to have a revolutionary effect on human cancer research. Ovarian cancer is the primary reason of death among gynecologic malignancies. In view of this, it is significant to identify prognostic and predictive markers for treatment of ovarian cancer. The aim of this study was to probe into the effects of miR-378a-3p and protein disulfide-isomerase A4 (PDIA4) on the biological functions of ovarian cancer cells. METHODS miR-378a-3p expression and PDIA4 messenger RNA expression in human ovarian cancer cells, normal human ovarian epithelial cells, and serum of both ovarian cancer patients and healthy people were detected by reverse transcription-quantitative polymerase chain reaction, and the PDIA4 protein expression was tested by Western blot analysis. Ovarian cancer OVCAR3 and SKOV3 cells were transfected or cotransfected with miR-378a-3p mimic or pcDNA3.1-PDIA4 or their negative control plasmids to explore their roles in biological functions in ovarian cancer cells. Luciferase activity and RIPA assays were implemented to validate the interaction between miR-378a-3p and PDIA4. Western blot analysis was utilized to detect phosphatidylinositol-3 kinase/serine/threonine kinase (PI3K/AKT) signaling pathway-related protein expression and their phosphate expression levels. RESULTS miR-378a-3p was elevated and PDIA4 was decreased in ovarian cancer cells and serum. In addition, miR-378a-3p mimic induced ovarian cancer cell growth, while miR-378a-3p inhibitor and pcDNA3.1-PDIA4 presented an inverse trend. pcDNA3.1-PDIA4 partially eliminated the capabilities of miR-378a-3p mimic on ovarian cancer progression. Meanwhile, miR-378a-3p was found to negatively regulate PDIA4, and miR-378a-3p mimic increased the phosphorylation levels of AKT and PI3K, while pcDNA3.1-PDIA4 exhibited an opposite tendency. Furthermore, pcDNA3.1-PDIA4 largely eliminated the functions of miR-378a-3p mimic on phosphorylation levels of AKT and PI3K. CONCLUSION This study provides evidences that miR-378a-3p activates PI3K/AKT signaling pathway by modulating PDIA4 expression, thereby playing a role in promoting the growth of ovarian cancer cells. This study provides novel directions for targeted therapy of ovarian cancer.
Collapse
Affiliation(s)
- Yao Chanjiao
- No. 3 Department of Obstetrics and GynecologyHunan Provincial People's HospitalChangshaChina
| | - Chen Chunyan
- No. 3 Department of Obstetrics and GynecologyHunan Provincial People's HospitalChangshaChina
| | - Qiu Xiaoxin
- No. 3 Department of Obstetrics and GynecologyHunan Provincial People's HospitalChangshaChina
| | - Han Youjian
- Department of cardiologyHunan Provincial People's HospitalChangshaChina
| |
Collapse
|
32
|
Yang C, Ota-Kurogi N, Ikeda K, Okumura T, Horie-Inoue K, Takeda S, Inoue S. MicroRNA-191 regulates endometrial cancer cell growth via TET1-mediated epigenetic modulation of APC. J Biochem 2021; 168:7-14. [PMID: 32003827 DOI: 10.1093/jb/mvaa014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Endometrial cancer (EC) is a common gynecological malignancy with relatively favourable prognosis, although alternative diagnostic and therapeutic options remain to be explored for advanced disease. Recent studies enabled to apply microRNAs (miRs) to clinical cancer management as promising diagnostic and therapeutic biomarkers. We here aimed to identify proliferation-associated miRNAs and characterize their functions in EC cells. Our small RNA-sequencing analysis showed that miR-191 is abundantly expressed in HEC-1A and Ishikawa EC cells along with the high expression of miR-182, which was previously characterized as an EC proliferation-related miRNA in EC. We showed that miR-191 was upregulated in EC tissues than in adjacent normal tissues and its knockdown repressed EC cell proliferation. In silico miRNA target screening identified that ten-eleven translocation 1 (TET1) is one of the putative miR-191 targets. TET1 expression could be downregulated by miR-191 through the mRNA-miRNA interaction in the 3'-untranslated region of TET1. In line with TET1 functions as a methylcytosine dioxygenase, which removes genome-wide DNA methylation marks, decreased TET1 expression resulted in hypermethylation in the promotor region of tumour suppressor adenomatous polyposis coli. Taken together, miR-191 could function as an oncogenic miRNA in EC and serve as a prospective diagnostic and therapeutic target for advanced disease.
Collapse
Affiliation(s)
- Chiujung Yang
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.,Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Natsuki Ota-Kurogi
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.,Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Toshiyuki Okumura
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
33
|
Mao Y, Li W, Hua B, Gu X, Pan W, Chen Q, Xu B, Lu C, Wang Z. Circular RNA_PDHX Promotes the Proliferation and Invasion of Prostate Cancer by Sponging MiR-378a-3p. Front Cell Dev Biol 2021; 8:602707. [PMID: 33634097 PMCID: PMC7901981 DOI: 10.3389/fcell.2020.602707] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
The dysregulation of circular RNAs (circRNAs) is implicated in the pathogenesis of prostate cancer (PCa). However, the underlying mechanisms by which hsa_circ_0003768 (circPDHX) contributes to PCa remain elusive. The differentially expressed circRNAs between PCa and normal tissues were identified by Gene Expression Omnibus dataset. The association of circPDHX and miR-378a-3p expression with the clinicopathological parameters and prognosis in patients with PCa was analyzed by fluorescence in situ hybridization and The Cancer Genome Atlas dataset. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Transwell assays as well as a xenograft tumor model were used to assess the role of circPDHX in PCa cells. circPDHX-specific binding with miR-378a-3p was validated by bioinformatic analysis, luciferase gene reporter, and RNA immunoprecipitation assays. As a result, we found that increased expression of circPDHX was associated with Gleason score (P = 0.001) and pathogenic T stage (P = 0.01) and acted as an independent prognostic factor of poor survival (P = 0.036) in patients with PCa. Knockdown of circPDHX inhibited cell proliferation and invasion in vitro and in vivo, but ectopic expression of circPDHX reversed these effects. Furthermore, circPDHX could sponge miR-378a-3p to promote cell proliferation, but miR-378a-3p counteracted circPDHX-induced cell proliferation and insulin-like growth factor 1 receptor (IGF1R) expression in PCa cells. In conclusion, our findings demonstrated that circPDHX facilitated the proliferation and invasion of PCa cells by sponging miR-378a-3p.
Collapse
Affiliation(s)
- Yuanshen Mao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenfeng Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bao Hua
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Gu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixin Pan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Lu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis 2020; 11:929. [PMID: 33116120 PMCID: PMC7595188 DOI: 10.1038/s41419-020-03135-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
Renal tubular cell death is the key factor of the pathogenesis of ischemia/reperfusion (I/R) kidney injury. Ferroptosis is a type of regulated cell death (RCD) found in various diseases. However, the underlying molecular mechanisms related to ferroptosis in renal I/R injury remain unclear. In the present study, we investigated the regulatory role of microRNAs on ferroptosis in I/R-induced renal injury. We established the I/R-induced renal injury model in rats, and H/R induced HK-2 cells injury in vitro. CCK-8 was used to measure cell viability. Fe2+ and ROS levels were assayed to evaluate the activation of ferroptosis. We performed RNA sequencing to profile the miRNAs expression in H/R-induced injury and ferroptosis. Western blot analysis was used to detect the protein expression. qRT-PCR was used to detect the mRNA and miRNA levels in cells and tissues. We further used luciferase reporter assay to verify the direct targeting effect of miRNA. We found that ischemia/reperfusion-induced ferroptosis in rat's kidney. We identified that miR-182-5p and miR-378a-3p were upregulated in the ferroptosis and H/R-induced injury, and correlates reversely with glutathione peroxidases 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression in renal I/R injury tissues, respectively. In vitro studies showed that miR-182-5p and miR-378a-3p induced ferroptosis in cells. We further found that miR-182-5p and miR-378a-3p regulated the expression of GPX4 and SLC7A11 negatively by directly binding to the 3'UTR of GPX4 and SLC7A11 mRNA. In vivo study showed that silencing miR-182-5p and miR-378a-3p alleviated the I/R-induced renal injury in rats. In conclusion, we demonstrated that I/R induced upregulation of miR-182-5p and miR-378a-3p, leading to activation of ferroptosis in renal injury through downregulation of GPX4 and SLC7A11.
Collapse
|
35
|
Xu S, Jia G, Zhang H, Wang L, Cong Y, Lv M, Xu J, Ruan H, Jia X, Xu P, Wang Y. LncRNA HOXB-AS3 promotes growth, invasion and migration of epithelial ovarian cancer by altering glycolysis. Life Sci 2020; 264:118636. [PMID: 33148416 DOI: 10.1016/j.lfs.2020.118636] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022]
Abstract
HEADING AIMS LncRNA HOXB-AS3 is proved as an oncogene in tumors. Herein, we determine the function and mechanism of HOXB-AS3 in epithelial ovarian cancer (EOC) cells. MATERIALS AND METHODS Chi-square test, Kaplan-Meier (KM) analysis and Cox regression analysis were used to analyze the clinicopathological features of HOXB-AS3 in EOC patients. CCK8, transwell and wound healing assay were used to test the function of HOXB-AS3. Luciferase reporter assay, western blot and glycolysis rate assay were used for further mechanistic studies. KEY FINDINGS HOXB-AS3 was abundantly expressed in EOC tissues, and higher levels of HOXB-AS3 in EOC patients were significantly associated with disease status and overall survival status. EOC patients with high levels of HOXB-AS3 had strikingly shorter disease-free survival (DFS) and overall survival (OS) times than those with low levels. HOXB-AS3 also might as an independent prognostic factor. Further study revealed knockdown of HOXB-AS3 significantly inhibited the proliferation, invasion and migration of EOC cells. Mechanistic investigations suggested that knockdown of HOXB-AS3 could decrease lactate dehydrogenase A (LDHA) expression and the extracellular acidification rate (ECAR) by sponging miR-378a-3p. SIGNIFICANCE To our knowledge, this is the first study to suggest that HOXB-AS3 could crosstalk with miRNA in the cytoplasm and alter glycolysis in cancer cells. Our results improve our understanding of the mechanism of HOXB-AS3 and suggest that HOXB-AS3 can act as a predictor of OS and a target for EOC therapies.
Collapse
Affiliation(s)
- Sujuan Xu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China; Department of Immunology, Nanjing Medical University, Nanjing, China; Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Genmei Jia
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Huilin Zhang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Luyao Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Yu Cong
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Mingming Lv
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Juan Xu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Hongjie Ruan
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China.
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
36
|
Kudela E, Samec M, Koklesova L, Liskova A, Kubatka P, Kozubik E, Rokos T, Pribulova T, Gabonova E, Smolar M, Biringer K. miRNA Expression Profiles in Luminal A Breast Cancer-Implications in Biology, Prognosis, and Prediction of Response to Hormonal Treatment. Int J Mol Sci 2020; 21:ijms21207691. [PMID: 33080858 PMCID: PMC7589921 DOI: 10.3390/ijms21207691] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer, which is the most common malignancy in women, does not form a uniform nosological unit but represents a group of malignant diseases with specific clinical, histopathological, and molecular characteristics. The increasing knowledge of the complex pathophysiological web of processes connected with breast cancercarcinogenesis allows the development of predictive and prognostic gene expressionand molecular classification systems with improved risk assessment, which could be used for individualized treatment. In our review article, we present the up-to-date knowledge about the role of miRNAs and their prognostic and predictive value in luminal A breast cancer. Indeed, an altered expression profile of miRNAs can distinguish not only between cancer and healthy samples, but they can classify specific molecular subtypes of breast cancer including HER2, Luminal A, Luminal B, and TNBC. Early identification and classification of breast cancer subtypes using miRNA expression profilescharacterize a promising approach in the field of personalized medicine. A detection of sensitive and specific biomarkers to distinguish between healthy and early breast cancer patients can be achieved by an evaluation of the different expression of several miRNAs. Consequently, miRNAs represent a potential as good diagnostic, prognostic, predictive, and therapeutic biomarkers for patients with luminal A in the early stage of BC.
Collapse
Affiliation(s)
- Erik Kudela
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
- Correspondence: ; Tel.: +421-9-0230-0017
| | - Marek Samec
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Erik Kozubik
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Tomas Rokos
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Terezia Pribulova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Eva Gabonova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (M.S.)
| | - Marek Smolar
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (M.S.)
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| |
Collapse
|
37
|
Zhang C, Wu S. microRNA -378a-3p Restrains the Proliferation of Retinoblastoma Cells but Promotes Apoptosis of Retinoblastoma Cells via Inhibition of FOXG1. Invest Ophthalmol Vis Sci 2020; 61:31. [PMID: 32428232 PMCID: PMC7405766 DOI: 10.1167/iovs.61.5.31] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose More recently, literature has emerged providing findings about the novelty of microRNAs (miR)-targeted therapeutics in the treatment of retinoblastoma (RB). The prime objective of this study was to identify the potential role of miR-378a-3p and its regulation in RB cells via forkhead box G1 (FOXG1). Methods The expression of miR-378a-3p and FOXG1 in the clinical RB tissues was determined using RNA quantitation and Western blot assays. The interaction between miR-378a-3p and FOXG1 was identified using dual luciferase reporter gene assay. The potential effects of miR-378a-3p on the RB cell biological processes were evaluated by conducting gain- and loss-of-function studies of miR-378a-3p and FOXG1, followed by cell viability, cell cycle progression, and apoptosis measurements. Furthermore, experiments were performed in nude mice to assess its effects on tumor formation. Results miR-378a-3p was poorly expressed, whereas FOXG1 was highly expressed in RB tissues and cells. miR-378a-3p bound to the FOXG1 3′ untranslated region and negatively modulated its expression. The overexpression of miR-378a-3p was found to decrease RB cell viability and to promote cell apoptosis in vitro, whereas overexpressed FOXG1 reversed the regulatory effects of miR-378a-3p on RB cellular behaviors. In nude mice, the restoration of miR-378a-3p by miR-378a-3p agomir was shown to play a role in the reduction of tumor volume and size relative to nude mice injected with negative control-agomir. Conclusions Our findings identified that increased miR-378a-3p exerted an inhibitory effect on RB cell proliferation by targeting FOXG1, suggesting the role of miR-378a-3p as a novel therapeutic target for RB.
Collapse
|
38
|
Chu X, Zheng W, Wang J, Zhang J, Pan Y, Shao C. CDK6 inhibition targeted by miR-378a-3p protects against intestinal injury induced by ionizing radiation. Biochem Biophys Res Commun 2020; 531:328-334. [PMID: 32800335 DOI: 10.1016/j.bbrc.2020.07.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
Radiotherapy combined with chemotherapy is a common modality in abdominal cancer treatment. However, intestinal syndrome induced by radiation is a main factor leading to the poor prognosis of radiotherapy. In this work, we found that miR-378a-3p was markedly up-regulated in the small intestines of mice after total abdominal irradiation. Knocking-down (or overexpression) of miR-378a-3p increased (or decreased) the radiosensitivity of the small intestine cells HIEC and FHs-74-Int. Comet assay and γ-H2AX staining demonstrated that miR-378a-3p exerted its radioprotective function by reducing the accumulation of DNA damage in the cells and tissues of the small intestines. Mechanistically, miR-378a-3p could interact with the 3' UTR of CDK6 through complementary sequences and thus inhibited CDK6 expression in the small intestine cells. Rescue experiments suggested that the repression of miR-378a-3p overexpression on cell radiosensitivity and DNA damage accumulation was abrogated by the forced expression of CDK6. In summary, our results revealed for the first time that miR-378a-3p regulated the radiosensitivity and DNA damage response of small intestines by targeting CDK6. MiR-378a-3p may serve as a promising biomarker and radioprotective target in abdominal cancer.
Collapse
Affiliation(s)
- Xiaofei Chu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, China
| | - Wang Zheng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, China
| | - Juan Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, China.
| |
Collapse
|
39
|
miR-1258 Regulates Cell Proliferation and Cell Cycle to Inhibit the Progression of Breast Cancer by Targeting E2F1. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1480819. [PMID: 32733928 PMCID: PMC7378599 DOI: 10.1155/2020/1480819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
Objective This study is designed to clarify that miR-1258 targets E2F1 to regulate the proliferation and cell cycle of breast cancer (BC) cells and consequently suppress the progression of BC. Methods Bioinformatics analysis was used to analyze the differentially expressed genes in BC. The expression of miR-1258 and E2F1 mRNA in BC cell lines and immortalized breast epithelial cell lines were detected by qRT-PCR. The proliferation and growth activity of BC cells were detected by MTT and colony formation assays. The apoptosis and cell cycle of BC cells were detected by flow cytometry and the targeting relationship between miR-1258 and E2F1 was identified by dual-luciferase assay. Results The expression of miR-1258 was decreased while that of E2F1 was increased in BC cells. Overexpression of miR-1258 and silencing E2F1 could inhibit the cell proliferation and growth, block cells in the G0/G1 phase, and promote cell apoptosis. Besides, miR-1258 inhibited cell proliferation and growth, block cells in the G0/G1 phase, and promote cell apoptosis by downregulating E2F1. Conclusion miR-1258 regulates the proliferation and cell cycle to inhibit the progression of BC by targeting and downregulating E2F1.
Collapse
|
40
|
FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks. Mol Genet Genomics 2020; 295:1197-1209. [DOI: 10.1007/s00438-020-01693-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 01/02/2023]
|
41
|
Inferences of Individual Drug Response-Related Long Non-coding RNAs Based on Integrating Multi-omics Data in Breast Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:128-139. [PMID: 32163894 PMCID: PMC7066040 DOI: 10.1016/j.omtn.2020.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/19/2020] [Accepted: 01/31/2020] [Indexed: 12/25/2022]
Abstract
Differences in individual drug responses are obstacles in breast cancer (BRCA) treatment, so predicting responses would help to plan treatment strategies. The accumulation of cancer molecular profiling and drug response data provide opportunities and challenges to identify novel molecular signatures and mechanisms of tumor responsiveness to drugs in BRCA. This study evaluated drug responses with a multi-omics integrated system that depended on long non-coding RNAs (lncRNAs). We identified drug response-related lncRNAs (DRlncs) by combining expression data of lncRNA, microRNA, messenger RNA, methylation levels, somatic mutations, and the survival data of cancer patients treated with drugs. We constructed an integrated and computational multi-omics approach to identify DRlncs for diverse chemotherapeutic drugs in BRCA. Some DRlncs were identified with Adriamycin, Cytoxan, Tamoxifen, and all samples for BRCA patients. These DRlncs showed specific features regarding both expression and computational accuracies. The DRlnc-gene co-expression networks were constructed and analyzed. Key DRlncs, such as HOXA-AS2 (Ensembl: ENSG00000253552), in the drug Adriamycin were characterized. The experimental analysis also suggested that HOXA-AS2 (Ensembl: ENSG00000253552) was a key DRlnc in Adriamycin drug resistance in BRCA patients. Some DRlncs were associated with survival and some specific functions. A possible mechanism of DRlnc HOXA-AS2 (Ensembl: ENSG00000253552) in the Adriamycin drug response for BRCA resistance was inferred. In summary, this study provides a framework for lncRNA-based evaluation of clinical drug responses in BRCA. Understanding the underlying molecular mechanisms of drug responses will facilitate improved responses to chemotherapy and outcomes of BRCA treatment.
Collapse
|
42
|
Ma T, Liang Y, Li Y, Song X, Zhang N, Li X, Chen B, Zhao W, Wang L, Yang Q. LncRNA LINP1 confers tamoxifen resistance and negatively regulated by ER signaling in breast cancer. Cell Signal 2020; 68:109536. [PMID: 31927036 DOI: 10.1016/j.cellsig.2020.109536] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/28/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Tamoxifen (TAM) is frequently used to treat patients with estrogen receptor-positive (ER+) breast cancer; however, the development of endocrine resistance represents a major impediment for successful treatment. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) may serve critical roles in regulating endocrine resistance in breast cancer. In the present study, it was determined that the expression of lncRNA in nonhomologous end joining pathway 1 (LINP1) was increased in tamoxifen-resistant breast cancer cells, and that LINP1 knockdown significantly attenuated the tamoxifen resistance and viability of tamoxifen-resistant breast cancer cells in vitro and in vivo. LINP1 knockdown increased apoptosis in cells following treatment with tamoxifen. Furthermore, LINP1 overexpression resulted in increased cell mobility by regulating the EMT process. Mechanistically, LINP1 is a direct target of ER-mediated transcriptional repression, and both tamoxifen treatment and hormone deprivation increased the expression of LINP1. LINP1 overexpression was associated with downregulation of the levels of ER protein and attenuated the estrogen response, which is a pivotal contributing factor to anti-estrogen resistance. Taken together, the present study highlights the pivotal role of LINP1 in tamoxifen resistance, which may serve as a potential target to improve the effectiveness and efficacy of tamoxifen treatment in breast cancer.
Collapse
Affiliation(s)
- Tingting Ma
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Yiran Liang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Yaming Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaojin Song
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaoyan Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China; Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
43
|
Zhao J, Chen F, Ma W, Zhang P. Suppression of long noncoding RNA NEAT1 attenuates hypoxia-induced cardiomyocytes injury by targeting miR-378a-3p. Gene 2020; 731:144324. [PMID: 31904498 DOI: 10.1016/j.gene.2019.144324] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND/AIMS lncRNA NEAT1 is involved in the development of many diseases. However, the function of lncRNA NEAT1 in myocardial infarction is unclear. Therefore, this experimental design based on lncRNA NEAT1 to explore the pathogenesis of myocardial infarction. METHODS RT-qPCR was used to detect the expression of lncRNA NEAT1 and miR-378a-3p in peripheral blood and mouse cardiomyocytes of patients with myocardial infarction. MTT assay, flow cytometry, Caspase-3 kit and transwell assay were used to detect the effects of lncRNA NEAT1 and miR-378a-3p on cardiomyocyte proliferation, apoptosis and migration. Target gene prediction and screening, luciferase reporter assays were used to verify downstream target genes for lncRNA NEAT1 and miR-378a-3p. Western blotting was used to detect the protein expression of Atg12 and related autophagy genes. RESULTS lncRNA NEAT1 was highly expressed in peripheral blood and mouse cardiomyocytes of patients with myocardial infarction. Moreover, lncRNA NEAT1 significantly promoted cell proliferation and migration of cardiomyocytes. In addition, lncRNA NEAT1 inhibited miR-378a-3p expression, and miR-378a-3p inhibited Atg12 expression, while lncRNA NEAT1 regulated expression of Atg12 and related autophagic factors via miR-378a-3p. Knockout of microRNA-378-3p reversed the effects of NEAT1 silencing on cell damage. CONCLUSION lncRNA NEAT1 can regulate the proliferation of cardiomyocytes by regulating miR-378-3p/Atg12 axis, thus accelerating the occurrence and development of cardiomyocytes.
Collapse
Affiliation(s)
- Jiali Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province 250021, PR China
| | - Fudi Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province 250021, PR China.
| | - Wei Ma
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province 250021, PR China
| | - Peng Zhang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province 250021, PR China
| |
Collapse
|
44
|
Dubois-Camacho K, Diaz-Jimenez D, De la Fuente M, Quera R, Simian D, Martínez M, Landskron G, Olivares-Morales M, Cidlowski JA, Xu X, Gao G, Xie J, Chnaiderman J, Soto-Rifo R, González MJ, Calixto A, Hermoso MA. Inhibition of miR-378a-3p by Inflammation Enhances IL-33 Levels: A Novel Mechanism of Alarmin Modulation in Ulcerative Colitis. Front Immunol 2019; 10:2449. [PMID: 31824476 PMCID: PMC6879552 DOI: 10.3389/fimmu.2019.02449] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) characterized by mucosa damage associated with an uncontrolled inflammatory response. This immunological impairment leads to altered inflammatory mediators such as IL-33, which is shown to increase in the mucosa of active UC (aUC) patients. MicroRNAs present a distorted feature in inflamed colonic mucosa and are potential IL-33 regulating candidates in UC. Therefore, we studied the microRNA and mRNA profiles in inflamed colonic samples of UC patients, evaluating the effect of a microRNA (selected by in silico analysis and its expression in UC patients), on IL-33 under inflammatory conditions. We found that inflamed mucosa (n = 8) showed increased expression of 40 microRNAs and 2,120 mRNAs, while 49 microRNAs and 1,734 mRNAs were decreased, as determined by microarrays. In particular, IL-33 mRNA showed a 3.8-fold increase and eight members of a microRNA family (miR-378), which targets IL-33 mRNA in the 3'UTR, were decreased (-3.9 to -3.0 times). We selected three members of the miR-378 family (miR-378a-3p, miR-422a, and miR-378c) according to background information and interaction energy analysis, for further correlation analyses with IL-33 expression through qPCR and ELISA, respectively. We determined that aUC (n = 24) showed high IL-33 levels, and decreased expression of miR-378a-3p and miR-422a compared to inactive UC (n = 10) and controls (n = 6). Moreover, both microRNAs were inversely correlated with IL-33 expression, while miR-378c does not show a significant difference. To evaluate the effect of TNFα on the studied microRNAs, aUC patients with anti-TNF therapy were compared to aUC receiving other treatments. The levels of miR-378a-3p and miR-378c were higher in aUC patients with anti-TNF. Based on these findings, we selected miR-378a-3p to exploring the molecular mechanism involved by in vitro assays, showing that over-expression of miR-378a-3p decreased the levels of an IL-33 target sequence β-gal-reporter gene in HEK293 cells. Stable miR-378a-3p over-expression/inhibition inversely modulated IL-33 content and altered viability of HT-29 cells. Additionally, in an inflammatory context, TNFα decreased miR-378a-3p levels in HT-29 cells enhancing IL-33 expression. Together, our results propose a regulatory mechanism of IL-33 expression exerted by miR-378a-3p in an inflammatory environment, contributing to the understanding of UC pathogenesis.
Collapse
Affiliation(s)
- Karen Dubois-Camacho
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - David Diaz-Jimenez
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
- Laboratory of Signal Transduction, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institute of Health, Durham, NC, United States
| | - Marjorie De la Fuente
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
- Research Sub-direction, Academic Direction, Clínica Las Condes, Santiago, Chile
| | - Rodrigo Quera
- Inflammatory Bowel Disease Program, Gastroenterology Department, Clínica Las Condes, Santiago, Chile
| | - Daniela Simian
- Research Sub-direction, Academic Direction, Clínica Las Condes, Santiago, Chile
| | - Maripaz Martínez
- Research Sub-direction, Academic Direction, Clínica Las Condes, Santiago, Chile
| | - Glauben Landskron
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Mauricio Olivares-Morales
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - John A. Cidlowski
- Laboratory of Signal Transduction, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institute of Health, Durham, NC, United States
| | - Xiaojiang Xu
- Laboratory of Integrative Bioinformatics, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jun Xie
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jonás Chnaiderman
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Cell and Molecular Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Calixto
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Interdisciplinary Center of Neuroscience of Valparaíso (CINV), Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - Marcela A. Hermoso
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| |
Collapse
|
45
|
ESR1-Stabilizing Long Noncoding RNA TMPO-AS1 Promotes Hormone-Refractory Breast Cancer Progression. Mol Cell Biol 2019; 39:MCB.00261-19. [PMID: 31501276 DOI: 10.1128/mcb.00261-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
Acquired endocrine therapy resistance is a significant clinical problem for breast cancer patients. In recent years, increasing attention has been paid to long noncoding RNA (lncRNA) as a critical modulator for cancer progression. Based on RNA-sequencing data of breast invasive carcinomas in The Cancer Genome Atlas database, we identified thymopoietin antisense transcript 1 (TMPO-AS1) as a functional lncRNA that significantly correlates with proliferative biomarkers. TMPO-AS1 positivity analyzed by in situ hybridization significantly correlates with poor prognosis of breast cancer patients. TMPO-AS1 expression was upregulated in endocrine therapy-resistant MCF-7 cells compared with levels in parental cells and was estrogen inducible. Gain and loss of TMPO-AS1 experiments showed that TMPO-AS1 promotes the proliferation and viability of estrogen receptor (ER)-positive breast cancer cells in vitro and in vivo Global expression analysis using a microarray demonstrated that TMPO-AS1 is closely associated with the estrogen signaling pathway. TMPO-AS1 could positively regulate estrogen receptor 1 (ESR1) mRNA expression by stabilizing ESR1 mRNA through interaction with ESR1 mRNA. Enhanced expression of ESR1 mRNA by TMPO-AS1 could play a critical role in the proliferation of ER-positive breast cancer. Our findings provide a new insight into the understanding of molecular mechanisms underlying hormone-dependent breast cancer progression and endocrine resistance.
Collapse
|
46
|
Wu H, Wang Q, Zhong H, Li L, Zhang Q, Huang Q, Yu Z. Differentially expressed microRNAs in exosomes of patients with breast cancer revealed by next‑generation sequencing. Oncol Rep 2019; 43:240-250. [PMID: 31746410 PMCID: PMC6908931 DOI: 10.3892/or.2019.7401] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) in exosomes play crucial roles in the onset, progression and metastasis of cancer by regulating the stability of target mRNAs or by inhibiting translation. In the present study, differentially expressed miRNAs were identified in exosomes of 27 breast cancer patients and 3 healthy controls using RNA sequencing. The differentially expressed microRNAs were selected by bioinformatic analysis. Subjects were followed up for 2 years and exosomal miRNA profiles were compared between patients with and without recurrence of breast cancer. A total of 30 complementary DNA libraries were constructed and sequenced and 1,835 miRNAs were detected. There were no significant differences in the expression of miRNAs between the basal-like, human epidermal growth factor receptor-2+, luminal A, luminal B and healthy control (HC) groups. A total of 54 differentially expressed miRNAs were identified in triple-negative breast cancer (TNBC) patients vs. HCs, including 20 upregulated and 34 downregulated miRNAs. The results of the reverse transcription-quantitative PCR were consistent with this. Receiver operating characteristic curve analyses indicated that miR-150-5p [area under the curve (AUC)=0.705, upregulated], miR-576-3p (AUC=0.691, upregulated), miR-4665-5p (AUC=0.681, upregulated) were able to distinguish breast cancer patients with recurrence from those without recurrence. In conclusion, the present results indicated differences in miRNA expression profiles between patients with TNBC and healthy controls. Certain exosomal miRNAs were indicated to have promising predictive value as biomarkers for distinguishing breast cancer with recurrence from non-recurrence, which may be utilized for preventive strategies.
Collapse
Affiliation(s)
- Heming Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Qiuming Wang
- Center for Cancer Prevention and Treatment, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Hua Zhong
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Liang Li
- Center for Cancer Prevention and Treatment, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Qunji Zhang
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Qingyan Huang
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Zhikang Yu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| |
Collapse
|
47
|
Clinical Theragnostic Relationship between Drug-Resistance Specific miRNA Expressions, Chemotherapeutic Resistance, and Sensitivity in Breast Cancer: A Systematic Review and Meta-Analysis. Cells 2019; 8:cells8101250. [PMID: 31615089 PMCID: PMC6830093 DOI: 10.3390/cells8101250] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
Awareness of breast cancer has been increasing due to early detection, but the advanced disease has limited treatment options. There has been growing evidence on the role of miRNAs involved in regulating the resistance in several cancers. We performed a comprehensive systematic review and meta-analysis on the role of miRNAs in influencing the chemoresistance and sensitivity of breast cancer. A bibliographic search was performed in PubMed and Science Direct based on the search strategy, and studies published until December 2018 were retrieved. The eligible studies were included based on the selection criteria, and a detailed systematic review and meta-analysis were performed based on PRISMA guidelines. A random-effects model was utilised to evaluate the combined effect size of the obtained hazard ratio and 95% confidence intervals from the eligible studies. Publication bias was assessed with Cochran’s Q test, I2 statistic, Orwin and Classic fail-safe N test, Begg and Mazumdar rank correlation test, Duval and Tweedie trim and fill calculation and the Egger’s bias indicator. A total of 4584 potential studies were screened. Of these, 85 articles were eligible for our systematic review and meta-analysis. In the 85 studies, 188 different miRNAs were studied, of which 96 were upregulated, 87 were downregulated and 5 were not involved in regulation. Overall, 24 drugs were used for treatment, with doxorubicin being prominently reported in 15 studies followed by Paclitaxel in 11 studies, and 5 drugs were used in combinations. We found only two significant HR values from the studies (miR-125b and miR-4443) and our meta-analysis results yielded a combined HR value of 0.748 with a 95% confidence interval of 0.508–1.100; p-value of 0.140. In conclusion, our results suggest there are different miRNAs involved in the regulation of chemoresistance through diverse drug genetic targets. These biomarkers play a crucial role in guiding the effective diagnostic and prognostic efficiency of breast cancer. The screening of miRNAs as a theragnostic biomarker must be brought into regular practice for all diseases. We anticipate that our study serves as a reference in framing future studies and clinical trials for utilising miRNAs and their respective drug targets.
Collapse
|
48
|
Guo XB, Zhang XC, Chen P, Ma LM, Shen ZQ. miR‑378a‑3p inhibits cellular proliferation and migration in glioblastoma multiforme by targeting tetraspanin 17. Oncol Rep 2019; 42:1957-1971. [PMID: 31432186 PMCID: PMC6775804 DOI: 10.3892/or.2019.7283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor and patients with this disease tend to have poor clinical outcome. MicroRNAs (miRs) are important regulators of a number of key pathways implicated in tumor pathogenesis. Recently, the expression of miR‑378 was shown to be dysregulated in several different types of cancer, including gastric cancer, colorectal cancer and oral carcinoma. Additional studies have demonstrated that miR‑378 may serve as a potential therapeutic target against human breast cancer. However, the underlying mechanisms and potential targets of miR‑378a‑3p involved in GBM remain unknown. The aim of the present of was to determine the effects of miR‑378a‑3p and its potential targets. Tetraspanin 17 (TSPAN17) is involved in the neoplastic events in GBM and is a member of the tetraspanin family of proteins. The tetraspanins are involved in the regulation of cell growth, migration and invasion of several different types of cancer cell lines, and may potentially act as an oncogene associated with GBM pathology. The results of the present study showed that high miR‑378a‑3p and low TSPAN17 expression levels were associated with improved survival in patients with GBM. Additionally, high levels of TSPAN17 were linked to the poor prognosis of patients with GBM aged 50‑60, larger tumor sizes (≥5 cm) and an advanced World Health Organization stage. TSPAN17 was identified and confirmed as a direct target of miR‑378a‑3p using a luciferase reporter assay in human glioma cell lines. Overexpression of miR‑378a‑3p in either of U87MG or MT‑330 cells decreased the expression of TSPAN17, promoted apoptosis and decreased proliferation, migration and invasion. Overexpression of TSPAN17 attenuated the aforementioned effects induced by miR‑378a‑3p overexpression. The present study indicated that miR‑378a‑3p suppresses the progression of GBM by reducing TSPAN17 expression, and may thus serve as a potential therapeutic target for treating patients with GBM.
Collapse
Affiliation(s)
- Xiao-Bing Guo
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiao-Chao Zhang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Peng Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Li-Mei Ma
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhi-Qiang Shen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
49
|
Liu Y, Li H, Liu Y. microRNA-378a Regulates the Reactive Oxygen Species (ROS)/Phosphatidylinositol 3-Kinases (PI3K)/AKT Signaling Pathway in Human Lens Epithelial Cells and Cataract. Med Sci Monit 2019; 25:4314-4321. [PMID: 31178586 PMCID: PMC6582685 DOI: 10.12659/msm.916881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/19/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cataract is associated with increased apoptosis of the epithelial cells of the ocular lens. Previous studies have shown that microRNA-378a (miR-378a) has a role in the development of cataract, but the molecular mechanisms remain unclear. This study aimed to investigate the effects of miR-378a in human lens epithelial cells (HLECs) in vitro and normal lens tissues and cataract tissues. MATERIAL AND METHODS HLECs were grown in culture. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot were used to examine gene expression levels. The MTT and TUNEL assay measured cell growth and apoptosis. Changes in the fluorescence ratio of ethidium to dihydroethidium (E: DHE) and in 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (C-H₂DCFDA) were used to detect superoxide (O₂⁻) and hydrogen peroxide (H₂O₂). The expression levels of miR-378a and the superoxide dismutase 1 gene (SOD1) were measured in normal human lens tissues and cataract tissues. RESULTS Upregulation of miR-378a reduced the expression of SOD1. Levels of O₂⁻ were upregulated and H₂O₂ was slightly down-regulated by miR-378a. The use of a miR-378a mimic suppressed cell growth and enhanced apoptosis of HLECs, which were reversed by the use of a miR-378a inhibitor. SOD1 overexpression rescued the miR-378a-induced phenotypes of HLEC cells. Treatment with the PI3K inhibitor, LY294002, reversed miR-378a and ROS-regulated proliferation and apoptosis of HLEC cells. Also, miR-378a was upregulated, and SOD1 was down-regulated in human cataract tissues. CONCLUSIONS In HLECs, expression of miR-378a regulated ROS and PI3K/AKT signaling, and miR-378a was upregulated, and SOD1 was down-regulated in human cataract tissue.
Collapse
|
50
|
Farhan M, Aatif M, Dandawate P, Ahmad A. Non-coding RNAs as Mediators of Tamoxifen Resistance in Breast Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:229-241. [DOI: 10.1007/978-3-030-20301-6_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|