1
|
Ghannam SF, Rutland CS, Allegrucci C, Mather ML, Alsaleem M, Bateman-Price TD, Patke R, Ball G, Mongan NP, Rakha E. Geometric characteristics of stromal collagen fibres in breast cancer using differential interference contrast microscopy. J Microsc 2024. [PMID: 39359124 DOI: 10.1111/jmi.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Breast cancer (BC) is characterised by a high level of heterogeneity, which is influenced by the interaction of neoplastic cells with the tumour microenvironment. The diagnostic and prognostic role of the tumour stroma in BC remains to be defined. Differential interference contrast (DIC) microscopy is a label-free imaging technique well suited to visualise weak optical phase objects such as cells and tissue. This study aims to compare stromal collagen fibre characteristics between in situ and invasive breast tumours using DIC microscopy and investigate the prognostic value of collagen parameters in BC. A tissue microarray was generated from 200 cases, comprising ductal carcinoma in situ (DCIS; n = 100) and invasive tumours (n = 100) with an extra 50 (25 invasive BC and 25 DCIS) cases for validation was utilised. Two sections per case were used: one stained with haematoxylin and eosin (H&E) stain for histological review and one unstained for examination using DIC microscopy. Collagen fibre parameters including orientation angle, fibre alignment, fibre density, fibre width, fibre length and fibre straightness were measured. Collagen fibre density was higher in the stroma of invasive BC (161.68 ± 11.2 fibre/µm2) compared to DCIS (p < 0.0001). The collagen fibres were thinner (13.78 ± 1.08 µm), straighter (0.96 ± 0.006, on a scale of 0-1), more disorganised (95.07° ± 11.39°) and less aligned (0.20 ± 0.09, on a 0-1 scale) in the invasive BC compared to DCIS (all p < 0.0001). A model considering these features was developed that could distinguish between DCIS and invasive tumours with 94% accuracy. There were strong correlations between fibre characteristics and clinicopathological parameters in both groups. A statistically significant association between fibre characteristics and patients' outcomes (breast cancer specific survival, and recurrence free survival) was observed in the invasive group but not in DCIS. Although invasive BC and DCIS were both associated with stromal reaction, the structural features of collagen fibres were significantly different in the two disease stages. Analysis of the stroma fibre characteristics in the preoperative core biopsy specimen may help to differentiate pure DCIS from those associated with invasion.
Collapse
Affiliation(s)
- Suzan F Ghannam
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Faculty of Medicine, Department of Histology and Cell Biology, Suez Canal University, Ismailia, Egypt
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Catrin Sian Rutland
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Cinzia Allegrucci
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Melissa L Mather
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Mansour Alsaleem
- Department of Applied Medical Science, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Thomas D Bateman-Price
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Rodhan Patke
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
- Biodiscovery Institute, University of Nottingham, University Park, Nottingham, UK
| | - Graham Ball
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, UK
| | - Nigel P Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| | - Emad Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Cellular Pathology Department, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Pathology Department, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
2
|
Stewart DC, Brisson BK, Dekky B, Berger AC, Yen W, Mauldin EA, Loebel C, Gillette D, Assenmacher CA, Quincey C, Stefanovski D, Cristofanilli M, Cukierman E, Burdick JA, Borges VF, Volk SW. Prognostic and therapeutic implications of tumor-restrictive type III collagen in the breast cancer microenvironment. NPJ Breast Cancer 2024; 10:86. [PMID: 39358397 PMCID: PMC11447064 DOI: 10.1038/s41523-024-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and bioinformatic experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in non-invasive and invasive breast cancer cell lines. In human triple-negative breast cancer biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in non-invasive compared to invasive regions. Similarly, bioinformatics analysis of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free, and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces the formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective therapeutic modality to limit recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Daniel C Stewart
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bassil Dekky
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashton C Berger
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Yen
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Deborah Gillette
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corisa Quincey
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
So KWL, Su Z, Cheung JPY, Choi SW. Single-Cell Analysis of Bone-Marrow-Disseminated Tumour Cells. Diagnostics (Basel) 2024; 14:2172. [PMID: 39410576 PMCID: PMC11475990 DOI: 10.3390/diagnostics14192172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Metastasis frequently targets bones, where cancer cells from the primary tumour migrate to the bone marrow, initiating new tumour growth. Not only is bone the most common site for metastasis, but it also often marks the first site of metastatic recurrence. Despite causing over 90% of cancer-related deaths, effective treatments for bone metastasis are lacking, with current approaches mainly focusing on palliative care. Circulating tumour cells (CTCs) are pivotal in metastasis, originating from primary tumours and circulating in the bloodstream. They facilitate metastasis through molecular interactions with the bone marrow environment, involving direct cell-to-cell contacts and signalling molecules. CTCs infiltrate the bone marrow, transforming into disseminated tumour cells (DTCs). While some DTCs remain dormant, others become activated, leading to metastatic growth. The presence of DTCs in the bone marrow strongly correlates with future bone and visceral metastases. Research on CTCs in peripheral blood has shed light on their release mechanisms, yet investigations into bone marrow DTCs have been limited. Challenges include the invasiveness of bone marrow aspiration and the rarity of DTCs, complicating their isolation. However, advancements in single-cell analysis have facilitated insights into these elusive cells. This review will summarize recent advancements in understanding bone marrow DTCs using single-cell analysis techniques.
Collapse
Affiliation(s)
| | | | | | - Siu-Wai Choi
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (K.W.L.S.); (Z.S.); (J.P.Y.C.)
| |
Collapse
|
4
|
Shepard BD, Chau J, Kurtz R, Rosenberg AZ, Sarder P, Border SP, Ginley B, Rodriguez O, Albanese C, Knoer G, Greene A, De Souza AMA, Ranjit S, Levi M, Ecelbarger CM. Nascent shifts in renal cellular metabolism, structure, and function due to chronic empagliflozin in prediabetic mice. Am J Physiol Cell Physiol 2024; 326:C1272-C1290. [PMID: 38602847 PMCID: PMC11193535 DOI: 10.1152/ajpcell.00446.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 04/13/2024]
Abstract
Sodium-glucose cotransporter, type 2 inhibitors (SGLT2i) are emerging as the gold standard for treatment of type 2 diabetes (T2D) with renal protective benefits independent of glucose lowering. We took a high-level approach to evaluate the effects of the SGLT2i, empagliflozin (EMPA) on renal metabolism and function in a prediabetic model of metabolic syndrome. Male and female 12-wk-old TallyHo (TH) mice, and their closest genetic lean strain (Swiss-Webster, SW) were treated with a high-milk-fat diet (HMFD) plus/minus EMPA (@0.01%) for 12-wk. Kidney weights and glomerular filtration rate were slightly increased by EMPA in the TH mice. Glomerular feature analysis by unsupervised clustering revealed sexually dimorphic clustering, and one unique cluster relating to EMPA. Periodic acid Schiff (PAS) positive areas, reflecting basement membranes and mesangium were slightly reduced by EMPA. Phasor-fluorescent life-time imaging (FLIM) of free-to-protein bound NADH in cortex showed a marginally greater reliance on oxidative phosphorylation with EMPA. Overall, net urine sodium, glucose, and albumin were slightly increased by EMPA. In TH, EMPA reduced the sodium phosphate cotransporter, type 2 (NaPi-2), but increased sodium hydrogen exchanger, type 3 (NHE3). These changes were absent or blunted in SW. EMPA led to changes in urine exosomal microRNA profile including, in females, enhanced levels of miRs 27a-3p, 190a-5p, and 196b-5p. Network analysis revealed "cancer pathways" and "FOXO signaling" as the major regulated pathways. Overall, EMPA treatment to prediabetic mice with limited renal disease resulted in modifications in renal metabolism, structure, and transport, which may preclude and underlie protection against kidney disease with developing T2D.NEW & NOTEWORTHY Renal protection afforded by sodium glucose transporter, type 2 inhibitors (SGLT2i), e.g., empagliflozin (EMPA) involves complex intertwined mechanisms. Using a novel mouse model of obesity with insulin resistance, the TallyHo/Jng (TH) mouse on a high-milk-fat diet (HMFD), we found subtle changes in metabolism including altered regulation of sodium transporters that line the renal tubule. New potential epigenetic determinants of metabolic changes relating to FOXO and cancer signaling pathways were elucidated from an altered urine exosomal microRNA signature.
Collapse
Affiliation(s)
- Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Jennifer Chau
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| | - Ryan Kurtz
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Pinaki Sarder
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Samuel P Border
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Brandon Ginley
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Computational Cell Biology, Anatomy, and Pathology, State University of New York at Buffalo, Buffalo, New York, United States
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, United States
- Center for Translational Imaging, Georgetown University, Washington, District of Columbia, United States
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, United States
- Center for Translational Imaging, Georgetown University, Washington, District of Columbia, United States
- Department of Radiology, Georgetown University, Washington, District of Columbia, United States
| | - Grace Knoer
- Center for Translational Imaging, Georgetown University, Washington, District of Columbia, United States
| | - Aarenee Greene
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| | - Aline M A De Souza
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, United States
- Microscopy & Imaging Shared Resources, Georgetown University, Washington, District of Columbia, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Carolyn M Ecelbarger
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
5
|
Ni H, Dessai CP, Lin H, Wang W, Chen S, Yuan Y, Ge X, Ao J, Vild N, Cheng JX. High-content stimulated Raman histology of human breast cancer. Theranostics 2024; 14:1361-1370. [PMID: 38389847 PMCID: PMC10879861 DOI: 10.7150/thno.90336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/17/2023] [Indexed: 02/24/2024] Open
Abstract
Histological examination is crucial for cancer diagnosis, however, the labor-intensive sample preparation involved in the histology impedes the speed of diagnosis. Recently developed two-color stimulated Raman histology could bypass the complex tissue processing to generates result close to hematoxylin and eosin staining, which is one of the golden standards in cancer histology. Yet, the underlying chemical features are not revealed in two-color stimulated Raman histology, compromising the effectiveness of prognostic stratification. Here, we present a high-content stimulated Raman histology (HC-SRH) platform that provides both morphological and chemical information for cancer diagnosis based on un-stained breast tissues. Methods: By utilizing both hyperspectral SRS imaging in the C-H vibration window and sparsity-penalized unmixing of overlapped spectral profiles, HC-SRH enabled high-content chemical mapping of saturated lipids, unsaturated lipids, cellular protein, extracellular matrix (ECM), and water. Spectral selective sampling was further implemented to boost the speed of HC-SRH. To show the potential for clinical use, HC-SRH using a compact fiber laser-based stimulated Raman microscope was demonstrated. Harnessing the wide and rapid tuning capability of the fiber laser, both C-H and fingerprint vibration windows were accessed. Results: HC-SRH successfully mapped unsaturated lipids, cellular protein, extracellular matrix, saturated lipid, and water in breast tissue. With these five chemical maps, HC-SRH provided distinct contrast for tissue components including duct, stroma, fat cell, necrosis, and vessel. With selective spectral sampling, the speed of HC-SRH was improved by one order of magnitude. The fiber-laser-based HC-SRH produced the same image quality in the C-H window as the state-of-the-art solid laser. In the fingerprint window, nucleic acid and solid-state ester contrast was demonstrated. Conclusions: HC-SRH provides both morphological and chemical information of tissue in a label-free manner. The chemical information detected is beyond the reach of traditional hematoxylin and eosin staining and heralds the potential of HC-SRH for biomarker discovery.
Collapse
Affiliation(s)
- Hongli Ni
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA
| | | | - Haonan Lin
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA
| | - Wei Wang
- Hologic Inc., 250 campus drive, Marlborough, MA 01752, USA
| | - Shaoxiong Chen
- Indiana University School of Medicine 340 West 10th Street, Fairbanks Hall, Suite 6200, IN 46202, USA
| | - Yuhao Yuan
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA
| | - Jianpeng Ao
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA
| | - Nolan Vild
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, MA 02215, USA
| |
Collapse
|
6
|
Su E, Kesavamoorthy N, Junge JA, Zheng M, Craft CM, Ameri H. Comparison of Retinal Metabolic Activity and Structural Development between rd10 Mice and Normal Mice Using Multiphoton Fluorescence Lifetime Imaging Microscopy. Curr Issues Mol Biol 2024; 46:612-620. [PMID: 38248341 PMCID: PMC10813981 DOI: 10.3390/cimb46010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a technique that analyzes the metabolic state of tissues based on the spatial distribution of fluorescence lifetimes of certain interacting molecules. We used multiphoton FLIM to study the metabolic state of developing C57BL6/J and rd10 retinas based on the fluorescence lifetimes of free versus bound nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate (NAD(P)H), with free NAD(P)H percentages suggesting increased glycolysis and bound NAD(P)H percentages indicating oxidative phosphorylation. The mice were sacrificed and enucleated at various time points throughout their first 3 months of life. The isolated eyecups were fixed, sectioned using a polyacrylamide gel embedding technique, and then analyzed with FLIM. The results suggested that in both C57BL6/J mice and rd10 mice, oxidative phosphorylation initially decreased and then increased, plateauing over time. This trend, however, was accelerated in rd10 mice, with its turning point occurring at p10 versus the p30 turning point in C57BL6/J mice. There was also a noticeable difference in oxidative phosphorylation rates between the outer and inner retinas in both strains, with greater oxidative phosphorylation present in the latter. A greater understanding of rd10 and WT metabolic changes during retinal development may provide deeper insights into retinal degeneration and facilitate the development of future treatments.
Collapse
Affiliation(s)
- Erin Su
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (E.S.); (N.K.); (C.M.C.)
| | - Niranjana Kesavamoorthy
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (E.S.); (N.K.); (C.M.C.)
| | - Jason A. Junge
- Department of Biological Sciences, David Dornsife College of Letters Arts and Sciences, University of Southern California Dana, Los Angeles, CA 90089, USA;
| | - Mengmei Zheng
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (E.S.); (N.K.); (C.M.C.)
| | - Cheryl Mae Craft
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (E.S.); (N.K.); (C.M.C.)
| | - Hossein Ameri
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (E.S.); (N.K.); (C.M.C.)
| |
Collapse
|
7
|
Bernardi M, Cardarelli F. Phasor identifier: A cloud-based analysis of phasor-FLIM data on Python notebooks. BIOPHYSICAL REPORTS 2023; 3:100135. [PMID: 38053971 PMCID: PMC10694583 DOI: 10.1016/j.bpr.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
This paper introduces an innovative approach utilizing Google Colaboratory for the versatile analysis of phasor fluorescence lifetime imaging microscopy (FLIM) data collected from various samples (e.g., cuvette, cells, tissues) and in various input file formats. In fact, phasor-FLIM widespread adoption has been hampered by complex instrumentation and data analysis requirements. We mean to make advanced FLIM analysis more accessible to researchers through a cloud-based solution that 1) harnesses robust computational resources, 2) eliminates hardware limitations, and 3) supports both CPU and GPU processing. We envision a paradigm shift in FLIM data accessibility and potential, aligning with the evolving field of artificial intelligence-driven FLIM analysis. This approach simplifies FLIM data handling and opens doors for diverse applications, from studying cellular metabolism to investigating drug encapsulation, benefiting researchers across multiple domains. The comparative analysis of freely distributed FLIM tools highlights the unique advantages of this approach in terms of adaptability, scalability, and open-source nature.
Collapse
|
8
|
Jones BA, Torrado B, Myakala K, Wang XX, Perry PE, Rosenberg AZ, Levi M, Ranjit S. Fibrosis quantification using multiphoton excitation imaging of picrosirius red stained cardiac tissue. RESEARCH SQUARE 2023:rs.3.rs-3329402. [PMID: 37790455 PMCID: PMC10543454 DOI: 10.21203/rs.3.rs-3329402/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Traditional methodologies for fibrosis quantification involve histological measurements, staining with Masson's trichrome and picrosirius red (PSR), and label-free imaging using second harmonic generation (SHG). The difficulty of label-free cardiac SHG imaging is that both collagen (i.e., collagen 1 fibrils) and myosin are harmonophores that generate SHG signals, and specific identification of either collagen or myosin is difficult to achieve. Here we present an alternate method of quantifying cardiac fibrosis by using PSR staining followed by multiphoton excitation fluorescence imaging. Our data from the deoxycorticosterone model of cardiac fibrosis shows that this imaging method and downstream analyses, including background correction, are robust and easy to perform. These advantages are due to the high signal-to-noise ratio provided by PSR in areas of collagen fibers. Furthermore, the hyperspectral and fluorescence lifetime information of PSR-stained area of fibrosis shows better quantification can eventually be obtained using more complex instrumentation.
Collapse
Affiliation(s)
- Bryce A. Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC
| | - Belen Torrado
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Xiaoxin X. Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Priscilla E. Perry
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
- Microscopy and Imaging Shared Resources, Georgetown University, Washington, DC
| |
Collapse
|
9
|
Kamin H, Nolte L, Bleilevens A, Stickeler E, Heinemann D, Maurer J, Johannsmeier S, Ripken T. Imaging and quantification of the tumor microenvironment of triple negative breast cancer using TPEF and scanning laser optical tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:4579-4593. [PMID: 37791264 PMCID: PMC10545185 DOI: 10.1364/boe.494181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 07/16/2023] [Indexed: 10/05/2023]
Abstract
Triple-negative breast cancer is an aggressive subtype of breast cancer that has a poor five-year survival rate. The tumor's extracellular matrix is a major compartment of its microenvironment and influences the proliferation, migration and the formation of metastases. The study of such dependencies requires methods to analyze the tumor matrix in its native form. In this work, the limits of SHG-microscopy, namely limited penetration depth, sample size and specificity, are addressed by correlative three-dimensional imaging. We present the combination of scanning laser optical tomography (SLOT) and multiphoton microscopy, to depict the matrix collagen on different scales. Both methods can be used complementarily to generate full-volume views and allow for in-depth analysis. Additionally, we explore the use of SHG as a contrast mechanism for complex samples in SLOT. It was possible to depict the overall collagen structure and specific fibers using marker free imaging on different scales. An appropriate sample preparation enables the fixation of the structures while simultaneously conserving the fluorescence of antibody staining. We find that SHG is a suitable contrast mechanism to depict matrix collagen even in complex samples and using SLOT. The insights presented here shall further facilitate the study of the tumor extracellular matrix by correlative 3d imaging.
Collapse
Affiliation(s)
- Hannes Kamin
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Lena Nolte
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Andreas Bleilevens
- Clinic for Gynecology and Obstetrics, University Hospital Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| | - Elmar Stickeler
- Clinic for Gynecology and Obstetrics, University Hospital Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| | - Dag Heinemann
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Department of Phytophotonics, Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
- Hannover Centre for Optical Technologies (HOT), Leibniz University Hannover, Nienburger Str. 17, 30167 Hannover, Germany
| | - Jochen Maurer
- Clinic for Gynecology and Obstetrics, University Hospital Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| | - Sonja Johannsmeier
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Tammo Ripken
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| |
Collapse
|
10
|
Hegarty C, Neto N, Cahill P, Floudas A. Computational approaches in rheumatic diseases - Deciphering complex spatio-temporal cell interactions. Comput Struct Biotechnol J 2023; 21:4009-4020. [PMID: 37649712 PMCID: PMC10462794 DOI: 10.1016/j.csbj.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Inflammatory arthritis, including rheumatoid (RA), and psoriatic (PsA) arthritis, are clinically and immunologically heterogeneous diseases with no identified cure. Chronic inflammation of the synovial tissue ushers loss of function of the joint that severely impacts the patient's quality of life, eventually leading to disability and life-threatening comorbidities. The pathogenesis of synovial inflammation is the consequence of compounded immune and stromal cell interactions influenced by genetic and environmental factors. Deciphering the complexity of the synovial cellular landscape has accelerated primarily due to the utilisation of bulk and single cell RNA sequencing. Particularly the capacity to generate cell-cell interaction networks could reveal evidence of previously unappreciated processes leading to disease. However, there is currently a lack of universal nomenclature as a result of varied experimental and technological approaches that discombobulates the study of synovial inflammation. While spatial transcriptomic analysis that combines anatomical information with transcriptomic data of synovial tissue biopsies promises to provide more insights into disease pathogenesis, in vitro functional assays with single-cell resolution will be required to validate current bioinformatic applications. In order to provide a comprehensive approach and translate experimental data to clinical practice, a combination of clinical and molecular data with machine learning has the potential to enhance patient stratification and identify individuals at risk of arthritis that would benefit from early therapeutic intervention. This review aims to provide a comprehensive understanding of the effect of computational approaches in deciphering synovial inflammation pathogenesis and discuss the impact that further experimental and novel computational tools may have on therapeutic target identification and drug development.
Collapse
Affiliation(s)
- Ciara Hegarty
- Translational Immunology lab, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Nuno Neto
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland
| | - Paul Cahill
- Vascular Biology lab, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Achilleas Floudas
- Translational Immunology lab, School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
11
|
Markus MA, Ferrari DP, Alves F, Ramos-Gomes F. Effect of tissue fixation on the optical properties of structural components assessed by non-linear microscopy imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:3988-4002. [PMID: 37799688 PMCID: PMC10549744 DOI: 10.1364/boe.488453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 10/07/2023]
Abstract
Fixation methods such as formalin are commonly used for the preservation of tissue with the aim of keeping their structure as close as possible to the native condition. However, fixatives chemically interact with tissue molecules, such as collagen in the extracellular matrix (ECM) or myosin, and may thus modify their structure. Taking advantage of the second- and third-harmonic generation (SHG and THG) emission capabilities of such components, we used nonlinear two-photon microscopy (NL2PM) to evaluate the effect that preservation methods, such as chemical fixatives, have on the nonlinear capabilities of protein components within mouse tissues. Our results show that depending on the preservation technique used, the nonlinear capabilities of collagen, lipid droplets and myosin microarchitecture are strongly affected. Parameters of collagen fibers, such as density and branch points, especially in collagen-sparse regions, e.g., in kidneys, were found to be altered upon formalin fixation. Moreover, cryo-freezing drastically reduced SHG signals from myosin. Our findings provide valuable information to select the best tissue fixation method for visualization and quantification of structural proteins, such as collagen and myosin by advanced NL2PM imaging techniques. This may advance the interpretation of the role these proteins play in disease.
Collapse
Affiliation(s)
- M. Andrea Markus
- Translational Molecular Imaging Group,
Max-Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Daniele P. Ferrari
- Translational Molecular Imaging Group,
Max-Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Frauke Alves
- Translational Molecular Imaging Group,
Max-Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
- Clinic of Haematology and Medical Oncology, Institute of Interventional and Diagnostic Radiology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Fernanda Ramos-Gomes
- Translational Molecular Imaging Group,
Max-Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| |
Collapse
|
12
|
García MJ, Kamaid A, Malacrida L. Label-free fluorescence microscopy: revisiting the opportunities with autofluorescent molecules and harmonic generations as biosensors and biomarkers for quantitative biology. Biophys Rev 2023; 15:709-719. [PMID: 37681086 PMCID: PMC10480099 DOI: 10.1007/s12551-023-01083-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 09/09/2023] Open
Abstract
Over the past decade, the utilization of advanced fluorescence microscopy technologies has presented numerous opportunities to study or re-investigate autofluorescent molecules and harmonic generation signals as molecular biomarkers and biosensors for in vivo cell and tissue studies. The label-free approaches benefit from the endogenous fluorescent molecules within the cell and take advantage of their spectroscopy properties to address biological questions. Harmonic generation can be used as a tool to identify the occurrence of fibrillar or lipid deposits in tissues, by using second and third-harmonic generation microscopy. Combining autofluorescence with novel techniques and tools such as fluorescence lifetime imaging microscopy (FLIM) and hyperspectral imaging (HSI) with model-free analysis of phasor plots has revolutionized the understanding of molecular processes such as cellular metabolism. These tools provide quantitative information that is often hidden under classical intensity-based microscopy. In this short review, we aim to illustrate how some of these technologies and techniques may enable investigation without the need to add a foreign fluorescence molecule that can modify or affect the results. We address some of the most important autofluorescence molecules and their spectroscopic properties to illustrate the potential of these combined tools. We discuss using them as biomarkers and biosensors and, under the lens of this new technology, identify some of the challenges and potentials for future advances in the field.
Collapse
Affiliation(s)
- María José García
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo & Universidad de la República, Montevideo, Uruguay
| | - Andrés Kamaid
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo & Universidad de la República, Montevideo, Uruguay
| | - Leonel Malacrida
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo & Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
13
|
Harvey M, Cisek R, Alizadeh M, Barzda V, Kreplak L, Tokarz D. High numerical aperture imaging allows chirality measurement in individual collagen fibrils using polarization second harmonic generation microscopy. NANOPHOTONICS 2023; 12:2061-2071. [PMID: 37215945 PMCID: PMC10193268 DOI: 10.1515/nanoph-2023-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023]
Abstract
Second harmonic generation (SHG) microscopy is a commonly used technique to study the organization of collagen within tissues. However, individual collagen fibrils, which have diameters much smaller than the resolution of most optical systems, have not been extensively investigated. Here we probe the structure of individual collagen fibrils using polarization-resolved SHG (PSHG) microscopy and atomic force microscopy. We find that longitudinally polarized light occurring at the edge of a focal volume of a high numerical aperture microscope objective illuminated with linearly polarized light creates a measurable variation in PSHG signal along the axis orthogonal to an individual collagen fibril. By comparing numerical simulations to experimental data, we are able to estimate parameters related to the structure and chirality of the collagen fibril without tilting the sample out of the image plane, or cutting tissue at different angles, enabling chirality measurements on individual nanostructures to be performed in standard PSHG microscopes. The results presented here are expected to lead to a better understanding of PSHG results from both collagen fibrils and collagenous tissues. Further, the technique presented can be applied to other chiral nanoscale structures such as microtubules, nanowires, and nanoribbons.
Collapse
Affiliation(s)
- MacAulay Harvey
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3Canada
| | - Richard Cisek
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3Canada
| | - Mehdi Alizadeh
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, 60 St. George St, Toronto, ON, M5S 1A7, Canada
- Laser Research Center, Faculty of Physics, Vilnius University, Sauletekio Av. 9, LT-10222Vilnius, Lithuania
| | - Virginijus Barzda
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, 60 St. George St, Toronto, ON, M5S 1A7, Canada
- Laser Research Center, Faculty of Physics, Vilnius University, Sauletekio Av. 9, LT-10222Vilnius, Lithuania
| | - Laurent Kreplak
- Department of Physics and Atmospheric Science and School of Biomedical Engineering, Dalhousie University, Halifax, NS, B3H 4J5, Canada
| | - Danielle Tokarz
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3Canada
| |
Collapse
|
14
|
Hu L, Morganti S, Nguyen U, Benavides OR, Walsh AJ. Label-free optical imaging of cell function and collagen structure for cell-based therapies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 25:100433. [PMID: 36642995 PMCID: PMC9836225 DOI: 10.1016/j.cobme.2022.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-based therapies harness functional cells or tissues to mediate healing and treat disease. Assessment of cellular therapeutics requires methods that are non-destructive to ensure therapies remain viable and uncontaminated for use in patients. Optical imaging of endogenous collagen, by second-harmonic generation, and the metabolic coenzymes NADH and FAD, by autofluorescence microscopy, provides tissue structure and cellular information. Here, we review applications of label-free nonlinear optical imaging of cellular metabolism and collagen second-harmonic generation for assessing cell-based therapies. Additionally, we discuss the potential of label-free imaging for quality control of cell-based therapies, as well as the current limitations and potential future directions of label-free imaging technologies.
Collapse
|
15
|
Hernández IC, Yau J, Rishøj L, Cui N, Minderler S, Jowett N. Tutorial: multiphoton microscopy to advance neuroscience research. Methods Appl Fluoresc 2023; 11. [PMID: 36753763 DOI: 10.1088/2050-6120/acba66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Multiphoton microscopy (MPM) employs ultrafast infrared lasers for high-resolution deep three-dimensional imaging of live biological samples. The goal of this tutorial is to provide a practical guide to MPM imaging for novice microscopy developers and life-science users. Principles of MPM, microscope setup, and labeling strategies are discussed. Use of MPM to achieve unprecedented imaging depth of whole mounted explants and intravital imaging via implantable glass windows of the mammalian nervous system is demonstrated.
Collapse
Affiliation(s)
- Iván Coto Hernández
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| | - Jenny Yau
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| | - Lars Rishøj
- Technical University of Denmark, DTU Electro, Ørsteds Plads 343, 2800 Kgs. Lyngby, Denmark
| | - Nanke Cui
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| | - Steven Minderler
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| | - Nate Jowett
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| |
Collapse
|
16
|
Barbon S, Biccari A, Stocco E, Capovilla G, D’Angelo E, Todesco M, Sandrin D, Bagno A, Romanato F, Macchi V, De Caro R, Agostini M, Merigliano S, Valmasoni M, Porzionato A. Bio-Engineered Scaffolds Derived from Decellularized Human Esophagus for Functional Organ Reconstruction. Cells 2022; 11:cells11192945. [PMID: 36230907 PMCID: PMC9563623 DOI: 10.3390/cells11192945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Esophageal reconstruction through bio-engineered allografts that highly resemble the peculiar properties of the tissue extracellular matrix (ECM) is a prospective strategy to overcome the limitations of current surgical approaches. In this work, human esophagus was decellularized for the first time in the literature by comparing three detergent-enzymatic protocols. After decellularization, residual DNA quantification and histological analyses showed that all protocols efficiently removed cells, DNA (<50 ng/mg of tissue) and muscle fibers, preserving collagen/elastin components. The glycosaminoglycan fraction was maintained (70–98%) in the decellularized versus native tissues, while immunohistochemistry showed unchanged expression of specific ECM markers (collagen IV, laminin). The proteomic signature of acellular esophagi corroborated the retention of structural collagens, basement membrane and matrix–cell interaction proteins. Conversely, decellularization led to the loss of HLA-DR expression, producing non-immunogenic allografts. According to hydroxyproline quantification, matrix collagen was preserved (2–6 µg/mg of tissue) after decellularization, while Second-Harmonic Generation imaging highlighted a decrease in collagen intensity. Based on uniaxial tensile tests, decellularization affected tissue stiffness, but sample integrity/manipulability was still maintained. Finally, the cytotoxicity test revealed that no harmful remnants/contaminants were present on acellular esophageal matrices, suggesting allograft biosafety. Despite the different outcomes showed by the three decellularization methods (regarding, for example, tissue manipulability, DNA removal, and glycosaminoglycans/hydroxyproline contents) the ultimate validation should be provided by future repopulation tests and in vivo orthotopic implant of esophageal scaffolds.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Andrea Biccari
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Giovanni Capovilla
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Edoardo D’Angelo
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Martina Todesco
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Deborah Sandrin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
| | - Andrea Bagno
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Filippo Romanato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Marco Agostini
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-96-40-160
| | - Stefano Merigliano
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Michele Valmasoni
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| |
Collapse
|
17
|
Gonzalez Pisfil M, Nadelson I, Bergner B, Rottmeier S, Thomae AW, Dietzel S. Stimulated emission depletion microscopy with a single depletion laser using five fluorochromes and fluorescence lifetime phasor separation. Sci Rep 2022; 12:14027. [PMID: 35982114 PMCID: PMC9388687 DOI: 10.1038/s41598-022-17825-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Stimulated emission depletion (STED) microscopy achieves super-resolution by exciting a diffraction-limited volume and then suppressing fluorescence in its outer parts by depletion. Multiple depletion lasers may introduce misalignment and bleaching. Hence, a single depletion wavelength is preferable for multi-color analyses. However, this limits the number of usable spectral channels. Using cultured cells, common staining protocols, and commercially available fluorochromes and microscopes we exploit that the number of fluorochromes in STED or confocal microscopy can be increased by phasor based fluorescence lifetime separation of two dyes with similar emission spectra but different fluorescent lifetimes. In our multi-color FLIM-STED approach two fluorochromes in the near red (exc. 594 nm, em. 600–630) and two in the far red channel (633/641–680), supplemented by a single further redshifted fluorochrome (670/701–750) were all depleted with a single laser at 775 nm thus avoiding potential alignment issues. Generally, this approach doubles the number of fully distinguishable colors in laser scanning microscopy. We provide evidence that eight color FLIM-STED with a single depletion laser would be possible if suitable fluorochromes were identified and we confirm that a fluorochrome may have different lifetimes depending on the molecules to which it is coupled.
Collapse
Affiliation(s)
- Mariano Gonzalez Pisfil
- Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Iliya Nadelson
- Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Brigitte Bergner
- Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Sonja Rottmeier
- Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Andreas W Thomae
- Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Steffen Dietzel
- Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
18
|
Kesavamoorthy N, Junge JA, Fraser SE, Ameri H. Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice. Cells 2022; 11:2265. [PMID: 35892562 PMCID: PMC9331481 DOI: 10.3390/cells11152265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM) evaluates the metabolic state of tissue based on reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD). Fluorescence lifetime imaging ophthalmoscopy (FLIO) can image the fundus of the eyes, but cannot detect NAD(P)H. We used multiphoton FLIM to study the metabolic state of the retina in fixed eyes of wild-type mice C57BL6/J. We sectioned the eye using a polyacrylamide gel-embedding technique and estimated the percentage of bound NAD(P)H. We found that oxidative phosphorylation was the predominant metabolic state, particularly in the inner retina, when a fixed retina was used. We also demonstrated the feasibility of FAD imaging of the retina. In addition, we demonstrated that autofluorescence and various FLIM channels, such as hemoglobin, melanin and collagen, can be used to evaluate the structure of the retina and other parts of the eye without any special staining.
Collapse
Affiliation(s)
- Niranjana Kesavamoorthy
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Jason A. Junge
- Department of Biological Sciences, David Dornsife College of Letters Arts and Sciences, University of Southern California Dana, Los Angeles, CA 90089, USA; (J.A.J.); (S.E.F.)
| | - Scott E. Fraser
- Department of Biological Sciences, David Dornsife College of Letters Arts and Sciences, University of Southern California Dana, Los Angeles, CA 90089, USA; (J.A.J.); (S.E.F.)
| | - Hossein Ameri
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| |
Collapse
|
19
|
|
20
|
Montefusco D, Jamil M, Maczis MA, Schroeder W, Levi M, Ranjit S, Allegood J, Bandyopadhyay D, Retnam R, Spiegel S, Cowart LA. Sphingosine Kinase 1 Mediates Sexual Dimorphism in Fibrosis in a Mouse Model of NASH. Mol Metab 2022; 62:101523. [PMID: 35671973 PMCID: PMC9194589 DOI: 10.1016/j.molmet.2022.101523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Men with non-alcoholic fatty liver disease (NAFLD) are more likely to progress to nonalcoholic steatohepatitis (NASH) and liver fibrosis than women. However, the underlying molecular mechanisms of this dimorphism is unclear. We have previously shown that mice with global deletion of SphK1, the enzyme that produces the bioactive sphingolipid metabolite sphingosine 1-phosphate (S1P), were protected from development of NASH. The aim of this study was to elucidate the role of hepatocyte-specific SphK1 in development of NASH and to compare its contribution to hepatosteatosis in male and female mice. RESULTS We generated hepatocyte-specific SphK1 knockout mice (SphK1-hKO). Unlike the global knockout, SphK1-hKO male mice were not protected from diet-induced steatosis, inflammation, or fibrogenesis. In contrast, female SphK1-hKO mice were protected from inflammation. Surprisingly, however, in these female mice, there was a ∼10-fold increase in the fibrosis markers Col1α1 and 2-3 fold induction of alpha smooth muscle actin and the pro-fibrotic chemokine CCL5. Because increased fibrosis in female SphK1-hKO mice occurred despite an attenuated inflammatory response, we investigated the crosstalk between hepatocytes and hepatic stellate cells, central players in fibrosis. We found that estrogen stimulated release of S1P from female hepatocytes preventing TGFβ-induced expression of Col1α1 in HSCs via S1PR3. CONCLUSIONS The results revealed a novel pathway of estrogen-mediated cross-talk between hepatocytes and HSCs that may contribute to sex differences in NAFLD through an anti-fibrogenic function of the S1P/S1PR3 axis. This pathway is susceptible to pharmacologic manipulation, which may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- David Montefusco
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA.
| | - Maryam Jamil
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - Melissa A Maczis
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - William Schroeder
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, USA
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, USA
| | - Jeremy Allegood
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | | | - Reuben Retnam
- Virginia Commonwealth University Department of Biostatistics, VA, USA
| | - Sarah Spiegel
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - L Ashley Cowart
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA; Hunter Holmes McGuire VAMC, Richmond, VA, USA
| |
Collapse
|
21
|
Yoshioka NK, Young GM, Khajuria DK, Karuppagounder V, Pinamont WJ, Fanburg-Smith JC, Abraham T, Elbarbary RA, Kamal F. Structural changes in the collagen network of joint tissues in late stages of murine OA. Sci Rep 2022; 12:9159. [PMID: 35650306 PMCID: PMC9160297 DOI: 10.1038/s41598-022-13062-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease, resulting in joint pain, impaired movement, and structural changes. As the ability of joint tissue to resist stress is mainly imparted by fibrillar collagens in the extracellular matrix, changes in the composition and structure of collagen fibers contribute to the pathological remodeling observed in OA joints that includes cartilage degeneration, subchondral bone (SCB) sclerosis, and meniscal damage. Using the established OA model of destabilization of the medial meniscus (DMM) in C57BL/6J mice, we performed a comprehensive analysis of the content and structure of collagen fibers in the articular cartilage, subchondral bone, and menisci using complementary techniques, which included second harmonic generation microscopy and immunofluorescence staining. We found that regions exposed to increased mechanical stress in OA mice, typically closest to the site of injury, had increased collagen fiber thickness, dysregulated fiber formation, and tissue specific changes in collagen I and II (Col I and Col II) expression. In cartilage, OA was associated with decreased Col II expression in all regions, and increased Col I expression in the anterior and posterior regions. Col I fiber thickness was increased in all regions with disorganization in the center region. In the superficial SCB, all regions exhibited increased Col I expression and fiber thickness in OA mice; no changes were detected in the deeper regions of the subchondral bone except for increased Col I fiber thickness. In the menisci, OA led to increased Col I and Col II expression in the vascular and avascular regions of the anterior meniscus with increased Col I fiber thickness in these regions. Similar changes were observed only in the vascular region of the posterior meniscus. Our findings provide, for the first time, comprehensive insights into the microarchitectural changes of extracellular matrix in OA and serve as guidelines for studies investigating therapies that target collagenous changes as means to impede the progression of osteoarthritis.
Collapse
Affiliation(s)
- Natalie K Yoshioka
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Gregory M Young
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Deepak Kumar Khajuria
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Vengadeshprabhu Karuppagounder
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - William J Pinamont
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Julie C Fanburg-Smith
- Department of Pathology, Penn State Health/Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Thomas Abraham
- Department of Neural and Behavioral Science, Penn State University College of Medicine, Hershey, PA, USA
- Microscopy Imaging Facility, Penn State University College of Medicine, Hershey, PA, USA
| | - Reyad A Elbarbary
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA.
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA.
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| | - Fadia Kamal
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA.
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA.
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
22
|
Hilzenrat G, Gill ET, McArthur SL. Imaging approaches for monitoring three-dimensional cell and tissue culture systems. JOURNAL OF BIOPHOTONICS 2022; 15:e202100380. [PMID: 35357086 DOI: 10.1002/jbio.202100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The past decade has seen an increasing demand for more complex, reproducible and physiologically relevant tissue cultures that can mimic the structural and biological features of living tissues. Monitoring the viability, development and responses of such tissues in real-time are challenging due to the complexities of cell culture physical characteristics and the environments in which these cultures need to be maintained in. Significant developments in optics, such as optical manipulation, improved detection and data analysis, have made optical imaging a preferred choice for many three-dimensional (3D) cell culture monitoring applications. The aim of this review is to discuss the challenges associated with imaging and monitoring 3D tissues and cell culture, and highlight topical label-free imaging tools that enable bioengineers and biophysicists to non-invasively characterise engineered living tissues.
Collapse
Affiliation(s)
- Geva Hilzenrat
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Emma T Gill
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Sally L McArthur
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
23
|
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice. Int J Mol Sci 2022; 23:ijms23105675. [PMID: 35628485 PMCID: PMC9147974 DOI: 10.3390/ijms23105675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022] Open
Abstract
Sodium-glucose co-transporters (SGLTs) serve to reabsorb glucose in the kidney. Recently, these transporters, mainly SGLT2, have emerged as new therapeutic targets for patients with diabetes and kidney disease; by inhibiting glucose reabsorption, they promote glycosuria, weight loss, and improve glucose tolerance. They have also been linked to cardiac protection and mitigation of liver injury. However, to date, the mechanism(s) by which SGLT2 inhibition promotes systemic improvements is not fully appreciated. Using an obese TallyHo mouse model which recapitulates the human condition of diabetes and nonalcoholic fatty liver disease (NAFLD), we sought to determine how modulation of renal glucose handling impacts liver structure and function. Apart from an attenuation of hyperglycemia, Empagliflozin was found to decrease circulating triglycerides and lipid accumulation in the liver in male TallyHo mice. This correlated with lowered hepatic cholesterol esters. Using in vivo MRI analysis, we further determined that the reduction in hepatic steatosis in male TallyHo mice was associated with an increase in nuchal white fat indicative of "healthy adipose expansion". Notably, this whitening of the adipose came at the expense of brown adipose tissue. Collectively, these data indicate that the modulation of renal glucose handling has systemic effects and may be useful as a treatment option for NAFLD and steatohepatitis.
Collapse
|
24
|
Customized bioreactor enables the production of 3D diaphragmatic constructs influencing matrix remodeling and fibroblast overgrowth. NPJ Regen Med 2022; 7:25. [PMID: 35468920 PMCID: PMC9038738 DOI: 10.1038/s41536-022-00222-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
The production of skeletal muscle constructs useful for replacing large defects in vivo, such as in congenital diaphragmatic hernia (CDH), is still considered a challenge. The standard application of prosthetic material presents major limitations, such as hernia recurrences in a remarkable number of CDH patients. With this work, we developed a tissue engineering approach based on decellularized diaphragmatic muscle and human cells for the in vitro generation of diaphragmatic-like tissues as a proof-of-concept of a new option for the surgical treatment of large diaphragm defects. A customized bioreactor for diaphragmatic muscle was designed to control mechanical stimulation and promote radial stretching during the construct engineering. In vitro tests demonstrated that both ECM remodeling and fibroblast overgrowth were positively influenced by the bioreactor culture. Mechanically stimulated constructs also increased tissue maturation, with the formation of new oriented and aligned muscle fibers. Moreover, after in vivo orthotopic implantation in a surgical CDH mouse model, mechanically stimulated muscles maintained the presence of human cells within myofibers and hernia recurrence did not occur, suggesting the value of this approach for treating diaphragm defects.
Collapse
|
25
|
Atomic Force Microscopy (AFM) Applications in Arrhythmogenic Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23073700. [PMID: 35409059 PMCID: PMC8998711 DOI: 10.3390/ijms23073700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disorder characterized by progressive replacement of cardiomyocytes by fibrofatty tissue, ventricular dilatation, cardiac dysfunction, arrhythmias, and sudden cardiac death. Interest in molecular biomechanics for these disorders is constantly growing. Atomic force microscopy (AFM) is a well-established technic to study the mechanobiology of biological samples under physiological and pathological conditions at the cellular scale. However, a review which described all the different data that can be obtained using the AFM (cell elasticity, adhesion behavior, viscoelasticity, beating force, and frequency) is still missing. In this review, we will discuss several techniques that highlight the potential of AFM to be used as a tool for assessing the biomechanics involved in ACM. Indeed, analysis of genetically mutated cells with AFM reveal abnormalities of the cytoskeleton, cell membrane structures, and defects of contractility. The higher the Young’s modulus, the stiffer the cell, and it is well known that abnormal tissue stiffness is symptomatic of a range of diseases. The cell beating force and frequency provide information during the depolarization and repolarization phases, complementary to cell electrophysiology (calcium imaging, MEA, patch clamp). In addition, original data is also presented to emphasize the unique potential of AFM as a tool to assess fibrosis in cardiac tissue.
Collapse
|
26
|
Sabo AR, Winfree S, Bledsoe SB, Phillips CL, Lingeman JE, Eadon MT, Williams JC, El‐Achkar TM. Label-free imaging of non-deparaffinized sections of the human kidney to determine tissue quality and signatures of disease. Physiol Rep 2022; 10:e15167. [PMID: 35133089 PMCID: PMC8822874 DOI: 10.14814/phy2.15167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
Label-free fluorescence imaging of kidney sections can provide important morphological information, but its utility has not been tested in a histology processing workflow. We tested the feasibility of label-free imaging of paraffin-embedded sections without deparaffinization and its potential usefulness in generating actionable data. Kidney tissue specimens were obtained during percutaneous nephrolithotomy or via diagnostic needle biopsy. Unstained non-deparaffinized sections were imaged using widefield fluorescence microscopy to capture endogenous fluorescence. Some samples were also imaged with confocal microscopy and multiphoton excitation to collect second harmonic generation (SHG) signal to obtain high-quality autofluorescence images with optical sectioning. To adjudicate the label-free signal, the samples or corresponding contiguous sections were subsequently deparaffinized and stained with Lillie's allochrome. Label-free imaging allowed the recognition of various kidney structures and enabled morphological qualification for adequacy. SHG and confocal imaging yielded quantifiable high-quality images for tissue collagens and revealed specific patterns in glomeruli and various tubules. Disease specimens from patients with diabetic kidney disease and focal segmental glomerulosclerosis showed distinctive signatures compared to specimens from healthy controls with normal kidney function. Quantitative cytometry could also be performed when DAPI is added in situ before imaging. These results show that label-free imaging of non-deparaffinized sections provides useful information about tissue quality that could be beneficial to nephropathologists by maximizing the use of scarce kidney tissue. This approach also provides quantifiable features that could inform on the biology of health and disease.
Collapse
Affiliation(s)
- Angela R. Sabo
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Seth Winfree
- Department of Pathology and MicrobiologyEppley InstituteUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sharon B. Bledsoe
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Carrie L. Phillips
- Department of PathologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - James E. Lingeman
- Department of UrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Michael T. Eadon
- Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - James C. Williams
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Tarek M. El‐Achkar
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Indianapolis VA Medical CenterIndianapolisIndianaUSA
| |
Collapse
|
27
|
Lee PY, Yang B, Hua Y, Waxman S, Zhu Z, Ji F, Sigal IA. Real-time imaging of optic nerve head collagen microstructure and biomechanics using instant polarized light microscopy. Exp Eye Res 2022; 217:108967. [PMID: 35114213 PMCID: PMC8957577 DOI: 10.1016/j.exer.2022.108967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 01/25/2022] [Indexed: 01/09/2023]
Abstract
Current tools lack the temporal or spatial resolution necessary to image many important aspects of the architecture and dynamics of the optic nerve head (ONH). We evaluated the potential of instant polarized light microscopy (IPOL) to overcome these limitations by leveraging the ability to capture collagen fiber orientation and density in a single image. Coronal sections through the ONH of fresh normal sheep eyes were imaged using IPOL while they were stretched using custom uniaxial or biaxial micro-stretch devices. IPOL allows identifying ONH collagen architectural details, such as fiber interweaving and crimp, and has high temporal resolution, limited only by the frame rate of the camera. Local collagen fiber orientations and deformations were quantified using color analysis and image tracking techniques. We quantified stretch-induced collagen uncrimping of lamina cribrosa (LC) and peripapillary sclera (PPS), and changes in LC pore size (area) and shape (convexity and aspect ratio). The simultaneous high spatial and temporal resolutions of IPOL revealed complex ONH biomechanics: i) stretch-induced local deformation of the PPS was nonlinear and nonaffine. ii) under load the crimped collagen fibers in the PPS and LC straightened, without torsion and with only small rotations. iii) stretch-induced LC pore deformation was anisotropic and heterogeneous among pores. Overall, with stretch the pores were became larger, more convex, and more circular. We have demonstrated that IPOL reveals details of collagen morphology and mechanics under dynamic loading previously out of reach. IPOL can detect stretch-induced collagen uncrimping and other elements of the tissue nonlinear mechanical behavior. IPOL showed changes in pore morphology and collagen architecture that will help improve understanding of how LC tissue responds to load.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bin Yang
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Yi Hua
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susannah Waxman
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ziyi Zhu
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fengting Ji
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ian A Sigal
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
28
|
Schilling K, Zhai Y, Zhou Z, Zhou B, Brown E, Zhang X. High-resolution imaging of the osteogenic and angiogenic interface at the site of murine cranial bone defect repair via multiphoton microscopy. eLife 2022; 11:83146. [PMID: 36326085 PMCID: PMC9678361 DOI: 10.7554/elife.83146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
The spatiotemporal blood vessel formation and specification at the osteogenic and angiogenic interface of murine cranial bone defect repair were examined utilizing a high-resolution multiphoton-based imaging platform in conjunction with advanced optical techniques that allow interrogation of the oxygen microenvironment and cellular energy metabolism in living animals. Our study demonstrates the dynamic changes of vessel types, that is, arterial, venous, and capillary vessel networks at the superior and dura periosteum of cranial bone defect, suggesting a differential coupling of the vessel type with osteoblast expansion and bone tissue deposition/remodeling during repair. Employing transgenic reporter mouse models that label distinct types of vessels at the site of repair, we further show that oxygen distributions in capillary vessels at the healing site are heterogeneous as well as time- and location-dependent. The endothelial cells coupling to osteoblasts prefer glycolysis and are less sensitive to microenvironmental oxygen changes than osteoblasts. In comparison, osteoblasts utilize relatively more OxPhos and potentially consume more oxygen at the site of repair. Taken together, our study highlights the dynamics and functional significance of blood vessel types at the site of defect repair, opening up opportunities for further delineating the oxygen and metabolic microenvironment at the interface of bone tissue regeneration.
Collapse
Affiliation(s)
- Kevin Schilling
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States,Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Yuankn Zhai
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| | - Zhuang Zhou
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| | - Bin Zhou
- Shanghai Institutes for Biological SciencesShanghaiChina
| | - Edward Brown
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and DentistryRochesterUnited States
| |
Collapse
|
29
|
Schilling K, Brown E, Zhang X. NAD(P)H autofluorescence lifetime imaging enables single cell analyses of cellular metabolism of osteoblasts in vitro and in vivo via two-photon microscopy. Bone 2022; 154:116257. [PMID: 34781049 PMCID: PMC8671374 DOI: 10.1016/j.bone.2021.116257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023]
Abstract
Two-photon fluorescence lifetime microscopy (2P-FLIM) is a non-invasive optical technique that can obtain cellular metabolism information based on the intrinsic autofluorescence lifetimes of free and enzyme-bound NAD(P)H, which reflect the metabolic state of single cells within the native microenvironment of the living tissue. NAD(P)H 2P-FLIM was initially performed in bone marrow stromal cell (BMSC) cultures established from Col (I) 2.3GFP or OSX-mCherry mouse models, in which osteoblastic lineage cells were labelled with green or red fluorescence protein, respectively. Measurement of the mean NAD(P)H lifetime, τM, demonstrated that osteoblasts in osteogenic media had a progressively increased τM compared to cells in regular media, suggesting that osteoblasts undergoing mineralization had higher NAD+/NAD(P)H ratio and may utilize more oxidative phosphorylation (OxPhos). In vivo NAD(P)H 2P-FLIM was conducted in conjunction with two-photon phosphorescence lifetime microscopy (2P-PLIM) to evaluate cellular metabolism of GFP+ osteoblasts as well as bone tissue oxygen at different locations of the native cranial bone in Col (I) 2.3GFP mice. Our data showed that osteocytes dwelling within lacunae had higher τM than osteoblasts at the bone edge of suture and marrow space. Measurement of pO2 showed poor correlation of pO2 and τM in native bone. However, when NAD(P)H 2P-FLIM was used to examine osteoblast cellular metabolism at the leading edge of the cranial defects during repair in Col (I) 2.3GFP mouse model, a significantly lower τM was recorded, which was associated with lower pO2 at an early stage of healing, indicating an impact of hypoxia on energy metabolism during bone tissue repair. Taken together, our current study demonstrates the feasibility of using non-invasive optical NAD(P)H 2P-FLIM technique to examine cellular energy metabolism at single cell resolution in living animals. Our data further support that both glycolysis and OxPhos are being used in the osteoblasts, with more mature osteoblasts exhibiting higher ratio of NAD+/NAD(P)H, indicating a potential change of energy mode during differentiation. Further experiments utilizing animals with genetic modification of cellular metabolism could enhance our understanding of energy metabolism in various cell types in living bone microenvironment.
Collapse
Affiliation(s)
- Kevin Schilling
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Edward Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
30
|
Laurito TL, França FT, Vieira-Damiani G, Pelegati VB, Baratti MO, de Carvalho HF, Cesar CL, de Moraes AM, Cintra ML, Teixeira F. The texture of collagen in the microenvironments of Merkel cell carcinoma. Medicine (Baltimore) 2021; 100:e27925. [PMID: 34964766 PMCID: PMC8615296 DOI: 10.1097/md.0000000000027925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
ABSTRACT Solid tumors typically contain high levels of fibrillar collagen. The increased stromal collagen deposition usually promotes cancer progression since biochemical and biophysical cues from tumor-associated collagen fibers stimulate neoplastic cells. Few studies have investigated the relationship between Merkel cell carcinoma (MCC) and the extracellular matrix (ECM), but there are no works evaluating collagen.This is an observational, analytical, retrospective study including 11 patients with MCC. Primary tumor-stained sections were evaluated by second harmonic generation microscopy and texture analysis.Peritumoral texture features (area fraction, mean gray value, entropy, and contrast) showed much lower values than normal skin (P < .0001) revealing extensively altered structure of peritumoral collagen fibers. These differences were not significant between tumors with unfavorable and favorable known prognostic factors.Profound changes in collagen fibers present in the stroma accompanying primary MCC may contribute to the aggressive behavior of this tumor. Our results indicate that whatever MCC histological subtype, size or anatomical location, MCC promotes the same type of ECM for its development. As an outlook, therapies using ECM macromolecules or fibroblasts (the architects of ECM remodeling) as target could be useful in the treatment of MCC.
Collapse
Affiliation(s)
- Tiago Luders Laurito
- Department of Pathology, Faculty of Medical Sciences, State University of Campinas, Rua Tessália Vieira de Camargo, 126. Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Flávia Thomé França
- Department of Pathology, Faculty of Medical Sciences, State University of Campinas, Rua Tessália Vieira de Camargo, 126. Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Gislaine Vieira-Damiani
- Federal Institute of Education, Science and Technology of São Paulo, Avenida Ênio Pires de Camargo, 2971, Capivari, SP, Brazil
| | - Vitor Bianchin Pelegati
- National Institute of Photonics Applied to Cell Biology, Department of Quantum Electronics, Institute of Physics, State University of Campinas, Rua Sergio Buarque de Holanda, 777, SP, Brazil
| | - Mariana Ozello Baratti
- National Institute of Photonics Applied to Cell Biology, Department of Quantum Electronics, Institute of Physics, State University of Campinas, Rua Sergio Buarque de Holanda, 777, SP, Brazil
| | - Hernandez Faustino de Carvalho
- National Institute of Photonics Applied to Cell Biology, Department of Quantum Electronics, Institute of Physics, State University of Campinas, Rua Sergio Buarque de Holanda, 777, SP, Brazil
| | - Carlos Lenz Cesar
- National Institute of Photonics Applied to Cell Biology, Department of Quantum Electronics, Institute of Physics, State University of Campinas, Rua Sergio Buarque de Holanda, 777, SP, Brazil
| | - Aparecida Machado de Moraes
- Department of Dermatology, Faculty of Medical Sciences, State University of Campinas, Rua Tessália Vieira de Camargo, 126. Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Maria Letícia Cintra
- Department of Pathology, Faculty of Medical Sciences, State University of Campinas, Rua Tessália Vieira de Camargo, 126. Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Fernanda Teixeira
- Department of Pathology, Faculty of Medical Sciences, State University of Campinas, Rua Tessália Vieira de Camargo, 126. Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| |
Collapse
|
31
|
Chevalier NR, Ammouche Y, Gomis A, Langlois L, Guilbert T, Bourdoncle P, Dufour S. A neural crest cell isotropic-to-nematic phase transition in the developing mammalian gut. Commun Biol 2021; 4:770. [PMID: 34162999 PMCID: PMC8222382 DOI: 10.1038/s42003-021-02333-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
While the colonization of the embryonic gut by neural crest cells has been the subject of intense scrutiny over the past decades, we are only starting to grasp the morphogenetic transformations of the enteric nervous system happening in the fetal stage. Here, we show that enteric neural crest cell transit during fetal development from an isotropic cell network to a square grid comprised of circumferentially-oriented cell bodies and longitudinally-extending interganglionic fibers. We present ex-vivo dynamic time-lapse imaging of this isotropic-to-nematic phase transition and show that it occurs concomitantly with circular smooth muscle differentiation in all regions of the gastrointestinal tract. Using conditional mutant embryos with enteric neural crest cells depleted of β1-integrins, we show that cell-extracellular matrix anchorage is necessary for ganglia to properly reorient. We demonstrate by whole mount second harmonic generation imaging that fibrous, circularly-spun collagen I fibers are in direct contact with neural crest cells during the orientation transition, providing an ideal orientation template. We conclude that smooth-muscle associated extracellular matrix drives a critical reorientation transition of the enteric nervous system in the mammalian fetus.
Collapse
Affiliation(s)
- Nicolas R Chevalier
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Paris, France.
| | - Yanis Ammouche
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Paris, France
| | - Anthony Gomis
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Paris, France
| | - Lucas Langlois
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Paris, France
| | - Thomas Guilbert
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris (UMR-S1016), Paris, France
| | - Pierre Bourdoncle
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris (UMR-S1016), Paris, France
| | - Sylvie Dufour
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| |
Collapse
|
32
|
Sugita S, Suzumura T, Nakamura A, Tsukiji S, Ujihara Y, Nakamura M. Second harmonic generation light quantifies the ratio of type III to total (I + III) collagen in a bundle of collagen fiber. Sci Rep 2021; 11:11874. [PMID: 34088955 PMCID: PMC8178339 DOI: 10.1038/s41598-021-91302-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
The ratio of type III to type I collagen is important for properly maintaining functions of organs and cells. We propose a method to quantify the ratio of type III to total (type I + III) collagen (λIII) in a given collagen fiber bundle using second harmonic generation (SHG) light. First, the relationship between SHG light intensity and the λIII of collagen gels was examined, and the slope (k1) and SHG light intensity at 0% type III collagen (k2) were determined. Second, the SHG light intensity of a 100% type I collagen fiber bundle and its diameter (D) were measured, and the slope (k3) of the relationship was determined. The λIII in a collagen fiber bundle was estimated from these constants (k1-3) and SHG light intensity. We applied this method to collagen fiber bundles isolated from the media and adventitia of porcine thoracic aortas, and obtained λIII = 84.7% ± 13.8% and λIII = 17.5% ± 15.2%, respectively. These values concurred with those obtained with a typical quantification method using sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The findings demonstrated that the method proposed is useful to quantify the ratio of type III to total collagen in a collagen fiber bundle.
Collapse
Affiliation(s)
- Shukei Sugita
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan. .,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan.
| | - Takuya Suzumura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Akinobu Nakamura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Shinya Tsukiji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan.,Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya, Japan
| | - Yoshihiro Ujihara
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan.,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan.,Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
33
|
Malacrida L, Ranjit S, Jameson DM, Gratton E. The Phasor Plot: A Universal Circle to Advance Fluorescence Lifetime Analysis and Interpretation. Annu Rev Biophys 2021; 50:575-593. [PMID: 33957055 DOI: 10.1146/annurev-biophys-062920-063631] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The phasor approach to fluorescence lifetime imaging has become a common method to analyze complicated fluorescence signals from biological samples. The appeal of the phasor representation of complex fluorescence decays in biological systems is that a visual representation of the decay of entire cells or tissues can be used to easily interpret fundamental biological states related to metabolism and oxidative stress. Phenotyping based on autofluorescence provides new avenues for disease characterization and diagnostics. The phasor approach is a transformation of complex fluorescence decays that does not use fits to model decays and therefore has the same information content as the original data. The phasor plot is unique for a given system, is highly reproducible, and provides a robust method to evaluate the existence of molecular interactions such as Förster resonance energy transfer or the response of ion indicators. Recent advances permitquantification of multiple components from phasor plots in fluorescence lifetime imaging microscopy, which is not presently possible using data fitting methods, especially in biological systems.
Collapse
Affiliation(s)
- Leonel Malacrida
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California 92697, USA; .,Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, 11600 Montevideo, Uruguay.,Advanced Bioimaging Unit, Institut Pasteur Montevideo and Universidad de la República-Uruguay, 11400 Montevideo, Uruguay
| | - Suman Ranjit
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California 92697, USA; .,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - David M Jameson
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California 92697, USA;
| |
Collapse
|
34
|
Sheng G, Yuan H, Jin L, Ranjit S, Panov J, Lu X, Levi M, Glazer RI. Reduction of fibrosis and immune suppressive cells in ErbB2-dependent tumorigenesis by an LXR agonist. PLoS One 2021; 16:e0248996. [PMID: 33780491 PMCID: PMC8007044 DOI: 10.1371/journal.pone.0248996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/10/2021] [Indexed: 11/18/2022] Open
Abstract
One of the central challenges for cancer therapy is the identification of factors in the tumor microenvironment that increase tumor progression and prevent immune surveillance. One such element associated with breast cancer is stromal fibrosis, a histopathologic criterion for invasive cancer and poor survival. Fibrosis is caused by inflammatory factors and remodeling of the extracellular matrix that elicit an immune tolerant microenvironment. To address the role of fibrosis in tumorigenesis, we developed NeuT/ATTAC transgenic mice expressing a constitutively active NeuT/erbB2 transgene, and an inducible, fat-directed caspase-8 fusion protein, which upon activation results in selective and partial ablation of mammary fat and its replacement with fibrotic tissue. Induction of fibrosis in NeuT/ATTAC mice led to more rapid tumor development and an inflammatory and fibrotic stromal environment. In an effort to explore therapeutic options that could reduce fibrosis and immune tolerance, mice were treated with the oxysterol liver X receptor (LXR) pan agonist, N,N-dimethyl-3-β-hydroxy-cholenamide (DMHCA), an agent known to reduce fibrosis in non-malignant diseases. DMHCA reduced tumor progression, tumor multiplicity and fibrosis, and improved immune surveillance by reducing infiltrating myeloid-derived suppressor cells and increasing CD4 and CD8 effector T cells. These effects were associated with downregulation of an LXR-dependent gene network related to reduced breast cancer survival that included Spp1, S100a9, Anxa1, Mfge8 and Cd14. These findings suggest that the use of DMHCA may be a potentially effective approach to reduce desmoplasia and immune tolerance and increase the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Gao Sheng
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
- Department of Breast, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
| | - Lu Jin
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
| | - Suman Ranjit
- Department of Biochemistry and Molecular Biology, Georgetown University, Washington, DC, United States of America
| | - Julia Panov
- Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Xun Lu
- George Washington University, Washington, DC, United States of America
| | - Moshe Levi
- Department of Biochemistry and Molecular Biology, Georgetown University, Washington, DC, United States of America
| | - Robert I. Glazer
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
35
|
Disease-Relevant Single Cell Photonic Signatures Identify S100β Stem Cells and their Myogenic Progeny in Vascular Lesions. Stem Cell Rev Rep 2021; 17:1713-1740. [PMID: 33730327 PMCID: PMC8446106 DOI: 10.1007/s12015-021-10125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 10/31/2022]
Abstract
A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal thickening and lesion formation. While medial SMCs contribute to vascular lesions, the involvement of resident vascular stem cells (vSCs) remains unclear. We evaluated single cell photonics as a discriminator of cell phenotype in vitro before the presence of vSC within vascular lesions was assessed ex vivo using supervised machine learning and further validated using lineage tracing analysis. Using a novel lab-on-a-Disk(Load) platform, label-free single cell photonic emissions from normal and injured vessels ex vivo were interrogated and compared to freshly isolated aortic SMCs, cultured Movas SMCs, macrophages, B-cells, S100β+ mVSc, bone marrow derived mesenchymal stem cells (MSC) and their respective myogenic progeny across five broadband light wavelengths (λ465 - λ670 ± 20 nm). We found that profiles were of sufficient coverage, specificity, and quality to clearly distinguish medial SMCs from different vascular beds (carotid vs aorta), discriminate normal carotid medial SMCs from lesional SMC-like cells ex vivo following flow restriction, and identify SMC differentiation of a series of multipotent stem cells following treatment with transforming growth factor beta 1 (TGF- β1), the Notch ligand Jagged1, and Sonic Hedgehog using multivariate analysis, in part, due to photonic emissions from enhanced collagen III and elastin expression. Supervised machine learning supported genetic lineage tracing analysis of S100β+ vSCs and identified the presence of S100β+vSC-derived myogenic progeny within vascular lesions. We conclude disease-relevant photonic signatures may have predictive value for vascular disease.
Collapse
|
36
|
Jadidi M, Sherifova S, Sommer G, Kamenskiy A, Holzapfel GA. Constitutive modeling using structural information on collagen fiber direction and dispersion in human superficial femoral artery specimens of different ages. Acta Biomater 2021; 121:461-474. [PMID: 33279711 PMCID: PMC8464405 DOI: 10.1016/j.actbio.2020.11.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022]
Abstract
Arterial mechanics plays an important role in vascular pathophysiology and repair, and advanced imaging can inform constitutive models of vascular behavior. We have measured the mechanical properties of 14 human superficial femoral arteries (SFAs) (age 12-70, mean 48±19 years) using planar biaxial extension, and determined the preferred collagen fiber direction and dispersion using multiphoton microscopy. The collagen fiber direction and dispersion were evaluated using second-harmonic generation imaging and modeled using bivariate von Mises distributions. The microstructures of elastin and collagen were assessed using two-photon fluorescence imaging and conventional bidirectional histology. The mechanical and structural data were used to describe the SFA mechanical behavior using two- and four-fiber family invariant-based constitutive models. Older SFAs were stiffer and mechanically more nonlinear than younger specimens. In the adventitia, collagen fibers were undulated and diagonally-oriented, while in the media, they were straight and circumferentially-oriented. The media was rich in collagen that surrounded the circumferentially-oriented smooth muscle cells, and the elastin was present primarily in the internal and external elastic laminae. Older SFAs had a more circumferential collagen fiber alignment, a decreased circumferential-radial fiber dispersion, but the same circumferential-longitudinal fiber dispersion as younger specimens. Both the two- and the four-fiber family constitutive models were able to capture the experimental data, and the fits were better for the four-fiber family formulation. Our data provide additional details on the SFA intramural structure and inform structurally-based constitutive models.
Collapse
|
37
|
Sahu SP, Liu Q, Prasad A, Hasan SMA, Liu Q, Rodriguez MXB, Mukhopadhyay O, Burk D, Francis J, Mukhopadhyay S, Fu X, Gartia MR. Characterization of fibrillar collagen isoforms in infarcted mouse hearts using second harmonic generation imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:604-618. [PMID: 33520391 PMCID: PMC7818962 DOI: 10.1364/boe.410347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
We utilized collagen specific second harmonic generation (SHG) signatures coupled with correlative immunofluorescence imaging techniques to characterize collagen structural isoforms (type I and type III) in a murine model of myocardial infarction (MI). Tissue samples were imaged over a four week period using SHG, transmitted light microscopy and immunofluorescence imaging using fluorescently-labeled collagen antibodies. The post-mortem cardiac tissue imaging using SHG demonstrated a progressive increase in collagen deposition in the left ventricle (LV) post-MI. We were able to monitor structural morphology and LV remodeling parameters in terms of extent of LV dilation, stiffness and fiber dimensions in the infarcted myocardium.
Collapse
Affiliation(s)
- Sushant P Sahu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Qianglin Liu
- LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Alisha Prasad
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Syed Mohammad Abid Hasan
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Qun Liu
- Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | - David Burk
- Shared Instrumentation Facility and Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Joseph Francis
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Supratik Mukhopadhyay
- Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xing Fu
- LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
38
|
Lai Benjamin FL, Lu Rick X, Hu Y, Davenport HL, Dou W, Wang EY, Radulovich N, Tsao MS, Sun Y, Radisic M. Recapitulating pancreatic tumor microenvironment through synergistic use of patient organoids and organ-on-a-chip vasculature. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000545. [PMID: 33692660 PMCID: PMC7939064 DOI: 10.1002/adfm.202000545] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tumor progression relies heavily on the interaction between the neoplastic epithelial cells and their surrounding stromal partners. This cell cross-talk affects stromal development, and ultimately the heterogeneity impacts drug efflux and efficacy. To mimic this evolving paradigm, we have micro-engineered a three-dimensional (3D) vascularized pancreatic adenocarcinoma tissue in a tri-culture system composed of patient derived pancreatic organoids, primary human fibroblasts and endothelial cells on a perfusable InVADE platform situated in a 96-well plate. Uniquely, through synergistic engineering we combined the benefits of cellular fidelity of patient tumor derived organoids with the addressability of a plastic organ-on-a-chip platform. Validation of this platform included demonstrating the growth of pancreatic tumor organoids by monitoring the change in metabolic activity of the tissue. Investigation of tumor microenvironmental behavior highlighted the role of fibroblasts in symbiosis with patient organoid cells, resulting in a six-fold increase of collagen deposition and a corresponding increase in tissue stiffness in comparison to fibroblast free controls. The value of a perfusable vascular network was evident in drug screening, as perfusion of gemcitabine into a stiffened matrix did not show the dose-dependent effects on tumor viability as those under static conditions. These findings demonstrate the importance of studying the dynamic synergistic relationship between patient cells with stromal fibroblasts, in a 3D perfused vascular network, to accurately understand and recapitulate the tumor microenvironment.
Collapse
Affiliation(s)
- F L Lai Benjamin
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - X Lu Rick
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yangshuo Hu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Huyer Locke Davenport
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Wenkun Dou
- Material Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Erika Y Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming S Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yu Sun
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Material Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Courtoy GE, Leclercq I, Froidure A, Schiano G, Morelle J, Devuyst O, Huaux F, Bouzin C. Digital Image Analysis of Picrosirius Red Staining: A Robust Method for Multi-Organ Fibrosis Quantification and Characterization. Biomolecules 2020; 10:biom10111585. [PMID: 33266431 PMCID: PMC7709042 DOI: 10.3390/biom10111585] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Current understanding of fibrosis remains incomplete despite the increasing burden of related diseases. Preclinical models are used to dissect the pathogenesis and dynamics of fibrosis, and to evaluate anti-fibrotic therapies. These studies require objective and accurate measurements of fibrosis. Existing histological quantification methods are operator-dependent, organ-specific, and/or need advanced equipment. Therefore, we developed a robust, minimally operator-dependent, and tissue-transposable digital method for fibrosis quantification. The proposed method involves a novel algorithm for more specific and more sensitive detection of collagen fibers stained by picrosirius red (PSR), a computer-assisted segmentation of histological structures, and a new automated morphological classification of fibers according to their compactness. The new algorithm proved more accurate than classical filtering using principal color component (red-green-blue; RGB) for PSR detection. We applied this new method on established mouse models of liver, lung, and kidney fibrosis and demonstrated its validity by evidencing topological collagen accumulation in relevant histological compartments. Our data also showed an overall accumulation of compact fibers concomitant with worsening fibrosis and evidenced topological changes in fiber compactness proper to each model. In conclusion, we describe here a robust digital method for fibrosis analysis allowing accurate quantification, pattern recognition, and multi-organ comparisons useful to understand fibrosis dynamics.
Collapse
Affiliation(s)
- Guillaume E. Courtoy
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
- Correspondence: (I.L.); (C.B.)
| | - Antoine Froidure
- Pole of Pneumology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Guglielmo Schiano
- Mechanisms of Inherited Kidney Diseases Group, University of Zurich, 8057 Zurich, Switzerland; (G.S.); (O.D.)
| | - Johann Morelle
- Pole of Nephrology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Diseases Group, University of Zurich, 8057 Zurich, Switzerland; (G.S.); (O.D.)
- Pole of Nephrology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
- Correspondence: (I.L.); (C.B.)
| |
Collapse
|
40
|
Bielajew BJ, Hu JC, Athanasiou KA. Collagen: quantification, biomechanics, and role of minor subtypes in cartilage. NATURE REVIEWS. MATERIALS 2020; 5:730-747. [PMID: 33996147 PMCID: PMC8114887 DOI: 10.1038/s41578-020-0213-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 05/02/2023]
Abstract
Collagen is a ubiquitous biomaterial in vertebrate animals. Although each of its 28 subtypes contributes to the functions of many different tissues in the body, most studies on collagen or collagenous tissues have focussed on only one or two subtypes. With recent developments in analytical chemistry, especially mass spectrometry, significant advances have been made toward quantifying the different collagen subtypes in various tissues; however, high-throughput and low-cost methods for collagen subtype quantification do not yet exist. In this Review, we introduce the roles of collagen subtypes and crosslinks, and describe modern assays that enable a deep understanding of tissue physiology and disease states. Using cartilage as a model tissue, we describe the roles of major and minor collagen subtypes in detail; discuss known and unknown structure-function relationships; and show how tissue engineers may harness the functional characteristics of collagen to engineer robust neotissues.
Collapse
Affiliation(s)
- Benjamin J. Bielajew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
41
|
Ranjit S, Lanzanò L, Libby AE, Gratton E, Levi M. Advances in fluorescence microscopy techniques to study kidney function. Nat Rev Nephrol 2020; 17:128-144. [PMID: 32948857 DOI: 10.1038/s41581-020-00337-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Fluorescence microscopy, in particular immunofluorescence microscopy, has been used extensively for the assessment of kidney function and pathology for both research and diagnostic purposes. The development of confocal microscopy in the 1950s enabled imaging of live cells and intravital imaging of the kidney; however, confocal microscopy is limited by its maximal spatial resolution and depth. More recent advances in fluorescence microscopy techniques have enabled increasingly detailed assessment of kidney structure and provided extraordinary insights into kidney function. For example, nanoscale precise imaging by rapid beam oscillation (nSPIRO) is a super-resolution microscopy technique that was originally developed for functional imaging of kidney microvilli and enables detection of dynamic physiological events in the kidney. A variety of techniques such as fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and Förster resonance energy transfer (FRET) enable assessment of interaction between proteins. The emergence of other super-resolution techniques, including super-resolution stimulated emission depletion (STED), photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM) and structured illumination microscopy (SIM), has enabled functional imaging of cellular and subcellular organelles at ≤50 nm resolution. The deep imaging via emission recovery (DIVER) detector allows deep, label-free and high-sensitivity imaging of second harmonics, enabling assessment of processes such as fibrosis, whereas fluorescence lifetime imaging microscopy (FLIM) enables assessment of metabolic processes.
Collapse
Affiliation(s)
- Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA. .,Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| | - Luca Lanzanò
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Andrew E Libby
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
42
|
Khajuria DK, Soliman M, Elfar JC, Lewis GS, Abraham T, Kamal F, Elbarbary RA. Aberrant structure of fibrillar collagen and elevated levels of advanced glycation end products typify delayed fracture healing in the diet-induced obesity mouse model. Bone 2020; 137:115436. [PMID: 32439570 PMCID: PMC7938873 DOI: 10.1016/j.bone.2020.115436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/17/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
Impaired fracture healing in patients with obesity-associated type 2 diabetes (T2D) is a significant unmet clinical problem that affects millions of people worldwide. However, the underlying causes are poorly understood. Additionally, limited clinical information is available on how pre-diabetic hyperglycemia in obese individuals impacts bone healing. Here, we use the diet-induced obesity (DIO) mouse (C57BL/6J) model to study the impact of obesity-associated pre-diabetic hyperglycemia on bone healing and fibrillar collagen organization as healing proceeds from one phase to another. We show that DIO mice exhibit defective healing characterized by reduced bone mineral density, bone volume, and bone volume density. Differences in the healing pattern between lean and DIO mice occur early in the healing process as evidenced by faster resorption of the fibrocartilaginous callus in DIO mice. However, the major differences between lean and DIO mice occur during the later phases of endochondral ossification and bone remodeling. Comprehensive analyses of fibrillar collagen microstructure and expression pattern during these phases, using a set of complementary techniques that include histomorphometry, immunofluorescence staining, and second harmonic generation microscopy, demonstrate significant defects in DIO mice. Defects include strikingly sparse and disorganized collagen fibers, as well as pathological accumulation of unfolded collagen triple helices. We also demonstrate that DIO-associated changes in fibrillar collagen structure are attributable, at least in part, to the accumulation of advanced glycation end products, which increase the collagen-fiber crosslink density. These major changes impair fibrillar collagens functions, culminating in defective callus mineralization, remodeling, and strength. Our data extend the understanding of mechanisms by which obesity and its associated hyperglycemia impair fracture healing and underline defective fibrillar collagen microstructure as a novel and important contributor.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Marwa Soliman
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Gregory S Lewis
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Thomas Abraham
- Microscopy Imaging Facility, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Neural and Behavioural Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fadia Kamal
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Reyad A Elbarbary
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
43
|
Han H, Jun I, Seok H, Lee K, Lee K, Witte F, Mantovani D, Kim Y, Glyn‐Jones S, Edwards JR. Biodegradable Magnesium Alloys Promote Angio-Osteogenesis to Enhance Bone Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000800. [PMID: 32775162 PMCID: PMC7404158 DOI: 10.1002/advs.202000800] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/27/2020] [Indexed: 05/23/2023]
Abstract
Biodegradable metallic materials represent a potential step-change technology that may revolutionize the treatment of broken bones. Implants made with biodegradable metals are significantly stronger than their polymer counterparts and fully biodegradable in vivo, removing the need for secondary surgery or long-term complications. Here, it is shown how clinically approved Mg alloy promotes improved bone repair using an integrated state of the art fetal mouse metatarsal assay coupled with in vivo preclinical studies, second harmonic generation, secretome array analysis, perfusion bioreactor, and high-resolution 3D confocal imaging of vasculature within skeletal tissue, to reveal a vascular-mediated pro-osteogenic mechanism controlling enhanced tissue regeneration. The optimized mechanical properties and corrosion rate of the Mg alloy lead to a controlled release of metallic Mg, Ca, and Zn ions at a rate that facilitates both angiogenesis and coupled osteogenesis for better bone healing, without causing adverse effects at the implantation site. The findings from this study support ongoing development and refinement of biodegradable metal systems to act as crucial portal technologies with significant potential to improve many clinical applications.
Collapse
Affiliation(s)
- Hyung‐Seop Han
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)University of OxfordOxfordOX3 7LDUK
| | - Indong Jun
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)University of OxfordOxfordOX3 7LDUK
- Environmental Safety GroupKorea Institute of Science & Technology EuropeSaarbrücken66123Germany
| | - Hyun‐Kwang Seok
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Kang‐Sik Lee
- Biomedical Engineering Research Center, Asan Institute for Life SciencesAsan Medical Center, College of Medicine, University of UlsanSeoul05505Republic of Korea
| | - Kyungwoo Lee
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Frank Witte
- Department of Prostodontics, Geriatric Dentistry and Craniomandibular DisordersCharité‐Universitätsmedizin BerlinBerlin14197Germany
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC‐I, Dept. Min‐Met‐Materials Engineering & CHU de Québec Research CenterLaval UniversityQuebecG1V 0A6Canada
| | - Yu‐Chan Kim
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Sion Glyn‐Jones
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)University of OxfordOxfordOX3 7LDUK
| | - James R. Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)University of OxfordOxfordOX3 7LDUK
| |
Collapse
|
44
|
Pendleton EG, Tehrani KF, Barrow RP, Mortensen LJ. Second harmonic generation characterization of collagen in whole bone. BIOMEDICAL OPTICS EXPRESS 2020; 11:4379-4396. [PMID: 32923050 PMCID: PMC7449751 DOI: 10.1364/boe.391866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 05/24/2023]
Abstract
Bone is a unique biological composite material made up of a highly structured collagen mesh matrix and mineral deposits. Although mineral provides stiffness, collagen's secondary organization provides a critical role in bone elasticity. Here, we performed polarimetric analysis of bone collagen fibers using second harmonic generation (SHG) imaging to evaluate lamella sheets and collagen fiber integrity in intact cranial bone. Our polarimetric data was fitted to a model accounting for diattenuation, polarization cross-talk, and birefringence. We compared our data to the fitted model and found no significant difference between our polarimetric observation and the representation of these scattering properties up to 70 µm deep. We also observed a loss of resolution as we imaged up to 70 µm deep into bone but a conservation of polarimetric response. Polarimetric SHG allows for the discrimination of collagen lamellar sheet structures in intact bone. Our work could allow for label-free identification of disease states and monitor the efficacy of therapies for bone disorders.
Collapse
Affiliation(s)
- Emily G. Pendleton
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Kayvan F. Tehrani
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Ruth P. Barrow
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Luke J. Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
45
|
Barkauskas DS, Medley G, Liang X, Mohammed YH, Thorling CA, Wang H, Roberts MS. Using in vivo multiphoton fluorescence lifetime imaging to unravel disease-specific changes in the liver redox state. Methods Appl Fluoresc 2020; 8:034003. [PMID: 32422610 DOI: 10.1088/2050-6120/ab93de] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiphoton fluorescence lifetime microscopy has revolutionized studies of pathophysiological and xenobiotic dynamics, enabling the spatial and temporal quantification of these processes in intact organs in vivo. We have previously used multiphoton fluorescence lifetime microscopy to characterise the morphology and amplitude weighted mean fluorescence lifetime of the endogenous fluorescent metabolic cofactor nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) of mouse livers in vivo following induction of various disease states. Here, we extend the characterisation of liver disease models by using nonlinear regression to estimate the unbound, bound fluorescence lifetimes for NAD(P)H, flavin adenine dinucleotide (FAD), along with metabolic ratios and examine the impact of using multiple segmentation methods. We found that NAD(P)H amplitude ratio, and fluorescence lifetime redox ratio can be used as discriminators of diseased liver from normal liver. The redox ratio provided a sensitive measure of the changes in hepatic fibrosis and biliary fibrosis. Hepatocellular carcinoma was associated with an increase in spatial heterogeneity and redox ratio coupled with a decrease in mean fluorescence lifetime. We conclude that multiphoton fluorescence lifetime microscopy parameters and metabolic ratios provided insights into the in vivo redox state of diseased compared to normal liver that were not apparent from a global, mean fluorescence lifetime measurement alone.
Collapse
Affiliation(s)
- Deborah S Barkauskas
- Therapeutics Research Group, University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Bezci SE, Werbner B, Zhou M, Malollari KG, Dorlhiac G, Carraro C, Streets A, O'Connell GD. Radial variation in biochemical composition of the bovine caudal intervertebral disc. JOR Spine 2019; 2:e1065. [PMID: 31572982 PMCID: PMC6764789 DOI: 10.1002/jsp2.1065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/19/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Bovine caudal discs have been widely used in spine research due to their increased availability, large size, and mechanical and biochemical properties that are comparable to healthy human discs. However, despite their extensive use, the radial variations in bovine disc composition have not yet been rigorously quantified with high spatial resolution. Previous studies were limited to qualitative analyses or provided limited spatial resolution in biochemical properties. Thus, the main objective of this study was to provide quantitative measurements of biochemical composition with higher spatial resolution than previous studies that employed traditional biochemical techniques. Specifically, traditional biochemical analyses were used to measure water, sulfated glycosaminoglycan, collagen, and DNA contents. Gravimetric water content was compared to data obtained through Raman spectroscopy and differential scanning calorimetry. Additionally, spatial distribution of lipids in the disc's collagen network was visualized and quantified, for the first time, using multi-modal second harmonic generation (SHG) and Coherent anti-Stokes Raman (CARS) microscopy. Some heterogeneity was observed in the nucleus pulposus, where the water content and water-to-protein ratio of the inner nucleus were greater than the outer nucleus. In contrast, the bovine annulus fibrosus exhibited a more heterogeneous distribution of biochemical properties. Comparable results between orthohydroxyproline assay and SHG imaging highlight the potential benefit of using SHG microscopy as a less destructive method for measuring collagen content, particularly when relative changes are of interest. CARS images showed that lipid deposits were distributed equally throughout the disc and appeared either as individual droplets or as clusters of small droplets. In conclusion, this study provided a more comprehensive assessment of spatial variations in biochemical composition of the bovine caudal disc.
Collapse
Affiliation(s)
- Semih E. Bezci
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
| | - Benjamin Werbner
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
| | - Minhao Zhou
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
| | | | - Gabriel Dorlhiac
- Berkeley Biophysics ProgramUniversity of CaliforniaBerkeleyCalifornia
| | - Carlo Carraro
- Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaBerkeleyCalifornia
| | - Aaron Streets
- Berkeley Biophysics ProgramUniversity of CaliforniaBerkeleyCalifornia
- Department of BioengineeringUniversity of CaliforniaBerkeleyCalifornia
- Chan‐Zuckerberg BiohubSan FranciscoCalifornia
| | - Grace D. O'Connell
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
47
|
Shirshin EA, Yakimov BP, Darvin ME, Omelyanenko NP, Rodionov SA, Gurfinkel YI, Lademann J, Fadeev VV, Priezzhev AV. Label-Free Multiphoton Microscopy: The Origin of Fluorophores and Capabilities for Analyzing Biochemical Processes. BIOCHEMISTRY (MOSCOW) 2019; 84:S69-S88. [PMID: 31213196 DOI: 10.1134/s0006297919140050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multiphoton microscopy (MPM) is a method of molecular imaging and specifically of intravital imaging that is characterized by high spatial resolution in combination with a greater depth of penetration into the tissue. MPM is a multimodal method based on detection of nonlinear optical signals - multiphoton fluorescence and optical harmonics - and also allows imaging with the use of the parameters of fluorescence decay kinetics. This review describes and discusses photophysical processes within major reporter molecules used in MPM with endogenous contrasts and summarizes several modern experiments that illustrate the capabilities of label-free MPM for molecular imaging of biochemical processes in connective tissue and cells.
Collapse
Affiliation(s)
- E A Shirshin
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia. .,Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, 108840, Moscow, Russia
| | - B P Yakimov
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
| | - M E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - N P Omelyanenko
- N. N. Priorov National Medical Research Center of Traumatology and Orthopaedics, Moscow, 127299, Russia
| | - S A Rodionov
- N. N. Priorov National Medical Research Center of Traumatology and Orthopaedics, Moscow, 127299, Russia
| | - Y I Gurfinkel
- Medical Scientific-Educational Center of Lomonosov Moscow State University, Moscow, 119192, Russia
| | - J Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - V V Fadeev
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
| | - A V Priezzhev
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
| |
Collapse
|
48
|
Dvornikov A, Malacrida L, Gratton E. The DIVER Microscope for Imaging in Scattering Media. Methods Protoc 2019; 2:E53. [PMID: 31234383 PMCID: PMC6632175 DOI: 10.3390/mps2020053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 01/31/2023] Open
Abstract
We describe an advanced DIVER (Deep Imaging Via Emission Recovery) detection system for two-photon fluorescence microscopy that allows imaging in multiple scattering media, including biological tissues, up to a depth of a few mm with micron resolution. This detection system is more sensitive to low level light signals than conventional epi-detection used in two-photon fluorescence microscopes. The DIVER detector efficiently collects scattered emission photons from a wide area of turbid samples at almost any entrance angle in a 2π spherical angle. Using an epi-detection scheme only photons coming from a relatively small area of a sample and at narrow acceptance angle can be detected. The transmission geometry of the DIVER imaging system makes it exceptionally suitable for Second and Third Harmonic Generation (SHG, THG) signal detection. It also has in-depth fluorescence lifetime imaging (FLIM) capability. Using special optical filters with sin-cos spectral response, hyperspectral analysis of images acquired in-depth in scattering media can be performed. The system was successfully employed in imaging of various biological tissues. The DIVER detector can be plugged into a standard microscope stage and used as an external detector with upright commercial two-photon microscopes.
Collapse
Affiliation(s)
- Alexander Dvornikov
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA.
| | - Leonel Malacrida
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA.
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República-Uruguay, Montevideo 11400, Uruguay.
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
49
|
Rafuse M, Xu X, Stenmark K, Neu CP, Yin X, Tan W. Layer-specific arterial micromechanics and microstructure: Influences of age, anatomical location, and processing technique. J Biomech 2019; 88:113-121. [PMID: 31010593 DOI: 10.1016/j.jbiomech.2019.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/24/2019] [Accepted: 03/18/2019] [Indexed: 01/15/2023]
Abstract
The importance of matrix micromechanics is increasingly recognized in cardiovascular research due to the intimate role they play in local vascular cell physiology. However, variations in micromechanics among arterial layers (i.e. intima, media, adventitia), as well as dependency on local matrix composition and/or structure, anatomical location or developmental stage remain largely unknown. This study determined layer-specific stiffness in elastic arteries, including the main pulmonary artery, ascending aorta, and carotid artery using atomic force indentation. To compare stiffness with age and frozen processing techniques, neonatal and adult pulmonary arteries were tested, while fresh (vibratomed) and frozen (cryotomed) tissues were tested from the adult aorta. Results revealed that the mean compressive modulus varied among the intima, sub-luminal media, inner-middle media, and adventitia layers in the range of 1-10 kPa for adult arteries. Adult samples, when compared to neonatal pulmonary arteries, exhibited increased stiffness in all layers except adventitia. Compared to freshly isolated samples, frozen preparation yielded small stiffness increases in each layer to varied degrees, thus inaccurately representing physiological stiffness. To interpret micromechanics measurements, composition and structure analyses of structural matrix proteins were conducted with histology and multiphoton imaging modalities including second harmonic generation and two-photon fluorescence. Composition analysis of matrix protein area density demonstrated that decrease in the elastin-to-collagen and/or glycosaminoglycan-to-collagen ratios corresponded to stiffness increases in identical layers among different types of arteries. However, composition analysis was insufficient to interpret stiffness variations between layers which had dissimilar microstructure. Detailed microstructure analyses may contribute to more complete understanding of arterial micromechanics.
Collapse
Affiliation(s)
- Michael Rafuse
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Xiaobo Yin
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
50
|
Reed DA, Yotsuya M, Gubareva P, Toth PT, Bertagna A. Two-photon fluorescence and second harmonic generation characterization of extracellular matrix remodeling in post-injury murine temporomandibular joint osteoarthritis. PLoS One 2019; 14:e0214072. [PMID: 30897138 PMCID: PMC6428409 DOI: 10.1371/journal.pone.0214072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/06/2019] [Indexed: 12/28/2022] Open
Abstract
End stage temporomandibular joint osteoarthritis (TMJ-OA) is characterized by fibrillations, fissures, clefts, and erosion of the mandibular condylar cartilage. The goal of this study was to define changes in pericellular and interterritorial delineations of the extracellular matrix (ECM) that occur preceding and concurrent with the development of this end stage degeneration in a murine surgical instability model. Two-photon fluorescence (TPF) and second harmonic generation (SHG) microscopy was used to evaluate TMJ-OA mediated changes in the ECM. We illustrate that TPF/SHG microscopy reconstructs the three-dimensional network of key fibrillar and micro-fibrillar collagens altered during the progression of TMJ-OA. This method not only generates spatially distinct pericellular and interterritorial delineations of the ECM but distinguishes early and end stage TMJ-OA by signal organization, orientation, and composition. Early stage TMJ-OA at 4- and 8-weeks post-injury is characterized by two structurally distinct regions containing dense, large fiber collagens and superficial, small fiber collagens rich in types I, III, and VI collagen oriented along the mesiodistal axis of the condyle. At 8-weeks post-injury, type VI collagen is locally diminished on the central and medial condyle, but the type I/III rich superficial layer is still present. Twelve- and 16-weeks post-injury mandibular cartilage is characteristic of end-stage disease, with hypocellularity and fibrillations, fissures, and clefts in the articular layer that propagate along the mediolateral axis of the MCC. We hypothesize that the localized depletion of interterritorial and pericellular type VI collagen may signify an early marker for the transition from early to end stage TMJ-OA, influence the injury response of the tissue, and underlie patterns of degeneration that follow attritional modes of failure.
Collapse
Affiliation(s)
- David A. Reed
- University of Illinois at Chicago, Department of Oral Biology, Chicago, United States of America
| | - Mamoru Yotsuya
- University of Illinois at Chicago, Department of Oral Biology, Chicago, United States of America
- Tokyo Dental College, Department of Fixed Prosthodontics, Tokyo, Japan
| | - Polina Gubareva
- University of Illinois at Chicago, Department of Oral Biology, Chicago, United States of America
| | - Peter T. Toth
- University of Illinois at Chicago, Research Resources Center Imaging Core, Chicago, United States of America
| | - Andrew Bertagna
- University of Illinois at Chicago, Department of Oral Biology, Chicago, United States of America
| |
Collapse
|