1
|
Zhou B, Ling L, Wang B, Yang F, Hou M, Liu F, Li Y, Luo H, He W, Ye H. Hepatopancreas Transcriptome Analysis of Spinibarbus sinensis to Reveal Different Growth-Related Genes. Genes (Basel) 2024; 15:949. [PMID: 39062728 PMCID: PMC11276559 DOI: 10.3390/genes15070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Spinibarbus sinensis, also known as Qingbo, is an important economic fish in China. However, the detailed mechanisms underlying its growth are still unknown. To excavate the genes and signaling pathways related to its growth, we compared the transcriptome profiles of the hepatopancreas tissues of S. sinensis, with two groups of growth rate for evaluation. An average of 66,304,909 and 68,739,585 clean reads were obtained in the fast growth (FG) and slow growth (SG) group, respectively. The differential gene expression analysis results showed that 272 differentially expressed genes (DEGs) were screened between the FG and SG groups, including 101 up-regulated genes and 171 down-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results showed that GO terms related to metabolic process, organic substance metabolic process, and catalytic activity were enriched, pathway signals related to steroid biosynthesis and protein digestion and absorption were also detected. Meanwhile, the potential key regulatory genes sst2, fndc4, and cckra related to the growth of S. sinensis were screened. Reverse transcript fluorescence quantitative PCR (RT-qPCR) validation of 18 DEGs associated with growth differences showed that the RT-qPCR results were consistent with RNA-seq analysis, and nine genes, stk31, gpr149, angptl1, fstl1, sik1, ror2, nlrc3, pdlim2, and nav2 were significantly expressed in the FG group. bmp1, stc1, gpatch8, sstrt2, s100a1, ktf6, cckar6, sync1, bhlha15, a total of nine genes were significantly expressed in the SG group. This study provides basic information for improving the growth characteristics of S. sinensis and the functional research of candidate genes.
Collapse
Affiliation(s)
- Bo Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Yibin 644000, China; (B.Z.); (B.W.); (F.Y.)
| | - Leyan Ling
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China; (L.L.); (M.H.); (F.L.); (Y.L.); (H.L.); (W.H.)
| | - Bin Wang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Yibin 644000, China; (B.Z.); (B.W.); (F.Y.)
| | - Fei Yang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Yibin 644000, China; (B.Z.); (B.W.); (F.Y.)
| | - Mengdan Hou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China; (L.L.); (M.H.); (F.L.); (Y.L.); (H.L.); (W.H.)
| | - Fan Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China; (L.L.); (M.H.); (F.L.); (Y.L.); (H.L.); (W.H.)
| | - Yu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China; (L.L.); (M.H.); (F.L.); (Y.L.); (H.L.); (W.H.)
| | - Hui Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China; (L.L.); (M.H.); (F.L.); (Y.L.); (H.L.); (W.H.)
| | - Wenping He
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China; (L.L.); (M.H.); (F.L.); (Y.L.); (H.L.); (W.H.)
| | - Hua Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing 402460, China; (L.L.); (M.H.); (F.L.); (Y.L.); (H.L.); (W.H.)
| |
Collapse
|
2
|
Zhang M, Xiong J, Yang Z, Zhu B, Wu Y, Chen X, Wu X. NinaB and BCO Collaboratively Participate in the β-Carotene Catabolism in Crustaceans: A Case Study on Chinese Mitten Crab Eriocheir sinensis. Int J Mol Sci 2024; 25:5592. [PMID: 38891781 PMCID: PMC11171921 DOI: 10.3390/ijms25115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Carotenoid cleavage oxygenases can cleave carotenoids into a range of biologically important products. Carotenoid isomerooxygenase (NinaB) and β, β-carotene 15, 15'-monooxygenase (BCO1) are two important oxygenases. In order to understand the roles that both oxygenases exert in crustaceans, we first investigated NinaB-like (EsNinaBl) and BCO1-like (EsBCO1l) within the genome of Chinese mitten crab (Eriocheir sinensis). Their functions were then deciphered through an analysis of their expression patterns, an in vitro β-carotene degradation assay, and RNA interference. The results showed that both EsNinaBl and EsBCO1l contain an RPE65 domain and exhibit high levels of expression in the hepatopancreas. During the molting stage, EsNinaBl exhibited significant upregulation in stage C, whereas EsBCO1l showed significantly higher expression levels at stage AB. Moreover, dietary supplementation with β-carotene resulted in a notable increase in the expression of EsNinaBl and EsBCO1l in the hepatopancreas. Further functional assays showed that the EsNinaBl expressed in E. coli underwent significant changes in its color, from orange to light; in addition, its β-carotene cleavage was higher than that of EsBCO1l. After the knockdown of EsNinaBl or EsBCO1l in juvenile E. sinensis, the expression levels of both genes were significantly decreased in the hepatopancreas, accompanied by a notable increase in the redness (a*) values. Furthermore, a significant increase in the β-carotene content was observed in the hepatopancreas when EsNinaBl-mRNA was suppressed, which suggests that EsNinaBl plays an important role in carotenoid cleavage, specifically β-carotene. In conclusion, our findings suggest that EsNinaBl and EsBCO1l may exhibit functional co-expression and play a crucial role in carotenoid cleavage in crabs.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Jingyi Xiong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Zonglin Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Boxiang Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Yuting Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
| | - Xiaowu Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (M.Z.); (J.X.); (Z.Y.); (B.Z.); (Y.W.)
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
He Q, Feng W, Chen X, Xu Y, Zhou J, Li J, Xu P, Tang Y. H 2O 2-Induced Oxidative Stress Responses in Eriocheir sinensis: Antioxidant Defense and Immune Gene Expression Dynamics. Antioxidants (Basel) 2024; 13:524. [PMID: 38790629 PMCID: PMC11117496 DOI: 10.3390/antiox13050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
Eriocheir sinensis, a key species in China's freshwater aquaculture, is threatened by various diseases, which were verified to be closely associated with oxidative stress. This study aimed to investigate the response of E. sinensis to hydrogen peroxide (H2O2)-induced oxidative stress to understand the biological processes behind these diseases. Crabs were exposed to different concentrations of H2O2 and their antioxidant enzyme activities and gene expressions for defense and immunity were measured. Results showed that activities of antioxidant enzymes-specificallysuperoxide dismutase (SOD), catalase (CAT), total antioxidant capacity(T-AOC), glutathione (GSH), and glutathione peroxidase (GSH-Px)-varied with exposure concentration and duration, initially increasing then decreasing. Notably, SOD, GSH-Px, and T-AOC activities dropped below control levels at 96 h. Concurrently, oxidative damage markers, including malondialdehyde (MDA), H2O2, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, increased with exposure duration. The mRNA expression of SOD, CAT, and GSH-Px also showed an initial increase followed by a decrease, peaking at 72 h. The upregulation of phenoloxidaseloxidase (proPO) and peroxinectin (PX) was also detected, but proPO was suppressed under high levels of H2O2. Heat shock protein 70 (HSP70) expression gradually increased with higher H2O2 concentrations, whereas induced nitrogen monoxide synthase (iNOS) was upregulated but decreased at 96 h. These findings emphasize H2O2's significant impact on the crab's oxidative and immune responses, highlighting the importance of understanding cellular stress responses for disease prevention and therapy development.
Collapse
Affiliation(s)
- Qinghong He
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China;
| | - Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.F.); (X.C.); (Y.X.); (J.L.); (P.X.)
| | - Xue Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.F.); (X.C.); (Y.X.); (J.L.); (P.X.)
| | - Yuanfeng Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.F.); (X.C.); (Y.X.); (J.L.); (P.X.)
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China;
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.F.); (X.C.); (Y.X.); (J.L.); (P.X.)
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.F.); (X.C.); (Y.X.); (J.L.); (P.X.)
| | - Yongkai Tang
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.F.); (X.C.); (Y.X.); (J.L.); (P.X.)
| |
Collapse
|
4
|
Xing C, Wang M, Chen Z, Li Y, Zhou X, Wang L, Zhong Y, Li W, Shen X, Gao H, Wang P. Morphological and Molecular Changes during Limb Regeneration of the Exopalaemon carinicauda. Animals (Basel) 2024; 14:685. [PMID: 38473070 DOI: 10.3390/ani14050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
With the increase in breeding density of Exopalaemon carinicauda, appendage breakage may occur, which seriously affects survival and economic benefits. To study the limb regeneration process of E. carinicauda, we induced autotomy of the pereopods. After a period of time, wound swelling disappeared, the pigment gradually accumulated, and a tawny film subsequently formed in the wound. The healing period of the wound occurred 24 h after autotomy, and the blastema formation stage occurred 48 h after autotomy. After 4 days of cutting, the limb buds began to differentiate, grow, and expand rapidly, and this process lasted approximately 15 days. Microscopic observations revealed significant changes in the type and number of associated cells including outer epithelial cells, granulocytes, embryonic cells, columnar epidermal cells, elongated cells, and blastoma cells, during the process from limb fracture to regeneration. A comparative transcriptome analysis identified 1415 genes differentially expressed between the J0h (0 h post autotomy) and J18h (18 h post autotomy), and 3952 and 4366 differentially expressed genes for J0 and J14d (14 days post autotomy) and J18h and J14d, respectively. Some of these genes may be related to muscle growth or molting, as indicated by the presence of troponin C, chitinase, actin, innexin, and cathepsin L. As a functional gene involved in epidermal formation, the mRNA expression level of the innexin inx2 in the pereopod of E. carinicauda changed significantly in the experimental groups (p < 0.05). The results of this study contribute to existing knowledge of regeneration mechanisms in crustaceans.
Collapse
Affiliation(s)
- Chaofan Xing
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mintao Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhenxiang Chen
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yong Li
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinlei Zhou
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yao Zhong
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wenjia Li
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| |
Collapse
|
5
|
Hussein MM, Sayed RKA, Mokhtar DM. Structural and immunohistochemical characterization of pancreas of Molly fish (Poecilia sphenops), with a special reference to its immune role. Microsc Res Tech 2023; 86:1667-1680. [PMID: 37610072 DOI: 10.1002/jemt.24407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/12/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023]
Abstract
Recently, teleost species have been considered important model systems for investigating different research areas including immunologic one. The available literature provides poor data about the localization and the structure of pancreas in Molly fish. Moreover, little attention has been paid to the immunologic role of pancreatic tissue of teleost, particularly Molly fish; therefore, this study aimed to highlights the description of pancreatic tissue in Molly fish using light- and electron- microscopy, focusing on the role of pancreatic immune cells and pancreatic acinar cells in immune responses. Microscopic analysis revealed that the pancreas of Molly fish was composed of intrahepatic, disseminated and compact parts. Exocrine pancreatic tissue was diffusely extended within the hepatic tissue forming hepatopancreas. The disseminated pancreas appeared as several irregular nodules of pancreatic tissue localized within the mesenteric adipose tissue. The compact pancreas appeared as an oval shaped body embedded within the mesenteric adipose tissue between the spleen and the intestinal loops. Several telocytes and melanomacrophages were detected within the disseminated pancreatic nodules. Moreover, dendritic cells were found in a close association to the exocrine pancreatic acini. The pancreatic acinar cells showed strong immunoreactivity to APG5, TGF-β, IL-1β, NF-κB, Nrf2, and SOX9 in both hepatopancreas and disseminated pancreas of Molly fish. S100 protein revealed a strong expression in the exocrine pancreatic acinar cells of disseminated pancreas and also in the endocrine cells of the compact pancreas. In conclusion, findings of this study suggest the potential role of the pancreas of the Molly fish in cell proliferation and differentiation, proinflammatory cytokines stimulation, and regulation of both innate and adaptive immunity. RESEARCH HIGHLIGHTS: Telocytes and melanomacrophages were detected in the disseminated pancreatic nodules of the Molly fish. In Molly fish, dendritic cells were found in a close association to the exocrine pancreatic acini. Strong immunoreactivity of the pancreatic acinar cells of the Molly fish to APG5, TGF-β, IL-1β, NF-κB, Nrf2, SOX9, and S100.
Collapse
Affiliation(s)
- Marwa M Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut, Egypt
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut, Egypt
- Department of Histology and Anatomy, School of Veterinary Medicine, Badr University in Assuit, Assiut, Egypt
| |
Collapse
|
6
|
Wang ZR, Li SY, Zhang YZ, Li YA, Huo HH, Yu CQ, Zhou QB. Metabolomic and transcriptomic profiling reveals the effect of dietary protein and lipid levels on growth performance in loach ( Paramisgurnus dabryanus). Front Immunol 2023; 14:1236812. [PMID: 37593743 PMCID: PMC10431964 DOI: 10.3389/fimmu.2023.1236812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
The subject of this study was to explore the optimum requirements of loach (Paramisgurnus dabryanus) regarding dietary proteins and lipids and discuss the underlying mechanism. We designed nine diets to determine the effects of different levels of dietary crude protein (CP: 30%, 35%, and 40%) and ether extract (EE: 6%, 10%, and 14%) on the growth performance and metabolism of P. dabryanus. In total, 2160 healthy P. dabryanus (5.19 ± 0.01 g) were divided into nine groups with four replications at 60 fish per barrel stocking density. The trial lasted for eight weeks. Serum and liver samples were gathered for metabolomic and transcriptomic analyses. The results showed that the specific growth rate of P. dabryanus in the CP40EE10 group was the fastest and notably higher than that in other groups (P< 0.05). Analysis of the metabolome results found that the mTOR signaling pathway, glycerophospholipid metabolism, D-arginine and D-ornithine metabolism were significantly enriched pathways in the CP40EE10 group compared with the other groups (P< 0.05). Moreover, the transcriptomic analysis of differentially expressed genes (DEGs) showed that the expression of ARG (arginase) involved in protein synthesis was significantly upregulated in the CP40EE10 group compared to the slowest growing group (P< 0.05). Additionally, the expression of SPLA2 (secretory phospholipase A2) involved in lipid metabolism and FBP (fructose-1,6-bisphosphatase) involved in glucose metabolism were all significantly downregulated in the CP30EE6 group compared with the CP40EE10 group (P< 0.05). Furthermore, the analysis of differentially expressed metabolites (DEMs) and DEGs co-enriched in the KEGG pathway revealed that the significantly enriched pathways were arginine and proline metabolism, glycerophospholipid metabolism, and glycolysis/gluconeogenesis in CP40EE10 compared with other groups (P< 0.05). We conclude that including 40% CP and 10% EE in the P. dabryanus diet could result in a better growth rate. We hypothesized from metabolomic and transcriptomic analyses that the CP40EE10 diet might promote the growth of P. dabryanus by promoting protein synthesis, lipid metabolism, and energy production.
Collapse
Affiliation(s)
- Zi-Rui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Shu-Yao Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Ya-Zhou Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Yong-An Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Huan-Huan Huo
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Chuan-Qi Yu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Qiu-Bai Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| |
Collapse
|
7
|
Zhang R, Shi X, Liu Z, Sun J, Sun T, Lei M. Histological, Physiological and Transcriptomic Analysis Reveal the Acute Alkalinity Stress of the Gill and Hepatopancreas of Litopenaeus vannamei. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:588-602. [PMID: 37369881 DOI: 10.1007/s10126-023-10228-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
The pacific white shrimp (Litopenaeus vannamei) has gradually become a promising economic species in the development of saline-alkali water fishery. The study related to the stress reaction of pacific white shrimp under alkalinity stress is still limited, which is also a critical limiting factor for its saline-alkaline aquaculture. In this study, we aim to analyse the stress reaction of pacific white shrimp under acute alkalinity stress between control group (alkalinity:40 mg/L) and treatment group (alkalinity:350 mg/L) through histological observation, physiological determination and transcriptome. In the present study, during the process of acute alkalinity stress, the activities of Na+-K+-ATPase, carbonic anhydrase, sodium/hydrogen exchanger in gill related to homeostasis were significantly changed, the activities of superoxide dismutase and catalase related to antioxidant were decreased in both gill and hepatopancreas, and the activities of protease, lipase and amylase in hepatopancreas were decreased. At the same time, different degrees of histological damages were occured in the gill and hepatopancreas under acute alkalinity stress. There were 194 and 236 different expressed genes identified in gill and hepatopancreas respectively. Functional enrichment assessment indicated that the alkalinity stress-related genes in both gill and hepatopancreas were primarily involved in fatty acid metabolism, glycolysis/gluconeogenesis, glycerophospholipid metabolism. The results indicated that the functions of homeostasis regulation, antioxidation and digestion of pacific white shrimp were decreased under acute alkalinity stress, at the same time, the energy metabolism in gill and hepatopancreas were modified to cope with alkalinity stress. This work provides important clues for understanding the response mechanism of pacific white shrimp under acute alkalinity stress.
Collapse
Affiliation(s)
- Ruiqi Zhang
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China.
| | - Xiang Shi
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Tongzhen Sun
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Mingquan Lei
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| |
Collapse
|
8
|
Wang L, Gao J, Cao X, Du J, Cao L, Nie Z, Xu G, Dong Z. Integrated Analysis of Transcriptomics and Metabolomics Unveil the Novel Insight of One-Year-Old Precocious Mechanism in the Chinese Mitten Crab, Eriocheir sinensis. Int J Mol Sci 2023; 24:11171. [PMID: 37446357 DOI: 10.3390/ijms241311171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Eriocheir sinensis is traditionally a native high-value crab that is widely distributed in eastern Asia, and the precocity is considered the bottleneck problem affecting the development of the industry. The precocious E. sinensis is defined as a crab that reaches complete sexual maturation during the first year of its lifespan rather than as normally in the second year. However, the exact regulatory mechanisms underlying the precocity are still unclear to date. This study is the first to explore the mechanism of precocity with transcriptome-metabolome association analysis between the precocious and normal sexually mature E. sinensis. Our results indicated that the phenylalanine metabolism (map00360) and neuroactive ligand-receptor interaction (map04080) pathways play an important role in the precocity in the ovary of E. sinensis. In map00360, the predicted aromatic-L-amino-acid decarboxylase and 4-hydroxyphenylpyruvate dioxygenase isoform X1 genes and the phenethylamine, phenylethyl alcohol, trans-2-hydroxycinnamate, and L-tyrosine metabolites were all down-regulated in the ovary of the precocious E. sinensis. The map04080 was the common KEGG pathway in the ovary and hepatopancreas between the precocious and normal crab. In the ovary, the predicted growth hormone secretagogue receptor type 1 gene was up-regulated, and the L-glutamate metabolite was down-regulated in the precocious E. sinensis. In the hepatopancreas, the predicted forkhead box protein I2 gene and taurine metabolite were up-regulated and the the L-glutamate metabolite was down-regulated in the precocious crab. There was no common pathway in the testis. Numerous common pathways in the hepatopancreas between male precocious and normal crab were identified. The specific amino acids, fatty acids and flavorful nucleotide (inosine monophosphate (MP), cytidine MP, adenosine MP, uridine MP, and guanosine MP) contents in the hepatopancreas and gonads further confirmed the above omics results. Our results suggest that the phenylalanine metabolism may affect the ovarian development by changing the contents of the neurotransmitter and tyrosine. The neuroactive ligand-receptor interaction pathway may affect the growth by changing the expressions of related genes and affect the umami taste of the gonads and hepatopancreas through the differences of L-glutamate metabolite in the precocious E. sinensis. The results provided valuable and novel insights on the precocious mechanism and may have a significant impact on the development of the E. sinensis aquaculture industry.
Collapse
Affiliation(s)
- Lanmei Wang
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
| | - Xi Cao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jinliang Du
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Zhijuan Nie
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zaijie Dong
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
9
|
He CF, Liu WB, Zhang L, Chen WL, Liu ZS, Li XF. Cottonseed Meal Protein Hydrolysate Improves the Growth Performance of Chinese Mitten Crab ( Eriocheir sinensis) by Promoting the Muscle Growth and Molting Performance. AQUACULTURE NUTRITION 2023; 2023:8347921. [PMID: 37415969 PMCID: PMC10322550 DOI: 10.1155/2023/8347921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
Growth retardation and prolonged marketing cycle have been noticed in the practical aquaculture of Chinese mitten crab (Eriocheir sinensis) fed with artificial feed. Plant protein hydrolysates contain a large number of small peptides and free amino acids, which can improve the growth performance of aquatic animals. However, the potential mechanisms are still not well elucidated. In this research, the influences of cottonseed meal protein hydrolysate (CPH) on the growth, feed utilization, muscle growth, and molting performance were investigated in E. sinensis. A total of 240 crabs (mean body weight 37.32 ± 0.38 g) were individually randomly distributed to six diets supplemented with 0%, 0.2%, 0.4%, 0.8%, 1.6%, and 3.2% of CPH for 12 weeks. These findings indicated that the addition of CPH at 0.4% significantly increased the survival rate, body protein gain, apparent protein utilization, trypsin and pepsin activities, and the methyl farnesoate content. When the dose reached 0.8%, the weight growth ratio, meat yield, ecdysone concentration, and the transcription of the ecdysteroid receptor all significantly increased, while the transcriptions of both myostatin and molt-inhibiting hormone significantly decreased. When CPH was added at 1.6%-3.2%, the feed conversion ratio, body crude protein content, Na+/K+-ATPase activity, and the molting ratio were all significantly improved, while the opposite was true for the transcription of the transforming growth factor-β type I receptor. The investigation results indicated that when added above 0.4%, CPH could stimulate the growth performance of E. sinensis and promote the muscle growth and molting performance.
Collapse
Affiliation(s)
- Chao-Fan He
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu, China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu, China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu, China
| | - Wei-Liang Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu, China
| | - Zi-Shang Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu, China
| |
Collapse
|
10
|
Yao C, Yu L, Huang L, Chen Y, Guo X, Cao N, Liu Z, Shen J, Li X, Pang S, Li C. Sex-specific effects of propiconazole on the molting of the Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109612. [PMID: 36914039 DOI: 10.1016/j.cbpc.2023.109612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Given the inevitable exposure of Eriocheir sinensis (E. sinensis) to fungicides in rice-crab co-culture systems, understanding the potential effect of fungisides is important for practical application. Molting is a crucial development process of E. sinensis, which is regulated by endocrine system and genetic factors, and is susceptible to exogenous chemicals. However, the impact of fungicides application on the molting of E. sinensis have been rarely reported. In the present study, propiconazole, a widely used fungicide for rice disease management, was found to exert potential effects on the molting of E. sinensis at residual-related level in the rice-crab co-culture fields. After 14 days of short-term exposure to propiconazole, female crabs exhibited remarkably higher levels of hemolymph ecdysone than males. When the exposure was extended to 28 days, propiconazole markedly accelerated molt-inhibiting hormone expression by 3.3-fold, ecdysone receptor expression by 7.8-fold, and crustacean retinoid X receptor expression by 9.6-fold in male crabs, while it showed the opposite effect in females with suppressed gene expression. Propiconazole also induced the activity of N-acetylglucosaminidase in male crabs rather than females during the experiments. Our study suggests that propiconazole exerts sex-specific effects on the molting of E. sinensis. The impact of propiconazole application in the rice-crab co-culture systems remains more assessment to avoid affecting the growth of cultured E. sinensis.
Collapse
Affiliation(s)
- Chunlian Yao
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China
| | - Lina Yu
- Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment, Beijing, China
| | - Lan Huang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Yajie Chen
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China
| | - Xuanjun Guo
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China
| | - Niannian Cao
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China
| | - Zhuoying Liu
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China
| | - Xuefeng Li
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China
| | - Sen Pang
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, China.
| | - Changsheng Li
- Institute of Cultural Heritage and History of Science & Technology, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
11
|
Wang K, Liang Y, Duan M, Che W, He L. Chronic toxicity of broflanilide in Daphnia magna: changes in molting, behavior, and gene expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54846-54856. [PMID: 36881221 DOI: 10.1007/s11356-023-26255-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Broflanilide is a novel pesticide used in agriculture that binds to unique receptors on pests; however, the widespread use of broflanilide has led to toxicity in Daphnia magna. At present, little information on the potential threats broflanilide imposes on D. magna is available. Therefore, the present study examined the chronic toxicity of broflanilide in D. magna by comparing changes in molting, neurotransmitter function, and behavior. The results showed that broflanilide caused chronic toxicity in D. magna at a concentration of 8.45 μg/L, and growth, development, reproduction, and the development of offspring were affected. In addition, broflanilide affected the molting of D. magna by significantly inhibiting the expression of chitinase, ecdysteroid, and related genes. Broflanilide also affected the expression of γ-glutamic acid, glutamine, gamma-aminobutyric acid, 5-hydroxytryptamine, 5-hydroxytryptophan, dopa, and dopamine. Furthermore, the swimming distance and speed of D. magna were reduced. Taken together, the results demonstrate the chronic toxicity and exposure risk of broflanilide in D. magna.
Collapse
Affiliation(s)
- Kai Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang, China.
| | - Yaping Liang
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Manman Duan
- College of Science, China Agricultural University, Beijing, China
| | - Wunan Che
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Lu He
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
12
|
Gao W, Yuan Y, Huang Z, Chen Y, Cui W, Zhang Y, Saqib HSA, Ye S, Li S, Zheng H, Zhang Y, Ikhwanuddin M, Ma H. Evaluation of the Feasibility of Harvest Optimisation of Soft-Shell Mud Crab ( Scylla paramamosain) from the Perspective of Nutritional Values. Foods 2023; 12:foods12030583. [PMID: 36766112 PMCID: PMC9914210 DOI: 10.3390/foods12030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Soft-shell crabs have attracted consumers' attention due to their unique taste and nutritional value. To evaluate the feasibility of harvest optimisation of soft-shell mud crabs, the proximate composition, mineral composition, and total carotenoid, amino acid, and fatty acid contents of edible parts of male and female soft-shell mud crabs at different moulting stages were determined and compared from a nutritional value perspective. The results showed that the sex and moulting stages could significantly affect the nutritional values of the edible portions of soft-shell crabs. The female or male soft-shell crabs in the postmoult Ⅰ stage had a much richer mineral element content than that in other moulting stages. The total carotenoid content in female soft-shell crabs was significantly higher than that in male crabs in all moulting stages, while male soft-shell crabs had better performance in amino acid nutrition than female soft-shell crabs. Moreover, it was found that soft-shell crabs in the postmoult Ⅱ stage had significantly higher contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), while significantly lower contents of saturated fatty acids (SFA) than those in other stages. The present study will provide a reference basis for the diversified cultivation of soft-shell crabs, and further promote the development of the mud crab industry.
Collapse
Affiliation(s)
- Weifeng Gao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Ye Yuan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Zhi Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Yongyi Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Wenxiao Cui
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hafiz Sohaib Ahmed Saqib
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shaopan Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Mhd Ikhwanuddin
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
- Correspondence: ; Tel.: +86-0754-86503471
| |
Collapse
|
13
|
Hou L, Wang M, Zhu L, Ning M, Bi J, Du J, Kong X, Gu W, Meng Q. Full-length transcriptome sequencing and comparative transcriptome analysis of Eriocheir sinensis in response to infection by the microsporidian Hepatospora eriocheir. Front Cell Infect Microbiol 2022; 12:997574. [PMID: 36530442 PMCID: PMC9754153 DOI: 10.3389/fcimb.2022.997574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
As a new generation of high-throughput sequencing technology, PacBio Iso-Seq technology (Iso-Seq) provides a better alternative sequencing method for the acquisition of full-length unigenes. In this study, a total of 22.27 gigabyte (Gb) subread bases and 128,614 non-redundant unigenes (mean length: 2,324 bp) were obtained from six main tissues of Eriocheir sinensis including the heart, nerve, intestine, muscle, gills and hepatopancreas. In addition, 74,732 unigenes were mapped to at least one of the following databases: Non-Redundant Protein Sequence Database (NR), Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG), KEGG Orthology (KO) and Protein family (Pfam). In addition, 6696 transcription factors (TFs), 28,458 long non-coding RNAs (lncRNAs) and 94,230 mRNA-miRNA pairs were identified. Hepatospora eriocheir is the primary pathogen of E. sinensis and can cause hepatopancreatic necrosis disease (HPND); the intestine is the main target tissue. Here, we attempted to identify the key genes related to H. eriocheir infection in the intestines of E. sinensis. By combining Iso-Seq and Illumina RNA-seq analysis, we identified a total of 12,708 differentially expressed unigenes (DEUs; 6,696 upregulated and 6,012 downregulated) in the crab intestine following infection with H. eriocheir. Based on the biological analysis of these DEUs, several key processes were identified, including energy metabolism-related pathways, cell apoptosis and innate immune-related pathways. Twelve selected genes from these DEUs were subsequently verified by quantitative real-time PCR (qRT-PCR) analysis. Our findings enhance our understanding of the E. sinensis transcriptome and the specific association between E. sinensis and H. eriocheir infection.
Collapse
Affiliation(s)
- Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Mengdi Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Mingxiao Ning
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jingxiu Bi
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China,*Correspondence: Qingguo Meng,
| |
Collapse
|
14
|
Liu M, Ni H, Zhang X, Sun Q, Wu X, He J. Comparative transcriptomics reveals the immune dynamics during the molting cycle of swimming crab Portunus trituberculatus. Front Immunol 2022; 13:1037739. [PMID: 36389847 PMCID: PMC9659622 DOI: 10.3389/fimmu.2022.1037739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 03/22/2024] Open
Abstract
Molting is one of the most important biological processes of crustacean species, and a number of molecular mechanisms facilitate this complex procedure. However, the understanding of the immune mechanisms underlying crustacean molting cycle remains very limited. This study performed transcriptome sequencing in hemolymph and hepatopancreas of the swimming crab (Portunus trituberculatus) during the four molting stages: post-molt (AB), inter-molt (C), pre-molt (D), and ecdysis (E). The results showed that there were 78,572 unigenes that were obtained in the hemolymph and hepatopancreas of P. trituberculatus. Further analysis showed that 98 DEGs were involved in immunity response of hemolymph and hepatopancreas, and most of the DEGs participated in the process of signal transduction, pattern recognition proteins/receptors, and antioxidative enzymes system. Specifically, the key genes and pathway involved in signal transduction including the GPCR126, beta-integrin, integrin, three genes in mitogen-activated protein kinase (MAPK) signaling cascade (MAPKKK10, MAPKK4, and p38 MAPK), and four genes in Toll pathway (Toll-like receptor, cactus, pelle-like kinase, and NFIL3). For the pattern recognition proteins/receptors, the lowest expression level of 11 genes was found in the E stage, including C-type lectin receptor, C-type lectin domain family 6 member A and SRB3/C in the hemolymph, and hepatopancreatic lectin 4, C-type lectin, SRB, Down syndrome cell adhesion molecule homolog, Down syndrome cell adhesion molecule isoform, and A2M. Moreover, the expression level of copper/zinc superoxide dismutase isoform 4, glutathione peroxidase, glutathione S-transferase, peroxiredoxin, peroxiredoxin 6, and dual oxidase 2 in stage C or stage D significantly higher than that of stage E or stage AB. These results fill in the gap of the continuous transcriptional changes that are evident during the molting cycle of crab and further provided valuable information for elucidating the molecular mechanisms of immune regulation during the molting cycle of crab.
Collapse
Affiliation(s)
- Meimei Liu
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Mariculture & Enhancement of Zhejiang Province, Zhoushan, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Hongwei Ni
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Xiaokang Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Qiufeng Sun
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Xugan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jie He
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Mariculture & Enhancement of Zhejiang Province, Zhoushan, China
| |
Collapse
|
15
|
Wang J, Chen X, Hou X, Wang J, Yue W, Huang S, Xu G, Yan J, Lu G, Hofreiter M, Li C, Wang C. "Omics" data unveil early molecular response underlying limb regeneration in the Chinese mitten crab, Eriocheir sinensis. SCIENCE ADVANCES 2022; 8:eabl4642. [PMID: 36112682 PMCID: PMC9481118 DOI: 10.1126/sciadv.abl4642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/01/2022] [Indexed: 05/22/2023]
Abstract
Limb regeneration is a fascinating and medically interesting trait that has been well preserved in arthropod lineages, particularly in crustaceans. However, the molecular mechanisms underlying arthropod limb regeneration remain largely elusive. The Chinese mitten crab Eriocheir sinensis shows strong regenerative capacity, a trait that has likely allowed it to become a worldwide invasive species. Here, we report a chromosome-level genome of E. sinensis as well as large-scale transcriptome data during the limb regeneration process. Our results reveal that arthropod-specific genes involved in signal transduction, immune response, histone methylation, and cuticle development all play fundamental roles during the regeneration process. Particularly, Innexin2-mediated signal transduction likely facilitates the early stage of the regeneration process, while an effective crustacean-specific prophenoloxidase system (ProPo-AS) plays crucial roles in the initial immune response. Collectively, our findings uncover novel genetic pathways pertaining to arthropod limb regeneration and provide valuable resources for studies on regeneration from a comparative perspective.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources certified by the Ministry of Agriculture and Rural Affairs/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaowen Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources certified by the Ministry of Agriculture and Rural Affairs/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xin Hou
- Key Laboratory of Freshwater Aquatic Genetic Resources certified by the Ministry of Agriculture and Rural Affairs/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jingan Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources certified by the Ministry of Agriculture and Rural Affairs/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Wucheng Yue
- Key Laboratory of Freshwater Aquatic Genetic Resources certified by the Ministry of Agriculture and Rural Affairs/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Shu Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources certified by the Ministry of Agriculture and Rural Affairs/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization certified by the Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jizhou Yan
- Key Laboratory of Freshwater Aquatic Genetic Resources certified by the Ministry of Agriculture and Rural Affairs/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Guoqing Lu
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Faculty of Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Corresponding author. Email (M.H.); (C.L.); (C.W.)
| | - Chenhong Li
- Key Laboratory of Freshwater Aquatic Genetic Resources certified by the Ministry of Agriculture and Rural Affairs/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Corresponding author. Email (M.H.); (C.L.); (C.W.)
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources certified by the Ministry of Agriculture and Rural Affairs/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Corresponding author. Email (M.H.); (C.L.); (C.W.)
| |
Collapse
|
16
|
Comparative Transcriptome Analysis on the Regulatory Mechanism of Thoracic Ganglia in Eriocheir sinensis at Post-Molt and Inter-Molt Stages. Life (Basel) 2022; 12:life12081181. [PMID: 36013360 PMCID: PMC9409648 DOI: 10.3390/life12081181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Eriocheir sinensis is an aquatic species found distributed worldwide. It is found in the Yangtze River of China, where the commercial fishing of this valuable catadromous aquatic species has been banned. As an important member of the phylum Arthropoda, E. sinensis grows by molting over its whole lifespan. The central nervous system of Eriocheir sinensis plays an important regulatory role in molting growth. Nevertheless, there are no reports on the regulatory mechanisms of the nervous system in E. sinensis during the molting cycle. In this study, a comparative transcriptome analysis of E. sinensis thoracic ganglia at post-molt and inter-molt stages was carried out for the first time to reveal the key regulatory pathways and functional genes operating at the post-molt stage. The results indicate that pathways and regulatory genes related to carapace development, tissue regeneration, glycolysis and lipolysis and immune and anti-stress responses were significantly differentially expressed at the post-molt stage. The results of this study lay a theoretical foundation for research on the regulatory network of the E. sinensis nervous system during the post-molt developmental period. Detailed knowledge of the regulatory network involved in E. sinensis molting can be used as a basis for breeding improved E. sinensis species, recovery of the wild E. sinensis population and prosperous development of the E. sinensis artificial breeding industry.
Collapse
|
17
|
Liu L, Liu X, Fu Y, Fang W, Wang C. Whole-body transcriptome analysis provides insights into the cascade of sequential expression events involved in growth, immunity, and metabolism during the molting cycle in Scylla paramamosain. Sci Rep 2022; 12:11395. [PMID: 35794121 PMCID: PMC9259733 DOI: 10.1038/s41598-022-14783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms underlying the dynamic process of crab molting are still poorly understood at the individual level. We investigated global expression changes in the mud crab, Scylla paramamosain, at the transcriptome level and revealed a cascade of sequential expression events for genes involved in various aspects of the molting process using whole-body sequencing of juvenile crabs. RNA-sequencing (RNA-seq) produced 139.49 Gb of clean reads and 20,436 differentially expressed genes (DEGs) among different molting stages. The expression patterns for genes involved in several molecular events critical for molting, such as cuticle reconstruction, cytoskeletal structure remodeling, hormone regulation, immune responses, and metabolism, were characterized and considered as mechanisms underlying molting in S. paramamosain. Among these genes, we identified 10,695 DEGs in adjacent molting stages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that significantly enriched pathways included structural constituents of cuticle, binding and chitin metabolic processes, steroid hormone biosynthesis, insulin resistance, and amino sugar metabolic processes. The expression profiles of 12 functional genes detected via RNA-seq were corroborated via real-time RT-PCR assays. The results revealed gene expression profiles across the molting cycle and identified possible activation pathways for future investigation of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lei Liu
- School of Marine Sciences, Ningbo University, No.169, Qixing South Road, Meishan Port District, Beilun District, Ningbo, 315832, Zhejiang, China
| | - Xiao Liu
- School of Marine Sciences, Ningbo University, No.169, Qixing South Road, Meishan Port District, Beilun District, Ningbo, 315832, Zhejiang, China
| | - Yuanyuan Fu
- Ningbo Institute of Oceanography, Ningbo, 315832, China
| | - Wei Fang
- School of Marine Sciences, Ningbo University, No.169, Qixing South Road, Meishan Port District, Beilun District, Ningbo, 315832, Zhejiang, China
| | - Chunlin Wang
- School of Marine Sciences, Ningbo University, No.169, Qixing South Road, Meishan Port District, Beilun District, Ningbo, 315832, Zhejiang, China.
| |
Collapse
|
18
|
David DD, de Assis LVM, Moraes MN, Zanotto FP, Castrucci AMDL. CasEcR and CasMIH Genes in the Blue Crab, Callinectes sapidus: A Temporal Evaluation and Melatonin Effects. Front Physiol 2022; 13:903060. [PMID: 35800348 PMCID: PMC9253825 DOI: 10.3389/fphys.2022.903060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Environmental cues synchronize endogenous rhythms of many physiological processes such as hormone synthesis and secretion. Little is known about the diurnal pattern of hormones and gene expression of the Callinectes sapidus molt cycle. We aimed to investigate in the eyestalk and hepatopancreas of premolt and intermolt C. sapidus the following parameters: 1) the diurnal expression of the ecdysteroid receptor CasEcR isoforms, and the molt inhibiting hormone CasMIH; 2) the diurnal hemolymph ecdysteroid and melatonin levels; and 3) melatonin effects on the transcripts of the above-mentioned genes in intermolt C. sapidus. Ecdysteroid levels were higher in the premolt than the intermolt animals at all time points evaluated (ZTs). Premolt crabs displayed a variation of ecdysteroid concentration between time points, with a reduction at ZT17. No difference in the melatonin level was seen in either molt stage or between stages. In the eyestalk of intermolt animals, CasEcR expression oscillated, with a peak at ZT9, and premolt crabs have a reduction at ZT9; CasMIH transcripts did not vary along 24 h in either molt stage. Moreover, the evaluated eyestalk genes were more expressed at ZT9 in the intermolt than the premolt crabs. In the hepatopancreas, CasEcR expression showed a peak at ZT9 in premolt crabs. Exogenous melatonin (10−7 mol/animal) reduced the expression of both genes in the eyestalk at ZT17. In the hepatopancreas, melatonin markedly increased the expression of the CasEcR gene at ZT9. Taken altogether, our results are pioneer in demonstrating the daily oscillation of gene expression associated to molt cycle stages, as well as the daily ecdysteroid and melatonin levels and the remarkable influence of melatonin on the molt cycle of C. sapidus.
Collapse
Affiliation(s)
- Daniela Dantas David
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Center of Brain, Behavior and Metabolism, Institute of Neurobiology, Lübeck University, Lübeck, Germany
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávia Pinheiro Zanotto
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Department of Biology, University of Virginia, Charlottesville, United States
- *Correspondence: Ana Maria de Lauro Castrucci,
| |
Collapse
|
19
|
Li C, Shen C, Feng G, Huang X, Li X. Preference for Shelters at Different Developmental Stages of Chinese Mitten Crab (Eriocheir sinensis). Animals (Basel) 2022; 12:ani12070918. [PMID: 35405906 PMCID: PMC8996847 DOI: 10.3390/ani12070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Shelter is closely correlated with growth and development of aquatic crustaceans. Aquatic crustaceans often prefer to live in shelters to forage and avoid predators. In this study, Chinese Mitten Crabs (Eriocheir sinensis) at different developmental stages were selected to analyze preference for shelters. These results indicated that juvenile crabs had a significant preference for grass; button-sized crabs preferred to hide in mud; and the favorite shelters for parent crabs were rocks. Moreover, light, size, feeding habit, predation and molting were critical factors that affect the preference for shelters of E. sinensis. Abstract A shelter is a good habitat for aquatic organisms, which could aid in avoiding cannibalism and facilitate predation. Chinese Mitten Crab (Eriocheir sinensis) is an important aquaculture species with troglodytism and nocturnal habit. To clarify the preference for shelters at different developmental stages of E. sinensis, different shelters (mud, sand, grass and rocks) were selected for comparison. These results indicated that juvenile crabs had a significant preference for grass; button-sized crabs preferred to hide in mud; and the favorite shelters for parent crabs were rocks, followed by mud. E. sinensis in three stages all showed concealing behavior. The concealing behavior of juvenile crabs was the most significant, followed by button-sized and parent crabs. Additionally, E. sinensis held a low hiding rate at night but a high hiding rate during the daytime due to nocturnal habits. These findings will help to better understand the habits of E. sinensis and provide a reference for resource restoration, habitat construction and the restoration of E. sinensis.
Collapse
Affiliation(s)
- Chunbo Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.L.); (C.S.); (X.H.); (X.L.)
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 200090, China
| | - Chenchen Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.L.); (C.S.); (X.H.); (X.L.)
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 200090, China
| | - Guangpeng Feng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.L.); (C.S.); (X.H.); (X.L.)
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 200090, China
- Correspondence:
| | - Xiaorong Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.L.); (C.S.); (X.H.); (X.L.)
| | - Xincang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.L.); (C.S.); (X.H.); (X.L.)
| |
Collapse
|
20
|
Hou X, Yang H, Chen X, Wang J, Wang C. RNA interference of mTOR gene delays molting process in Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110651. [PMID: 34320378 DOI: 10.1016/j.cbpb.2021.110651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/30/2023]
Abstract
mTOR is a typical and conserved serine/threonine protein kinase that regulates cell growth and metabolism of organisms. Molting is a fundamental biological process in Chinese mitten crab (Eriocheir sinensis) and is monitored by a series of genes and pathways. The structural and functional characteristics of EsmTOR was investigated to determine the role of mTOR in the molting process of. The intact CDS of EsmTOR is 7449 bp in length and encodes a polypeptide consisting of 2482 amino acids. EsmTOR was expressed in all eight tissues examined during the three molting stages (postmolt, intermolt andpremolt), with levels fluctuating significantly during the molting. RNA interference of EsmTOR significantly delayed molting, indicating that mTOR may be involved in the molting process of E. sinensis. Meanwhile, a substantial downregulation was observed for the expression of upstream genes involved in amino acid transport (EsSLC7A5 and EsVATB) and downstream genes promoting ribosomal protein synthesis (EsS6K1) in the mTOR signaling pathway, as well as typical molt-related genes (EsMIH and EsEcR) after EsmTOR RNAi treatment. In addition, EsRheb, a molecular marker for tissue growth, was also significantly down-regulated. This study suggests that EsmTOR plays a fundamental role in molting regulation through the SLC7A5-V-ATPase-mTORC1 gene network.
Collapse
Affiliation(s)
- Xin Hou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/ National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, No.999, Huchenghuan Rd, Nanhui New City, Shanghai, PR China
| | - He Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/ National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, No.999, Huchenghuan Rd, Nanhui New City, Shanghai, PR China
| | - Xiaowen Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/ National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, No.999, Huchenghuan Rd, Nanhui New City, Shanghai, PR China; Department of Pharmacy, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, PR China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/ National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, No.999, Huchenghuan Rd, Nanhui New City, Shanghai, PR China.
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/ National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, No.999, Huchenghuan Rd, Nanhui New City, Shanghai, PR China.
| |
Collapse
|
21
|
Su S, Munganga BP, Tian C, Li J, Yu F, Li H, Wang M, He X, Tang Y. Comparative Analysis of the Intermolt and Postmolt Hepatopancreas Transcriptomes Provides Insight into the Mechanisms of Procambarus clarkii Molting Process. Life (Basel) 2021; 11:480. [PMID: 34070595 PMCID: PMC8228513 DOI: 10.3390/life11060480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
In the present study, we used RNA-Seq to investigate the expression changes in the transcriptomes of two molting stages (postmolt (M) and intermolt (NM)) of the red swamp crayfish and identified differentially expressed genes. The transcriptomes of the two molting stages were de novo assembled into 139,100 unigenes with a mean length of 675.59 bp. The results were searched against the NCBI, NR, KEGG, Swissprot, and KOG databases, to annotate gene descriptions, associate them with gene ontology terms, and assign them to pathways. Furthermore, using the DESeq R package, differentially expressed genes were evaluated. The analysis revealed that 2347 genes were significantly (p > 0.05) differentially expressed in the two molting stages. Several genes and other factors involved in several molecular events critical for the molting process, such as energy requirements, hormonal regulation, immune response, and exoskeleton formation were identified and evaluated by correlation and KEGG analysis. The expression profiles of transcripts detected via RNA-Seq were validated by real-time PCR assay of eight genes. The information presented here provides a transient view of the hepatopancreas transcripts available in the postmolt and intermolt stage of crayfish, hormonal regulation, immune response, and skeletal-related activities during the postmolt stage and the intermolt stage.
Collapse
Affiliation(s)
- Shengyan Su
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Brian Pelekelo Munganga
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Can Tian
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Jianlin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Fan Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Hongxia Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Meiyao Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Xinjin He
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Yongkai Tang
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| |
Collapse
|
22
|
Vogt G. Epigenetic variation in animal populations: Sources, extent, phenotypic implications, and ecological and evolutionary relevance. J Biosci 2021. [DOI: 10.1007/s12038-021-00138-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Physiological and gene expression profiles of leg muscle provide insights into molting-dependent growth of Chinese mitten crab (Eriocheir sinensis). REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Liu L, Li H, Liu Y, Li Y, Wang H. Whole Transcriptome Analysis Provides Insights Into the Molecular Mechanisms of Chlamydospore-Like Cell Formation in Phanerochaete chrysosporium. Front Microbiol 2020; 11:527389. [PMID: 33365015 PMCID: PMC7750433 DOI: 10.3389/fmicb.2020.527389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
Phanerochaete chrysosporium is a white rot fungus naturally isolated from hardwoods and widely used in environmental pollution control because it produces extracellular peroxidases. It forms chlamydospores during nitrogen starvation, which naturally occurs in the habitat of P. chrysosporium. Chlamydospores protect fungi against many stresses; the molecular basis underlying chlamydospore formation in basidiomycetes is poorly explored. Chlamydospores in P. chrysosporium have a different cell wall compared with hyphae, as confirmed by cell wall digestion and microscopy. Furthermore, this study investigated the transcriptome of P. chrysosporium in different life stages, including conidium, hypha, and chlamydospore formation, through RNA sequencing. A total of 2215 differentially expressed genes were identified during these processes. The expression patterns of genes involved in several molecular events critical for chlamydospore formation, including starch and sucrose metabolism, phosphatase and kinase, and transcription factors, were determined. This study serves as a basis for further investigating the function of chlamydospore formation in the biotechnologically relevant fungus P. chrysosporium.
Collapse
Affiliation(s)
- Lei Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Huihui Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanyan Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yi Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China.,Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
25
|
Wang J, Chen X, He F, Song X, Huang S, Yue W, Chen Y, Su Z, Wang C. Global Analysis of Gene Expression Profiles Provides Novel Insights into the Development and Evolution of the Large Crustacean Eriocheir sinensis. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:443-454. [PMID: 33346084 PMCID: PMC8242267 DOI: 10.1016/j.gpb.2019.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/04/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
Chinese mitten crab (Eriocheir sinensis) is an important aquaculture species in Crustacea. Functional analysis, although essential, has been hindered due to the lack of sufficient genomic or transcriptomic resources. In this study, transcriptome sequencing was conducted on 59 samples representing diverse developmental stages (fertilized eggs, zoea, megalopa, three sub-stages of larvae, juvenile crabs, and adult crabs) and different tissues (eyestalk, hepatopancreas, and muscle from juvenile crabs, and eyestalk, hepatopancreas, muscle, heart, stomach, gill, thoracic ganglia, intestine, ovary, and testis from adult crabs) of E. sinensis. A comprehensive reference transcriptome was assembled, including 19,023 protein-coding genes. Hierarchical clustering based on 128 differentially expressed cuticle-related genes revealed two distinct expression patterns during the early larval developmental stages, demonstrating the distinct roles of these genes in “crab-like” cuticle formation during metamorphosis and cuticle calcification after molting. Phylogenetic analysis of 1406 one-to-one orthologous gene families identified from seven arthropod species and Caenorhabditis elegans strongly supported the hypothesis that Malacostraca and Branchiopoda do not form a monophyletic group. Furthermore, Branchiopoda is more phylogenetically closely related to Hexapoda, and the clade of Hexapoda and Branchiopoda and the clade of Malacostraca belong to the Pancrustacea. This study offers a high-quality transcriptome resource for E. sinensis and demonstrates the evolutionary relationships of major arthropod groups. The differentially expressed genes identified in this study facilitate further investigation of the cuticle-related gene expression networks which are likely associated with “crab-like” cuticle formation during metamorphosis and cuticle calcification after molting.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Xiaowen Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Funan He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiao Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Shu Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Wucheng Yue
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Yipei Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Zhixi Su
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China.
| |
Collapse
|
26
|
Zheng X, Zhang L, Jiang W, Abasubong KP, Zhang C, Zhang D, Li X, Jiang G, Chi C, Liu W. Effects of dietary icariin supplementation on the ovary development-related transcriptome of Chinese mitten crab (Eriocheir sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100756. [PMID: 33197858 DOI: 10.1016/j.cbd.2020.100756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
The Chinese mitten crab (Eriocheir sinensis) is an economically important aquaculture species in China, with distinct differences in ovarian maturation status between crabs fed with natural diets and artificial diets during the listing period, thus, leading to selling price differentiation. Our previous study showed that dietary supplementation with 100 mg/kg icariin can effectively promote ovarian development of E. sinensis. However, the internal molecular mechanism has not yet been elucidated because of a lack of comprehensive genome sequence information. We compared the ovary transcriptomes of E. sinensis fed with two diets containing 0 and 100 mg/kg ICA using the BGISEQ-500 platform. This yielded 12.54 Gb clean bases and 54,794 unigenes, 13,832 of which were found to be differentially expressed after icariin exposure. Twenty pathways closely related to gonadal development were selected through KEGG analysis. Seven differentially expressed genes relevant to vitellogenesis and oocyte maturation (serine/threonine-protein kinase mos-like, Eg2, cytoplasmic polyadenylation element-binding protein, cyclin B, vitellogenin 1, cathepsin D, and juvenile hormone esterase-like carboxylesterase 1) were validated by qRT-PCR, and four proteins (MEK1/2, ERK1/2, Cyclin B and Cdc2) associated with the progesterone mediated oocyte maturation pathway (i.e., MAPK/MPF pathway) were analyzed by western-blot. The results showed that icariin could promote the synthesis, processing and deposition of vitellogenin in oocytes, and that it also has the potential to promote oocyte maturation (resumption of Meiosis I) by altering the expression of the relevant genes and proteins.
Collapse
Affiliation(s)
- Xiaochuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Weibo Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Kenneth P Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Caiyan Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
27
|
Wang J, Zhang K, Hou X, Yue W, Yang H, Chen X, Wang J, Wang C. Molecular characteristic of activin receptor IIB and its functions in growth and nutrient regulation in Eriocheir sinensis. PeerJ 2020; 8:e9673. [PMID: 32953259 PMCID: PMC7473049 DOI: 10.7717/peerj.9673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Activin receptor IIB (ActRIIB) is a serine/threonine-kinase receptor binding with transforming growth factor-β (TGF-β) superfamily ligands to participate in the regulation of muscle mass in vertebrates. However, its structure and function in crustaceans remain unknown. In this study, the ActRIIB gene in Eriocheir sinensis (Es-ActRIIB) was cloned and obtained with a 1,683 bp open reading frame, which contains the characteristic domains of TGF-β type II receptor superfamily, encoding 560 amino acids. The mRNA expression of Es-ActRIIB was the highest in hepatopancreas and the lowest in muscle at each molting stage. After injection of Es-ActRIIB double-stranded RNA during one molting cycle, the RNA interference (RNAi) group showed higher weight gain rate, higher specific growth rate, and lower hepatopancreas index compared with the control group. Meanwhile, the RNAi group displayed a significantly increased content of hydrolytic amino acid in both hepatopancreas and muscle. The RNAi group also displayed slightly higher contents of saturated fatty acid and monounsaturated fatty acid but significantly decreased levels of polyunsaturated fatty acid compared with the control group. After RNAi on Es-ActRIIB, the mRNA expressions of five ActRIIB signaling pathway genes showed that ActRI and forkhead box O (FoxO) were downregulated in hepatopancreas and muscle, but no significant expression differences were found in small mother against decapentaplegic (SMAD) 3, SMAD4 and mammalian target of rapamycin. The mRNA expression s of three lipid metabolism-related genes (carnitine palmitoyltransferase 1β (CPT1β), fatty acid synthase, and fatty acid elongation) were significantly downregulated in both hepatopancreas and muscle with the exception of CPT1β in muscles. These results indicate that ActRIIB is a functionally conservative negative regulator in growth mass, and protein and lipid metabolism could be affected by inhibiting ActRIIB signaling in crustacean.
Collapse
Affiliation(s)
- Jingan Wang
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Kaijun Zhang
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xin Hou
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Wucheng Yue
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - He Yang
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaowen Chen
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jun Wang
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, National Demonstration Center for Experimental Fisheries Science Education / Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
28
|
Xu Z, Liu A, Li S, Wang G, Ye H. Hepatopancreas immune response during molt cycle in the mud crab, Scylla paramamosain. Sci Rep 2020; 10:13102. [PMID: 32753724 PMCID: PMC7403367 DOI: 10.1038/s41598-020-70139-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
Molt is a critical developmental process in crustaceans. Recent studies have shown that the hepatopancreas is an important source of innate immune molecules, yet hepatopancreatic patterns of gene expression during the molt cycle which may underlie changes in immune mechanism are unknown. In this study, we performed Illumina sequencing for the hepatopancreas of the mud crab, Scylla paramamosain during molt cycle (pre-molt stage, post-molt stage, and inter-molt stage). A total of 44.55 Gb high-quality reads were obtained from the normalized cDNA of hepatopancreas. A total of 70,591 transcripts were assembled; 55,167 unigenes were identified. Transcriptomic comparison revealed 948 differentially expressed genes (DEGs) in the hepatopancreas from the three molt stages. We found that genes associated with immune response patterns changed in expression during the molt cycle. Antimicrobial peptide genes, inflammatory response genes, Toll signaling pathway factors, the phenoloxidase system, antioxidant enzymes, metal-binding proteins and other immune related genes are significantly up-regulated at the post-molt stage and inter-molt stage compared with the pre-molt stage, respectively. These genes are either not expressed or are expressed at low levels at the pre-molt stage. To our knowledge, this is the first systematic transcriptome analysis of genes capable of mobilizing a hepatopancreas immune response during the molt cycle in crustaceans, and this study will contribute to a better understanding of the hepatopancreas immune system and mud crab prophylactic immune mechanisms at the post-molt stage.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - An Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Guizhong Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
29
|
Li R, Weng J, Ren L, Wang X, Meng Q, Wang L, Sun J. A novel microRNA and its pfk target control growth length in the freshwater shrimp Neocaridina heteropoda. J Exp Biol 2020; 223:jeb223529. [PMID: 32457063 DOI: 10.1242/jeb.223529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression and play roles in a wide range of physiological processes, including ontogenesis. Herein, we discovered a novel miRNA, novel miR-26, which inhibits translation of the phosphofructokinase (PFK) gene by targeting the 3' untranslated region (UTR) of pfk directly, thereby inhibiting molting and body length growth of the freshwater shrimp Neocaridina heteropoda Lowering expression of pfk by RNA interference (RNAi) led to a longer ecdysis cycle and smaller individuals. This phenotype was mirrored in shrimps injected with novel miR-26 agomirs, but the opposite phenotype occurred in shrimps injected with novel miR-26 antagomirs (i.e. the ecdysis cycle was shortened and body length was increased). After injection of 20-hydroxyecdysone (ecdysone 20E), expression of the novel miR-26 was decreased, while expression of pfk was up-regulated, and the fructose-1,6-diphosphate metabolite of PFK accumulated correspondingly. Furthermore, expression of eIF2 (eukaryotic initiation factor 2) increased under stimulation with fructose-1,6-diphosphate, suggesting that protein synthesis was stimulated during this period. Taken together, our results suggest that the novel miR-26 regulates expression of pfk and thereby mediates the molting and growth of N. heteropoda.
Collapse
Affiliation(s)
- Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jieyang Weng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Liqi Ren
- Beijing 101 middle school, Beijing 100091, China
| | - Xin Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Qinghao Meng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Liyan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
30
|
Hou X, Chen X, Yang H, Yue W, Wang J, Han H, Wang C. V-ATPase subunit B plays essential roles in the molting process of the Chinese mitten crab, Eriocheir sinensis. Biol Open 2020; 9:bio048926. [PMID: 32434771 PMCID: PMC7272352 DOI: 10.1242/bio.048926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/27/2020] [Indexed: 11/23/2022] Open
Abstract
Vacuolar ATPase (V-ATPase) is a proton pump driven by ATP hydrolysis, and it plays an important role in numerous biological processes, such as protein degradation and synthesis, cell growth, and cell autophagy. The V-ATPase subunit B (VATB) is a conservative and regulatory subunit required for ATP hydrolysis during proton pumping. The VATB of Eriocheirsinensis (EsVATB), which includes an open reading frame (ORF) length of 1467 bp encoding 489 amino acids, was cloned to unveil the biological function of VATB during the molting process of crustaceans. Spatial and temporal expression profiles showed that EsVATB was highly expressed in the posterior gill accompanied with the highest osmotic pressure in the premolt (PrM) stage. Meanwhile, the highest expression level of EsVATB was identified in the hepatopancreas and heart during the postmolt stage and epidermis in the intermolt stage, indicating that EsVATB may perform diverse biological functions in different tissues during the molting process. The individual crabs in the interference group showed a high mortality rate (74%) and a low molting rate (26%) and failed to form a new epicuticle in the PrM stage. Meanwhile, a significant difference in osmotic pressure was identified between the interference and control groups. Our results indicate that EsVATB is an indispensable functional gene that may participate in osmoregulation and help with the new epicuticle formation during the molting process of E. sinensis.
Collapse
Affiliation(s)
- Xin Hou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaowen Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - He Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Wucheng Yue
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hua Han
- Department of Pharmacy, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
31
|
Li R, Meng Q, Huang J, Wang S, Sun J. MMP-14 regulates innate immune responses to Eriocheir sinensis via tissue degradation. FISH & SHELLFISH IMMUNOLOGY 2020; 99:301-309. [PMID: 32061873 DOI: 10.1016/j.fsi.2020.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Matrix metalloproteinases (MMPs) are a cluster of enzymes that degrade the extracellular matrix (ECM) and some intracellular proteins; as such, they play an important role in tissue regeneration, infant growth, animal reproduction, and immunity. Most research into MMPs focuses mainly on their effects on the mammalian immune system. However, it is not clear how MMPs affect immune processes in crustaceans. Here, we cloned the open reading frame (ORF) of Eriocheir sinensis (Chinese mitten crab) MMP-14 (EsMMP-14) to explore the role of MMPs in crustacean innate immune responses. RT-PCR results showed that stimulation of crab with LPS and poly I:C upregulated expression of EsMMP-14 markedly. Besides, following the stimulation of 20-Hydroxyecdysone, the expression level of EsMMP-14 increased robustly, suggesting that EsMMP-14 involved in the molt process of E. sinensis. Hematoxylin and eosin staining of hepatopancreas and intestine revealed that knocking down EsMMP-14 maintained morphology following infection by Bacillus thuringiensis. Moreover, downregulated expression of EsMMP-14 increased the survival rate of infected E. sinensis. These results show that EsMMP-14 plays a role in innate immune responses of E. sinensis and fills a gap in our knowledge about the function of MMPs in crustaceans.
Collapse
Affiliation(s)
- Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, People's Republic of China
| | - Qinghao Meng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, People's Republic of China
| | - Jinwei Huang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, People's Republic of China
| | - Shen Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, People's Republic of China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, People's Republic of China.
| |
Collapse
|
32
|
Hu XL, Tang YY, Kwok ML, Chan KM, Chu KH. Impact of juvenile hormone analogue insecticides on the water flea Moina macrocopa: Growth, reproduction and transgenerational effect. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105402. [PMID: 31927065 DOI: 10.1016/j.aquatox.2020.105402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
The increasing quantities of insecticides that leach into water bodies severely affect the health of the aquatic environment. Juvenile hormone analogue (JHA) insecticides are endocrine disrupters that interfere with hormonal activity in insects by mimicking juvenile hormones (JHs). Because the structure and functions of methyl farnesoate in crustaceans are similar to the insect JHs, exogenous JHA insecticides may cause adverse effects on the growth and reproduction in crustaceans similar to those observed in insects. This study examined the toxic effects of two JHA insecticides, methoprene and fenoxycarb, on the water flea Moina macrocopa. The 24-h and 48-h LC50 values for fenoxycarb and methoprene were 0.53 and 0.32 mg/L and 0.70 and 0.54 mg/L, respectively. Chronic exposure to the two JHAs caused a series of toxic effects in M. macrocopa, including shortening of life expectancy, repression of body growth, reduction in fecundity, and disturbed the expression of genes involved in the JH signaling pathway, in cuticle development, and in the carbohydrate, amino acid, and ATP metabolic processes. Moreover, JHA exposure impaired the growth and reproduction of the offspring of M. macrocopa exposed to JHAs, even when the neonates were not exposed to the chemicals. In addition, changes in the expression of genes related to histone methylation indicate that epigenetic changes may promote transgenerational impairment in M. macrocopa. These results demonstrate the toxic effects of fenoxycarb and methoprene on non-target aquatic organisms. The damages done by these JHA insecticides to the aquatic environment is worthy of our attention and further studies.
Collapse
Affiliation(s)
- Xue Lei Hu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yuan Yuan Tang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man Long Kwok
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
33
|
Wang F, Lin W, Lv S, Jiang S, Lin L, Lu J. Comparison of Lipids Extracted by Different Methods from Chinese Mitten Crab (Eriocheir sinensis) Hepatopancreas. J Food Sci 2019; 84:3594-3600. [PMID: 31762029 DOI: 10.1111/1750-3841.14946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 11/30/2022]
Abstract
The effects of four different extraction methods (Folch, Soxhlet, two-step, and enzyme-assisted aqueous extraction) on the yields, lipid class, fatty acids (FAs) composition, minor components (including carotenoid, cholesterol), and thiobarbituric acid reactive substances values of lipids in the hepatopancreas of Chinese mitten crab (Eriocheir sinensis) were investigated. The C16:0, C18:1, and C18:2 were identified to be the dominant FAs in crab lipids, and the FAs were present in the form of triglycerides. The Soxhlet and enzyme-assisted extraction were more suitable for crab lipids extraction, showing higher extraction rates and oxidative stability. Especially, the lipid extracted by enzyme-assisted extraction has high carotenoids content. The components of crab lipids extracted by enzyme-assisted aqueous extraction were further identified using untargeted metabolomics methods. The polyunsaturated fatty acid, sterols, amino acids, products of lipid β-oxidation and ATP degradation, phosphatidyl ethanolamine, and astaxanthin were founded in crab oil. PRACTICAL APPLICATION: The Chinese mitten crab (Eriocheir sinensis) is a popular aquatic food in China. The hepatopancreas is the major lipid storage organ of crab, and the distinctive flavor of crab is mainly from it. To compare the different extraction methods on yield, composition and properties of crab lipids can be helpful for lipids production from crab hepatopancreas. Meanwhile, the crab hepatopancreas lipids are rich in polyunsaturated fatty acids and astaxanthin, and have potential to be as a functional component and a crab flavor additive in food industry.
Collapse
Affiliation(s)
- Fengya Wang
- School of Food and Biological Engineering, Hefei Univ. of Technology, 193 Tunxi Rd, Hefei, 230009, Anhui, China.,Key Lab of Separation Science for Analytical Chemistry, Dalian Inst. of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, PR China
| | - Wei Lin
- College of Food and Bioengineering, Qiqihar Univ., Qiqihar, 161006, Heilongjiang, China
| | - Shun Lv
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei Univ. of Technology, 193 Tunxi Rd, Hefei, 230009, Anhui, China
| | - Shaotong Jiang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei Univ. of Technology, 193 Tunxi Rd, Hefei, 230009, Anhui, China
| | - Lin Lin
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei Univ. of Technology, 193 Tunxi Rd, Hefei, 230009, Anhui, China
| | - Jianfeng Lu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei Univ. of Technology, 193 Tunxi Rd, Hefei, 230009, Anhui, China
| |
Collapse
|
34
|
Li J, Sun J, Dong X, Geng X, Qiu G. Transcriptomic analysis of gills provides insights into the molecular basis of molting in Chinese mitten crab ( Eriocheir sinensis). PeerJ 2019; 7:e7182. [PMID: 31293829 PMCID: PMC6601604 DOI: 10.7717/peerj.7182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/23/2019] [Indexed: 01/31/2023] Open
Abstract
Chinese mitten crab (Eriocheir sinensis) is an economically important freshwater aquaculture species and is a model species for research on the mechanism of molting. This study aimed to identify important candidate genes associated with the molting process and to determine the role of gills in the regulation of molting with the help of transcriptomic analysis. The transcriptomes of crabs at different molting stages—postmolt (PoM), intermolt (InM), premolt (PrM) and ecdysis (E)—were de novo assembled to generate 246,232 unigenes with a mean length of 851 bp. A total of 86,634 unigenes (35.18% of the total unigenes) were annotated against reference databases. Significantly upregulated genes were identified in postmolt compared to intermolt (1,475), intermolt compared to premolt (65), premolt compared to ecdysis (1,352), and ecdysis compared to postmolt (153), and the corresponding numbers of downregulated genes were 1,276, 32, 1,573 and 171, respectively. Chitin synthase, endochitinase, chitinase A, chitinase 3, chitinase 6 and chitin deacetylase 1 were upregulated during the postmolt and ecdysis stages, while phosphoglucomutase 3 (PGM3), glucosamine 6-phosphate deaminase (GNPDA) and glucosamine glycoside hydrolase (nagZ) were upregulated during the intermolt and premolt stages compared to the other stages. The upregulated genes were enriched in several lipid-related metabolic pathways, such as “fatty acid elongation”, “glycerophospholipid metabolism” and “sulfur metabolism”. Meanwhile, three signaling pathways, including the “phosphatidylinositol signaling system”, the “calcium signaling pathway” and the “GnRH signaling pathway” were also enriched. Tetraspanin-18, an important effector gene in the lysosomal pathway involved in cell apoptosis, up-regulate with the beginning of molting (in premolt stage) and reach the top in the ecdysis stage, and barely expressed in the intermolt stage. The expression variations in the tetraspanin-18 gene indicated that it may play an important role in the beginning of molting cycle, which might be regulated by the stress of salinity. This study revealed that the gills could participate in chitin degradation, in reestablishment of the exoskeleton and the signaling process. Based on transcriptomic analysis of the gills, we not only explored novel molecular mechanisms of molting in E. sinensis but also acquired foundational genetic data for E. sinensis.
Collapse
Affiliation(s)
- Jingjing Li
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Tianjin Diseases Prevention and Control Center of Aquatic Animals, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory for Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xuewang Dong
- Tianjin Diseases Prevention and Control Center of Aquatic Animals, Tianjin, China
| | - Xuyun Geng
- Tianjin Diseases Prevention and Control Center of Aquatic Animals, Tianjin, China
| | - Gaofeng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
35
|
Yuan Y, Sun P, Jin M, Wang X, Zhou Q. Regulation of Dietary Lipid Sources on Tissue Lipid Classes and Mitochondrial Energy Metabolism of Juvenile Swimming Crab, Portunus trituberculatus. Front Physiol 2019; 10:454. [PMID: 31068835 PMCID: PMC6491875 DOI: 10.3389/fphys.2019.00454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/01/2019] [Indexed: 01/09/2023] Open
Abstract
An 8-weeks feeding trial with swimming crab, Portunus trituberculatus, was conducted to investigate the effects of different dietary lipid sources on the lipid classes, lipid metabolism, and mitochondrial energy metabolism relevant genes expression. Six isonitrogenous and isolipidic experimental diets were formulated to contain fish oil (FO), krill oil (KO), palm oil (PO), rapeseed oil (RO), soybean oil (SO), and linseed oil (LO), respectively. A total of 270 swimming crab juveniles (initial weight 5.43 ± 0.03 g) were randomly divided into six diets with three replications, each consisted of 45 juvenile crabs. The results revealed that crabs fed KO had highest lipid content in hepatopancreas and free fatty acids in serum among all diets. The anabolic pathway relevant genes: fas and acc were up-regulated in KO diet. The catabolic pathway relevant genes, hsl, was up-regulated in LO diet, while cpt1 was up-regulated in KO diet. Whereas, the genes involved in the transport and uptake of fatty acids such as fabp1 and fatp4 were down-regulated in crab fed PO and RO diets. Furthermore, the gene expression levels of transcription factors: srebp-1 and hnf4α in KO and SO diets were the highest among all diets. FO and KO diets had significantly higher unsaturation index of mitochondrial membrane than others. The genes related to mitochondrial energy metabolism, such as Atpase6, sirt1, and sirt3 were significantly up-regulated in KO and SO diets. In summary, dietary KO and SO supplementation could improve the lipid metabolism, promote energy production for juvenile swimming crab and improve physiological process and function including molting. These findings could contribute to deepen the understanding of the physiological metabolism of dietary fatty acids for swimming crab.
Collapse
Affiliation(s)
| | | | | | | | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
36
|
Chen H, Gu X, Zeng Q, Mao Z, Liang X, Martyniuk CJ. Carbamazepine disrupts molting hormone signaling and inhibits molting and growth of Eriocheir sinensis at environmentally relevant concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:138-145. [PMID: 30669117 DOI: 10.1016/j.aquatox.2019.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/08/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Carbamazepine (CBZ), one of the most frequently detected pharmaceutical compounds in aquatic environments, has recently been shown to cause chronic toxicity and endocrine disruption in a variety of non-target aquatic organisms. However, neither the effects nor the specific mechanism of CBZ action on the molting of crustaceans is well understood. The aim of this study was to investigate the effects of CBZ on the molting and growth of the Chinese mitten crab Eriocheir sinensis, a native and economically important species in China, and to elucidate the specific mechanisms through which molt inhibition occurs. Juvenile E. sinensis were treated with four nominal environmentally relevant concentrations (0.01, 0.1, 1, or 10 μg/L) of CBZ for acute (4 days) and chronic (40 days) exposures. After acute exposure, chitinase activity in the epidermis and 20-hydroxyecdysone (20-HE) concentration in the hemolymph were significantly decreased (p < 0.05) following treatment with 10 μg/L CBZ, whereas epidermal chitobiase activity significantly decreased (p < 0.05) in response to both 1 and 10 μg/L CBZ treatments. Transcript levels of the genes encoding crustacean hyperglycemic hormone (chh) and molt-inhibiting hormone (mih) in the eyestalks were also markedly induced after 1 or 10 μg/L CBZ treatment (p < 0.05), whereas the expression of genes encoding ecdysone receptor (ecr) and crustacean retinoid X receptor (rxr) in the hepatopancreas were significantly suppressed (p < 0.05) after acute exposure. Moreover, under chronic exposure, CBZ inhibited the molting and growth of E. sinensis, resulting in a longer time before molting was completed (TBM), as well as a lower molting increment (MI) with 1 or 10 μg/L treatment (p < 0.05). Collectively, these data indicate that CBZ can inhibit the molting process of E. sinensis by interfering with the activity of chitinolytic enzymes and molting hormone signaling, suggestive that carbamazepine may have long-term effects on crab development. We also confirmed that CBZ may function as an endocrine disruptor in decapod crustaceans, a phenomenon that has previously been reported in vertebrates.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
37
|
Molt-dependent transcriptome analysis of claw muscles in Chinese mitten crab Eriocheir sinensis. Genes Genomics 2019; 41:515-528. [DOI: 10.1007/s13258-019-00787-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/17/2019] [Indexed: 01/16/2023]
|
38
|
Chen X, Wang J, Hou X, Yue W, Huang S, Wang C. Tissue expression profiles unveil the gene interaction of hepatopancreas, eyestalk, and ovary in the precocious female Chinese mitten crab, Eriocheir sinensis. BMC Genet 2019; 20:12. [PMID: 30683050 PMCID: PMC6347758 DOI: 10.1186/s12863-019-0716-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/18/2019] [Indexed: 02/02/2023] Open
Abstract
Background Sexual precocity is a common biological phenomenon in animal species. A large number of precocity individuals were identified in Chinese mitten crab Eriocheir sinensis, which caused huge economic loss annually. However, the underlying genetic basis of precocity in E. sinensis remains unclear to date. Results In this study, morphological and histological observation and comparative transcriptome analysis were conducted among different stages of precocious one-year-old and normal two-year-old sexually mature E. sinensis. The expression profiles of the ovary, hepatopancreas, and eyestalk tissues were presented and compared. Genes associated with lipid metabolic process, lipid transport, vitelline membrane formation, vitelline synthesis, and neuropeptide hormone-related genes were upregulated in the ovary, hepatopancreas, and eyestalk of precocious E. sinensis. Our results indicated that the eyestalk was involved in the neuroendocrine system providing neuropeptide hormones that may induce vitellogenesis in the hepatopancreas and further stimulate ovary development. The hepatopancreas is a site for energy storage and vitellogenin synthesis, and it may assist oogenesis through lipid transport in precocious E. sinensis. Conclusion We provided not only an effective and convenient phenotype measurement method for the identification of potential precocious E. sinensis detection but also valuable genetic resources and novel insights into the molecular mechanism of precocity in E. sinensis. The genetic basis of precocity in E. sinensis is an integrated gene regulatory network of eyestalk, hepatopancreas, and ovary tissues. Electronic supplementary material The online version of this article (10.1186/s12863-019-0716-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaowen Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China
| | - Xin Hou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China
| | - Wucheng Yue
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China
| | - Shu Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China. .,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China. .,Shanghai Engineering Research Center of Aquaculture, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.
| |
Collapse
|
39
|
Zhou K, Zhou F, Jiang S, Huang J, Yang Q, Yang L, Jiang S. Ecdysone inducible gene E75 from black tiger shrimp Penaeus monodon: Characterization and elucidation of its role in molting. Mol Reprod Dev 2019; 86:265-277. [PMID: 30618055 DOI: 10.1002/mrd.23101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022]
Abstract
Molting is controlled by ecdysteroids, which are synthesized and secreted by the Y-organ in crustaceans. Ecdysone inducible gene, E75, is an early-response gene in the 20-hydroxyecdysone (20E) signaling pathway, with crucial roles in arthropod development. Complementary DNA (cDNA) encoding Penaeus monodon E75 (PmE75) was cloned using RT-PCR and RACE. PmE75 cDNA was 3526 bp long and encoded a 799-amino acid protein. Tissue distribution analysis showed that PmE75 was expressed ubiquitously in selected tissues, and was relatively abundant in the epidermis, muscle, and hepatopancreas. Developmental expression revealed that PmE75 was expressed throughout its life cycle. Silencing PmE75 significantly decreased PmE75 expression. Shrimps injected with PBS and dsGFP started molting on Day 7 and had almost completed molting on Day 9, whereas dsPmE75-injected shrimp presented no signs of molting. These results suggested that PmE75 might be involved in molting. In situ hybridization results support this hypothesis. To explore the role of 20E and eyestalks in the regulation of molting in P. monodon, exogenous 20E injection and eyestalk ablation (ESA) were performed, and showed that 20E can induce the transcription and expression of PmE75 in the hepatopancreas, epidermis, and muscle, which were significantly elevated after ESA. These results provide further insights into our understanding of molting.
Collapse
Affiliation(s)
- Kaimin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Falin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Song Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Jianhua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Qibin Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lishi Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shigui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
40
|
Hyde CJ, Elizur A, Ventura T. The crustacean ecdysone cassette: A gatekeeper for molt and metamorphosis. J Steroid Biochem Mol Biol 2019; 185:172-183. [PMID: 30157455 DOI: 10.1016/j.jsbmb.2018.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
Arthropods have long been utilized as models to explore molecular function, and the findings derived from them can be applied throughout metazoa, including as a basis for medical research. This has led to the adoption of many representative insect models beyond Drosophila, as each lends its own unique perspective to questions in endocrinology and genetics. However, non-insect arthropods are yet to be realised for the potential insight they may provide in such studies. The Crustacea are among the most ancient arthropods from which insects descended, comprising a huge variety of life histories and ecological roles. Of the events in a typical crustacean development, metamorphosis is perhaps the most ubiquitous, challenging and highly studied. Despite this, our knowledge of the endocrinology which underpins metamorphosis is rudimentary at best; although several key molecules have been identified and studied in depth, the link between them is quite nebulous and leans heavily on well-explored insect models, which diverged from the Pancrustacea over 450 million years ago. As omics technologies become increasingly accessible, they bring the prospect of explorative molecular research which will allow us to uncover components and pathways unique to crustaceans. This review reconciles known components of crustacean metamorphosis and reflects on our findings in insects to outline a future search space, with focus given to the ecdysone cascade. To expand our knowledge of this ubiquitous endocrine system not only aids in our understanding of crustacean metamorphosis, but also provides a deeper insight into the adaptive capacity of arthropods throughout evolution.
Collapse
Affiliation(s)
- Cameron J Hyde
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Tomer Ventura
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia.
| |
Collapse
|
41
|
Eichner C, Dondrup M, Nilsen F. RNA sequencing reveals distinct gene expression patterns during the development of parasitic larval stages of the salmon louse (Lepeophtheirus salmonis). JOURNAL OF FISH DISEASES 2018; 41:1005-1029. [PMID: 29368347 DOI: 10.1111/jfd.12770] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
The salmon louse (Lepeophtheirus salmonis), an ectoparasitic copepod on salmonids, has become a major threat for the aquaculture industry. In search for new drugs and vaccines, transcriptome analysis is increasingly used to find differently regulated genes and pathways in response to treatment. However, the underlying gene expression changes going along with developmental processes could confound such analyses. The life cycle of L. salmonis consists of eight stages divided by moults. The developmental rate of salmon lice on the host is not uniform. Individual- and sex-related differences are found leading to individuals of unlike developmental status at same sampling time point after infection. In this study, we analyse L. salmonis from a time series by RNA sequencing applying a method of separating individuals of different instar age independent of sampling time point. Lice of four stages divided into up to four age groups within the stage were analysed in triplicate (total of 66 samples). Gene expression analysis shows that the method for sorting individuals was successful. Many genes show cyclic expression patterns over the moulting cycles. Overall gene expression differs more between lice of different age within the same stage than between lice of different stage but same instar age.
Collapse
Affiliation(s)
- C Eichner
- Sea Lice Research Centre, Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - M Dondrup
- Sea Lice Research Centre, Department of Informatics, University of Bergen, Bergen, Norway
| | - F Nilsen
- Sea Lice Research Centre, Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
42
|
Das S, Shyamal S, Durica DS. Analysis of Annotation and Differential Expression Methods used in RNA-seq Studies in Crustacean Systems. Integr Comp Biol 2018; 56:1067-1079. [PMID: 27940611 DOI: 10.1093/icb/icw117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the field of crustacean biology, usage of RNA-seq to study gene expression is rapidly growing. Major advances in sequencing technology have contributed to the ability to examine complex patterns of genome activity in a wide range of organisms that are extensively used for comparative physiology, ecology and evolution, environmental monitoring, and commercial aquaculture. Relative to insect and vertebrate model organisms, however, information on the organization of crustacean genomes is virtually nonexistent, making de novo transcriptome assembly, annotation and quantification problematic and challenging. We present here a summary of the methodologies and software analyses employed in 23 recent publications, which describe de novo transcriptome assembly, annotation, and differential gene expression in a variety of crustacean experimental systems. We focus on establishing a series of best practices that will allow for investigators to produce datasets that are understandable, reproducible, and of general utility for related analyses and cross-study comparisons.
Collapse
Affiliation(s)
- Sunetra Das
- *Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA;
| | | | - David S Durica
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
43
|
Lycett KA, Chung JS, Pitula JS. The relationship of blue crab (Callinectes sapidus) size class and molt stage to disease acquisition and intensity of Hematodinium perezi infections. PLoS One 2018; 13:e0192237. [PMID: 29474370 PMCID: PMC5825025 DOI: 10.1371/journal.pone.0192237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/18/2018] [Indexed: 11/18/2022] Open
Abstract
In the blue crab, Callinectes sapidus, early studies suggested a relationship between smaller crabs, which molt more frequently, and higher rates of infection by the dinoflagellate parasite, Hematodinium perezi. In order to better explore the influence of size and molting on infections, blue crabs were collected from the Maryland coastal bays and screened for the presence of H. perezi in hemolymph samples using a quantitative PCR assay. Molt stage was determined by a radioimmunoassay which measured ecdysteroid concentrations in blue crab hemolymph. Differences were seen in infection prevalence between size classes, with the medium size class (crabs 61 to 90 mm carapace width) and juvenile crabs (≤ 30 mm carapace width) having the highest infection prevalence at 47.2% and 46.7%, respectively. All size classes were susceptible to infection, although fall months favored disease acquisition by juveniles, whereas mid-sized animals (31-90 mm carapace width) acquired infection predominantly in summer. Disease intensity was also most pronounced in the summer, with blue crabs > 61 mm being primary sources of proliferation. Molt status appeared to be influenced by infection, with infected crabs having significantly lower concentrations of ecdysteroids than uninfected crabs in the spring and the fall. We hypothesize that infection by H. perezi may increase molt intervals, with a delay in the spring molt cycle as an evolutionary adaptation functioning to coincide with increased host metabolism, providing optimal conditions for H. perezi propagation. Regardless of season, postmolt crabs harbored significantly higher proportions of moderate and heavy infections, suggesting that the process of ecdysis, and the postmolt recovery period, has a positive effect on parasite proliferation.
Collapse
Affiliation(s)
- Kristen A Lycett
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
| | - J Sook Chung
- Department, The Institute of Marine & Environmental Technology, University of Maryland Center of Environmental Sciences, Baltimore, Maryland, United States of America
| | - Joseph S Pitula
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
| |
Collapse
|
44
|
Li R, Zhu LN, Ren LQ, Weng JY, Sun JS. Molecular cloning and characterization of glycogen synthase in Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2017; 214:47-56. [DOI: 10.1016/j.cbpb.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/27/2017] [Accepted: 09/19/2017] [Indexed: 01/26/2023]
|
45
|
Chen X, Wang J, Yue W, Liu J, Wang C. Hepatopancreas transcriptome analysis of Chinese mitten crab (Eriocheir sinensis) with white hepatopancreas syndrome. FISH & SHELLFISH IMMUNOLOGY 2017; 70:302-307. [PMID: 28860074 DOI: 10.1016/j.fsi.2017.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/20/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
White hepatopancreas is a syndrome that has recently emerged in aquaculture of Chinese mitten crab (Eriocheir sinensis). High lethality of the disease caused large economic loss, which drew considerable attention of fish farmers and scientific researchers. In this study, hepatopancreas reference transcriptome was de novo assembled and differential expression analysis was conducted between white hepatopancreas and normal (yellow) hepatopancreas of E. sinensis. A total of 90,687 transcripts were assembled, and 27,387 were annotated. Transcriptomic comparison revealed 69 differentially expressed genes between individuals featuring white hepatopancreas and yellow hepatopancreas. Genes associated with immune response and cell death, include thioredoxin-related transmembrane protein 1, hemocytin, methuselah-like 1, and E3 ubiquitin-protein ligase, and they were up-regulated, whereas titin and 5-formyltetrahydrofolate cyclo-ligase, which are genes related to cell proliferation, were down-regulated in E. sinensis with white hepatopancreas syndrome. Our study provides novel insights into genetic causes of formation and novel gene markers for detection of white hepatopancreas syndrome in aquaculture of E. sinensis.
Collapse
Affiliation(s)
- Xiaowen Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Wucheng Yue
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Jinsheng Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China.
| |
Collapse
|
46
|
Structure and function of the alternatively spliced isoforms of the ecdysone receptor gene in the Chinese mitten crab, Eriocheir sinensis. Sci Rep 2017; 7:12993. [PMID: 29021633 PMCID: PMC5636884 DOI: 10.1038/s41598-017-13474-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/26/2017] [Indexed: 11/10/2022] Open
Abstract
Alternative splicing is an essential molecular mechanism that increase the protein diversity of a species to regulate important biological processes. Ecdysone receptor (EcR), an essential nuclear receptor, is essential in the molting, growth, development, reproduction, and regeneration of crustaceans. In this study, the whole sequence of EcR gene from Eriocheir sinensis was obtained. The sequence was 45,481 bp in length with 9 exons. Moreover, four alternatively spliced EcR isoforms (Es-EcR-1, Es-EcR-2, Es-EcR-3 and Es-EcR-4) were identified. The four isoforms harbored a common A/B domain and a DNA-binding region but different D domains and ligand-binding regions. Three alternative splicing patterns (alternative 5′ splice site, exon skipping, and intron retention) were identified in the four isoforms. Functional studies indicated that the four isoforms have specific functions. Es-EcR-3 may play essential roles in regulating periodic molting. Es-EcR-2 may participate in the regulation of ovarian development. Our results indicated that Es-EcR has broad regulatory functions in molting and development and established the molecular basis for the investigation of ecdysteroid signaling related pathways in E. sinensis.
Collapse
|
47
|
Qiao H, Fu H, Xiong Y, Jiang S, Zhang W, Sun S, Jin S, Gong Y, Wang Y, Shan D, Li F, Wu Y. Molecular insights into reproduction regulation of female Oriental River prawns Macrobrachium nipponense through comparative transcriptomic analysis. Sci Rep 2017; 7:12161. [PMID: 28939826 PMCID: PMC5610250 DOI: 10.1038/s41598-017-10439-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022] Open
Abstract
The oriental river prawn, Macrobrachium nipponense, is an important commercial aquaculture resource in China. During breeding season, short ovary maturation cycles of female prawns cause multi-generation reunions in ponds and affect the growth of females representing individual miniaturization (known as autumn -propagation). These reproductive characteristics pose problems for in large - scale farming. To date, the molecular mechanisms of reproduction regulation of M. nipponense remain unclear. To address this issue, we performed transcriptome sequencing and gene expression analyses of eyestalk and cerebral ganglia of female M. nipponense during breeding and non-breeding seasons. Differentially expressed gene enrichment analysis results revealed several important reproduction related terms and signaling pathways, such as "photoreceptor activity", "structural constituent of cuticle" and "G-protein coupled receptor activity". The following six key genes from the transcriptome were predicted to mediate environmental factors regulating reproduction of M. nipponense: neuroparsin, neuropeptide F II, orcokinin II, crustacean cardioactive peptide, pigment-dispersing hormone 3 and tachykinin. These results will contribute to a better understanding of the molecular mechanisms of reproduction of oriental river prawns. Further detailed functional analyses of the candidate reproduction regulation related neuropeptides are needed to shed light on the mechanisms of reproduction of crustacean.
Collapse
Affiliation(s)
- Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yabing Wang
- Wuxi Fishery College Nanjing Agricultural University, Wuxi, 214081, China
| | - Dongyan Shan
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Fei Li
- Wuxi Fishery College Nanjing Agricultural University, Wuxi, 214081, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| |
Collapse
|
48
|
Transcriptional responses in the hepatopancreas of Eriocheir sinensis exposed to deltamethrin. PLoS One 2017; 12:e0184581. [PMID: 28910412 PMCID: PMC5599000 DOI: 10.1371/journal.pone.0184581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/26/2017] [Indexed: 11/19/2022] Open
Abstract
Deltamethrin is an important pesticide widely used against ectoparasites. Deltamethrin contamination has resulted in a threat to the healthy breeding of the Chinese mitten crab, Eriocheir sinensis. In this study, we investigated transcriptional responses in the hepatopancreas of E. sinensis exposed to deltamethrin. We obtained 99,087,448, 89,086,478, and 100,117,958 raw sequence reads from control 1, control 2, and control 3 groups, and 92,094,972, 92,883,894, and 92,500,828 raw sequence reads from test 1, test 2, and test 3 groups, respectively. After filtering and quality checking of the raw sequence reads, our analysis yielded 79,228,354, 72,336,470, 81,859,826, 77,649,400, 77,194,276, and 75,697,016 clean reads with a mean length of 150 bp from the control and test groups. After deltamethrin treatment, a total of 160 and 167 genes were significantly upregulated and downregulated, respectively. Gene ontology terms "biological process," "cellular component," and "molecular function" were enriched with respect to cell killing, cellular process, other organism part, cell part, binding, and catalytic. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes showed that the metabolic pathways were significantly enriched. We found that the CYP450 enzyme system, carboxylesterase, glutathione-S-transferase, and material (including carbohydrate, lipid, protein, and other substances) metabolism played important roles in the metabolism of deltamethrin in the hepatopancreas of E. sinensis. This study revealed differentially expressed genes related to insecticide metabolism and detoxification in E. sinensis for the first time and will help in understanding the toxicity and molecular metabolic mechanisms of deltamethrin in E. sinensis.
Collapse
|
49
|
Wei B, Yang Z, Wang J, Chen A, Shi Q, Cheng Y. Effects of dietary lipids on the hepatopancreas transcriptome of Chinese mitten crab (Eriocheir sinensis). PLoS One 2017; 12:e0182087. [PMID: 28753670 PMCID: PMC5533325 DOI: 10.1371/journal.pone.0182087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/12/2017] [Indexed: 01/10/2023] Open
Abstract
Fish oil supplies worldwide have declined sharply over the years. To reduce the use of fish oil in aquaculture, many studies have explored the effects of fish oil substitutions on aquatic animals. To illustrate the effects of dietary lipids on Chinese mitten crab and to improve the use of vegetable oils in the diet of the crabs, 60 male juvenile Chinese mitten crabs were fed one of five diets for 116 days: fish oil (FO), soybean oil (SO), linseed oil (LO), FO + SO (1:1, FSO), and FO + LO (1:1, FLO). Changes in the crab hepatopancreas transcriptome were analyzed using RNA sequencing. There were a total 55,167 unigenes obtained from the transcriptome, of which the expression of 3030 was significantly altered in the FLO vs. FO groups, but the expression of only 412 unigenes was altered in the FSO vs. FO groups. The diets significantly altered the expression of many enzymes involved in lipid metabolism, such as pancreatic lipase, long-chain acyl-CoA synthetases, carnitine palmitoyltransferase I, acetyl-CoA carboxylase, fatty acid synthase, and fatty acyl Δ9-desaturase. The dietary lipids also affected the Toll-like receptor and Janus activated kinase-signal transducers and activators of transcription signaling pathways. Our results indicate that substituting fish oil with vegetable oils in the diet of Chinese mitten crabs might decrease the digestion and absorption of dietary lipids, fatty acids biosynthesis, and immunologic viral defense, and increase β-oxidation by altering the expression of the relevant genes. Our results lay the foundation for further understanding of lipid nutrition in Chinese mitten crab.
Collapse
Affiliation(s)
- Banghong Wei
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhigang Yang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- * E-mail:
| | - Jianyi Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Aqin Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qiuyan Shi
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
50
|
Bose U, Kruangkum T, Wang T, Zhao M, Ventura T, Mitu SA, Hodson MP, Shaw PN, Sobhon P, Cummins SF. Biomolecular changes that occur in the antennal gland of the giant freshwater prawn (Machrobrachium rosenbergii). PLoS One 2017; 12:e0177064. [PMID: 28662025 PMCID: PMC5490968 DOI: 10.1371/journal.pone.0177064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/22/2017] [Indexed: 01/01/2023] Open
Abstract
In decapod crustaceans, the antennal gland (AnG) is a major primary source of externally secreted biomolecules, and some may act as pheromones that play a major role in aquatic animal communication. In aquatic crustaceans, sex pheromones regulate reproductive behaviours, yet they remain largely unidentified besides the N-acetylglucosamine-1,5-lactone (NAGL) that stimulates male to female attraction. In this study, we used an AnG transcriptome of the female giant freshwater prawn (Macrobrachium rosenbergii) to predict the secretion of 226 proteins, including the most abundantly expressed transcripts encoding the Spaetzle protein, a serine protease inhibitor, and an arthropodial cuticle protein AMP 8.1. A quantitative proteome analysis of the female AnG at intermolt, premolt and postmolt, identified numerous proteins of different abundances, such as the hemocyanin subunit 1 that is most abundant at intermolt. We also show that hemocyanin subunit 1 is present within water surrounding females. Of those metabolites identified, we demonstrate that the NAGL and N-acetylglucosamine (NAG) can bind with high affinity to hemocyanin subunit 1. In summary, this study has revealed components of the female giant freshwater prawn AnG that are released and contribute to further research towards understanding crustacean conspecific signalling.
Collapse
Affiliation(s)
- Utpal Bose
- Genetic, Ecology and Physiology Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tianfang Wang
- Genetic, Ecology and Physiology Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Min Zhao
- Genetic, Ecology and Physiology Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Tomer Ventura
- Genetic, Ecology and Physiology Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Shahida Akter Mitu
- Genetic, Ecology and Physiology Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Mark P. Hodson
- Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- S chool of Pharmacy, The University of Queensland, Queensland, Australia
| | - Paul N. Shaw
- S chool of Pharmacy, The University of Queensland, Queensland, Australia
| | - Prasert Sobhon
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Scott F. Cummins
- Genetic, Ecology and Physiology Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- * E-mail:
| |
Collapse
|