1
|
Castaneda CA, Castillo M, Sanchez J, Bernabe L, Tello K, Suarez N, Alatrista R, Quiroz-Gil X, Granda-Oblitas A, Enciso J, Enciso N, Gomez HL. Clinicopathological features associated with CD44 and CD63 expression in breast cancer. Ecancermedicalscience 2024; 18:1779. [PMID: 39430073 PMCID: PMC11489100 DOI: 10.3332/ecancer.2024.1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 10/22/2024] Open
Abstract
Background CD44 is a cell-surface transmembrane glycoprotein that participates in the regulation of many cellular processes, including cell division, adhesion, migration and stem-like characteristics. CD63 is involved in the exocytosis process. Objective To evaluate the relationship between CD44 and CD63 expression and clinicopathological features, including tumor-infiltrating lymphocytes (TILs), phosphoinositide 3-kinase (PIK3CA) mutation and survival. Methodology CD44 and CD63 were stained in samples from 101 breast cancer cases from Peruvian women. Results Median age was 52 years, most were most were grade-3 (68%), estrogen receptor (ER)+ (64%) and stage II-III (92%). Median ki67 was 30%, median stromal TIL was 30% and PIK3CA mutation was found in 49%. Longer survival was associated with earlier stages (p = 0.016), lower ki67 (p = 0.023), ER+ (p = 0.034), luminal phenotype (p = 0.029) and recurrence (p < 0.001). CD44 was classified as high cell density staining in 57% and high intensity in 55%. High CD44 density was associated with younger age (p = 0.043), triple-negative phenotype (p = 0.035) and shorter survival (p = 0.005). High CD44 expression was associated with short survival (p = 0.005). High CD63 cell density was found in 56% of cases and was associated with ER-positive (p = 0.045), low TIL levels (p = 0.007), Luminal-A (p = 0.015) and low CD44 intensity (p = 0.032). Conclusion CD44 expression was associated with aggressive features and low CD63 density staining.
Collapse
Affiliation(s)
- Carlos A. Castaneda
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima 15067, Peru
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Miluska Castillo
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Joselyn Sanchez
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Luis Bernabe
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Katherin Tello
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Nancy Suarez
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Raul Alatrista
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Ximena Quiroz-Gil
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima 15067, Peru
| | | | - Javier Enciso
- Laboratorio de Células Madre, Universidad Cientifica del Sur, Lima 15067, Peru
| | - Nathaly Enciso
- Direccion General de Investigacion, Desarrollo e Innovacion, Universidad Científica del Sur, Lima 15067, Peru
| | - Henry L Gomez
- Unidad de Ensayos Clinicos, Oncosalud-AUNA, Lima 15038, Peru
| |
Collapse
|
2
|
Muthuswamy SK, Brugge JS. Organoid Cultures for the Study of Mammary Biology and Breast Cancer: The Promise and Challenges. Cold Spring Harb Perspect Med 2024; 14:a041661. [PMID: 38110241 PMCID: PMC11216180 DOI: 10.1101/cshperspect.a041661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
During the last decade, biomedical research has experienced a resurgence in the use of three-dimensional culture models for studies of normal and cancer biology. This resurgence has been driven by the development of models in which primary cells are grown in tissue-mimicking media and extracellular matrices to create organoid or organotypic cultures that more faithfully replicate the complex architecture and physiology of normal tissues and tumors. In addition, patient-derived tumor organoids preserve the three-dimensional organization and characteristics of the patient tumors ex vivo, becoming excellent preclinical models to supplement studies of tumor xenografts transplanted into immunocompromised mice. In this perspective, we provide an overview of how organoids are being used to investigate normal mammary biology and as preclinical models of breast cancer and discuss improvements that would enhance their utility and relevance to the field.
Collapse
Affiliation(s)
- Senthil K Muthuswamy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland 20894, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Ludwig Center at Harvard, Harvard Medical School Boston, Boston, Massachusetts 02115, USA
| |
Collapse
|
3
|
Daneshdoust D, Luo M, Li Z, Mo X, Alothman S, Kallakury B, Schlegel R, Zhang J, Guo D, Furth PA, Liu X, Li J. Unlocking Translational Potential: Conditionally Reprogrammed Cells in Advancing Breast Cancer Research. Cells 2023; 12:2388. [PMID: 37830602 PMCID: PMC10572051 DOI: 10.3390/cells12192388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Preclinical in vitro models play an important role in studying cancer cell biology and facilitating translational research, especially in the identification of drug targets and drug discovery studies. This is particularly relevant in breast cancer, where the global burden of disease is quite high based on prevalence and a relatively high rate of lethality. Predictive tools to select patients who will be responsive to invasive or morbid therapies (radiotherapy, chemotherapy, immunotherapy, and/or surgery) are relatively lacking. To be clinically relevant, a model must accurately replicate the biology and cellular heterogeneity of the primary tumor. Addressing these requirements and overcoming the limitations of most existing cancer cell lines, which are typically derived from a single clone, we have recently developed conditional reprogramming (CR) technology. The CR technology refers to a co-culture system of primary human normal or tumor cells with irradiated murine fibroblasts in the presence of a Rho-associated kinase inhibitor to allow the primary cells to acquire stem cell properties and the ability to proliferate indefinitely in vitro without any exogenous gene or viral transfection. This innovative approach fulfills many of these needs and offers an alternative that surpasses the deficiencies associated with traditional cancer cell lines. These CR cells (CRCs) can be reprogrammed to maintain a highly proliferative state and reproduce the genomic and histological characteristics of the parental tissue. Therefore, CR technology may be a clinically relevant model to test and predict drug sensitivity, conduct gene profile analysis and xenograft research, and undertake personalized medicine. This review discusses studies that have applied CR technology to conduct breast cancer research.
Collapse
Affiliation(s)
- Danyal Daneshdoust
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mingjue Luo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Zaibo Li
- Departments of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biostatics and Bioinformatics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Sahar Alothman
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bhaskar Kallakury
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Richard Schlegel
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Junran Zhang
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Deliang Guo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Priscilla A. Furth
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology, and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Kumar B, Khatpe AS, Guanglong J, Batic K, Bhat-Nakshatri P, Granatir MM, Addison RJ, Szymanski M, Baldridge LA, Temm CJ, Sandusky G, Althouse SK, Cote ML, Miller KD, Storniolo AM, Nakshatri H. Stromal heterogeneity may explain increased incidence of metaplastic breast cancer in women of African descent. Nat Commun 2023; 14:5683. [PMID: 37709737 PMCID: PMC10502140 DOI: 10.1038/s41467-023-41473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
The biologic basis of genetic ancestry-dependent variability in disease incidence and outcome is just beginning to be explored. We recently reported enrichment of a population of ZEB1-expressing cells located adjacent to ductal epithelial cells in normal breasts of women of African ancestry compared to those of European ancestry. In this study, we demonstrate that these cells have properties of fibroadipogenic/mesenchymal stromal cells that express PROCR and PDGFRα and transdifferentiate into adipogenic and osteogenic lineages. PROCR + /ZEB1 + /PDGFRα+ (PZP) cells are enriched in normal breast tissues of women of African compared to European ancestry. PZP: epithelial cell communication results in luminal epithelial cells acquiring basal cell characteristics and IL-6-dependent increase in STAT3 phosphorylation. Furthermore, level of phospho-STAT3 is higher in normal and cancerous breast tissues of women of African ancestry. PZP cells transformed with HRasG12V ± SV40-T/t antigens generate metaplastic carcinoma suggesting that these cells are one of the cells-of-origin of metaplastic breast cancers.
Collapse
Affiliation(s)
- Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Aditi S Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jiang Guanglong
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Katie Batic
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Maggie M Granatir
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rebekah Joann Addison
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Megan Szymanski
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lee Ann Baldridge
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Constance J Temm
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sandra K Althouse
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michele L Cote
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Kathy D Miller
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anna Maria Storniolo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- VA Roudebush Medical Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Wang R, Kumar B, Bhat-Nakshatri P, Khatpe AS, Murphy MP, Wanczyk KE, Simpson E, Chen D, Gao H, Liu Y, Doud EH, Mosley AL, Nakshatri H. A human skeletal muscle stem/myotube model reveals multiple signaling targets of cancer secretome in skeletal muscle. iScience 2023; 26:106541. [PMID: 37102148 PMCID: PMC10123345 DOI: 10.1016/j.isci.2023.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Skeletal muscle dysfunction or reprogramming due to the effects of the cancer secretome is observed in multiple malignancies. Although mouse models are routinely used to study skeletal muscle defects in cancer, because of species specificity of certain cytokines/chemokines in the secretome, a human model system is required. Here, we establish simplified multiple skeletal muscle stem cell lines (hMuSCs), which can be differentiated into myotubes. Using single nuclei ATAC-seq (snATAC-seq) and RNA-seq (snRNA-seq), we document chromatin accessibility and transcriptomic changes associated with the transition of hMuSCs to myotubes. Cancer secretome accelerated stem to myotube differentiation, altered the alternative splicing machinery and increased inflammatory, glucocorticoid receptor, and wound healing pathways in hMuSCs. Additionally, cancer secretome reduced metabolic and survival pathway associated miR-486, AKT, and p53 signaling in hMuSCs. hMuSCs underwent myotube differentiation when engrafted into NSG mice and thus providing a humanized in vivo skeletal muscle model system to study cancer cachexia.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael P. Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| | - Kristen E. Wanczyk
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| | - Edward Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Duojiao Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Khatpe AS, Dirks R, Bhat-Nakshatri P, Mang H, Batic K, Swiezy S, Olson J, Rao X, Wang Y, Tanaka H, Liu S, Wan J, Chen D, Liu Y, Fang F, Althouse S, Hulsey E, Granatir MM, Addison R, Temm CJ, Sandusky G, Lee-Gosselin A, Nephew K, Miller KD, Nakshatri H. TONSL Is an Immortalizing Oncogene and a Therapeutic Target in Breast Cancer. Cancer Res 2023; 83:1345-1360. [PMID: 37057595 PMCID: PMC10107402 DOI: 10.1158/0008-5472.can-22-3667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 04/15/2023]
Abstract
Study of genomic aberrations leading to immortalization of epithelial cells has been technically challenging due to the lack of isogenic models. To address this, we used healthy primary breast luminal epithelial cells of different genetic ancestry and their hTERT-immortalized counterparts to identify transcriptomic changes associated with immortalization. Elevated expression of TONSL (Tonsoku-like, DNA repair protein) was identified as one of the earliest events during immortalization. TONSL, which is located on chromosome 8q24.3, was found to be amplified in approximately 20% of breast cancers. TONSL alone immortalized primary breast epithelial cells and increased telomerase activity, but overexpression was insufficient for neoplastic transformation. However, TONSL-immortalized primary cells overexpressing defined oncogenes generated estrogen receptor-positive adenocarcinomas in mice. Analysis of a breast tumor microarray with approximately 600 tumors revealed poor overall and progression-free survival of patients with TONSL-overexpressing tumors. TONSL increased chromatin accessibility to pro-oncogenic transcription factors, including NF-κB and limited access to the tumor-suppressor p53. TONSL overexpression resulted in significant changes in the expression of genes associated with DNA repair hubs, including upregulation of several genes in the homologous recombination (HR) and Fanconi anemia pathways. Consistent with these results, TONSL-overexpressing primary cells exhibited upregulated DNA repair via HR. Moreover, TONSL was essential for growth of TONSL-amplified breast cancer cell lines in vivo, and these cells were sensitive to TONSL-FACT complex inhibitor CBL0137. Together, these findings identify TONSL as a regulator of epithelial cell immortalization to facilitate cancer initiation and as a target for breast cancer therapy. SIGNIFICANCE The chr.8q24.3 amplicon-resident gene TONSL is upregulated during the initial steps of tumorigenesis to support neoplastic transformation by increasing DNA repair and represents a potential therapeutic target for treating breast cancer.
Collapse
Affiliation(s)
- Aditi S Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rebecca Dirks
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Henry Mang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Katie Batic
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah Swiezy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jacob Olson
- Decatur Central High School, Indianapolis, IN 46221, USA
| | - Xi Rao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
| | - Yue Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
| | - Hiromi Tanaka
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN 46202, USA
| | - Duojiao Chen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN 46202, USA
| | - Fang Fang
- Medical Science Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Sandra Althouse
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, IN 46202, USA
| | - Emily Hulsey
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Maggie M Granatir
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Rebekah Addison
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Constance J. Temm
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Audrey Lee-Gosselin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, IN 46202, USA
| | - Kenneth Nephew
- Medical Science Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Kathy D. Miller
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Murrow LM, Weber RJ, Caruso JA, McGinnis CS, Phong K, Gascard P, Rabadam G, Borowsky AD, Desai TA, Thomson M, Tlsty T, Gartner ZJ. Mapping hormone-regulated cell-cell interaction networks in the human breast at single-cell resolution. Cell Syst 2022; 13:644-664.e8. [PMID: 35863345 PMCID: PMC9590200 DOI: 10.1016/j.cels.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2022] [Accepted: 06/22/2022] [Indexed: 01/26/2023]
Abstract
The rise and fall of estrogen and progesterone across menstrual cycles and during pregnancy regulates breast development and modifies cancer risk. How these hormones impact each cell type in the breast remains poorly understood because they act indirectly through paracrine networks. Using single-cell analysis of premenopausal breast tissue, we reveal a network of coordinated transcriptional programs representing the tissue-level response to changing hormone levels. Our computational approach, DECIPHER-seq, leverages person-to-person variability in breast composition and cell state to uncover programs that co-vary across individuals. We use differences in cell-type proportions to infer a subset of programs that arise from direct cell-cell interactions regulated by hormones. Further, we demonstrate that prior pregnancy and obesity modify hormone responsiveness through distinct mechanisms: obesity reduces the proportion of hormone-responsive cells, whereas pregnancy dampens the direct response of these cells to hormones. Together, these results provide a comprehensive map of the cycling human breast.
Collapse
Affiliation(s)
- Lyndsay M Murrow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Robert J Weber
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program (MSTP), University of California, San Francisco, San Francisco, CA 94518, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph A Caruso
- Department of Pathology and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher S McGinnis
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kiet Phong
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Philippe Gascard
- Department of Pathology and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gabrielle Rabadam
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alexander D Borowsky
- Center for Immunology and Infectious Diseases, Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95696, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Thea Tlsty
- Department of Pathology and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Abstract
The Komen Tissue Bank is the only biorepository in the world for normal breast tissues from women. Below we report the acquisition and processing of breast tissue from volunteer donors and describe an experimental and analysis pipeline to generate a single-cell atlas. This atlas is based on single-cell RNA-seq and is useful to derive breast epithelial cell subcluster-specific gene expression signatures, which can be applied to breast cancer gene expression data to identify putative cell-of-origin. For complete details on the use and execution of this protocol, please refer to Bhat-Nakshatri et al. (2021). Breast core biopsies from healthy donors are suitable for single-cell RNA-seq Cryopreserved biopsies are as good as fresh biopsies for the analysis Biopsies from five donors can be combined to yield required cell number Multiple cell types including epithelial, endothelial, and pericytes can be mapped
Collapse
|
9
|
Kumar B, Bhat-Nakshatri P, Maguire C, Jacobsen M, Temm CJ, Sandusky G, Nakshatri H. Bidirectional Regulatory Cross-Talk between Cell Context and Genomic Aberrations Shapes Breast Tumorigenesis. Mol Cancer Res 2021; 19:1802-1817. [PMID: 34285086 PMCID: PMC8568628 DOI: 10.1158/1541-7786.mcr-21-0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
Breast cancers are classified into five intrinsic subtypes and 10 integrative clusters based on gene expression patterns and genomic aberrations, respectively. Although the cell-of-origin, adaptive plasticity, and genomic aberrations shape dynamic transcriptomic landscape during cancer progression, how interplay between these three core elements governs obligatory steps for a productive cancer progression is unknown. Here, we used genetic ancestry-mapped immortalized breast epithelial cell lines generated from breast biopsies of healthy women that share gene expression profiles of luminal A, normal-like, and basal-like intrinsic subtypes of breast cancers and breast cancer relevant oncogenes to develop breast cancer progression model. Using flow cytometry, mammosphere growth, signaling pathway, DNA damage response, and in vivo tumorigenicity assays, we provide evidence that establishes cell context-dependent effects of oncogenes in conferring plasticity, self-renewal/differentiation, intratumor heterogeneity, and metastatic properties. In contrast, oncogenic aberrations, independent of cell context, shaped response to DNA damage-inducing agents. Collectively, this study reveals how the same set of genomic aberration can have distinct effects on tumor characteristics based on cell-of-origin of tumor and highlights the need to utilize multiple "normal" epithelial cell types to decipher oncogenic properties of a gene of interest. In addition, by creating multiple isogenic cell lines ranging from primary cells to metastatic variants, we provide resources to elucidate cell-intrinsic properties and cell-oncogene interactions at various stages of cancer progression. IMPLICATIONS: Our findings demonstrate that how an interplay between the normal cell type that encountered genomic aberrations and type of genomic aberration influences heterogeneity, self-renewal/differentiation, and tumor properties including propensity for metastasis.
Collapse
Affiliation(s)
- Brijesh Kumar
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Calli Maguire
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Constance J Temm
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
10
|
Virtanen S, Schulte R, Stingl J, Caldas C, Shehata M. High-throughput surface marker screen on primary human breast tissues reveals further cellular heterogeneity. Breast Cancer Res 2021; 23:66. [PMID: 34120626 PMCID: PMC8201685 DOI: 10.1186/s13058-021-01444-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Normal human breast tissues are a heterogeneous mix of epithelial and stromal subtypes in different cell states. Delineating the spectrum of cellular heterogeneity will provide new insights into normal cellular properties within the breast tissue that might become dysregulated in the initial stages of cancer. Investigation of surface marker expression provides a valuable approach to resolve complex cell populations. However, the majority of cell surface maker expression of primary breast cells have not been investigated. METHODS To determine the differences in expression of a range of uninvestigated cell surface markers between the normal breast cell subpopulations, primary human breast cells were analysed using high-throughput flow cytometry for the expression of 242 cell surface proteins in conjunction with EpCAM/CD49f staining. RESULTS We identified 35 surface marker proteins expressed on normal breast epithelial and/or stromal subpopulations that were previously unreported. We also show multiple markers were equally expressed in all cell populations (e.g. CD9, CD59, CD164) while other surface markers were confirmed to be enriched in different cell lineages: CD24, CD227 and CD340 in the luminal compartment, CD10 and CD90 in the basal population, and CD34 and CD140b on stromal cells. CONCLUSIONS Our dataset of CD marker expression in the normal breast provides better definition for breast cellular heterogeneity.
Collapse
Affiliation(s)
- Siru Virtanen
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Reiner Schulte
- Cambridge Institute for Medical Research, Cambridge University, Cambridge, CB2 0XY, UK
| | - John Stingl
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Carlos Caldas
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
- Cambridge Breast Unit, Addenbrookes Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Mona Shehata
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK.
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
11
|
Bhat-Nakshatri P, Gao H, Sheng L, McGuire PC, Xuei X, Wan J, Liu Y, Althouse SK, Colter A, Sandusky G, Storniolo AM, Nakshatri H. A single-cell atlas of the healthy breast tissues reveals clinically relevant clusters of breast epithelial cells. CELL REPORTS MEDICINE 2021; 2:100219. [PMID: 33763657 PMCID: PMC7974552 DOI: 10.1016/j.xcrm.2021.100219] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/10/2020] [Accepted: 02/18/2021] [Indexed: 01/21/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) is an evolving technology used to elucidate the cellular architecture of adult organs. Previous scRNA-seq on breast tissue utilized reduction mammoplasty samples, which are often histologically abnormal. We report a rapid tissue collection/processing protocol to perform scRNA-seq of breast biopsies of healthy women and identify 23 breast epithelial cell clusters. Putative cell-of-origin signatures derived from these clusters are applied to analyze transcriptomes of ~3,000 breast cancers. Gene signatures derived from mature luminal cell clusters are enriched in ~68% of breast cancers, whereas a signature from a luminal progenitor cluster is enriched in ~20% of breast cancers. Overexpression of luminal progenitor cluster-derived signatures in HER2+, but not in other subtypes, is associated with unfavorable outcome. We identify TBX3 and PDK4 as genes co-expressed with estrogen receptor (ER) in the normal breasts, and their expression analyses in >550 breast cancers enable prognostically relevant subclassification of ER+ breast cancers.
Collapse
Affiliation(s)
- Poornima Bhat-Nakshatri
- Department of Surgery, Indiana University of School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Liu Sheng
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Patrick C McGuire
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sandra K Althouse
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Austyn Colter
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anna Maria Storniolo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University of School of Medicine, Indianapolis, IN 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Roelands J, Mall R, Almeer H, Thomas R, Mohamed MG, Bedri S, Al-Bader SB, Junejo K, Ziv E, Sayaman RW, Kuppen PJK, Bedognetti D, Hendrickx W, Decock J. Ancestry-associated transcriptomic profiles of breast cancer in patients of African, Arab, and European ancestry. NPJ Breast Cancer 2021; 7:10. [PMID: 33558495 PMCID: PMC7870839 DOI: 10.1038/s41523-021-00215-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer largely dominates the global cancer burden statistics; however, there are striking disparities in mortality rates across countries. While socioeconomic factors contribute to population-based differences in mortality, they do not fully explain disparity among women of African ancestry (AA) and Arab ancestry (ArA) compared to women of European ancestry (EA). In this study, we sought to identify molecular differences that could provide insight into the biology of ancestry-associated disparities in clinical outcomes. We applied a unique approach that combines the use of curated survival data from The Cancer Genome Atlas (TCGA) Pan-Cancer clinical data resource, improved single-nucleotide polymorphism-based inferred ancestry assignment, and a novel breast cancer subtype classification to interrogate the TCGA and a local Arab breast cancer dataset. We observed an enrichment of BasalMyo tumors in AA patients (38 vs 16.5% in EA, p = 1.30E - 10), associated with a significant worse overall (hazard ratio (HR) = 2.39, p = 0.02) and disease-specific survival (HR = 2.57, p = 0.03). Gene set enrichment analysis of BasalMyo AA and EA samples revealed differences in the abundance of T-regulatory and T-helper type 2 cells, and enrichment of cancer-related pathways with prognostic implications (AA: PI3K-Akt-mTOR and ErbB signaling; EA: EGF, estrogen-dependent and DNA repair signaling). Strikingly, AMPK signaling was associated with opposing prognostic connotation (AA: 10-year HR = 2.79, EA: 10-year HR = 0.34). Analysis of ArA patients suggests enrichment of BasalMyo tumors with a trend for differential enrichment of T-regulatory cells and AMPK signaling. Together, our findings suggest that the disparity in the clinical outcome of AA breast cancer patients is likely related to differences in cancer-related and microenvironmental features.
Collapse
Affiliation(s)
- Jessica Roelands
- Functional Cancer Omics Lab, Cancer Group, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Raghvendra Mall
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Hossam Almeer
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Remy Thomas
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Mahmoud G Mohamed
- Women's Hospital, Hamad Medical Corporation, Doha, Qatar
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
| | | | | | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Doha, Qatar
| | - Elad Ziv
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Rosalyn W Sayaman
- Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Davide Bedognetti
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy.
- Cancer Immunogenetics Lab, Cancer Group, Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences (CHLS), Hamad bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| | - Wouter Hendrickx
- Functional Cancer Omics Lab, Cancer Group, Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences (CHLS), Hamad bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
- College of Health and Life Sciences (CHLS), Hamad bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
13
|
Ashirbekov Y, Abaildayev A, Omarbayeva N, Botbayev D, Belkozhayev A, Askandirova A, Neupokoyeva A, Utegenova G, Sharipov K, Aitkhozhina N. Combination of circulating miR-145-5p/miR-191-5p as biomarker for breast cancer detection. PeerJ 2020; 8:e10494. [PMID: 33362968 PMCID: PMC7749656 DOI: 10.7717/peerj.10494] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Breast cancer (BC) is the most common cancer among women worldwide. At present, there is a need to search for new, accurate, reliable, minimally invasive and cheap biomarkers in addition to existing methods for the diagnosis and prognosis of BC. The main goal of this study was to test the diagnostic value of six circulating miRNAs in Kazakh women. Materials and methods TaqMan-based miRNA profiling was conducted using plasma specimens from 35 BC women patients and 33 healthy women samples (control group). Results The level of all seven miRNAs (including endogenous control) normalized by synthetic cel-miR-39 were significantly elevated in the group of BC patients. Normalization using miR-222-3p as endogenous control reduced differences in level of miRNAs between groups; as a result, only three miRNAs were significantly upregulated in the group of BC patients—miR-145-5p (P = 6.5e−12), miR-191-5p (P = 3.7e−10) and miR-21-5p (P = 0.0034). Moreover, ROC analysis showed that the use of miR-145-5p and miR-191-5p, both individually (AUC = 0.931 and 0.904, respectively) or in combination (AUC = 0.984), allows to accurately differentiate BC patients from healthy individuals. Conclusions Two plasma miRNAs—miR-145-5p and miR-191-5p—are potential biomarkers for diagnosis of BC in the Kazakh population. The findings need to be further substantiated using a more representative sample.
Collapse
Affiliation(s)
- Yeldar Ashirbekov
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Arman Abaildayev
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Nazgul Omarbayeva
- Kazakh Research Institute of Oncology and Radiology, Almaty, Kazakhstan
| | - Dauren Botbayev
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Ayaz Belkozhayev
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Anel Askandirova
- Kazakh Research Institute of Oncology and Radiology, Almaty, Kazakhstan
| | - Alena Neupokoyeva
- Almaty Branch of National Center for Biotechnology, Almaty, Kazakhstan
| | | | - Kamalidin Sharipov
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Nagima Aitkhozhina
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| |
Collapse
|
14
|
Mavingire N, Campbell P, Wooten J, Aja J, Davis MB, Loaiza-Perez A, Brantley E. Cancer stem cells: Culprits in endocrine resistance and racial disparities in breast cancer outcomes. Cancer Lett 2020; 500:64-74. [PMID: 33309858 DOI: 10.1016/j.canlet.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer stem cells (BCSCs) promote endocrine therapy (ET) resistance, also known as endocrine resistance in hormone receptor (HR) positive breast cancer. Endocrine resistance occurs via mechanisms that are not yet fully understood. In vitro, in vivo and clinical data suggest that signaling cascades such as Notch, hypoxia inducible factor (HIF), and integrin/Akt promote BCSC-mediated endocrine resistance. Once HR positive breast cancer patients relapse on ET, targeted therapy agents such as cyclin dependent kinase inhibitors are frequently implemented, though secondary resistance remains a threat. Here, we discuss Notch, HIF, and integrin/Akt pathway regulation of BCSC activity and potential strategies to target these pathways to counteract endocrine resistance. We also discuss a plausible link between elevated BCSC-regulatory gene levels and reduced survival observed among African American women with basal-like breast cancer which lacks HR expression. Should future studies reveal a similar link for patients with luminal breast cancer, then the use of agents that impede BCSC activity could prove highly effective in improving clinical outcomes among African American breast cancer patients.
Collapse
Affiliation(s)
- Nicole Mavingire
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Petreena Campbell
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Jonathan Wooten
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Joyce Aja
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines.
| | - Melissa B Davis
- Department of Surgery, Weill Cornell Medicine-New York Presbyterian Hospital Network, New York, NY, USA.
| | - Andrea Loaiza-Perez
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Área Investigación, Av. San Martin, 5481, C1417 DTB Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Eileen Brantley
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA, USA.
| |
Collapse
|
15
|
Bhat-Nakshatri P, Kumar B, Simpson E, Ludwig KK, Cox ML, Gao H, Liu Y, Nakshatri H. Breast Cancer Cell Detection and Characterization from Breast Milk-Derived Cells. Cancer Res 2020; 80:4828-4839. [PMID: 32934021 DOI: 10.1158/0008-5472.can-20-1030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/05/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
Abstract
Radiologic techniques remain the main method for early detection for breast cancer and are critical to achieve a favorable outcome from cancer. However, more sensitive detection methods to complement radiologic techniques are needed to enhance early detection and treatment strategies. Using our recently established culturing method that allows propagation of normal and cancerous breast epithelial cells of luminal origin, flow cytometry characterization, and genomic sequencing, we show that cancer cells can be detected in breast milk. Cells derived from milk from the breast with cancer were enriched for CD49f+/EpCAM-, CD44+/CD24-, and CD271+ cancer stem-like cells (CSC). These CSCs carried mutations within the cytoplasmic retention domain of HDAC6, stop/gain insertion in MORF4L1, and deletion mutations within SWI/SNF complex component SMARCC2. CSCs were sensitive to HDAC6 inhibitors, BET bromodomain inhibitors, and EZH2 inhibitors, as mutations in SWI/SNF complex components are known to increase sensitivity to these drugs. Among cells derived from breast milk of additional ten women not known to have breast cancer, two of them contained cells that were enriched for the CSC phenotype and carried mutations in NF1 or KMT2D, which are frequently mutated in breast cancer. Breast milk-derived cells with NF1 mutations also carried copy-number variations in CDKN2C, PTEN, and REL genes. The approach described here may enable rapid cancer cell characterization including driver mutation detection and therapeutic screening for pregnancy/postpartum breast cancers. Furthermore, this method can be developed as a surveillance or early detection tool for women at high risk for developing breast cancer. SIGNIFICANCE: These findings describe how a simple method for characterization of cancer cells in pregnancy and postpartum breast cancer can be exploited as a surveillance tool for women at risk of developing breast cancer.
Collapse
Affiliation(s)
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ed Simpson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kandice K Ludwig
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary L Cox
- IU Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,IU Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana. .,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,IU Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,VA Roudebush Medical Center, Indianapolis, Indiana
| |
Collapse
|
16
|
Thong T, Wang Y, Brooks MD, Lee CT, Scott C, Balzano L, Wicha MS, Colacino JA. Hybrid Stem Cell States: Insights Into the Relationship Between Mammary Development and Breast Cancer Using Single-Cell Transcriptomics. Front Cell Dev Biol 2020; 8:288. [PMID: 32457901 PMCID: PMC7227401 DOI: 10.3389/fcell.2020.00288] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Similarities between stem cells and cancer cells have implicated mammary stem cells in breast carcinogenesis. Recent evidence suggests that normal breast stem cells exist in multiple phenotypic states: epithelial, mesenchymal, and hybrid epithelial/mesenchymal (E/M). Hybrid E/M cells in particular have been implicated in breast cancer metastasis and poor prognosis. Mounting evidence also suggests that stem cell phenotypes change throughout the life course, for example, through embryonic development and pregnancy. The goal of this study was to use single cell RNA-sequencing to quantify cell state distributions of the normal mammary (NM) gland throughout developmental stages and when perturbed into a stem-like state in vitro using conditional reprogramming (CR). Using machine learning based dataset alignment, we integrate multiple mammary gland single cell RNA-seq datasets from human and mouse, along with bulk RNA-seq data from breast tumors in the Cancer Genome Atlas (TCGA), to interrogate hybrid stem cell states in the normal mammary gland and cancer. CR of human mammary cells induces an expanded stem cell state, characterized by increased expression of embryonic stem cell associated genes. Alignment to a mouse single-cell transcriptome atlas spanning mammary gland development from in utero to adulthood revealed that NM cells align to adult mouse cells and CR cells align across the pseudotime trajectory with a stem-like population aligning to the embryonic mouse cells. Three hybrid populations emerge after CR that are rare in NM: KRT18+/KRT14+ (hybrid luminal/basal), EPCAM+/VIM+ (hybrid E/M), and a quadruple positive population, expressing all four markers. Pseudotime analysis and alignment to the mouse developmental trajectory revealed that E/M hybrids are the most developmentally immature. Analyses of single cell mouse mammary RNA-seq throughout pregnancy show that during gestation, there is an enrichment of hybrid E/M cells, suggesting that these cells play an important role in mammary morphogenesis during lactation. Finally, pseudotime analysis and alignment of TCGA breast cancer expression data revealed that breast cancer subtypes express distinct developmental signatures, with basal tumors representing the most “developmentally immature” phenotype. These results highlight phenotypic plasticity of normal mammary stem cells and provide insight into the relationship between hybrid cell populations, stemness, and cancer.
Collapse
Affiliation(s)
- Tasha Thong
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Yutong Wang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - Michael D Brooks
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Christopher T Lee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Clayton Scott
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Laura Balzano
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - Max S Wicha
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Justin A Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States.,Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Breast Heterogeneity: Obstacles to Developing Universal Biomarkers of Breast Cancer Initiation and Progression. J Am Coll Surg 2020; 231:85-96. [PMID: 32311464 DOI: 10.1016/j.jamcollsurg.2020.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Predicting outcomes and response to therapy through biomarkers is a major challenge in cancer research. In previous studies, we suggested that inappropriate "normal" tissue samples used for comparison with tumors, inter-individual heterogeneity in gene expression, and genetic ancestry all influence biomarker expression in tumors. The aim of this study was to investigate these factors in breast cancer using breast tissues from healthy women and normal tissue adjacent to tumor (NAT) with matrix metalloproteinase 7 (MMP7) as a candidate biomarker. STUDY DESIGN RNA sequencing was performed on primary luminal progenitor cells from healthy breast, NATs, and tumors to identify transcriptomes enriched in NATs and breast cancer. Expression of select genes was validated via quantitative reverse transcription polymerase chain reaction of RNA and via immunohistochemistry of a tissue microarray of normal, NAT, and tumor samples of different genetic ancestry. RESULTS Twenty-six genes were significantly overexpressed in NATs and tumors compared with healthy controls at messenger RNA level and formed a para-inflammatory network. MMP7 had the greatest expression in tumor cells, with upregulation confirmed by quantitative reverse transcription polymerase chain reaction. Tumor-enriched but not NAT-enriched expression of MMP7 compared with healthy controls was reproduced at protein levels. When stratified by genetic ancestry, tumor-specific increase of MMP7 reached statistical significance in women of European ancestry. CONCLUSIONS Transcriptome differences across healthy, NAT, and tumor tissue in breast cancer demonstrate an active para-inflammatory network in NATs and indicate unsuitability of NATs as "normal controls" in biomarker discovery. The discordance between transcriptomic and proteomic MMP7 expression in NATs and the influence of genetic ancestry on its protein expression highlight the complexity in developing universally acceptable biomarkers of breast cancer and the importance of genetic ancestry in biomarker development.
Collapse
|
18
|
Rosenbluth JM, Schackmann RCJ, Gray GK, Selfors LM, Li CMC, Boedicker M, Kuiken HJ, Richardson A, Brock J, Garber J, Dillon D, Sachs N, Clevers H, Brugge JS. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nat Commun 2020; 11:1711. [PMID: 32249764 PMCID: PMC7136203 DOI: 10.1038/s41467-020-15548-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Recently, organoid technology has been used to generate a large repository of breast cancer organoids. Here we present an extensive evaluation of the ability of organoid culture technology to preserve complex stem/progenitor and differentiated cell types via long-term propagation of normal human mammary tissues. Basal/stem and luminal progenitor cells can differentiate in culture to generate mature basal and luminal cell types, including ER+ cells that have been challenging to maintain in culture. Cells associated with increased cancer risk can also be propagated. Single-cell analyses of matched organoid cultures and native tissues by mass cytometry for 38 markers provide a higher resolution representation of the multiple mammary epithelial cell types in the organoids, and demonstrate that protein expression patterns of the tissue of origin can be preserved in culture. These studies indicate that organoid cultures provide a valuable platform for studies of mammary differentiation, transformation, and breast cancer risk. Organoid technology has enabled the generation of several breast cancer organoids. Here, the authors combine propagation of normal human mammary tissues with mass cytometry to evaluate the ability of organoid culture technologies to preserve stem cells and differentiated cell types.
Collapse
Affiliation(s)
- Jennifer M Rosenbluth
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Ron C J Schackmann
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - G Kenneth Gray
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Carman Man-Chung Li
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Mackenzie Boedicker
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Hendrik J Kuiken
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Andrea Richardson
- Department of Pathology, Brigham & Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Jane Brock
- Department of Pathology, Brigham & Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Judy Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02115, USA
| | - Deborah Dillon
- Department of Pathology, Brigham & Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Norman Sachs
- Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Thong T, Forté CA, Hill EM, Colacino JA. Environmental exposures, stem cells, and cancer. Pharmacol Ther 2019; 204:107398. [PMID: 31376432 PMCID: PMC6881547 DOI: 10.1016/j.pharmthera.2019.107398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Abstract
An estimated 70-90% of all cancers are linked to exposure to environmental risk factors. In parallel, the number of stem cells in a tissue has been shown to be a strong predictor of risk of developing cancer in that tissue. Tumors themselves are characterized by an acquisition of "stem cell" characteristics, and a growing body of evidence points to tumors themselves being sustained and propagated by a stem cell-like population. Here, we review our understanding of the interplay between environmental exposures, stem cell biology, and cancer. We provide an overview of the role of stem cells in development, tissue homeostasis, and wound repair. We discuss the pathways and mechanisms governing stem cell plasticity and regulation of the stem cell state, and describe experimental methods for assessment of stem cells. We then review the current understanding of how environmental exposures impact stem cell function relevant to carcinogenesis and cancer prevention, with a focus on environmental and occupational exposures to chemical, physical, and biological hazards. We also highlight key areas for future research in this area, including defining whether the biological basis for cancer disparities is related to effects of complex exposure mixtures on stem cell biology.
Collapse
Affiliation(s)
- Tasha Thong
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Chanese A Forté
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan M Hill
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Wang H, Xiang D, Liu B, He A, Randle HJ, Zhang KX, Dongre A, Sachs N, Clark AP, Tao L, Chen Q, Botchkarev VV, Xie Y, Dai N, Clevers H, Li Z, Livingston DM. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell 2019; 178:135-151.e19. [PMID: 31251913 PMCID: PMC6716369 DOI: 10.1016/j.cell.2019.06.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 03/04/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
Loss of BRCA1 p220 function often results in basal-like breast cancer (BLBC), but the underlying disease mechanism is largely opaque. In mammary epithelial cells (MECs), BRCA1 interacts with multiple proteins, including NUMB and HES1, to form complexes that participate in interstrand crosslink (ICL) DNA repair and MEC differentiation control. Unrepaired ICL damage results in aberrant transdifferentiation to a mesenchymal state of cultured, human basal-like MECs and to a basal/mesenchymal state in primary mouse luminal MECs. Loss of BRCA1, NUMB, or HES1 or chemically induced ICL damage in primary murine luminal MECs results in persistent DNA damage that triggers luminal to basal/mesenchymal transdifferentiation. In vivo single-cell analysis revealed a time-dependent evolution from normal luminal MECs to luminal progenitor-like tumor cells with basal/mesenchymal transdifferentiation during murine BRCA1 BLBC development. Growing DNA damage accompanied this malignant transformation.
Collapse
Affiliation(s)
- Hua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ben Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Aina He
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Helena J Randle
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anushka Dongre
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Norman Sachs
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Allison P Clark
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Luwei Tao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qing Chen
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir V Botchkarev
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ning Dai
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, New Brunswick, NJ 08901, USA
| | - Hans Clevers
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - David M Livingston
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Nakshatri H, Kumar B, Burney HN, Cox ML, Jacobsen M, Sandusky GE, D'Souza-Schorey C, Storniolo AMV. Genetic Ancestry-dependent Differences in Breast Cancer-induced Field Defects in the Tumor-adjacent Normal Breast. Clin Cancer Res 2019; 25:2848-2859. [PMID: 30718355 PMCID: PMC11216537 DOI: 10.1158/1078-0432.ccr-18-3427] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/23/2018] [Accepted: 01/25/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic ancestry influences evolutionary pathways of cancers. However, whether ancestry influences cancer-induced field defects is unknown. The goal of this study was to utilize ancestry-mapped true normal breast tissues as controls to identify cancer-induced field defects in normal tissue adjacent to breast tumors (NATs) in women of African American (AA) and European (EA) ancestry. EXPERIMENTAL DESIGN A tissue microarray comprising breast tissues of ancestry-mapped 100 age-matched healthy women from the Komen Tissue Bank (KTB) at Indiana University (Indianapolis, IN) and tumor-NAT pairs from 100 women (300 samples total) was analyzed for the levels of ZEB1, an oncogenic transcription factor that is central to cell fate, mature luminal cell-enriched estrogen receptor alpha (ERα), GATA3, FOXA1, and for immune cell composition. RESULTS ZEB1+ cells, which were localized surrounding the ductal structures of the normal breast, were enriched in the KTB-normal of AA compared with KTB-normal of EA women. In contrast, in EA women, both NATs and tumors compared with KTB-normal contained higher levels of ZEB1+ cells. FOXA1 levels were lower in NATs compared with KTB-normal in AA but not in EA women. We also noted variations in the levels of GATA3, CD8+ T cells, PD1+ immune cells, and PDL1+ cell but not CD68+ macrophages in NATs of AA and EA women. ERα levels did not change in any of our analyses, pointing to the specificity of ancestry-dependent variations. CONCLUSIONS Genetic ancestry-mapped tissues from healthy individuals are required for proper assessment and development of cancer-induced field defects as early cancer detection markers. This finding is significant in light of recent discoveries of influence of genetic ancestry on both normal biology and tumor evolution.
Collapse
Affiliation(s)
- Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather N Burney
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary L Cox
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Anna Maria V Storniolo
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
22
|
Yu J, Sung JJ. Differential colorectal cancer genomics between east and west. J Gastroenterol Hepatol 2019; 34:811-812. [PMID: 31044476 DOI: 10.1111/jgh.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Joseph Jy Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
23
|
Prasad M, Kumar B, Bhat-Nakshatri P, Anjanappa M, Sandusky G, Miller KD, Storniolo AM, Nakshatri H. Dual TGFβ/BMP Pathway Inhibition Enables Expansion and Characterization of Multiple Epithelial Cell Types of the Normal and Cancerous Breast. Mol Cancer Res 2019; 17:1556-1570. [PMID: 30992305 DOI: 10.1158/1541-7786.mcr-19-0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/18/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022]
Abstract
Functional modeling of normal breast epithelial hierarchy and stromal-epithelial cell interactions have been difficult due to inability to obtain sufficient stem-progenitor-mature epithelial and stromal cells. Recently reported epithelial reprogramming assay has partially overcome this limitation, but cross-contamination of cells from the feeder layer is a concern. The purpose of this study was to develop a feeder-layer-independent and inexpensive method to propagate multiple cell types from limited tissue resources. Cells obtained after enzymatic digestion of tissues collected at surgery or by core-needle biopsies were plated on tissue culture dishes precoated with laminin-5-rich-conditioned media from the rat bladder tumor cell line 804G and a defined growth media with inhibitors of ROCK, TGFβ, and BMP signaling. Cells were characterized by flow cytometry, mammosphere assay, 3D cultures, and xenograft studies. Cells from the healthy breasts included CD10+/EpCAM- basal/myoepithelial, CD49f+/EpCAM+ luminal progenitor, CD49f-/EpCAM+ mature luminal, CD73+/EpCAM+/CD90- rare endogenous pluripotent somatic stem, CD73+/CD90+/EpCAM-, estrogen receptor alpha-expressing ALCAM (CD166)+/EpCAM+, and ALDFLUOR+ stem/luminal progenitor subpopulations. Epithelial cells were luminal (KRT19+), basal (KRT14+), or dual-positive luminal/basal hybrid cells. While breast cells derived from BRCA1, BRCA2, and PALB2 mutation carriers did not display unique characteristics, cells from women with breast cancer-protective alleles showed enhanced differentiation. Cells could also be propagated from primary tumors and metastasis of breast, ovarian, and pancreatic cancer-neuroendocrine subtype. Xenograft studies confirmed tumorigenic properties of tumor-derived cells. IMPLICATIONS: Our method expands the scope of individualized studies of patient-derived cells and provides resources to model epithelial-stromal interactions under normal and pathologic conditions.
Collapse
Affiliation(s)
- Mayuri Prasad
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kathy D Miller
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anna Maria Storniolo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana. .,Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
24
|
Madak-Erdogan Z, Band S, Zhao YC, Smith BP, Kulkoyluoglu-Cotul E, Zuo Q, Santaliz Casiano A, Wrobel K, Rossi G, Smith RL, Kim SH, Katzenellenbogen JA, Johnson ML, Patel M, Marino N, Storniolo AMV, Flaws JA. Free Fatty Acids Rewire Cancer Metabolism in Obesity-Associated Breast Cancer via Estrogen Receptor and mTOR Signaling. Cancer Res 2019; 79:2494-2510. [PMID: 30862719 DOI: 10.1158/0008-5472.can-18-2849] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/09/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
Obesity is a risk factor for postmenopausal estrogen receptor alpha (ERα)-positive (ER+) breast cancer. Molecular mechanisms underlying factors from plasma that contribute to this risk and how these mechanisms affect ERα signaling have yet to be elucidated. To identify such mechanisms, we performed whole metabolite and protein profiling in plasma samples from women at high risk for breast cancer, which led us to focus on factors that were differentially present in plasma of obese versus nonobese postmenopausal women. These studies, combined with in vitro assays, identified free fatty acids (FFA) as circulating plasma factors that correlated with increased proliferation and aggressiveness in ER+ breast cancer cells. FFAs activated both the ERα and mTOR pathways and rewired metabolism in breast cancer cells. Pathway preferential estrogen-1 (PaPE-1), which targets ERα and mTOR signaling, was able to block changes induced by FFA and was more effective in the presence of FFA. Collectively, these data suggest a role for obesity-associated gene and metabolic rewiring in providing new targetable vulnerabilities for ER+ breast cancer in postmenopausal women. Furthermore, they provide a basis for preclinical and clinical trials where the impact of agents that target ERα and mTOR signaling cross-talk would be tested to prevent ER+ breast cancers in obese postmenopausal women. SIGNIFICANCE: These findings show that obesity-associated changes in certain blood metabolites rewire metabolic programs in cancer cells, influence mammary epithelial cell tumorigenicity and aggressiveness, and increase breast cancer risk.
Collapse
Affiliation(s)
- Zeynep Madak-Erdogan
- Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois. .,Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois.,National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Urbana, Illinois.,Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Shoham Band
- Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Yiru C Zhao
- Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Brandi P Smith
- Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Eylem Kulkoyluoglu-Cotul
- Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Qianying Zuo
- Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Ashlie Santaliz Casiano
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Kinga Wrobel
- Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Gianluigi Rossi
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Rebecca L Smith
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | | | - Mariah L Johnson
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, Indiana
| | - Meera Patel
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, Indiana
| | - Natascia Marino
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, Indiana.,Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anna Maria V Storniolo
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, Indiana.,Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
25
|
Ryan BM. Lung cancer health disparities. Carcinogenesis 2019; 39:741-751. [PMID: 29547922 DOI: 10.1093/carcin/bgy047] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/13/2018] [Indexed: 12/16/2022] Open
Abstract
Compared with all other racial and ethnic groups in the United States, African Americans are disproportionally affected by lung cancer, both in terms of incidence and survival. It is likely that smoking, as the main etiological factor associated with lung cancer, contributes to these disparities, but the precise mechanism is still unclear. This paper seeks to explore the history of lung cancer disparities and review to the literature regarding the various factors that contribute to them.
Collapse
Affiliation(s)
- Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
26
|
Racial Disparity and Triple-Negative Breast Cancer in African-American Women: A Multifaceted Affair between Obesity, Biology, and Socioeconomic Determinants. Cancers (Basel) 2018; 10:cancers10120514. [PMID: 30558195 PMCID: PMC6316530 DOI: 10.3390/cancers10120514] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/01/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a molecularly heterogeneous disease whose incidence is disproportionately higher in African American (AA) women compared to European American (EA) women. Earlier onset, more advanced stage at diagnosis, and aggressive tumor phenotype are some of the characteristic features of TNBC in women with African ethnicity in comparison to EA women, denoting one of the most significant examples of racial disparity in oncology. It is still contentious whether health disparities result in aggressive behavior of TNBC in AA women or it is indeed a molecularly distinct disease. Given the “gaps-in-knowledge” surrounding racial disparity in TNBC, this review discusses various socioeconomic factors and the genetic predispositions contributing to poor prognosis of TNBC in AA women. While socioeconomic factors may contribute to poorer survival, multiple preclinical and clinical studies suggest inherent genetic risk factors and aberrant activation of oncogenic pathways in AA TNBC. Additionally, AA women are more likely to be obese and obesity is known to drive a molecular circuitry resulting in aggressive tumor progression indicating a potential obesity-TNBC axis at work in AA women. Given the multifactorial nature of AA TNBC, a transdisciplinary approach may help bridge the disparity that exists between AA and EA TNBC.
Collapse
|
27
|
Mitchell KA, Zingone A, Toulabi L, Boeckelman J, Ryan BM. Comparative Transcriptome Profiling Reveals Coding and Noncoding RNA Differences in NSCLC from African Americans and European Americans. Clin Cancer Res 2018; 23:7412-7425. [PMID: 29196495 DOI: 10.1158/1078-0432.ccr-17-0527] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/26/2017] [Accepted: 09/08/2017] [Indexed: 12/19/2022]
Abstract
Purpose: To determine whether racial differences in gene and miRNA expression translates to differences in lung tumor biology with clinical relevance in African Americans (AAs) and European Americans (EAs).Experimental Design: The NCI-Maryland Case Control Study includes seven Baltimore City hospitals and is overrepresented with AA patients (∼40%). Patients that underwent curative NSCLC surgery between 1998 and 2014 were enrolled. Comparative molecular profiling used mRNA (n = 22 AAs and 19 EAs) and miRNA (n = 42 AAs and 55 EAs) expression arrays to track differences in paired fresh frozen normal tissues and lung tumor specimens from AAs and EAs. Pathway enrichment, predicted drug response, tumor microenvironment infiltration, cancer immunotherapy antigen profiling, and miRNA target enrichment were assessed.Results: AA-enriched differential gene expression was characterized by stem cell and invasion pathways. Differential gene expression in lung tumors from EAs was primarily characterized by cell proliferation pathways. Population-specific gene expression was partly driven by population-specific miRNA expression profiles. Drug susceptibility predictions revealed a strong inverse correlation between AA resistance and EA sensitivity to the same panel of drugs. Statistically significant differences in M1 and M2 macrophage infiltration were observed in AAs (P < 0.05); however, PD-L1, PD-L2 expression was similar between both.Conclusions: Comparative transcriptomic profiling revealed clear differences in lung tumor biology between AAs and EAs. Increased participation by AAs in lung cancer clinical trials are needed to integrate, and leverage, transcriptomic differences with other clinical information to maximize therapeutic benefit in both AAs and EAs. Clin Cancer Res; 23(23); 7412-25. ©2017 AACR.
Collapse
Affiliation(s)
- Khadijah A Mitchell
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Leila Toulabi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jacob Boeckelman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
28
|
Kumar B, Prasad M, Bhat-Nakshatri P, Anjanappa M, Kalra M, Marino N, Storniolo AM, Rao X, Liu S, Wan J, Liu Y, Nakshatri H. Normal Breast-Derived Epithelial Cells with Luminal and Intrinsic Subtype-Enriched Gene Expression Document Interindividual Differences in Their Differentiation Cascade. Cancer Res 2018; 78:5107-5123. [PMID: 29997232 DOI: 10.1158/0008-5472.can-18-0509] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/30/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
Abstract
Cell-type origin is one of the factors that determine molecular features of tumors, but resources to validate this concept are scarce because of technical difficulties in propagating major cell types of adult organs. Previous attempts to generate such resources to study breast cancer have yielded predominantly basal-type cell lines. We have created a panel of immortalized cell lines from core breast biopsies of ancestry-mapped healthy women that form ductal structures similar to normal breast in 3D cultures and expressed markers of major cell types, including the luminal-differentiated cell-enriched ERα-FOXA1-GATA3 transcription factor network. We have also created cell lines from PROCR (CD201)+/EpCAM- cells that are likely the "normal" counterpart of the claudin-low subtype of breast cancers. RNA-seq and PAM50-intrinsic subtype clustering identified these cell lines as the "normal" counterparts of luminal A, basal, and normal-like subtypes and validated via immunostaining with basal-enriched KRT14 and luminal-enriched KRT19. We further characterized these cell lines by flow cytometry for distribution patterns of stem/basal, luminal-progenitor, mature/differentiated, multipotent PROCR+ cells, and organogenesis-enriched epithelial/mesenchymal hybrid cells using CD44/CD24, CD49f/EpCAM, CD271/EpCAM, CD201/EpCAM, and ALDEFLUOR assays and E-cadherin/vimentin double staining. These cell lines showed interindividual heterogeneity in stemness/differentiation capabilities and baseline activity of signaling molecules such as NF-κB, AKT2, pERK, and BRD4. These resources can be used to test the emerging concept that genetic variations in regulatory regions contribute to widespread differences in gene expression in "normal" conditions among the general population and can delineate the impact of cell-type origin on tumor progression.Significance: In addition to providing a valuable resource for the breast cancer research community to investigate cell-type origin of different subtypes of breast cancer, this study highlights interindividual differences in normal breast, emphasizing the need to use "normal" cells from multiple sources as controls to decipher the effects of cancer-specific genomic aberrations. Cancer Res; 78(17); 5107-23. ©2018 AACR.
Collapse
Affiliation(s)
- Brijesh Kumar
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mayuri Prasad
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Manjushree Anjanappa
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Maitri Kalra
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Natascia Marino
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anna Maria Storniolo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xi Rao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, Indiana. .,Deaprtment of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,VA Roudebush Medical Center, Indianapolis, Indiana
| |
Collapse
|
29
|
Padua MB, Bhat-Nakshatri P, Anjanappa M, Prasad MS, Hao Y, Rao X, Liu S, Wan J, Liu Y, McElyea K, Jacobsen M, Sandusky G, Althouse S, Perkins S, Nakshatri H. Dependence receptor UNC5A restricts luminal to basal breast cancer plasticity and metastasis. Breast Cancer Res 2018; 20:35. [PMID: 29720215 PMCID: PMC5932758 DOI: 10.1186/s13058-018-0963-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
Background The majority of estrogen receptor-positive (ERα+) breast cancers respond to endocrine therapies. However, resistance to endocrine therapies is common in 30% of cases, which may be due to altered ERα signaling and/or enhanced plasticity of cancer cells leading to breast cancer subtype conversion. The mechanisms leading to enhanced plasticity of ERα-positive cancer cells are unknown. Methods We used short hairpin (sh)RNA and/or the CRISPR/Cas9 system to knockdown the expression of the dependence receptor UNC5A in ERα+ MCF7 and T-47D cell lines. RNA-seq, quantitative reverse transcription polymerase chain reaction, chromatin immunoprecipitation, and Western blotting were used to measure the effect of UNC5A knockdown on basal and estradiol (E2)-regulated gene expression. Mammosphere assay, flow cytometry, and immunofluorescence were used to determine the role of UNC5A in restricting plasticity. Xenograft models were used to measure the effect of UNC5A knockdown on tumor growth and metastasis. Tissue microarray and immunohistochemistry were utilized to determine the prognostic value of UNC5A in breast cancer. Log-rank test, one-way, and two-way analysis of variance (ANOVA) were used for statistical analyses. Results Knockdown of the E2-inducible UNC5A resulted in altered basal gene expression affecting plasma membrane integrity and ERα signaling, as evident from ligand-independent activity of ERα, altered turnover of phosphorylated ERα, unique E2-dependent expression of genes effecting histone demethylase activity, enhanced upregulation of E2-inducible genes such as BCL2, and E2-independent tumorigenesis accompanied by multiorgan metastases. UNC5A depletion led to the appearance of a luminal/basal hybrid phenotype supported by elevated expression of basal/stem cell-enriched ∆Np63, CD44, CD49f, epidermal growth factor receptor (EGFR), and the lymphatic vessel permeability factor NTN4, but lower expression of luminal/alveolar differentiation-associated ELF5 while maintaining functional ERα. In addition, UNC5A-depleted cells acquired bipotent luminal progenitor characteristics based on KRT14+/KRT19+ and CD49f+/EpCAM+ phenotype. Consistent with in vitro results, UNC5A expression negatively correlated with EGFR expression in breast tumors, and lower expression of UNC5A, particularly in ERα+/PR+/HER2− tumors, was associated with poor outcome. Conclusion These studies reveal an unexpected role of the axon guidance receptor UNC5A in fine-tuning ERα and EGFR signaling and the luminal progenitor status of hormone-sensitive breast cancers. Furthermore, UNC5A knockdown cells provide an ideal model system to investigate metastasis of ERα+ breast cancers. Electronic supplementary material The online version of this article (10.1186/s13058-018-0963-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria B Padua
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Present Address: Department of Pediatrics and Herman B. Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mayuri S Prasad
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yangyang Hao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xi Rao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kyle McElyea
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sandra Althouse
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Susan Perkins
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,VA Roudebush Medical Center, C218C, 980 West Walnut St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
30
|
Colacino JA, Azizi E, Brooks MD, Harouaka R, Fouladdel S, McDermott SP, Lee M, Hill D, Madden J, Boerner J, Cote ML, Sartor MA, Rozek LS, Wicha MS. Heterogeneity of Human Breast Stem and Progenitor Cells as Revealed by Transcriptional Profiling. Stem Cell Reports 2018; 10:1596-1609. [PMID: 29606612 PMCID: PMC5995162 DOI: 10.1016/j.stemcr.2018.03.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 01/10/2023] Open
Abstract
During development, the mammary gland undergoes extensive remodeling driven by stem cells. Breast cancers are also hierarchically organized and driven by cancer stem cells characterized by CD44+CD24low/− or aldehyde dehydrogenase (ALDH) expression. These markers identify mesenchymal and epithelial populations both capable of tumor initiation. Less is known about these populations in non-cancerous mammary glands. From RNA sequencing, ALDH+ and ALDH−CD44+CD24− human mammary cells have epithelial-like and mesenchymal-like characteristics, respectively, with some co-expressing ALDH+ and CD44+CD24− by flow cytometry. At the single-cell level, these cells have the greatest mammosphere-forming capacity and express high levels of stemness and epithelial-to-mesenchymal transition-associated genes including ID1, SOX2, TWIST1, and ZEB2. We further identify single ALDH+ cells with a hybrid epithelial/mesenchymal phenotype that express genes associated with aggressive triple-negative breast cancers. These results highlight single-cell analyses to characterize tissue heterogeneity, even in marker-enriched populations, and identify genes and pathways that define this heterogeneity. Isolation and RNA-seq of ALDH+ and CD44+CD24− breast cells Unlike in cancer, there is substantial overlap in ALDH+ and CD44+CD24− populations Single-cell analysis of ALDH+ cells identifies unexpected subpopulation structure Hybrid epithelial/mesenchymal ALDH+ cells have a cancer-like expression signature
Collapse
Affiliation(s)
- Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Ebrahim Azizi
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael D Brooks
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ramdane Harouaka
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shamileh Fouladdel
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sean P McDermott
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Lee
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Julie Madden
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julie Boerner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michele L Cote
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Population Sciences and Health Disparities Program, Karmanos Cancer Institute, Detroit, MI, USA
| | - Maureen A Sartor
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Max S Wicha
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Triple-Negative Breast Cancer, Stem Cells, and African Ancestry. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:271-279. [DOI: 10.1016/j.ajpath.2017.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/10/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023]
|
32
|
Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture. Oncotarget 2017; 9:11503-11514. [PMID: 29545915 PMCID: PMC5837767 DOI: 10.18632/oncotarget.23817] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/30/2017] [Indexed: 01/16/2023] Open
Abstract
Purpose Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. Results We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. Materials and Methods We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. Conclusions The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro. We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.
Collapse
|
33
|
Telonis AG, Rigoutsos I. Race Disparities in the Contribution of miRNA Isoforms and tRNA-Derived Fragments to Triple-Negative Breast Cancer. Cancer Res 2017; 78:1140-1154. [PMID: 29229607 DOI: 10.1158/0008-5472.can-17-1947] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is a breast cancer subtype characterized by marked differences between White and Black/African-American women. We performed a systems-level analysis on datasets from The Cancer Genome Atlas to elucidate how the expression patterns of mRNAs are shaped by regulatory noncoding RNAs (ncRNA). Specifically, we studied isomiRs, that is, isoforms of miRNAs, and tRNA-derived fragments (tRF). In normal breast tissue, we observed a marked cohesiveness in both the ncRNA and mRNA layers and the associations between them. This cohesiveness was widely disrupted in TNBC. Many mRNAs become either differentially expressed or differentially wired between normal breast and TNBC in tandem with isomiR or tRF dysregulation. The affected pathways included energy metabolism, cell signaling, and immune responses. Within TNBC, the wiring of the affected pathways with isomiRs and tRFs differed in each race. Multiple isomiRs and tRFs arising from specific miRNA loci (e.g., miR-200c, miR-21, the miR-17/92 cluster, the miR-183/96/182 cluster) and from specific tRNA loci (e.g., the nuclear tRNAGly and tRNALeu, the mitochondrial tRNAVal and tRNAPro) were strongly associated with the observed race disparities in TNBC. We highlight the race-specific aspects of transcriptome wiring by discussing in detail the metastasis-related MAPK and the Wnt/β-catenin signaling pathways, two of the many key pathways that were found differentially wired. In conclusion, by employing a data- and knowledge-driven approach, we comprehensively analyzed the normal and cancer transcriptomes to uncover novel key contributors to the race-based disparities of TNBC.Significance: This big data-driven study comparing normal and cancer transcriptomes uncovers RNA expression differences between Caucasian and African-American patients with triple-negative breast cancer that might help explain disparities in incidence and aggressive character. Cancer Res; 78(5); 1140-54. ©2017 AACR.
Collapse
Affiliation(s)
- Aristeidis G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
34
|
Anjanappa M, Hao Y, Simpson ER, Bhat-Nakshatri P, Nelson JB, Tersey SA, Mirmira RG, Cohen-Gadol AA, Saadatzadeh MR, Li L, Fang F, Nephew KP, Miller KD, Liu Y, Nakshatri H. A system for detecting high impact-low frequency mutations in primary tumors and metastases. Oncogene 2017; 37:185-196. [PMID: 28892047 DOI: 10.1038/onc.2017.322] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022]
Abstract
Tumor complexity and intratumor heterogeneity contribute to subclonal diversity. Despite advances in next-generation sequencing (NGS) and bioinformatics, detecting rare mutations in primary tumors and metastases contributing to subclonal diversity is a challenge for precision genomics. Here, in order to identify rare mutations, we adapted a recently described epithelial reprograming assay for short-term propagation of epithelial cells from primary and metastatic tumors. Using this approach, we expanded minor clones and obtained epithelial cell-specific DNA/RNA for quantitative NGS analysis. Comparative Ampliseq Comprehensive Cancer Panel sequence analyses were performed on DNA from unprocessed breast tumor and tumor cells propagated from the same tumor. We identified previously uncharacterized mutations present only in the cultured tumor cells, a subset of which has been reported in brain metastatic but not primary breast tumors. In addition, whole-genome sequencing identified mutations enriched in liver metastases of various cancers, including Notch pathway mutations/chromosomal inversions in 5/5 liver metastases, irrespective of cancer types. Mutations/rearrangements in FHIT, involved in purine metabolism, were detected in 4/5 liver metastases, and the same four liver metastases shared mutations in 32 genes, including mutations of different HLA-DR family members affecting OX40 signaling pathway, which could impact the immune response to metastatic cells. Pathway analyses of all mutated genes in liver metastases showed aberrant tumor necrosis factor and transforming growth factor signaling in metastatic cells. Epigenetic regulators including KMT2C/MLL3 and ARID1B, which are mutated in >50% of hepatocellular carcinomas, were also mutated in liver metastases. Thus, irrespective of cancer types, organ-specific metastases may share common genomic aberrations. Since recent studies show independent evolution of primary tumors and metastases and in most cases mutation burden is higher in metastases than primary tumors, the method described here may allow early detection of subclonal somatic alterations associated with metastatic progression and potentially identify therapeutically actionable, metastasis-specific genomic aberrations.
Collapse
Affiliation(s)
- M Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Y Hao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA
| | - E R Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA
| | - P Bhat-Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J B Nelson
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S A Tersey
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A A Cohen-Gadol
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M R Saadatzadeh
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - F Fang
- Medical Science Program, Indiana University, Bloomington, IN, USA
| | - K P Nephew
- Medical Science Program, Indiana University, Bloomington, IN, USA
| | - K D Miller
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Y Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - H Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
35
|
Özdemir BC, Dotto GP. Racial Differences in Cancer Susceptibility and Survival: More Than the Color of the Skin? Trends Cancer 2017; 3:181-197. [PMID: 28718431 DOI: 10.1016/j.trecan.2017.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
Epidemiological studies point to race as a determining factor in cancer susceptibility. In US registries recording cancer incidence and survival by race (distinguishing 'black versus white'), individuals of African ancestry have a globally increased risk of malignancies compared with Caucasians and Asian Americans. Differences in socioeconomic status and health-care access play a key role. However, the lesser disease susceptibility of Hispanic populations with comparable lifestyles and socioeconomic status as African Americans (Hispanic paradox) points to the concomitant importance of genetic determinants. Here, we overview the molecular basis of racial disparity in cancer susceptibility ranging from genetic polymorphisms and cancer-driver gene mutations to obesity, chronic inflammation, and immune responses. We discuss implications for race-adapted cancer screening programs and clinical trials to reduce disparities in cancer burden.
Collapse
Affiliation(s)
- Berna C Özdemir
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Gian-Paolo Dotto
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066 Épalinges, Switzerland; Harvard Dermatology Department and Cutaneous Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02129, USA.
| |
Collapse
|
36
|
Anjanappa M, Cardoso A, Cheng L, Mohamad S, Gunawan A, Rice S, Dong Y, Li L, Sandusky GE, Srour EF, Nakshatri H. Individualized Breast Cancer Characterization through Single-Cell Analysis of Tumor and Adjacent Normal Cells. Cancer Res 2017; 77:2759-2769. [PMID: 28249895 DOI: 10.1158/0008-5472.can-16-3308] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/04/2017] [Accepted: 02/24/2017] [Indexed: 12/20/2022]
Abstract
There is a need to individualize assays for tumor molecular phenotyping, given variations in the differentiation status of tumor and normal tissues in different patients. To address this, we performed single-cell genomics of breast tumors and adjacent normal cells propagated for a short duration under growth conditions that enable epithelial reprogramming. Cells analyzed were either unselected for a specific subpopulation or phenotypically defined as undifferentiated and highly clonogenic ALDH+/CD49f+/EpCAM+ luminal progenitors, which express both basal cell and luminal cell-enriched genes. We analyzed 420 tumor cells and 284 adjacent normal cells for expression of 93 genes that included a PAM50-intrinsic subtype classifier and stemness-related genes. ALDH+/CD49f+/EpCAM+ tumor and normal cells clustered differently compared with unselected tumor and normal cells. PAM50 gene-set analyses of ALDH+/CD49f+/EpCAM+ populations efficiently identified major and minor clones of tumor cells, with the major clone resembling clinical parameters of the tumor. Similarly, a stemness-associated gene set identified clones with divergent stemness pathway activation within the same tumor. This refined expression profiling technique distinguished genes truly deregulated in cancer from genes that identify cellular precursors of tumors. Collectively, the assays presented here enable more precise identification of cancer-deregulated genes, allow for early identification of therapeutically targetable tumor cell subpopulations, and ultimately provide a refinement of precision therapeutics for cancer treatment. Cancer Res; 77(10); 2759-69. ©2017 AACR.
Collapse
Affiliation(s)
- Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Angelo Cardoso
- Hematology and Oncology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lijun Cheng
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Safa Mohamad
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrea Gunawan
- Hematology and Oncology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan Rice
- Hematology and Oncology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yan Dong
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lang Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Edward F Srour
- Hematology and Oncology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana. .,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,VA Roudebush Medical Center, Indianapolis, Indiana
| |
Collapse
|
37
|
Anjanappa M, Burnett R, Zieger MA, Merfeld-Clauss S, Wooden W, March K, Tholpady S, Nakshatri H. Distinct Effects of Adipose-Derived Stem Cells and Adipocytes on Normal and Cancer Cell Hierarchy. Mol Cancer Res 2016; 14:660-71. [PMID: 27097643 DOI: 10.1158/1541-7786.mcr-16-0055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/29/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED Adipose-derived stem cells (ASC) have received considerable attention in oncology because of the known direct link between obesity and cancer as well as the use of ASCs in reconstructive surgery after tumor ablation. Previous studies have documented how cancer cells commandeer ASCs to support their survival by altering extracellular matrix composition and stiffness, migration, and metastasis. This study focused on delineating the effects of ASCs and adipocytes on the self-renewal of stem/progenitor cells and hierarchy of breast epithelial cells. The immortalized breast epithelial cell line MCF10A, ductal carcinoma in situ (DCIS) cell lines MCF10DCIS.com and SUM225, and MCF10A-overexpressing SRC oncogene were examined using a mammosphere assay and flow cytometry for the effects of ASCs on their self-renewal and stem-luminal progenitor-differentiated cell surface marker profiles. Interestingly, ASCs promoted the self-renewal of all cell types except SUM225. ASC coculture or treatment with ASC conditioned media altered the number of CD49f(high)/EpCAM(low) basal/stem-like and CD49f(medium)/EpCAM(medium) luminal progenitor cells. Among multiple factors secreted by ASCs, IFNγ and hepatocyte growth factor (HGF) displayed unique actions on epithelial cell hierarchy. IFNγ increased stem/progenitor-like cells while simultaneously reducing the size of mammospheres, whereas HGF increased the size of mammospheres with an accompanying increase in luminal progenitor cells. ASCs expressed higher levels of HGF, whereas adipocytes expressed higher levels of IFNγ. As luminal progenitor cells are believed to be prone for transformation, IFNγ and HGF expression status of ASCs may influence susceptibility for developing breast cancer as well as on outcomes of autologous fat transplantation on residual/dormant tumor cells. IMPLICATIONS This study suggests that the ratio of ASCs to adipocytes influences cancer cell hierarchy, which may impact incidence and progression. Mol Cancer Res; 14(7); 660-71. ©2016 AACR.
Collapse
Affiliation(s)
- Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Riesa Burnett
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael A Zieger
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephanie Merfeld-Clauss
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana. Richard L Roudebush VA Medical Center, Indianapolis, Indiana
| | - William Wooden
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Keith March
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana. Richard L Roudebush VA Medical Center, Indianapolis, Indiana
| | - Sunil Tholpady
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana. Richard L Roudebush VA Medical Center, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana. Richard L Roudebush VA Medical Center, Indianapolis, Indiana. Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|