1
|
Smithgall MC, Yemelyanova A, Solomon J, Chapman-Davis E, Schatz-Siemers N. High-grade Endometrial Carcinoma With Serous and Colorectal Carcinoma-like Components: Unique Morphology in Correlation With Immunohistochemical and Molecular Findings. Int J Gynecol Pathol 2024:00004347-990000000-00194. [PMID: 39230591 DOI: 10.1097/pgp.0000000000001067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Endometrial carcinoma with intestinal differentiation/colorectal carcinoma-like (CRC-like) features is rare with few cases reported to date. Those described are mainly endometrioid carcinomas with intestinal differentiation. We report a case of high-grade endometrial carcinoma with serous and intestinal/CRC-like components. The gross, histologic, immunohistochemical, and molecular features are described for both components of the tumor in the initial diagnostic biopsy and subsequent resection specimen. The diagnosis of primary endometrial carcinoma with serous and CRC-like components is supported by immunohistochemical and molecular findings, as well as clinical workup. The rarity of this phenomenon poses diagnostic challenges. In addition, the literature is reviewed with specific emphasis on the molecular and pathologic features of mixed endometrial carcinomas, including those with intestinal/CRC-like features.
Collapse
Affiliation(s)
- Marie C Smithgall
- Departments of Pathology and Laboratory Medicine
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | | | | | | | | |
Collapse
|
2
|
Gürbüz AF, Eryılmaz MK, Yıldız O, Kılınç F, Araz M, Artaç M. Rare case of myelodysplastic syndrome with excess blasts 2 developing after adjuvant chemoradiotherapy for triple-negative breast cancer in a patient with Bloom syndrome. Strahlenther Onkol 2024:10.1007/s00066-024-02257-z. [PMID: 38995367 DOI: 10.1007/s00066-024-02257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Bloom syndrome (BS) is a rare autosomal recessive disorder caused by a loss-of-function mutation in the BLM gene encoding an RecQ helicase involved in DNA repair and maintenance of chromosomal stability. In patients with BS, significant sensitivity to both DNA-damaging chemotherapy (CT) and ionizing radiation complicates the management of neoplasms by exacerbating comorbidities and predisposing to toxicities and poor outcomes. CASE REPORT A 30-year-old female patient diagnosed with BS who presented with early-stage triple-negative breast cancer was treated with four cycles of doxorubicin (60 mg/m2) and cyclophosphamide (600 mg/m2) followed by weekly paclitaxel (80 mg/m2) for 12 weeks as the chemotherapy protocol and a total of 5000 cGy curative radiotherapy (RT). Due to pancytopenia 8 months after completion of therapy, bone marrow biopsy and aspiration were performed, and a diagnosis of myelodysplastic syndrome with excess blasts 2 (MDS-EB2) was made. Two courses of the azacitidine (75 mg/m2) protocol were administered every 28 days in the hematology clinic. Two weeks after CT the patient was transferred from the emergency department to the hematology clinic with the diagnosis of pancytopenia and febrile neutropenia. She died at the age of 33 due to sepsis that developed during follow-up. CONCLUSION Due to the rarity of BS, there is no prospective trial in patients with cancer and no evidence base upon which to design treatment programs. For these reasons, it is strongly recommended that patients receive multidisciplinary care, with precise assessment and discussion of the indication and an adequate dose of DNA-damaging agents such as chemotherapy and ionizing radiation.
Collapse
Affiliation(s)
- Ali Fuat Gürbüz
- Department of Medical Oncology, Faculty of Medicine, Necmettin Erbakan University, 14280, Konya, Turkey.
| | - Melek Karakurt Eryılmaz
- Department of Medical Oncology, Faculty of Medicine, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Oğuzhan Yıldız
- Department of Medical Oncology, Faculty of Medicine, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Fahriye Kılınç
- Department of Pathology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Murat Araz
- Department of Medical Oncology, Faculty of Medicine, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Mehmet Artaç
- Department of Medical Oncology, Faculty of Medicine, Necmettin Erbakan University, 14280, Konya, Turkey
| |
Collapse
|
3
|
Jandoubi N, Boujemaa M, Mighri N, Mejri N, Ben Nasr S, Bouaziz H, Berrazega Y, Rachdi H, Daoud N, Zribi A, Ayari J, El Benna H, Labidi S, Haddaoui A, Mrad R, Ben Ahmed S, Boussen H, Abdelhak S, Boubaker S, Hamdi Y. Genetic testing for hereditary cancer syndromes in Tunisian patients: Impact on health system. Transl Oncol 2024; 43:101912. [PMID: 38387387 PMCID: PMC10900923 DOI: 10.1016/j.tranon.2024.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
INTRODUCTION Cancer management in Africa faces diverse challenges due to limited resources, health system challenges, and other matters. Identifying hereditary cancer syndromic cases is crucial to improve clinical management and preventive care in these settings. This study aims to explore the clinicopathological features and genetic factors associated with hereditary cancer in Tunisia, a North African country with a rising cancer burden MATERIALS AND METHODS: Clinicopathological features and personal/family history of cancer were explored in 521 patients. Genetic analysis using Sanger and next-generation sequencing was performed for a set of patients RESULTS: Hereditary breast and ovarian cancer syndrome was the most frequent cluster in which 36 BRCA mutations were identified. We described a subgroup of patients with likely ''breast cancer-only syndrome'' among this cluster. Two cases of Li-Fraumeni syndrome with distinct TP53 mutations namely c.638G>A and c.733G>A have been identified. Genetic investigation also allowed the identification of a new BLM homozygous mutation (c.3254dupT) in one patient with multiple primary cancers. Phenotype-genotype correlation suggests the diagnosis of Bloom syndrome. A recurrent MUTYH mutation (c.1143_1144dup) was identified in three patients with different phenotypes CONCLUSION: Our study calls for comprehensive genetic education and the implementation of genetic screening in Tunisia and other African countries health systems, to reduce the burden of hereditary diseases and improve cancer outcomes in resource-stratified settings.
Collapse
Affiliation(s)
- Nouha Jandoubi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Najah Mighri
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nesrine Mejri
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia; Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sonia Ben Nasr
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia; Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Hanen Bouaziz
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia; Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Yosra Berrazega
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Haifa Rachdi
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Nouha Daoud
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Aref Zribi
- Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Jihene Ayari
- Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Houda El Benna
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia; Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Soumaya Labidi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia; Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | | | - Ridha Mrad
- Department of Human Genetics, Charles Nicolle Hospital, Tunis, Tunisia
| | - Slim Ben Ahmed
- Department of Medical Oncology, Farhat Hached University Hospital of Sousse, Faculty of Medicine of Sousse, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia; Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia; Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia; Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia.
| |
Collapse
|
4
|
Rosenblum LS, Auger SM, Zhu H, Zhou Z, Xin W, Reiner J, Wolf Z, Leach NT. Prenatal Testing for Variants in Genes Associated with Hereditary Cancer Risk: Laboratory Experience and Considerations. J Mol Diagn 2024; 26:202-212. [PMID: 38171482 DOI: 10.1016/j.jmoldx.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/29/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Prenatal molecular genetic testing for familial variants that cause inherited disorders has been performed for decades and is accepted as standard of care. However, the spectrum of genes considered for prenatal testing is expanding because of genetic testing for hereditary cancer risk (HCR) and inclusion of conditions with associated cancer risk in carrier screening panels. A few of these disorders, such as ataxia telangiectasia and Bloom syndrome, include increased cancer risk as part of the phenotype, already meet professional guidelines for prenatal testing, and may be associated with increased cancer risk in heterozygous carriers. In addition, recent studies implicate heterozygosity for variants in lysosomal storage disease genes in HCR etiology. Currently, there is no specific professional guidance regarding prenatal testing for HCR. To determine the prevalence of such testing, we reviewed 1345 consecutive prenatal specimens received in our laboratory for familial variant-specific testing and identified 65 (4.8%) with a known or likely HCR component, plus 210 (15.6%) for lysosomal storage disease. These specimens were classified into five distinct categories for clarity and to enable evaluation. Our experience assessing prenatal specimens for variants associated with HCR, with or without a constitutional phenotype, provides metrics for and contributes to the points to consider in prenatal testing for HCR.
Collapse
Affiliation(s)
- Lynne S Rosenblum
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts.
| | - Stephanie M Auger
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Hui Zhu
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Zhaoqing Zhou
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Winnie Xin
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Jennifer Reiner
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Zena Wolf
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| | - Natalia T Leach
- Molecular Diagnostics Laboratory, Labcorp, Westborough, Massachusetts
| |
Collapse
|
5
|
Boujemaa M, Nouira F, Jandoubi N, Mejri N, Bouaziz H, Charfeddine C, Ben Nasr S, Labidi S, El Benna H, Berrazega Y, Rachdi H, Daoud N, Benna F, Haddaoui A, Abdelhak S, Samir Boubaker M, Boussen H, Hamdi Y. Uncovering the clinical relevance of unclassified variants in DNA repair genes: a focus on BRCA negative Tunisian cancer families. Front Genet 2024; 15:1327894. [PMID: 38313678 PMCID: PMC10834681 DOI: 10.3389/fgene.2024.1327894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction: Recent advances in sequencing technologies have significantly increased our capability to acquire large amounts of genetic data. However, the clinical relevance of the generated data continues to be challenging particularly with the identification of Variants of Uncertain Significance (VUSs) whose pathogenicity remains unclear. In the current report, we aim to evaluate the clinical relevance and the pathogenicity of VUSs in DNA repair genes among Tunisian breast cancer families. Methods: A total of 67 unsolved breast cancer cases have been investigated. The pathogenicity of VUSs identified within 26 DNA repair genes was assessed using different in silico prediction tools including SIFT, PolyPhen2, Align-GVGD and VarSEAK. Effects on the 3D structure were evaluated using the stability predictor DynaMut and molecular dynamics simulation with NAMD. Family segregation analysis was also performed. Results: Among a total of 37 VUSs identified, 11 variants are likely deleterious affecting ATM, BLM, CHEK2, ERCC3, FANCC, FANCG, MSH2, PMS2 and RAD50 genes. The BLM variant, c.3254dupT, is novel and seems to be associated with increased risk of breast, endometrial and colon cancer. Moreover, c.6115G>A in ATM and c.592+3A>T in CHEK2 were of keen interest identified in families with multiple breast cancer cases and their familial cosegregation with disease has been also confirmed. In addition, functional in silico analyses revealed that the ATM variant may lead to protein immobilization and rigidification thus decreasing its activity. We have also shown that FANCC and FANCG variants may lead to protein destabilization and alteration of the structure compactness which may affect FANCC and FANCG protein activity. Conclusion: Our findings revealed that VUSs in DNA repair genes might be associated with increased cancer risk and highlight the need for variant reclassification for better disease management. This will help to improve the genetic diagnosis and therapeutic strategies of cancer patients not only in Tunisia but also in neighboring countries.
Collapse
Affiliation(s)
- Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Fatma Nouira
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, Hamam, Tunisia
| | - Nouha Jandoubi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nesrine Mejri
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hanen Bouaziz
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Cherine Charfeddine
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- High Institute of Biotechnology of Sidi Thabet, Biotechpole of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Sonia Ben Nasr
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Soumaya Labidi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Houda El Benna
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Yosra Berrazega
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Haifa Rachdi
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Nouha Daoud
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Farouk Benna
- Radiation Oncology Department, Salah Azaiez Institute, Tunis, Tunisia
| | | | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
6
|
Zhang W, Yu X, Bao L, He T, Pan W, Li P, Liu J, Liu X, Yang L, Liu J. Bisbenzylisoquinoline alkaloid fangchinoline derivative HY-2 inhibits breast cancer cells by suppressing BLM DNA helicase. Biomed Pharmacother 2023; 169:115908. [PMID: 37988849 DOI: 10.1016/j.biopha.2023.115908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
The high expression of BLM (Bloom syndrome) DNA helicase in tumors involves its strong association with cell expansion. Bisbenzylisoquinoline alkaloids own an antitumor property and have developed as candidates for anticancer drugs. This paper aimed to study the antitumor effect of fangchinoline derivative HY-2 by targeting BLM642-1290 DNA helicase, and then explore its inhibitory mechanism on proliferation of MDA-MB-435 breast cancer cells. We confirmed that the mRNA and protein levels of BLM DNA helicase in breast cancer were higher than those in normal tissues. HY-2 could inhibit the DNA binding, ATPase and DNA unwinding of BLM642-1290 DNA helicase with enzymatic assay. HY-2 could also inhibit the DNA unwinding of DNA helicase in cells. In addition, HY-2 showed an inhibiting the MDA-MB-435, MDA-MB-231, MDA-MB-436 breast cancer cells expansion. The mRNA and protein levels of BLM DNA helicase in MDA-MB-435 cells increased after HY-2 treatment, which might contribute to HY-2 inhibiting the DNA binding, ATPase and DNA unwinding of BLM DNA helicase. The mechanism of HY-2 inhibition on BLM DNA helicase was further confirmed with the effect of HY-2 on the ultraviolet spectrogram of BLM642-1290 DNA helicase and Molecular dynamics simulation of the interacting between HY-2 and BLM640-1291 DNA helicase. Our study provided some valuable clues for the exploration of HY-2 in the living body and developing it as an anticancer drug.
Collapse
Affiliation(s)
- Wangming Zhang
- Department of Immunology, Basic Medical College, Guizhou Medical University, 9 Beijing Road, Guiyang 550025, People's Republic of China
| | - Xiaojing Yu
- Department of Immunology, Basic Medical College, Guizhou Medical University, 9 Beijing Road, Guiyang 550025, People's Republic of China
| | - Linchun Bao
- Department of Immunology, Basic Medical College, Guizhou Medical University, 9 Beijing Road, Guiyang 550025, People's Republic of China; Clinical Laboratory, People's Hospital of Qianxinan Buyi and Miao Minority Autonomous Prefecture, Guizhou, Xingyi 562400, People's Republic of China
| | - Tianhui He
- Dejiang County Hospital of Traditional Chinese Medicine, Dejiang County South Avenue, Dejiang 565299, People's Republic of China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants (Guizhou Medical University), Guizhou Science City, Guiyang 550014, People's Republic of China
| | - Pinhao Li
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang 550001, People's Republic of China
| | - Jinhe Liu
- Tissue Engineering and Stem Cell Research Center, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Xiaohua Liu
- Department of Immunology, Basic Medical College, Guizhou Medical University, 9 Beijing Road, Guiyang 550025, People's Republic of China
| | - Liuqi Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, 9 Beijing Road, Guiyang 550025, People's Republic of China
| | - Jielin Liu
- Department of Immunology, Basic Medical College, Guizhou Medical University, 9 Beijing Road, Guiyang 550025, People's Republic of China; State Key Laboratory of Functions and Applications of Medicinal Plants (Guizhou Medical University), Guizhou Science City, Guiyang 550014, People's Republic of China.
| |
Collapse
|
7
|
Sharma R, Oak N, Chen W, Gogal R, Kirschner M, Beier F, Schnieders MJ, Spies M, Nichols KE, Wlodarski M. Germline landscape of RPA1, RPA2 and RPA3 variants in pediatric malignancies: identification of RPA1 as a novel cancer predisposition candidate gene. Front Oncol 2023; 13:1229507. [PMID: 37869077 PMCID: PMC10588448 DOI: 10.3389/fonc.2023.1229507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Replication Protein A (RPA) is single-strand DNA binding protein that plays a key role in the replication and repair of DNA. RPA is a heterotrimer made of 3 subunits - RPA1, RPA2, and RPA3. Germline pathogenic variants affecting RPA1 were recently described in patients with Telomere Biology Disorders (TBD), also known as dyskeratosis congenita or short telomere syndrome. Premature telomere shortening is a hallmark of TBD and results in bone marrow failure and predisposition to hematologic malignancies. Building on the finding that somatic mutations in RPA subunit genes occur in ~1% of cancers, we hypothesized that germline RPA alterations might be enriched in human cancers. Because germline RPA1 mutations are linked to early onset TBD with predisposition to myelodysplastic syndromes, we interrogated pediatric cancer cohorts to define the prevalence and spectrum of rare/novel and putative damaging germline RPA1, RPA2, and RPA3 variants. In this study of 5,993 children with cancer, 75 (1.25%) harbored heterozygous rare (non-cancer population allele frequency (AF) < 0.1%) variants in the RPA heterotrimer genes, of which 51 cases (0.85%) had ultra-rare (AF < 0.005%) or novel variants. Compared with Genome Aggregation Database (gnomAD) non-cancer controls, there was significant enrichment of ultra-rare and novel RPA1, but not RPA2 or RPA3, germline variants in our cohort (adjusted p-value < 0.05). Taken together, these findings suggest that germline putative damaging variants affecting RPA1 are found in excess in children with cancer, warranting further investigation into the functional role of these variants in oncogenesis.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Hematology, St. Jude Children´s Research Hospital, Memphis, TN, United States
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Rose Gogal
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Bonn, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Bonn, Germany
| | - Michael J. Schnieders
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Maria Spies
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Marcin Wlodarski
- Department of Hematology, St. Jude Children´s Research Hospital, Memphis, TN, United States
| |
Collapse
|
8
|
Wojnicki K, Kaczmarczyk A, Wojtas B, Kaminska B. BLM helicase overexpressed in human gliomas contributes to diverse responses of human glioma cells to chemotherapy. Cell Death Discov 2023; 9:157. [PMID: 37169803 PMCID: PMC10175545 DOI: 10.1038/s41420-023-01451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Most of anti-tumour therapies eliminate neoplastic cells by introducing DNA damage which ultimately triggers cell death. These effects are counteracted by activated DNA repair pathways to sustain tumour proliferation capacity. RECQL helicases family, including BLM, participate in DNA damage and repair, and prevent the replication stress. Glioblastoma (GBM) is a common, malignant brain tumour that inevitably recurs despite surgical resection, radiotherapy, and chemotherapy with temozolomide (TMZ). Expression and functions of the BLM helicase in GBM therapy resistance have not been elucidated. We analysed expression and localisation of BLM in human gliomas and several glioma cell lines using TCGA datasets, immunostaining and Western blotting. BLM depleted human glioma cells were generated with CRISPR/Cas9 system. Effects of chemotherapeutics on cell proliferation, DNA damage and apoptosis were determined with flow cytometry, immunofluorescence, Western blotting and RNA sequencing. We found upregulated BLM mRNA levels in malignant gliomas, increased cytosolic localisation and poor survival of GBM patients with high BLM expression. BLM deficiency in LN18 and LN229 glioma cells resulted in profound transcriptomic alterations, reduced cell proliferation, and altered cell responses to chemotherapeutics. BLM-deficient glioma cells were resistant to the TMZ and PARP inhibitor treatment and underwent polyploidy or senescence depending on the TP53 activity. Our findings of high BLM expression in GBMs and its roles in responses to chemotherapeutics provide a rationale for targeting BLM helicase in brain tumours. BLM deficiency affects responses of glioma cells to chemotherapeutics targeting PARP1 dependent pathways.
Collapse
Affiliation(s)
- Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Agnieszka Kaczmarczyk
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
9
|
Güleç Ceylan G, Arslan Satılmış SB, Çavdarlı B, Semerci Gündüz CN. Contribution of Inherited Variants to Hereditary Cancer Syndrome Predisposition. TOHOKU J EXP MED 2022; 258:319-325. [PMID: 36288950 DOI: 10.1620/tjem.2022.j087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer is a clonal disease that develops as a result of the changes on the genetic material by various factors in micro/macro environment. It has a multi-step development process. In some cancer types, genetic factors allow this multi-step process to proceed easily. These cancer types are also called hereditary cancer syndromes. Targeted gene panels are important diagnostic methods in hereditary cancer syndromes to detect the causative variants associated with these hereditary cancer syndromes. We reviewed the data of 94 patients who applied to Ankara City Hospital Genetic Diseases Evaluation Center from March 2019 to July 2021. Qiagen familial cancer susceptibility gene panel kit was used for next generation sequencing to detect the single nucleotide variants for the targeted genes. Sixty-one genes which are associated with increased cancer risk or well characterized hereditary cancer syndromes were included to this panel. Twenty five patients (27%), including 8 males and 17 females, had pathogenic/likely pathogenic variants in 13 of the 61 genes analyzed. Forty patients (43%) had variants which were assessed as variant of unknown significant. In our study, targeted multi-gene panel was diagnostic in nearly one third of the patients with personal/familial cancer syndromes. Molecular diagnosis in familial cancer syndromes is important in terms of predictive diagnosis and family screening, as well as patient follow-up and early prophylactic surgery. The predisposition for hereditary cancer syndromes can be determined according to pre-test evaluation, figuring out the inheritance type with pedigree analysis, cancer type and the genetic analysis for appropriate susceptibility genes.
Collapse
Affiliation(s)
- Gülay Güleç Ceylan
- Department of Medical Genetics, Ankara City Hospital.,Department of Medical Genetics, Ankara Yıldırım Beyazıt University
| | | | | | - C Nur Semerci Gündüz
- Department of Medical Genetics, Ankara City Hospital.,Department of Medical Genetics, Ankara Yıldırım Beyazıt University
| |
Collapse
|
10
|
Yang R, Zhan Y, Li Y, Dai SY, He SW, Ye CJ, Meng LD, Chen DQ, Dong CB, Chen L, Chen G, Dong KR, Li K, Zheng S, Li J, Yao W, Dong R. The Cellular and Molecular Landscape of Synchronous Pediatric Sialoblastoma and Hepatoblastoma. Front Oncol 2022; 12:893206. [PMID: 35860547 PMCID: PMC9289541 DOI: 10.3389/fonc.2022.893206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023] Open
Abstract
Sialoblastoma (SBL) is an infrequent embryonal malignant tumor originating from the salivary gland, resembling primitive salivary gland anlage, whereas hepatoblastoma (HB) is the most common pediatric liver malignancy. The simultaneous occurrence of both tumors is extremely rare. Here we reported a case of a 6-month-old infant diagnosed with synchronous SBL and HB. The patient received neoadjuvant chemotherapy followed by surgical resection. Fresh tissues of both tumors were collected before and after chemotherapy, which were further profiled by whole exome sequencing (WES) and single-cell RNA sequencing (scRNA-seq). WES analysis revealed potential somatic driver mutation PIK3CA p.Glu454Lys for SBL and canonical mutation CTNNB1 p.Ser45Pro for HB. No shared somatic variants or common copy number alterations were found between SBL and HB primary tumor samples. Though scRNA-seq, single-cell atlases were constructed for both tumors. SBL may recapitulate a pre-acinar stage in the development of salivary gland, including basaloid, duct-like, myoepithelial-like, and cycling phenotypes. In the meantime, HB was composed of tumor cells resembling different stages of the liver, including hepatocyte-like, hepatic progenitor-like, and hepatoblast-like cells. After chemotherapy, both tumors were induced into a more mature phenotype. In terms of transcriptional signatures, SBL and HB showed enhanced expression of epithelial markers KRT8, KRT18, and essential embryo development genes SDC1, MDK, indicating the disruption of normal embryo epithelium development. Finally, heterozygous deleterious germline mutation BLM and FANCI were identified which could predispose the patient to higher cancer risk. It partially explained the reason for the co-occurrence of SBL and HB. Taken together, we provided valuable resources for deciphering cellular heterogeneity and adaptive change of tumor cells after chemotherapy for synchronous SBL and HB, providing insights into the mechanisms leading to synchronous pediatric tumors.
Collapse
Affiliation(s)
- Ran Yang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Yi Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Shu-Yang Dai
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Shi-Wei He
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Chun-Jing Ye
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Ling-Du Meng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - De-Qian Chen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Chen-Bin Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Lian Chen
- Department of Pathology, Children’s Hospital of Fudan University, Shanghai, China
| | - Gong Chen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Kui-Ran Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Kai Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Jun Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- *Correspondence: Rui Dong, ; Wei Yao, ; Jun Li,
| | - Wei Yao
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- *Correspondence: Rui Dong, ; Wei Yao, ; Jun Li,
| | - Rui Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- *Correspondence: Rui Dong, ; Wei Yao, ; Jun Li,
| |
Collapse
|
11
|
Mekonnen N, Yang H, Shin YK. Homologous Recombination Deficiency in Ovarian, Breast, Colorectal, Pancreatic, Non-Small Cell Lung and Prostate Cancers, and the Mechanisms of Resistance to PARP Inhibitors. Front Oncol 2022; 12:880643. [PMID: 35785170 PMCID: PMC9247200 DOI: 10.3389/fonc.2022.880643] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination (HR) is a highly conserved DNA repair mechanism that protects cells from exogenous and endogenous DNA damage. Breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) play an important role in the HR repair pathway by interacting with other DNA repair proteins such as Fanconi anemia (FA) proteins, ATM, RAD51, PALB2, MRE11A, RAD50, and NBN. These pathways are frequently aberrant in cancer, leading to the accumulation of DNA damage and genomic instability known as homologous recombination deficiency (HRD). HRD can be caused by chromosomal and subchromosomal aberrations, as well as by epigenetic inactivation of tumor suppressor gene promoters. Deficiency in one or more HR genes increases the risk of many malignancies. Another conserved mechanism involved in the repair of DNA single-strand breaks (SSBs) is base excision repair, in which poly (ADP-ribose) polymerase (PARP) enzymes play an important role. PARP inhibitors (PARPIs) convert SSBs to more cytotoxic double-strand breaks, which are repaired in HR-proficient cells, but remain unrepaired in HRD. The blockade of both HR and base excision repair pathways is the basis of PARPI therapy. The use of PARPIs can be expanded to sporadic cancers displaying the “BRCAness” phenotype. Although PARPIs are effective in many cancers, their efficacy is limited by the development of resistance. In this review, we summarize the prevalence of HRD due to mutation, loss of heterozygosity, and promoter hypermethylation of 35 DNA repair genes in ovarian, breast, colorectal, pancreatic, non-small cell lung cancer, and prostate cancer. The underlying mechanisms and strategies to overcome PARPI resistance are also discussed.
Collapse
Affiliation(s)
- Negesse Mekonnen
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Department of Veterinary Science, School of Animal Science and Veterinary Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Hobin Yang
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
| | - Young Kee Shin
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University Graduate School of Convergence Science and Technology, Seoul, South Korea
- LOGONE Bio Convergence Research Foundation, Center for Companion Diagnostics, Seoul, South Korea
- *Correspondence: Young Kee Shin,
| |
Collapse
|
12
|
Thakkar MK, Lee J, Meyer S, Chang VY. RecQ Helicase Somatic Alterations in Cancer. Front Mol Biosci 2022; 9:887758. [PMID: 35782872 PMCID: PMC9240438 DOI: 10.3389/fmolb.2022.887758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Named the “caretakers” of the genome, RecQ helicases function in several pathways to maintain genomic stability and repair DNA. This highly conserved family of enzymes consist of five different proteins in humans: RECQL1, BLM, WRN, RECQL4, and RECQL5. Biallelic germline mutations in BLM, WRN, and RECQL4 have been linked to rare cancer-predisposing syndromes. Emerging research has also implicated somatic alterations in RecQ helicases in a variety of cancers, including hematological malignancies, breast cancer, osteosarcoma, amongst others. These alterations in RecQ helicases, particularly overexpression, may lead to increased resistance of cancer cells to conventional chemotherapy. Downregulation of these proteins may allow for increased sensitivity to chemotherapy, and, therefore, may be important therapeutic targets. Here we provide a comprehensive review of our current understanding of the role of RecQ DNA helicases in cancer and discuss the potential therapeutic opportunities in targeting these helicases.
Collapse
Affiliation(s)
- Megha K. Thakkar
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jamie Lee
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stefan Meyer
- Division of Cancer Studies, University of Manchester, Manchester, United Kingdom
- Department of Pediatric Hematology Oncology, Royal Manchester Children’s Hospital and Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Vivian Y. Chang
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Childrens Discovery and Innovation Institute, UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States
- *Correspondence: Vivian Y. Chang,
| |
Collapse
|
13
|
Age of first cancer diagnosis and survival in Bloom syndrome. Genet Med 2022; 24:1476-1484. [PMID: 35420546 DOI: 10.1016/j.gim.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 01/03/2023] Open
Abstract
PURPOSE This study aimed to describe the spectrum of cancers observed in Bloom Syndrome and the observed survival and age of first cancer diagnosis in Bloom syndrome as these are not well-defined. METHODS Data from the Bloom Syndrome Registry (BSR) was used for this study. Cancer history, ages of first cancer diagnosis, and ages of death were compiled from the BSR and analyzed. RESULTS Among the 290 individuals in the BSR, 155 (53%) participants developed 251 malignant neoplasms; 100 (65%) were diagnosed with 1 malignancy, whereas the remaining 55 (35%) developed multiple malignancies. Of the 251 neoplasms, 83 (33%) were hematologic and 168 (67%) were solid tumors. Hematologic malignancies (leukemia and lymphoma) were more common than any of the solid tumors. The most commonly observed solid tumors were colorectal, breast, and oropharyngeal. The cumulative incidence of any malignancy by age 40 was 83%. The median survival for all participants in the BSR was 36.2 years. There were no significant differences in time to first cancer diagnosis or survival by genotype among the study participants. CONCLUSION We describe the spectrum of cancers observed in Bloom syndrome and the observed survival and age of first cancer diagnosis in Bloom syndrome. We also highlight the significant differences in survival and age of diagnosis seen among different tumor types and genotypes.
Collapse
|
14
|
Archambault AN, Jeon J, Lin Y, Thomas M, Harrison TA, Bishop DT, Brenner H, Casey G, Chan AT, Chang-Claude J, Figueiredo JC, Gallinger S, Gruber SB, Gunter MJ, Guo F, Hoffmeister M, Jenkins MA, Keku TO, Le Marchand L, Li L, Moreno V, Newcomb PA, Pai R, Parfrey PS, Rennert G, Sakoda LC, Lee JK, Slattery ML, Song M, Win AK, Woods MO, Murphy N, Campbell PT, Su YR, Lansdorp-Vogelaar I, Peterse EFP, Cao Y, Zeleniuch-Jacquotte A, Liang PS, Du M, Corley DA, Hsu L, Peters U, Hayes RB. Risk Stratification for Early-Onset Colorectal Cancer Using a Combination of Genetic and Environmental Risk Scores: An International Multi-Center Study. J Natl Cancer Inst 2022; 114:528-539. [PMID: 35026030 PMCID: PMC9002285 DOI: 10.1093/jnci/djac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/04/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The incidence of colorectal cancer (CRC) among individuals aged younger than 50 years has been increasing. As screening guidelines lower the recommended age of screening initiation, concerns including the burden on screening capacity and costs have been recognized, suggesting that an individualized approach may be warranted. We developed risk prediction models for early-onset CRC that incorporate an environmental risk score (ERS), including 16 lifestyle and environmental factors, and a polygenic risk score (PRS) of 141 variants. METHODS Relying on risk score weights for ERS and PRS derived from studies of CRC at all ages, we evaluated risks for early-onset CRC in 3486 cases and 3890 controls aged younger than 50 years. Relative and absolute risks for early-onset CRC were assessed according to values of the ERS and PRS. The discriminatory performance of these scores was estimated using the covariate-adjusted area under the receiver operating characteristic curve. RESULTS Increasing values of ERS and PRS were associated with increasing relative risks for early-onset CRC (odds ratio per SD of ERS = 1.14, 95% confidence interval [CI] = 1.08 to 1.20; odds ratio per SD of PRS = 1.59, 95% CI = 1.51 to 1.68), both contributing to case-control discrimination (area under the curve = 0.631, 95% CI = 0.615 to 0.647). Based on absolute risks, we can expect 26 excess cases per 10 000 men and 21 per 10 000 women among those scoring at the 90th percentile for both risk scores. CONCLUSIONS Personal risk scores have the potential to identify individuals at differential relative and absolute risk for early-onset CRC. Improved discrimination may aid in targeted CRC screening of younger, high-risk individuals, potentially improving outcomes.
Collapse
Affiliation(s)
- Alexi N Archambault
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Jihyoun Jeon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Minta Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - D Timothy Bishop
- Leeds Institute of Medical Research, St. James’s University of Leeds, Leeds, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Stephen B Gruber
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Feng Guo
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Rish Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Jeffrey K Lee
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St John’s, NL, Canada
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Peter T Campbell
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Yu-Ru Su
- Biostatistics Unit, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Iris Lansdorp-Vogelaar
- Department of Public Health, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elisabeth F P Peterse
- Department of Public Health, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
- Washington University School of Medicine, Alvin J. Siteman Cancer Center, St Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Anne Zeleniuch-Jacquotte
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Peter S Liang
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Vagher J, Gammon A, Kohlmann W, Jeter J. Non-Melanoma Skin Cancers and Other Cutaneous Manifestations in Bone Marrow Failure Syndromes and Rare DNA Repair Disorders. Front Oncol 2022; 12:837059. [PMID: 35359366 PMCID: PMC8960432 DOI: 10.3389/fonc.2022.837059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Although most non-melanoma skin cancers are felt to be sporadic in origin, these tumors do play a role in several cancer predisposition syndromes. The manifestations of skin cancers in these hereditary populations can include diagnosis at extremely early ages and/or multiple primary cancers, as well as tumors at less common sites. Awareness of baseline skin cancer risks for these individuals is important, particularly in the setting of treatments that may compromise the immune system and further increase risk of cutaneous malignancies. Additionally, diagnosis of these disorders and management of non-cutaneous manifestations of these diseases have profound implications for both the patient and their family. This review highlights the current literature on the diagnosis, features, and non-melanoma skin cancer risks associated with lesser-known cancer predisposition syndromes, including bone marrow failure disorders, genomic instability disorders, and base excision repair disorders.
Collapse
Affiliation(s)
- Jennie Vagher
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Amanda Gammon
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Wendy Kohlmann
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Joanne Jeter
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
16
|
A cross-sectional survey of genetic counselors providing carrier screening regarding GBA variants and Parkinson disease susceptibility. J Assist Reprod Genet 2022; 39:747-755. [PMID: 35146589 PMCID: PMC8995214 DOI: 10.1007/s10815-022-02430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/07/2022] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Adult-onset disease risks associated with carriers of recessive disease have and will continue to be identified. As carrier screening becomes more broadly utilized, providers face the dilemma of whether they should discuss these risks during discussions with prospective parents. This study aimed to understand whether preconception/prenatal genetic counselors (PPGCs) were aware of the risk of Parkinson disease in carriers of, and persons with, Gaucher disease and the reasons behind choosing whether to discuss this risk with patients. METHODS Eligible participants included board-certified or board-eligible genetic counselors who had counseled preconception/prenatal patients within the past 3 years. An online survey was distributed via the National Society of Genetic Counselors in November of 2017. RESULTS One hundred twenty genetic counselors completed the quantitative survey, distributed in Fall of 2017. While the majority of respondents knew of the Gaucher-related Parkinson's link (n = 78; 65%), just over one-third reported discussing it in preconception/prenatal settings (n = 30; 38.5%). Respondents reported discussing these links more consistently when disclosing positive results or when the patient/family approached the topic. Respondents cited the lack of professional guidelines as one of the main reasons for not discussing the link. CONCLUSION These results highlight an inconsistency in PPGCs' discussions of the Parkinson's risk in Gaucher disease carriers, and the need to develop guidelines regarding these issues to help standardize the care and education of patients.
Collapse
|
17
|
Liao H, Cai S, Bai Y, Zhang B, Sheng Y, Tong S, Cai J, Zhao F, Zhao X, Chen S, Zhang C, Gao J. Prevalence and spectrum of germline cancer susceptibility gene variants and somatic second hits in colorectal cancer. Am J Cancer Res 2021; 11:5571-5580. [PMID: 34873480 PMCID: PMC8640796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most heritable cancers, and genetic factors play an important role in the increased CRC risk. However, the well-established CRC-risk genes were limited for explaining the increased risk of CRC individuals. Germline mutations in DNA damage repair (DDR) genes have also been reported to be implicated in CRC heritability. Here, we aimed to determine the prevalence and significance of germline DDR and well-established CRC-risk gene variants in CRCs with paired somatic analyses. Next-generation sequencing (NGS) was performed on tumor tissues and paired white blood cells collected from 2160 Chinese patients with CRC using well-designed 381- or 733-cancer gene panel. Germline/somatic variations were identified and assessed for pathogenicity and likely pathogenicity. Of 2160 CRCs, 136 pathogenic germline mutations in 133 patients (133/2160, 6.1%) were identified in 21 genes, including 19 out of 32 examined DDR genes. Compared with non-carriers, individuals with germline variants were prone to a higher level of microsatellite instability (MSI) and tumor mutational burden (TMB), and an earlier age of onset. Somatic sequencing identified second hits in 24/133 (18%) patients with germline variants. Among the mismatch repair (MMR) genes with germline mutations, the second hit significantly increased MSI and TMB, particularly apparent in MSH6. All MMR germline variation carriers further with a second hit were all MSI-H and had an extraordinarily high level of TMB. Collectively, approximately 6.1% of CRC patients carried pathogenic germline variants, and additional somatic second hit increases the genomic instability in CRC, whereas the more clinical significance warrants further study.
Collapse
Affiliation(s)
- Haiyan Liao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen, China
| | - Songhua Cai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen, China
| | - Yuezong Bai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & InstituteBeijing, China
| | | | - Yuling Sheng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen, China
| | | | | | | | | | | | - Cheng Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & InstituteBeijing, China
| | - Jing Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen, China
| |
Collapse
|
18
|
Balajee AS. Human RecQL4 as a Novel Molecular Target for Cancer Therapy. Cytogenet Genome Res 2021; 161:305-327. [PMID: 34474412 DOI: 10.1159/000516568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022] Open
Abstract
Human RecQ helicases play diverse roles in the maintenance of genomic stability. Inactivating mutations in 3 of the 5 human RecQ helicases are responsible for the pathogenesis of Werner syndrome (WS), Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), RAPADILINO, and Baller-Gerold syndrome (BGS). WS, BS, and RTS patients are at increased risk for developing many age-associated diseases including cancer. Mutations in RecQL1 and RecQL5 have not yet been associated with any human diseases so far. In terms of disease outcome, RecQL4 deserves special attention because mutations in RecQL4 result in 3 autosomal recessive syndromes (RTS type II, RAPADILINO, and BGS). RecQL4, like other human RecQ helicases, has been demonstrated to play a crucial role in the maintenance of genomic stability through participation in diverse DNA metabolic activities. Increased incidence of osteosarcoma in RecQL4-mutated RTS patients and elevated expression of RecQL4 in sporadic cancers including osteosarcoma suggest that loss or gain of RecQL4 expression is linked with cancer susceptibility. In this review, current and future perspectives are discussed on the potential use of RecQL4 as a novel cancer therapeutic target.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| |
Collapse
|
19
|
Toh M, Ngeow J. Homologous Recombination Deficiency: Cancer Predispositions and Treatment Implications. Oncologist 2021; 26:e1526-e1537. [PMID: 34021944 PMCID: PMC8417864 DOI: 10.1002/onco.13829] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination (HR) is a highly accurate DNA repair mechanism. Several HR genes are established cancer susceptibility genes with clinically actionable pathogenic variants (PVs). Classically, BRCA1 and BRCA2 germline PVs are associated with significant breast and ovarian cancer risks. Patients with BRCA1 or BRCA2 PVs display worse clinical outcomes but respond better to platinum-based chemotherapies and poly-ADP ribose polymerase inhibitors, a trait termed "BRCAness." With the advent of whole-exome sequencing and multigene panels, PVs in other HR genes are increasingly identified among familial cancers. As such, several genes such as PALB2 are reclassified as cancer predisposition genes. But evidence for cancer risks remains unclear for many others. In this review, we will discuss cancer predispositions and treatment implications beyond BRCA1 and BRCA2, with a focus on 24 HR genes: 53BP1, ATM, ATR, ATRIP, BARD1, BLM, BRIP1, DMC1, MRE11A, NBN, PALB2, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RIF1, RMI1, RMI2, RPA1, TOP3A, TOPBP1, XRCC2, and XRCC3. IMPLICATIONS FOR PRACTICE: This review provides a comprehensive reference for readers to quickly identify potential cancer predisposing homologous recombination (HR) genes, and to generate research questions for genes with inconclusive evidence. This review also evaluates the "BRCAness" of each HR member. Clinicians can refer to these discussions to identify potential candidates for future clinical trials.
Collapse
Affiliation(s)
- MingRen Toh
- Duke–National University of Singapore Medical SchoolSingapore
| | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer CenterSingapore
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingapore
| |
Collapse
|
20
|
Ababou M. Bloom syndrome and the underlying causes of genetic instability. Mol Genet Metab 2021; 133:35-48. [PMID: 33736941 DOI: 10.1016/j.ymgme.2021.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 03/06/2021] [Indexed: 11/27/2022]
Abstract
Autosomal hereditary recessive diseases characterized by genetic instability are often associated with cancer predisposition. Bloom syndrome (BS), a rare genetic disorder, with <300 cases reported worldwide, combines both. Indeed, patients with Bloom's syndrome are 150 to 300 times more likely to develop cancers than normal individuals. The wide spectrum of cancers developed by BS patients suggests that early initial events occur in BS cells which may also be involved in the initiation of carcinogenesis in the general population and these may be common to several cancers. BS is caused by mutations of both copies of the BLM gene, encoding the RecQ BLM helicase. This review discusses the different aspects of BS and the different cellular functions of BLM in genome surveillance and maintenance through its major roles during DNA replication, repair, and transcription. BLM's activities are essential for the stabilization of centromeric, telomeric and ribosomal DNA sequences, and the regulation of innate immunity. One of the key objectives of this work is to establish a link between BLM functions and the main clinical phenotypes observed in BS patients, as well as to shed new light on the correlation between the genetic instability and diseases such as immunodeficiency and cancer. The different potential implications of the BLM helicase in the tumorigenic process and the use of BLM as new potential target in the field of cancer treatment are also debated.
Collapse
Affiliation(s)
- Mouna Ababou
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco; Genomic Center of Human Pathologies, Faculty of medicine and Pharmacy, University Mohammed V, Rabat, Morocco.
| |
Collapse
|
21
|
Recurrent somatic mutations and low germline predisposition mutations in Korean ALL patients. Sci Rep 2021; 11:8893. [PMID: 33903686 PMCID: PMC8076247 DOI: 10.1038/s41598-021-88449-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/08/2021] [Indexed: 01/01/2023] Open
Abstract
In addition to somatic mutations, germline genetic predisposition to hematologic malignancies is currently emerging as an area attracting high research interest. In this study, we investigated genetic alterations in Korean acute lymphoblastic leukemia/lymphoma (ALL) patients using targeted gene panel sequencing. To this end, a gene panel consisting of 81 genes that are known to be associated with 23 predisposition syndromes was investigated. In addition to sequence variants, gene-level copy number variations (CNVs) were investigated as well. We identified 197 somatic sequence variants and 223 somatic CNVs. The IKZF1 alteration was found to have an adverse effect on overall survival (OS) and relapse-free survival (RFS) in childhood ALL. We found recurrent somatic alterations in Korean ALL patients similar to previous studies on both prevalence and prognostic impact. Six patients were found to be carriers of variants in six genes associated with primary immunodeficiency disorder (PID). Of the 81 genes associated with 23 predisposition syndromes, this study found only one predisposition germline mutation (TP53) (1.1%). Altogether, our study demonstrated a low probability of germline mutation predisposition to ALL in Korean ALL patients.
Collapse
|
22
|
de Almeida LC, Calil FA, Machado-Neto JA, Costa-Lotufo LV. DNA damaging agents and DNA repair: From carcinogenesis to cancer therapy. Cancer Genet 2021; 252-253:6-24. [DOI: 10.1016/j.cancergen.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/09/2023]
|
23
|
Kaur E, Agrawal R, Sengupta S. Functions of BLM Helicase in Cells: Is It Acting Like a Double-Edged Sword? Front Genet 2021; 12:634789. [PMID: 33777104 PMCID: PMC7994599 DOI: 10.3389/fgene.2021.634789] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
DNA damage repair response is an important biological process involved in maintaining the fidelity of the genome in eukaryotes and prokaryotes. Several proteins that play a key role in this process have been identified. Alterations in these key proteins have been linked to different diseases including cancer. BLM is a 3′−5′ ATP-dependent RecQ DNA helicase that is one of the most essential genome stabilizers involved in the regulation of DNA replication, recombination, and both homologous and non-homologous pathways of double-strand break repair. BLM structure and functions are known to be conserved across many species like yeast, Drosophila, mouse, and human. Genetic mutations in the BLM gene cause a rare, autosomal recessive disorder, Bloom syndrome (BS). BS is a monogenic disease characterized by genomic instability, premature aging, predisposition to cancer, immunodeficiency, and pulmonary diseases. Hence, these characteristics point toward BLM being a tumor suppressor. However, in addition to mutations, BLM gene undergoes various types of alterations including increase in the copy number, transcript, and protein levels in multiple types of cancers. These results, along with the fact that the lack of wild-type BLM in these cancers has been associated with increased sensitivity to chemotherapeutic drugs, indicate that BLM also has a pro-oncogenic function. While a plethora of studies have reported the effect of BLM gene mutations in various model organisms, there is a dearth in the studies undertaken to investigate the effect of its oncogenic alterations. We propose to rationalize and integrate the dual functions of BLM both as a tumor suppressor and maybe as a proto-oncogene, and enlist the plausible mechanisms of its deregulation in cancers.
Collapse
Affiliation(s)
- Ekjot Kaur
- Signal Transduction Laboratory-2, National Institute of Immunology, New Delhi, India
| | - Ritu Agrawal
- Signal Transduction Laboratory-2, National Institute of Immunology, New Delhi, India
| | - Sagar Sengupta
- Signal Transduction Laboratory-2, National Institute of Immunology, New Delhi, India
| |
Collapse
|
24
|
Helwa R, Gansmo LB, Bjørnslett M, Halle MK, Werner HMJ, Romundstad P, Hveem K, Vatten L, Dørum A, Lønning PE, Knappskog S. Impact of MDM2 promoter SNP55 (rs2870820) on risk of endometrial and ovarian cancer. Biomarkers 2021; 26:302-308. [PMID: 33645339 DOI: 10.1080/1354750x.2021.1891291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND While large GWAS analyses have not found convincing associations between MDM2 promoter SNP55 and gynaecological cancers, SNP55 is in linkage disequilibrium with two other functional SNPs in the same promoter, likely to obscure associations between single SNPs and cancer risk. Here, we assessed the impact of SNP55 on risk of endometrial and ovarian cancer, including sub-analyses stratified for other functional SNPs in the region. MATERIAL AND METHODS Using a custom LightSNiP assay, we genotyped SNP55 in two large hospital-based cohorts of patients with ovarian (n = 1,332) and endometrial (n = 1,363) cancer and compared genotypes to healthy female controls (n = 1,858). RESULTS Among individuals harbouring the SNP309TT genotype, the minor SNP55T-allele was associated with a reduced risk of endometrial (dominant model: OR = 0.63; CI = 0.45-0.88; p = 0.01). Regardless of the genotype in neighbouring SNPs, the SNP55T-allele was also associated with a reduced risk of endometrial cancer before 50 years of age (dominant model: OR = 0.56; CI = 0.34-0.90; p = 0.02). No association between SNP55 status and ovarian cancer risk was observed. CONCLUSIONS MDM2 SNP55T-allele may correlate with reduced risk for endometrial cancer in a SNP309T-, but not SNP309G, context.
Collapse
Affiliation(s)
- Reham Helwa
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Liv B Gansmo
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Merete Bjørnslett
- Department of Molecular Oncology, Oslo University Hospital Radium Hospitalet, Oslo, Norway.,Institute for Cancer Research, University of Oslo, Oslo, Norway
| | - Mari Kyllesø Halle
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Henrica M J Werner
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pål Romundstad
- Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Vatten
- Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Dørum
- Department of Gynecologic Oncology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Per E Lønning
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
25
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
26
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021. [DOI: 10.3389/fcell.2021.640755 order by 1-- znbp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
27
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
28
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
29
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021. [DOI: 10.3389/fcell.2021.640755 order by 1-- azli] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
30
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
31
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
32
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
33
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
34
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
35
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021; 9:640755. [PMID: 33718381 PMCID: PMC7947261 DOI: 10.3389/fcell.2021.640755] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund-Thomson syndrome (RTS), Baller-Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
Affiliation(s)
- Huiming Lu
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Anthony J. Davis
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
36
|
Heterozygous germline BLM mutations increase susceptibility to asbestos and mesothelioma. Proc Natl Acad Sci U S A 2020; 117:33466-33473. [PMID: 33318203 PMCID: PMC7776606 DOI: 10.1073/pnas.2019652117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rare biallelic BLM gene mutations cause Bloom syndrome. Whether BLM heterozygous germline mutations (BLM +/-) cause human cancer remains unclear. We sequenced the germline DNA of 155 mesothelioma patients (33 familial and 122 sporadic). We found 2 deleterious germline BLM +/- mutations within 2 of 33 families with multiple cases of mesothelioma, one from Turkey (c.569_570del; p.R191Kfs*4) and one from the United States (c.968A>G; p.K323R). Some of the relatives who inherited these mutations developed mesothelioma, while none with nonmutated BLM were affected. Furthermore, among 122 patients with sporadic mesothelioma treated at the US National Cancer Institute, 5 carried pathogenic germline BLM +/- mutations. Therefore, 7 of 155 apparently unrelated mesothelioma patients carried BLM +/- mutations, significantly higher (P = 6.7E-10) than the expected frequency in a general, unrelated population from the gnomAD database, and 2 of 7 carried the same missense pathogenic mutation c.968A>G (P = 0.0017 given a 0.00039 allele frequency). Experiments in primary mesothelial cells from Blm +/- mice and in primary human mesothelial cells in which we silenced BLM revealed that reduced BLM levels promote genomic instability while protecting from cell death and promoted TNF-α release. Blm +/- mice injected intraperitoneally with asbestos had higher levels of proinflammatory M1 macrophages and of TNF-α, IL-1β, IL-3, IL-10, and IL-12 in the peritoneal lavage, findings linked to asbestos carcinogenesis. Blm +/- mice exposed to asbestos had a significantly shorter survival and higher incidence of mesothelioma compared to controls. We propose that germline BLM +/- mutations increase the susceptibility to asbestos carcinogenesis, enhancing the risk of developing mesothelioma.
Collapse
|
37
|
Elsayed FA, Grolleman JE, Ragunathan A, Buchanan DD, van Wezel T, de Voer RM. Monoallelic NTHL1 Loss-of-Function Variants and Risk of Polyposis and Colorectal Cancer. Gastroenterology 2020; 159:2241-2243.e6. [PMID: 32860789 PMCID: PMC7899696 DOI: 10.1053/j.gastro.2020.08.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Fadwa A. Elsayed
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith E. Grolleman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Abiramy Ragunathan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Richarda M. de Voer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
38
|
Pathogenic Germline Mutations of DNA Repair Pathway Components in Early-Onset Sporadic Colorectal Polyp and Cancer Patients. Cancers (Basel) 2020; 12:cancers12123560. [PMID: 33260537 PMCID: PMC7761471 DOI: 10.3390/cancers12123560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) screening by immuno-fecal occult blood tests (iFOBTs) begins at age 50 in average-risk persons. However, the incidence of early-onset CRC has risen; of the cases, at least half are sporadic CRC without a family history. The authors of this study found a high percentage of de novo germline mutation in young sporadic CRC patients, as well as in sporadic colorectal polyp and control groups. All the mutated genes contribute to various DNA-repair pathways, hinting that a loss of genomic integrity play a crucial role in the development of CRC. The early identification of cancer-susceptible individuals by multigene panels in younger individuals who may be missed under current iFOBT screening could contribute to preventing CRC. Abstract Given recent increases in the proportion of early-onset colorectal cancer (CRC), researchers are urgently working to establish a multi-gene screening test for both inherited and sporadic cancer-susceptible individuals. However, the incidence and spectrum of germline mutations in young sporadic CRC patients in East Asian countries and, especially, in sporadic polyp carriers and normal individuals are unknown. Peripheral blood samples were collected from 43 colonoscopy-proved normal controls and from 50 polyp patients and 49 CRC patients with no self-reported family history of cancer. All participants were under 50 years old. Next-generation sequencing with a panel of 30 CRC-associated susceptibility genes was employed to detect pathogenic germline mutations. The germline mutation carrier rates were 2.3%, 4.0%, and 12.2% in the normal, polyp, and cancer groups, respectively. A total of seven different mutations in six DNA repair pathway-related genes (MLH1, BRCA1, BRCA2, CHEK2, BLM, and NTHL1) were detected in nine participants. One frameshift mutation in BRCA2 and one frameshift mutation in the CHEK2 gene were found in a normal control and two colorectal polyp patients, respectively. One young sporadic CRC patient carried two heterozygous mutations, one in MLH1 and one in BRCA1. Three mutations (MLH1 p.Arg265Cys, MLH1 p.Tyr343Ter and CHEK2 p.Ile158TyrfsTer10) were each found in two independent patients and were considered “founder” mutations. This is the first report to demonstrate high percentage of germline mutations in young sporadic colorectal polyp, CRC, and general populations. A multi-gene screening test is warranted for the proactive identification of cancer-predisposed individuals.
Collapse
|
39
|
Huson SM, Staab T, Pereira M, Ward H, Paredes R, Evans DG, Baumhoer D, O'Sullivan J, Cheesman E, Schindler D, Meyer S. Infantile fibrosarcoma with TPM3-NTRK1 fusion in a boy with Bloom syndrome. Fam Cancer 2020; 21:85-90. [PMID: 33219493 PMCID: PMC8799568 DOI: 10.1007/s10689-020-00221-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/12/2020] [Indexed: 11/29/2022]
Abstract
Bloom syndrome (BS) is a genomic and chromosomal instability disorder with prodigious cancer predisposition caused by pathogenic variants in BLM. We report the clinical and genetic details of a boy who first presented with infantile fibrosarcoma (IFS) at the age of 6 months and subsequently was diagnosed with BS at the age of 9 years. Molecular analysis identified the pathogenic germline BLM sequence variants (c.1642C>T and c.2207_2212delinsTAGATTC). This is the first report of IFS related to BS, for which we show that both BLM alleles are maintained in the tumor and demonstrate a TPM3-NTKR1 fusion transcript in the IFS. Our communication emphasizes the importance of long-term follow up after treatment for pediatric neoplastic conditions, as clues to important genetic entities might manifest later, and the identification of a heritable tumor predisposition often leads to changes in patient surveillance and management.
Collapse
Affiliation(s)
- Sue M Huson
- Department of Genetic Medicine, St Mary's Hospital, Central Manchester Foundation Trust, Manchester, UK
| | - Timo Staab
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Marta Pereira
- Department of Genetic Medicine, St Mary's Hospital, Central Manchester Foundation Trust, Manchester, UK
| | - Heather Ward
- Department of Genetic Medicine, St Mary's Hospital, Central Manchester Foundation Trust, Manchester, UK
| | - Roberto Paredes
- Stem Cell and Leukaemia Proteomics Laboratory, School of Cancer and Imaging Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - D Gareth Evans
- Department of Genetic Medicine, St Mary's Hospital, Central Manchester Foundation Trust, Manchester, UK
| | - Daniel Baumhoer
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - James O'Sullivan
- Department of Genetic Medicine, St Mary's Hospital, Central Manchester Foundation Trust, Manchester, UK
| | - Ed Cheesman
- Department of Paediatric Histopathology, Royal Manchester Children's Hospital, Central Manchester Foundation Trust, Manchester, UK
| | - Detlev Schindler
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, School of Cancer and Imaging Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. .,Departments of Paediatric Haematology Oncology, Royal Manchester Children's Hospital, Central Manchester Foundation Trust, Manchester, UK. .,Academic Unit of Paediatric and Adolescent Oncology, University of Manchester, c/o Young Oncology Unit, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 6XB, UK.
| |
Collapse
|
40
|
Dhooge M, Baert-Desurmont S, Corsini C, Caron O, Andrieu N, Berthet P, Bonadona V, Cohen-Haguenauer O, De Pauw A, Delnatte C, Dussart S, Lasset C, Leroux D, Maugard C, Moretta-Serra J, Popovici C, Buecher B, Colas C, Noguès C. National recommendations of the French Genetics and Cancer Group - Unicancer on the modalities of multi-genes panel analyses in hereditary predispositions to tumors of the digestive tract. Eur J Med Genet 2020; 63:104080. [PMID: 33039684 DOI: 10.1016/j.ejmg.2020.104080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
In case of suspected hereditary predisposition to digestive cancers, next-generation sequencing can analyze simultaneously several genes associated with an increased risk of developing these tumors. Thus, "Gastro Intestinal" (GI) gene panels are commonly used in French molecular genetic laboratories. Lack of international recommendations led to disparities in the composition of these panels and in the management of patients. To harmonize practices, the Genetics and Cancer Group (GGC)-Unicancer set up a working group who carried out a review of the literature for 31 genes of interest in this context and established a list of genes for which the estimated risks associated with pathogenic variant seemed sufficiently reliable and high for clinical use. Pancreatic cancer susceptibility genes have been excluded. This expertise defined a panel of 14 genes of confirmed clinical interest and relevant for genetic counseling: APC, BMPR1A, CDH1, EPCAM, MLH1, MSH2, MSH6, MUTYH, PMS2, POLD1, POLE, PTEN, SMAD4 and STK11. The reasons for the exclusion of the others 23 genes have been discussed. The paucity of estimates of the associated tumor risks led to the exclusion of genes, in particular CTNNA1, MSH3 and NTHL1, despite their implication in the molecular pathways involved in the pathophysiology of GI cancers. A regular update of the literature is planned to up-grade this panel of genes in case of new data on candidate genes. Genetic and epidemiological studies and international collaborations are needed to better estimate the risks associated with the pathogenic variants of these genes either selected or not in the current panel.
Collapse
Affiliation(s)
- Marion Dhooge
- APHP.Centre (Cochin Hospital), Paris University, Paris, France.
| | - Stéphanie Baert-Desurmont
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Carole Corsini
- Arnaud de Villeneuve University Hospital, Montpellier, France
| | - Olivier Caron
- Gustave-Roussy University Hospital, Villejuif, France
| | - Nadine Andrieu
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France; Unité Inserm, Institut Curie, Paris, France
| | | | | | | | - Antoine De Pauw
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | | | | | | | - Dominique Leroux
- Grenoble University Hospital, Couple-Enfant Hospital, Grenoble, France
| | | | - Jessica Moretta-Serra
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Cornel Popovici
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Bruno Buecher
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | - Chrystelle Colas
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | - Catherine Noguès
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | | |
Collapse
|
41
|
Qin N, Wang Z, Liu Q, Song N, Wilson CL, Ehrhardt MJ, Shelton K, Easton J, Mulder H, Kennetz D, Edmonson MN, Rusch MC, Downing JR, Hudson MM, Nichols KE, Zhang J, Robison LL, Yasui Y. Pathogenic Germline Mutations in DNA Repair Genes in Combination With Cancer Treatment Exposures and Risk of Subsequent Neoplasms Among Long-Term Survivors of Childhood Cancer. J Clin Oncol 2020; 38:2728-2740. [PMID: 32496904 PMCID: PMC7430217 DOI: 10.1200/jco.19.02760] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To investigate cancer treatment plus pathogenic germline mutations (PGMs) in DNA repair genes (DRGs) for identification of childhood cancer survivors at increased risk of subsequent neoplasms (SNs). METHODS Whole-genome sequencing was performed on blood-derived DNA from survivors in the St Jude Lifetime Cohort. PGMs were evaluated in 127 genes from 6 major DNA repair pathways. Cumulative doses of chemotherapy and body region-specific radiotherapy (RT) were abstracted from medical records. Relative rates (RRs) and 95% CIs of SNs by mutation status were estimated using multivariable piecewise exponential models. RESULTS Of 4,402 survivors, 495 (11.2%) developed 1,269 SNs. We identified 538 PGMs in 98 DRGs (POLG, MUTYH, ERCC2, and BRCA2, among others) in 508 (11.5%) survivors. Mutations in homologous recombination (HR) genes were significantly associated with an increased rate of subsequent female breast cancer (RR, 3.7; 95% CI, 1.8 to 7.7), especially among survivors with chest RT ≥ 20 Gy (RR, 4.4; 95% CI, 1.6 to 12.4), or with a cumulative dose of anthracyclines in the second or third tertile (RR, 4.4; 95% CI, 1.7 to 11.4). Mutations in HR genes were also associated with an increased rate of subsequent sarcoma among those who received alkylating agent doses in the third tertile (RR, 14.9; 95% CI, 4.0 to 38.0). Mutations in nucleotide excision repair genes were associated with subsequent thyroid cancer for those treated with neck RT ≥ 30 Gy (RR, 12.9; 95% CI, 1.6 to 46.6) with marginal statistical significance. CONCLUSION Our study provides novel insights regarding the contribution of genetics, in combination with known treatment-related risks, for the development of SNs. These findings have the potential to facilitate identification of high-risk survivors who may benefit from genetic counseling and/or testing of DRGs, which may further inform personalized cancer surveillance and prevention strategies.
Collapse
Affiliation(s)
- Na Qin
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN
| | - Qi Liu
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Nan Song
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | - Carmen L. Wilson
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | - Matthew J. Ehrhardt
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN
| | - Kyla Shelton
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | - John Easton
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN
| | - Heather Mulder
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN
| | - Dennis Kennetz
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN
| | - Michael N. Edmonson
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN
| | - Michael C. Rusch
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN
| | - James R. Downing
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN
| | - Kim E. Nichols
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
42
|
Belhadj S, Terradas M, Munoz-Torres PM, Aiza G, Navarro M, Capellá G, Valle L. Candidate genes for hereditary colorectal cancer: Mutational screening and systematic review. Hum Mutat 2020; 41:1563-1576. [PMID: 32449991 DOI: 10.1002/humu.24057] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/30/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Genome-wide approaches applied for the identification of new hereditary colorectal cancer (CRC) genes, identified several potential causal genes, including RPS20, IL12RB1, LIMK2, POLE2, MRE11, POT1, FAN1, WIF1, HNRNPA0, SEMA4A, FOCAD, PTPN12, LRP6, POLQ, BLM, MCM9, and the epigenetic inactivation of PTPRJ. Here we attempted to validate the association between variants in these genes and nonpolyposis CRC by performing a mutational screening of the genes and PTPRJ promoter methylation analysis in 473 familial/early-onset CRC cases, a systematic review of the published cases, and assessment of allele frequencies in control population. In the studied cohort, 24 (5%) carriers of (predicted) deleterious variants in the studied genes and no constitutional PTPRJ epimutations were identified. Assessment of allele frequencies in controls compared with familial/early-onset patients with CRC showed association with increased nonpolyposis CRC risk of disruptive variants in RPS20, IL12RB1, POLE2, MRE11 and POT1, and of FAN1 c.149T>G (p.Met50Arg). Lack of association was demonstrated for LIMK2, PTPN12, LRP6, PTPRJ, POLQ, BLM, MCM9 and FOCAD variants. Additional studies are required to provide conclusive evidence for SEMA4A, WIF1, HNRNPA0 c.-110G>C, and FOCAD large deletions.
Collapse
Affiliation(s)
- Sami Belhadj
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Pau M Munoz-Torres
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| |
Collapse
|
43
|
Patel KR, Patel HD. p53: An Attractive Therapeutic Target for Cancer. Curr Med Chem 2020; 27:3706-3734. [PMID: 31223076 DOI: 10.2174/1573406415666190621094704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
Cancer is a leading cause of death worldwide. It initiates when cell cycle regulatory genes lose their function either by environmental and/or by internal factors. Tumor suppressor protein p53, known as "Guardian of genome", plays a central role in maintaining genomic stability of the cell. Mutation of TP53 is documented in more than 50% of human cancers, usually by overexpression of negative regulator protein MDM2. Hence, reactivation of p53 by blocking the protein-protein interaction between the murine double minute 2 (MDM2) and the tumor suppressor protein p53 has become the most promising therapeutic strategy in oncology. Several classes of small molecules have been identified as potent, selective and efficient p53-MDM2 inhibitors. Herein, we review the druggability of p53-MDM2 inhibitors and their optimization approaches as well as clinical candidates categorized by scaffold type.
Collapse
Affiliation(s)
- Krupa R Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Hitesh D Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
44
|
Terradas M, Capellá G, Valle L. Dominantly Inherited Hereditary Nonpolyposis Colorectal Cancer Not Caused by MMR Genes. J Clin Med 2020; 9:jcm9061954. [PMID: 32585810 PMCID: PMC7355797 DOI: 10.3390/jcm9061954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
In the past two decades, multiple studies have been undertaken to elucidate the genetic cause of the predisposition to mismatch repair (MMR)-proficient nonpolyposis colorectal cancer (CRC). Here, we present the proposed candidate genes according to their involvement in specific pathways considered relevant in hereditary CRC and/or colorectal carcinogenesis. To date, only pathogenic variants in RPS20 may be convincedly linked to hereditary CRC. Nevertheless, accumulated evidence supports the involvement in the CRC predisposition of other genes, including MRE11, BARD1, POT1, BUB1B, POLE2, BRF1, IL12RB1, PTPN12, or the epigenetic alteration of PTPRJ. The contribution of the identified candidate genes to familial/early onset MMR-proficient nonpolyposis CRC, if any, is extremely small, suggesting that other factors, such as the accumulation of low risk CRC alleles, shared environmental exposures, and/or gene-environmental interactions, may explain the missing heritability in CRC.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-260-7145
| |
Collapse
|
45
|
Guo L, Wang Z, Du Y, Mao J, Zhang J, Yu Z, Guo J, Zhao J, Zhou H, Wang H, Gu Y, Li Y. Random-forest algorithm based biomarkers in predicting prognosis in the patients with hepatocellular carcinoma. Cancer Cell Int 2020; 20:251. [PMID: 32565735 PMCID: PMC7302385 DOI: 10.1186/s12935-020-01274-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) one of the most common digestive system tumors, threatens the tens of thousands of people with high morbidity and mortality world widely. The purpose of our study was to investigate the related genes of HCC and discover their potential abilities to predict the prognosis of the patients. Methods We obtained RNA sequencing data of HCC from The Cancer Genome Atlas (TCGA) database and performed analysis on protein coding genes. Differentially expressed genes (DEGs) were selected. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were conducted to discover biological functions of DEGs. Protein and protein interaction (PPI) was performed to investigate hub genes. In addition, a method of supervised machine learning, recursive feature elimination (RFE) based on random forest (RF) classifier, was used to screen for significant biomarkers. And the basic experiment was conducted by lab, we constructe a clinical patients’ database, and obtained the data and results of immunohistochemistry. Results We identified five biomarkers with significantly high expression to predict survival risk of the HCC patients. These prognostic biomarkers included SPC25, NUF2, MCM2, BLM and AURKA. We also defined a risk score model with these biomarkers to identify the patients who is in high risk. In our single-center experiment, 95 pairs of clinical samples were used to explore the expression levels of NUF2 and BLM in HCC. Immunohistochemical staining results showed that NUF2 and BLM were significantly up-regulated in immunohistochemical staining. High expression levels of NUF2 and BLM indicated poor prognosis. Conclusion Our investigation provided novel prognostic biomarkers and model in HCC and aimed to improve the understanding of HCC. In the results obtained, we also conducted a part of experiments to verify the theory described earlier, The experimental results did verify our theory.
Collapse
Affiliation(s)
- Lingyun Guo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030 Gansu China
| | - Zhenjiang Wang
- Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Yuanyuan Du
- Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Jie Mao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Junqiang Zhang
- Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Jiwu Guo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Jun Zhao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Huinian Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China
| | - Haitao Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030 Gansu China
| | - Yanmei Gu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030 Gansu China
| | - Yumin Li
- Lanzhou University Second Hospital, Lanzhou, 730030 Gansu China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030 Gansu China.,The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030 Gansu China
| |
Collapse
|
46
|
Archambault AN, Su YR, Jeon J, Thomas M, Lin Y, Conti DV, Win AK, Sakoda LC, Lansdorp-Vogelaar I, Peterse EFP, Zauber AG, Duggan D, Holowatyj AN, Huyghe JR, Brenner H, Cotterchio M, Bézieau S, Schmit SL, Edlund CK, Southey MC, MacInnis RJ, Campbell PT, Chang-Claude J, Slattery ML, Chan AT, Joshi AD, Song M, Cao Y, Woods MO, White E, Weinstein SJ, Ulrich CM, Hoffmeister M, Bien SA, Harrison TA, Hampe J, Li CI, Schafmayer C, Offit K, Pharoah PD, Moreno V, Lindblom A, Wolk A, Wu AH, Li L, Gunter MJ, Gsur A, Keku TO, Pearlman R, Bishop DT, Castellví-Bel S, Moreira L, Vodicka P, Kampman E, Giles GG, Albanes D, Baron JA, Berndt SI, Brezina S, Buch S, Buchanan DD, Trichopoulou A, Severi G, Chirlaque MD, Sánchez MJ, Palli D, Kühn T, Murphy N, Cross AJ, Burnett-Hartman AN, Chanock SJ, de la Chapelle A, Easton DF, Elliott F, English DR, Feskens EJM, FitzGerald LM, Goodman PJ, Hopper JL, Hudson TJ, Hunter DJ, Jacobs EJ, Joshu CE, Küry S, Markowitz SD, Milne RL, Platz EA, Rennert G, Rennert HS, Schumacher FR, Sandler RS, Seminara D, Tangen CM, Thibodeau SN, Toland AE, van Duijnhoven FJB, Visvanathan K, Vodickova L, Potter JD, Männistö S, Weigl K, Figueiredo J, Martín V, Larsson SC, Parfrey PS, Huang WY, Lenz HJ, Castelao JE, Gago-Dominguez M, Muñoz-Garzón V, Mancao C, Haiman CA, Wilkens LR, Siegel E, Barry E, Younghusband B, Van Guelpen B, Harlid S, Zeleniuch-Jacquotte A, Liang PS, Du M, Casey G, Lindor NM, Le Marchand L, Gallinger SJ, Jenkins MA, Newcomb PA, Gruber SB, Schoen RE, Hampel H, Corley DA, Hsu L, Peters U, Hayes RB. Cumulative Burden of Colorectal Cancer-Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer. Gastroenterology 2020; 158:1274-1286.e12. [PMID: 31866242 PMCID: PMC7103489 DOI: 10.1053/j.gastro.2019.12.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Early-onset colorectal cancer (CRC, in persons younger than 50 years old) is increasing in incidence; yet, in the absence of a family history of CRC, this population lacks harmonized recommendations for prevention. We aimed to determine whether a polygenic risk score (PRS) developed from 95 CRC-associated common genetic risk variants was associated with risk for early-onset CRC. METHODS We studied risk for CRC associated with a weighted PRS in 12,197 participants younger than 50 years old vs 95,865 participants 50 years or older. PRS was calculated based on single nucleotide polymorphisms associated with CRC in a large-scale genome-wide association study as of January 2019. Participants were pooled from 3 large consortia that provided clinical and genotyping data: the Colon Cancer Family Registry, the Colorectal Transdisciplinary Study, and the Genetics and Epidemiology of Colorectal Cancer Consortium and were all of genetically defined European descent. Findings were replicated in an independent cohort of 72,573 participants. RESULTS Overall associations with CRC per standard deviation of PRS were significant for early-onset cancer, and were stronger compared with late-onset cancer (P for interaction = .01); when we compared the highest PRS quartile with the lowest, risk increased 3.7-fold for early-onset CRC (95% CI 3.28-4.24) vs 2.9-fold for late-onset CRC (95% CI 2.80-3.04). This association was strongest for participants without a first-degree family history of CRC (P for interaction = 5.61 × 10-5). When we compared the highest with the lowest quartiles in this group, risk increased 4.3-fold for early-onset CRC (95% CI 3.61-5.01) vs 2.9-fold for late-onset CRC (95% CI 2.70-3.00). Sensitivity analyses were consistent with these findings. CONCLUSIONS In an analysis of associations with CRC per standard deviation of PRS, we found the cumulative burden of CRC-associated common genetic variants to associate with early-onset cancer, and to be more strongly associated with early-onset than late-onset cancer, particularly in the absence of CRC family history. Analyses of PRS, along with environmental and lifestyle risk factors, might identify younger individuals who would benefit from preventive measures.
Collapse
Affiliation(s)
- Alexi N Archambault
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, New York
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jihyoun Jeon
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan
| | - Minta Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - David V Conti
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Iris Lansdorp-Vogelaar
- Department of Public Health, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Elisabeth F P Peterse
- Department of Public Health, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ann G Zauber
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David Duggan
- Translational Genomics Research Institute, An Affiliate of City of Hope, Phoenix, Arizona
| | - Andreana N Holowatyj
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michelle Cotterchio
- Population Health and Prevention, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Stephanie L Schmit
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California; Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Christopher K Edlund
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Robert J MacInnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Broad Institute of Harvard and MIT, Cambridge, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Newfoundland, Canada
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Clemens Schafmayer
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Paul D Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Anna H Wu
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Leticia Moreira
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Demetrius Albanes
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Sonja I Berndt
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Stephan Buch
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Daniel D Buchanan
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | | | - Gianluca Severi
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - María-Dolores Chirlaque
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Maria-José Sánchez
- Escuela Andaluza de Salud Pública, CIBER de Epidemiología y Salud Pública, Granada, Spain
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Amanda J Cross
- School of Public Health, Imperial College London, London, UK
| | | | - Stephen J Chanock
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Douglas F Easton
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Faye Elliott
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Dallas R English
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Liesel M FitzGerald
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Eric J Jacobs
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Corinne E Joshu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sébastien Küry
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Sanford D Markowitz
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Clalit National Cancer Control Center, Haifa, Israel
| | - Hedy S Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Clalit National Cancer Control Center, Haifa, Israel
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Robert S Sandler
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - Daniela Seminara
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | | | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Korbinian Weigl
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Jane Figueiredo
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California; Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Vicente Martín
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biomedicine Institute (IBIOMED), University of León, León, Spain
| | - Susanna C Larsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Patrick S Parfrey
- The Clinical Epidemiology Unit, Memorial University Medical School, St. John's, Newfoundland, Canada
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jose E Castelao
- Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Oncology and Genetics Unit, Vigo, Spain
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain; Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Victor Muñoz-Garzón
- Radiotherapy Department, Complejo Hospitalario Universitario de Vigo, SERGAS, Vigo, Spain
| | | | - Christopher A Haiman
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Erin Siegel
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Elizabeth Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Ban Younghusband
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Newfoundland, Canada
| | - Bethany Van Guelpen
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Anne Zeleniuch-Jacquotte
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, New York
| | - Peter S Liang
- Department of Medicine, New York University School of Medicine, New York, New York
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, Arizona
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Steven J Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Public Health, University of Washington, Seattle, Washington
| | - Stephen B Gruber
- Center for Precision Medicine & Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Biostatistics, University of Washington, Seattle, Washington
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Memorial University of Newfoundland, Discipline of Genetics, St. John's, Newfoundland, Canada.
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, New York.
| |
Collapse
|
47
|
Matsuoka T, Yashiro M. Precision medicine for gastrointestinal cancer: Recent progress and future perspective. World J Gastrointest Oncol 2020; 12:1-20. [PMID: 31966910 PMCID: PMC6960076 DOI: 10.4251/wjgo.v12.i1.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/12/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) cancer has a high tumor incidence and mortality rate worldwide. Despite significant improvements in radiotherapy, chemotherapy, and targeted therapy for GI cancer over the last decade, GI cancer is characterized by high recurrence rates and a dismal prognosis. There is an urgent need for new diagnostic and therapeutic approaches. Recent technological advances and the accumulation of clinical data are moving toward the use of precision medicine in GI cancer. Here we review the application and status of precision medicine in GI cancer. Analyses of liquid biopsy specimens provide comprehensive real-time data of the tumor-associated changes in an individual GI cancer patient with malignancy. With the introduction of gene panels including next-generation sequencing, it has become possible to identify a variety of mutations and genetic biomarkers in GI cancer. Although the genomic aberration of GI cancer is apparently less actionable compared to other solid tumors, novel informative analyses derived from comprehensive gene profiling may lead to the discovery of precise molecular targeted drugs. These progressions will make it feasible to incorporate clinical, genome-based, and phenotype-based diagnostic and therapeutic approaches and apply them to individual GI cancer patients for precision medicine.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
- Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
| |
Collapse
|
48
|
Xicola RM, Clark JR, Carroll T, Alvikas J, Marwaha P, Regan MR, Lopez-Giraldez F, Choi J, Emmadi R, Alagiozian-Angelova V, Kupfer SS, Ellis NA, Llor X. Implication of DNA repair genes in Lynch-like syndrome. Fam Cancer 2019; 18:331-342. [PMID: 30989425 DOI: 10.1007/s10689-019-00128-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many colorectal cancers (CRCs) that exhibit microsatellite instability (MSI) are not explained by MLH1 promoter methylation or germline mutations in mismatch repair (MMR) genes, which cause Lynch syndrome (LS). Instead, these Lynch-like syndrome (LLS) patients have somatic mutations in MMR genes. However, many of these patients are young and have relatives with cancer, suggesting a hereditary entity. We performed germline sequence analysis in LLS patients and determined their tumor's mutational profiles using FFPE DNA. Six hundred and fifty-four consecutive CRC patients were screened for suspected LS using MSI and absence of MLH1 methylation. Suspected LS cases were exome sequenced to identify germline and somatic mutations. Single nucleotide variants were used to characterize mutational signatures. We identified 23 suspected LS cases. Germline sequence analysis of 16 available samples identified five cases with LS mutations and 11 cases without LS mutations, LLS. Most LLS tumors had a combination of somatic MMR gene mutation and loss of heterozygosity. LLS patients were relatively young and had excess first-degree relatives with cancer. Four of the 11 LLS patients had rare likely pathogenic variants in genes that maintain genome integrity. Moreover, tumors from this group had a distinct mutational signature compared to tumors from LLS patients lacking germline mutations in these genes. In summary, more than a third of the LLS patients studied had germline mutations in genes that maintain genome integrity and their tumors had a distinct mutational signature. The possibility of hereditary factors in LLS warrants further studies so counseling can be properly informed.
Collapse
Affiliation(s)
- Rosa M Xicola
- Department of Internal Medicine and Cancer Center, Yale University School of Medicine, P. O. Box 208019, 333 Cedar Street/LMP 1080, New Haven, CT, 06520-8019, USA
| | - Julia R Clark
- Department of Medicine and Cancer Center, University of Illinois at Chicago, 1020N CSB, Chicago, IL, 60612, USA
| | - Timothy Carroll
- Department of Medicine and Cancer Center, University of Illinois at Chicago, 1020N CSB, Chicago, IL, 60612, USA
| | - Jurgis Alvikas
- Department of Medicine and Cancer Center, University of Illinois at Chicago, 1020N CSB, Chicago, IL, 60612, USA
| | - Priti Marwaha
- Department of Medicine and Cancer Center, University of Illinois at Chicago, 1020N CSB, Chicago, IL, 60612, USA
| | - Maureen R Regan
- Department of Medicine and Cancer Center, University of Illinois at Chicago, 1020N CSB, Chicago, IL, 60612, USA
| | - Francesc Lopez-Giraldez
- Yale Center for Genome Analysis, Yale University, 830 West Campus Drive, Orange, CT, 06477, USA
| | - Jungmin Choi
- Department of Genetics and Yale Center for Genome Analysis, Yale University School of Medicine, 830 West Campus Drive, Orange, CT, 06477, USA
| | - Rajyasree Emmadi
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, Chicago, IL, 60612, USA
| | | | - Sonia S Kupfer
- Center for Clinical Cancer Genetics, The University of Chicago, 900 East 57th Street, Chicago, IL, 60637, USA
| | - Nathan A Ellis
- Department of Cellular and Molecular Medicine, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724-5024, USA
| | - Xavier Llor
- Department of Internal Medicine and Cancer Center, Yale University School of Medicine, P. O. Box 208019, 333 Cedar Street/LMP 1080, New Haven, CT, 06520-8019, USA.
| |
Collapse
|
49
|
Bertelsen B, Tuxen IV, Yde CW, Gabrielaite M, Torp MH, Kinalis S, Oestrup O, Rohrberg K, Spangaard I, Santoni-Rugiu E, Wadt K, Mau-Sorensen M, Lassen U, Nielsen FC. High frequency of pathogenic germline variants within homologous recombination repair in patients with advanced cancer. NPJ Genom Med 2019; 4:13. [PMID: 31263571 PMCID: PMC6588611 DOI: 10.1038/s41525-019-0087-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
Abstract
Genomic screening of cancer patients for predisposing variants is traditionally based on age at onset, family history and type of cancer. Whereas the clinical guidelines have proven efficient in identifying families exhibiting classical attributes of hereditary cancer, the frequency of patients with alternative presentations is unclear. We identified and characterized germline variants in 636 patients with advanced solid cancer using whole exome sequencing. Pathogenic and likely pathogenic germline variants among 168 genes associated with hereditary cancer were considered. These variants were identified in 17.8% of the patients and within a wide range of cancer types. In particular, patients with mesothelioma, ovarian cancer, cervical cancer, urothelial cancer, and cancer of unknown primary origin displayed high frequencies of pathogenic variants. Variants were predominantly found in DNA-repair pathways and about half were within genes involved in homologous recombination repair. Twenty-two BRCA1 and BRCA2 germline variants were identified in 12 different cancer types, of which 10 (45%) were not previously identified in these patients based on the current clinical guidelines. Loss of heterozygosity and somatic second hits were identified in several of the affected genes, supporting possible causality for cancer development. A potential treatment target based on the pathogenic germline variant could be suggested in 25 patients (4%). The study demonstrates a high frequency of pathogenic germline variants in the homologous recombination pathway in patients with advanced solid cancers. We infer that genetic screening in this group of patients may reveal high-risk families and identify patients with potential PARP inhibitor sensitive tumors.
Collapse
Affiliation(s)
| | - Ida Viller Tuxen
- 2The Phase I Unit, Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Savvas Kinalis
- 1Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Olga Oestrup
- 1Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Kristoffer Rohrberg
- 2The Phase I Unit, Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Iben Spangaard
- 2The Phase I Unit, Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | | | - Karin Wadt
- 4Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Morten Mau-Sorensen
- 2The Phase I Unit, Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Lassen
- 2The Phase I Unit, Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
50
|
Chen Y, Zhao J, Duan Z, Gong T, Chen W, Wang S, Xu H. miR‑27b‑3p and miR‑607 cooperatively regulate BLM gene expression by directly targeting the 3'‑UTR in PC3 cells. Mol Med Rep 2019; 19:4819-4831. [PMID: 30957187 PMCID: PMC6522798 DOI: 10.3892/mmr.2019.10135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
BLM RecQ like helicase (BLM) has a pivotal role in genetic recombination, transcription, DNA replication and DNA repair, which presents the possibility of using BLM as an anti-cancer target for treatment. However, the post-transcriptional control regulation of BLM gene expression is not fully understood and limits the application of drugs targeting BLM for carcinoma therapy in the future. MicroRNAs (miRNAs) inhibit gene expression through interaction with the 3′ untranslated region (3′-UTR) of mRNA at the post-transcriptional stage. Therefore, the current study screened for miRNAs that regulate BLM gene expression, with software predicting that miRNA (miR)-27b-3p, miR-607, miR-361-3p, miR-628-5p and miR-338-3p. BLM gene expression levels in the PC3 prostate cancer cell line and RWPE-2 normal prostate epithelium cell line were detected by reverse transcription-quantitative PCR. Additionally, BLM mRNA levels were following miRNA overexpression for 24 and 48 h. For further miRNA filtration and validation, a dual-luciferase reporter system and western blot analysis were performed, which demonstrated that miR-27b-3p and miR-607 reduce BLM gene expression by directly targeting the BLM mRNA 3′-UTR. A Box-Behnken design experiment suggested that miR-27b-3p and miR-607 have synergetic mutual effects on BLM gene expression. Finally, the suppressive effect of miR-27b-3p and miR-607 on PC3 cell proliferation, colony formation, migration and invasion indicated the benefit of studying BLM as a drug target in cancer. In conclusion, the findings of the current provide evidence that miR-27b-3p and miR-607 have an oncosuppressive function in PC3 cells and cooperatively downregulate BLM expression at the post-transcriptional level.
Collapse
Affiliation(s)
- Yinglian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Jiafu Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Sainan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|