1
|
Bai XR, Liu PX, Wang WC, Jin YH, Wang Q, Qi Y, Zhang XY, Sun WD, Fang WH, Han XG, Jiang W. TssL2 of T6SS2 is required for mobility, biofilm formation, wrinkly phenotype formation, and virulence of Vibrio parahaemolyticus SH112. Appl Microbiol Biotechnol 2024; 108:537. [PMID: 39688690 DOI: 10.1007/s00253-024-13351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024]
Abstract
Type VI secretion system 2 (T6SS2) of Vibrio parahaemolyticus is required for cell adhesion and autophagy in macrophages; however, other phenotypes conferred by this T6SS have not been thoroughly investigated. We deleted TssL2, a key component of T6SS2 assembly, to explore the role of the T6SS2 in environmental adaptation and virulence. TssL2 deletion reduced Hcp2 secretion, suggesting that TssL2 played an important role in activity of functional T6SS2. We found that TssL2 was necessary for cell aggregation, wrinkly phenotype formation, and participates in motility and biofilm formation by regulating related genes, suggesting that TssL2 was essential for V. parahaemolyticus to adapt changing environments. In addition, this study demonstrated TssL2 significantly affected adhesion, cytotoxicity, bacterial colonization ability, and mortality in mice, even the levels of the proinflammatory cytokines IL-6 and IL-8, suggesting that TssL2 was involved in bacterial virulence and immunity. Proteome analysis revealed that TssL2 significantly affected the expression of 163 proteins related to ABC transporter systems, flagellar assembly, biofilm formation, and multiple microbial metabolism pathways, some of which supported the effect of TssL2 on the different phenotypes of V. parahaemolyticus. Among them, the decreased expression of the T3SS1 and T2SS proteins was confirmed by the results of gene transcription, which may be the main reason for the decrease in cytotoxicity. Altogether, these findings further our understanding of T6SS2 components on environmental adaption and virulence during bacterial infection. KEY POINTS: • The role of T6SS2 in V. parahaemolyticus was far from clear. • TssL2 participates in cell aggregation, wrinkly phenotype formation, motility, and biofilm formation. • TssL2 is essential for cell bacterial colonization, cytotoxicity, virulence, and proinflammatory cytokine production.
Collapse
Affiliation(s)
- Xue-Rui Bai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Department of Animal Science and Technology, Shanghai Vocational College of Agriculture and Forestry, Shanghai, 201699, China
| | - Peng-Xuan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wen-Chao Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ying-Hong Jin
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China
| | - Quan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yu Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiao-Yun Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wei-Dong Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei-Huan Fang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xian-Gan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Longyan University, Longyan, 364012, China.
| | - Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
2
|
Yu Y, Tang M, Wang Y, Liao M, Wang C, Rong X, Li B, Ge J, Gao Y, Dong X, Zhang Z. Virulence and antimicrobial resistance characteristics assessment of Vibrio isolated from shrimp (Penaeus vannamei) breeding system in south China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114615. [PMID: 36773438 DOI: 10.1016/j.ecoenv.2023.114615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The diseases caused by Vibrio during shrimp breeding program have the risk of spreading in different aquatic areas through larvae transportation between different regions. Therefore, the population distribution and the virulence and antibiotic resistance risk of 5 pathogenic Vibrio in shrimp (Penaeus vannamei) breeding system in China were evaluated for the first time. A total of 418 isolates were recovered from shrimp, breeding water and biological baits samples, and 312 isolates were identified as Vibrio genus based on 16s rDNA, among which V. alginolyticus, V. harveyi, V. parahaemolyticus, V. cholerae and V. campbellii were the dominant species. And 10/20 kinds of virulence genes (chiA, luxR, vhh, tlh, chxA, sepro, flaA, vch, VAC and rpoS) were detected among the 5 Vibrio species. Multiple antibiotic resistance (MAR) index of the 5 dominant Vibrio isolates were 0.13-0.88 %, and 36.5 % isolates with MAR < 0.2. But the antibiotic resistance pattern abundance (ARPA) index ranged from 0.25 to 0.56, which indicated the antibiotic phenotypes of Vibrio species in the shrimp breeding system in China were homogeneity. Furthermore, resistance quotients (RQs) calculation results displayed that the dominant Vibrio species in the shrimp breeding system in China showed no or low selection pressure for resistance to cefoperazone/sulbactam, enrofloxacin, ciprofloxacin, fluoroquine, florfenicol, tetracycline and doxycycline. But only 5 resistance genes were detected, which were strA (43.8 %), strB (11.7 %), QnrVC (2.9 %), sul2 (8.8 %) and Int4 (8.8 %), respectively, and the antimicrobial resistance genotypes were not previously correlated with their phenotypes. The relevant research results provide theoretical basis for epizootic tracking in aquatic system in China, and targeting its final risk in aquatic ecosystem and public health perspectives.
Collapse
Affiliation(s)
- Yongxiang Yu
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Miaomiao Tang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yingeng Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Meijie Liao
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Chunyuan Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaojun Rong
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Bin Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jianlong Ge
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yingli Gao
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuan Dong
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zheng Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
3
|
Gavilan RG, Caro-Castro J, Blondel CJ, Martinez-Urtaza J. Vibrio parahaemolyticus Epidemiology and Pathogenesis: Novel Insights on an Emerging Foodborne Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:233-251. [PMID: 36792879 DOI: 10.1007/978-3-031-22997-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The epidemiological dynamics of V. parahaemolyticus´ infections have been characterized by the abrupt appearance of outbreaks in remote areas where these diseases had not been previously detected, without knowing the routes of entry of the pathogens in the new area. However, there are recent studies that show the link between the appearance of epidemic outbreaks of Vibrio and environmental factors such as oceanic transport of warm waters, which has provided a possible mechanism for the dispersion of Vibrio diseases globally. Despite this evidence, there is little information on the possible routes of entry and transport of infectious agents from endemic countries to the entire world. In this sense, the recent advances in genomic sequencing tools are making it possible to infer possible biogeographical patterns of diverse pathogens with relevance in public health like V. parahaemolyticus. In this chapter, we will address several general aspects about V. parahaemolyticus, including their microbiological and genetic detection, main virulence factors, and the epidemiology of genotypes involved in foodborne outbreaks globally.
Collapse
Affiliation(s)
- Ronnie G Gavilan
- Instituto Nacional de Salud, Lima, Peru. .,Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru.
| | | | - Carlos J Blondel
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Lafrance AE, Chimalapati S, Garcia Rodriguez N, Kinch LN, Kaval KG, Orth K. Enzymatic Specificity of Conserved Rho GTPase Deamidases Promotes Invasion of Vibrio parahaemolyticus at the Expense of Infection. mBio 2022; 13:e0162922. [PMID: 35862776 PMCID: PMC9426531 DOI: 10.1128/mbio.01629-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Vibrio parahaemolyticus is among the leading causes of bacterial seafood-borne acute gastroenteritis. Like many intracellular pathogens, V. parahaemolyticus invades host cells during infection by deamidating host small Rho GTPases. The Rho GTPase deamidating activity of VopC, a type 3 secretion system (T3SS) translocated effector, drives V. parahaemolyticus invasion. The intracellular pathogen uropathogenic Escherichia coli (UPEC) invades host cells by secreting a VopC homolog, the secreted toxin cytotoxic necrotizing factor 1 (CNF1). Because of the homology between VopC and CNF1, we hypothesized that topical application of CNF1 during V. parahaemolyticus infection could supplement VopC activity. Here, we demonstrate that CNF1 improves the efficiency of V. parahaemolyticus invasion, a bottleneck in V. parahaemolyticus infection, across a range of doses. CNF1 increases V. parahaemolyticus invasion independent of both VopC and the T3SS altogether but leaves a disproportionate fraction of intracellular bacteria unable to escape the endosome and complete their infection cycle. This phenomenon holds true in the presence or absence of VopC but is particularly pronounced in the absence of a T3SS. The native VopC, by contrast, promotes a far less efficient invasion but permits the majority of internalized bacteria to escape the endosome and complete their infection cycle. These studies highlight the significance of enzymatic specificity during infection, as virulence factors (VopC and CNF1 in this instance) with similarities in function (bacterial uptake), catalytic activity (deamidation), and substrates (Rho GTPases) are not sufficiently interchangeable for mediating a successful invasion for neighboring bacterial pathogens. IMPORTANCE Many species of intracellular bacterial pathogens target host small Rho GTPases to initiate invasion, including the human pathogens Vibrio parahaemolyticus and uropathogenic Escherichia coli (UPEC). The type three secretion system (T3SS) effector VopC of V. parahaemolyticus promotes invasion through the deamidation of Rac1 and CDC42 in the host, whereas the secreted toxin cytotoxic necrotizing factor 1 (CNF1) drives UPEC's internalization through the deamidation of Rac1, CDC42, and RhoA. Despite these similarities in the catalytic activity of CNF1 and VopC, we observed that the two enzymes were not interchangeable. Although CNF1 increased V. parahaemolyticus endosomal invasion, most intracellular V. parahaemolyticus aborted their infection cycle and remained trapped in endosomes. Our findings illuminate how the precise biochemical fine-tuning of T3SS effectors is essential for efficacious pathogenesis. Moreover, they pave the way for future investigations into the biochemical mechanisms underpinning V. parahaemolyticus endosomal escape and, more broadly, the regulation of successful pathogenesis.
Collapse
Affiliation(s)
- Alexander E. Lafrance
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suneeta Chimalapati
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nalleli Garcia Rodriguez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa N. Kinch
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Karan Gautam Kaval
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Shen Z, Liu Y, Chen L. Qualitative and Quantitative Detection of Potentially Virulent Vibrio parahaemolyticus in Drinking Water and Commonly Consumed Aquatic Products by Loop-Mediated Isothermal Amplification. Pathogens 2021; 11:10. [PMID: 35055958 PMCID: PMC8781264 DOI: 10.3390/pathogens11010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Vibrio parahaemolyticus can cause acute gastroenteritis, wound infection, and septicemia in humans. In this study, a simple, specific, and user-friendly diagnostic tool was developed for the first time for the qualitative and quantitative detection of toxins and infection process-associated genes opaR, vpadF, tlh, and ureC in V. parahaemolyticus using the loop-mediated isothermal amplification (LAMP) technique. Three pairs of specific inner, outer, and loop primers were designed for targeting each of these genes, and the results showed no cross-reaction with the other common Vibrios and non-Vibrios pathogenic bacteria. Positive results in the one-step LAMP reaction (at 65 °C for 45 min) were identified by a change to light green and the emission of bright green fluorescence under visible light and UV light (302 nm), respectively. The lowest limit of detection (LOD) for the target genes ranged from 1.46 × 10-5 to 1.85 × 10-3 ng/reaction (25 µL) for the genomic DNA, and from 1.03 × 10-2 to 1.73 × 100 CFU/reaction (25 µL) for the cell culture of V. parahaemolyticus. The usefulness of the developed method was demonstrated by the fact that the bacterium could be detected in water from various sources and commonly consumed aquatic product samples. The presence of opaR and tlh genes in the Parabramis pekinensis intestine indicated a risk of potentially virulent V. parahaemolyticus in the fish.
Collapse
Affiliation(s)
| | | | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.S.); (Y.L.)
| |
Collapse
|
7
|
Ning H, Cong Y, Lin H, Wang J. Development of cationic peptide chimeric lysins based on phage lysin Lysqdvp001 and their antibacterial effects against Vibrio parahaemolyticus: A preliminary study. Int J Food Microbiol 2021; 358:109396. [PMID: 34560361 DOI: 10.1016/j.ijfoodmicro.2021.109396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023]
Abstract
Cationic peptide chimeric lysins, Lysqdvp001-5aa, Lysqdvp001-10aa and Lysqdvp001-15aa, were designed based on lysin Lysqdvp001 from Vibrio parahaemolyticus (V. parahaemolyticus) phage qdvp001. These chimeric lysins showed equivalent peptidoglycan hydrolysis activities with Lysqdvp001 and could lyse the bacteria from the outside. The antibacterial activity as well as outer and inner membrane permeabilization of Lysqdvp001 and chimeric lysins against V. parahaemolyticus were Lysqdvp001-15aa>Lysqdvp001-10aa>Lysqdvp001-5aa>Lysqdvp001. Lysqdvp001-15aa exhibited an excellent antibacterial activity with minimum inhibition and bactericidal concentrations (MIC and MBC) of 0.2 and 0.4 mg/mL, respectively, and its antibacterial spectrum was much broader than phage qdvp001. Membrane hyperpolarization and membrane phospholipid exposure of V. parahaemolyticus were observed after Lysqdvp001-15aa treatments. Transmission electron microscope (TEM) showed Lysqdvp001-15aa destroyed structure integrity of V. parahaemolyticus. Besides, MIC and MBC of Lysqdvp001-15aa decreased V. parahaemolyticus counts in oyster by 3.20 and 4.03 log10CFU/g. Lysqdvp001-15aa at MBC eradicated about 50% of V. parahaemolyticus biofilms and inhibited over 90% of the formation of the bacterial biofilms.
Collapse
Affiliation(s)
- Houqi Ning
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jingxue Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
8
|
Park S, Lee H, Kim S, Choi Y, Oh H, Kim Y, Lee Y, Seo Y, Kang J, Park E, Yoon Y, Ha J. Identification of Pathogenic Variations in Seafood Vibrio parahaemolyticus Isolates by Comparing Genome Sequences. J Food Prot 2021; 84:1141-1149. [PMID: 33635940 DOI: 10.4315/jfp-20-437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/24/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT An investigation of the pathogenic characteristics of isolates of Vibrio parahaemolyticus was conducted by identifying the pathogenic tdh gene and then performing adherence and cytotoxicity assays. Genome sequences of the seafood isolates were analyzed using the Illumina HiSeq 2500 platform. The isolated strains were then mapped by comparing the genomes to the reference genome, and variations in the nucleotide sequences and amino acids were identified with the CLC Genomics Workbench program. The tdh gene was identified in four isolates of V. parahaemolyticus, of which three-SMFM201809-CPC7-3, SMFM201809-CF8-2, and SMFM201809-CF8-3-showed high cytotoxicity and differences in cell adhesion. These isolates were selected to identify virulence factors and genomic variations. All three isolates had the same virulence factors, such as adherence, secretion system, and toxin. In addition, amino acid variants were identified in the regions of type IV pilus, T3SS1 and T3SS1 secreted effectors, and thermolabile hemolysin. These results indicate that variations in amino acids found in regions related to adherence and cytotoxicity result in differences in adhesion efficiency and cytotoxicity; therefore, the isolates with these variations may cause more serious foodborne illness compared with other strains. HIGHLIGHTS
Collapse
Affiliation(s)
- Sunyoung Park
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Heeyoung Lee
- Food Standard Research Center, Korea Food Research Institute, Jeollabuk-do 55365, Korea
| | - Sejeong Kim
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Yukyung Choi
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Hyemin Oh
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Yujin Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Yewon Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Yeongeun Seo
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Joohyun Kang
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Eunyoung Park
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea.,Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Jimyeong Ha
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
9
|
Liu M, Zhu X, Zhang C, Zhao Z. LuxQ-LuxU-LuxO pathway regulates biofilm formation by Vibrio parahaemolyticus. Microbiol Res 2021; 250:126791. [PMID: 34090181 DOI: 10.1016/j.micres.2021.126791] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Vibrio parahaemolyticus, a common foodborne pathogen, can form biofilms for survival in various environments and for bacterial transmission. Lux systems in Vibrio species are the typical two-component signal transduction systems, which have been demonstrated to contribute to various phenotypes; however, the functions of each homolog of the Lux system in V. parahaemolyticus in the regulation of biofilm formation remain largely unknown. In this study, we first showed that LuxQ, LuxU, and LuxO are essential for controlling biofilm formation by V. parahaemolyticus, through gene knockout studies. We also found that they acted in the same signaling pathway and their deletion mutants exhibited a similar level of biofilm formation. Furthermore, site-directed mutagenesis revealed that the conserved residues for phosphorylation in LuxQ (D784), LuxU (H56) and LuxO (D47) were critical for their regulatory functions on biofilm formation. Phos-tag™ sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the phosphorylation of LuxU and LuxQ in vivo. Finally, qPCR analysis displayed that the three mutants had a significant decrease in the transcription level of cps loci and cpsQ compared with the wild type strain, which is consistent with the observed phenotype of biofilm formation. Therefore, we propose that LuxQ and its downstream factors LuxU and LuxO function in the same signaling cascade to control biofilm formation by regulating the expression of cpsQ and cps loci. The results of this study provide new data regarding the role of the LuxQ-LuxU-LuxO pathway in biofilm formation by V. parahaemolyticus and help further understand the complex regulatory functions of Lux pathways.
Collapse
Affiliation(s)
- Min Liu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Xinyuan Zhu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Ce Zhang
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Santos LDO, de Lanna CA, Arcanjo ACDC, Bisch PM, von Krüger WMA. Genotypic Diversity and Pathogenic Potential of Clinical and Environmental Vibrio parahaemolyticus Isolates From Brazil. Front Microbiol 2021; 12:602653. [PMID: 33776949 PMCID: PMC7994283 DOI: 10.3389/fmicb.2021.602653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022] Open
Abstract
Vibrio parahaemolyticus strains recovered from human diarrheal stools (one in 1975 and two in 2001) and environmental sources (four, between 2008 and 2010) were investigated for the presence of virulence genes (trh, tdh, and vpadF), pandemic markers (orf8, toxRSnew), and with respect to their pathogenic potential in two systemic infection models. Based only on the presence or absence of these genetic markers, they were classified as follows: the environmental strains were non-pathogenic, whereas among the clinical strains, the one isolated in 1975 was pathogenic (non-pandemic), and the other two were pathogenic (pandemic). The pathogenic potential of the strains was evaluated in mice and Galleria mellonella larvae infection models, and except for the clinical (pathogenic, non-pandemic) isolate, the others produced lethal infection in both organisms, regardless of their source, serotype, and genotype (tdh, orf8, toxRSnew, and vpadF). Based on mice and larval mortality rates, the strains were then grouped according to virulence (high, intermediate, and avirulent), and remarkably similar results were obtained by using these models: The clinical strain (pathogenic and non-pandemic) was classified as avirulent, and other strains (four non-pathogenic and two pandemic) were considered of high or intermediate virulence. In summary, these findings demonstrate that G. mellonella larvae can indeed be used as an alternative model to study the pathogenicity of V. parahaemolyticus. Moreover, they raise doubts about the use of traditional virulence markers to predict pathogenesis of the species and show that reliable models are indispensable to determine the pathogenic potential of environmental isolates considered non-pathogenic, based on the absence of the long-standing virulence indicators.
Collapse
Affiliation(s)
- Leandro de O Santos
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristóvão A de Lanna
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Carolina da C Arcanjo
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanda M A von Krüger
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Yan CZY, Austin CM, Ayub Q, Rahman S, Gan HM. Genomic characterization of Vibrio parahaemolyticus from Pacific white shrimp and rearing water in Malaysia reveals novel sequence types and structural variation in genomic regions containing the Photorhabdus insect-related (Pir) toxin-like genes. FEMS Microbiol Lett 2020; 366:5582596. [PMID: 31589302 DOI: 10.1093/femsle/fnz211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
The Malaysian and global shrimp aquaculture production has been significantly impacted by acute hepatopancreatic necrosis disease (AHPND) typically caused by Vibrio parahaemolyticus harboring the pVA plasmid containing the pirAVp and pirBVp genes, which code for Photorhabdus insect-related (Pir) toxin. The limited genomic resource for V. parahaemolyticus strains from Malaysian aquaculture farms precludes an in-depth understanding of their diversity and evolutionary relationships. In this study, we isolated shrimp-associated and environmental (rearing water) V. parahaemolyticus from three aquaculture farms located in Northern and Central Malaysia followed by whole-genome sequencing of 40 randomly selected isolates on the Illumina MiSeq. Phylogenomic analysis and multilocus sequence typing (MLST) reveal distinct lineages of V. parahaemolyticus that harbor the pirABVp genes. The recovery of pVA plasmid backbone devoid of pirAVp or pirABVp in some V. parahaemolyticus isolates suggests that the toxin genes are prone to deletion. The new insight gained from phylogenomic analysis of Asian V. parahaemolyticus, in addition to the observed genomic instability of pVa plasmid, will have implications for improvements in aquaculture practices to diagnose, treat or limit the impacts of this disease.
Collapse
Affiliation(s)
- Chrystine Zou Yi Yan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Christopher M Austin
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3220 Victoria, Australia.,Deakin Genomics Centre, Deakin University, Geelong 3220, Victoria, Australia
| | - Qasim Ayub
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Han Ming Gan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3220 Victoria, Australia.,Deakin Genomics Centre, Deakin University, Geelong 3220, Victoria, Australia
| |
Collapse
|
12
|
Wu C, Zhao Z, Liu Y, Zhu X, Liu M, Luo P, Shi Y. Type III Secretion 1 Effector Gene Diversity Among Vibrio Isolates From Coastal Areas in China. Front Cell Infect Microbiol 2020; 10:301. [PMID: 32637366 PMCID: PMC7318850 DOI: 10.3389/fcimb.2020.00301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/20/2020] [Indexed: 01/22/2023] Open
Abstract
Vibrios, which include more than 120 valid species, are an abundant and diverse group of bacteria in marine and estuarine environments. Some of these bacteria have been recognized as pathogens of both marine animals and humans, and therefore, their virulence mechanisms have attracted increasing attention. The type III secretion system (T3SS) is an important virulence determinant in many gram-negative bacteria, in which this system directly translocates variable effectors into the host cytosol for the manipulation of the cellular responses. In this study, the distribution of the T3SS gene cluster was first examined in 110 Vibrio strains of 26 different species, including 98 strains isolated from coastal areas in China. Several T3SS1 genes, but not T3SS2 genes (T3SS2α and T3SS2β), were universally detected in all the strains of four species, Vibrio parahaemolyticus, Vibrio alginolyticus, Vibrio harveyi, and Vibrio campbellii. The effector coding regions within the T3SS1 gene clusters from the T3SS1-positive strains were further analyzed, revealing that variations in the effectors of Vibrio T3SS1 were observed among the four Vibrio species, even between different strains in V. harveyi, according to their genetic organization. Importantly, Afp17, a potential novel effector that may exert a similar function as the known effector VopS in T3SS1-induced cell death, based on cytotoxicity assay results, was found in the effector coding region of the T3SS1 in some V. harveyi and V. campbellii strains. Finally, it was revealed that differences in T3SS1-mediated cytotoxicity were dependent not only on the variations in the effectors of Vibrio T3SS1 but also on the initial adhesion ability to host cells, which is another prerequisite condition. Altogether, our results contribute to the clarification of the diversity of T3SS1 effectors and a better understanding of the differences in cytotoxicity among Vibrio species.
Collapse
Affiliation(s)
- Chao Wu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Yupeng Liu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Xinyuan Zhu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Min Liu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Peng Luo
- Key Laboratory of Marine Bio-Resources Sustainable Utilization, Key Laboratory of Applied Marine Biology of Guangdong Province, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Shi
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
13
|
Ashrafudoulla M, Mizan MFR, Park SH, Ha SD. Current and future perspectives for controlling Vibrio biofilms in the seafood industry: a comprehensive review. Crit Rev Food Sci Nutr 2020; 61:1827-1851. [PMID: 32436440 DOI: 10.1080/10408398.2020.1767031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The contamination of seafood with Vibrio species can have severe repercussions in the seafood industry. Vibrio species can form mature biofilms and persist on the surface of several seafoods such as crabs, oysters, mussels, and shrimp, for extended duration. Several conventional approaches have been employed to inhibit the growth of planktonic cells and prevent the formation of Vibrio biofilms. Since Vibrio biofilms are mostly resistant to these control measures, novel alternative methods need to be urgently developed. In this review, we propose environmentally friendly approaches to suppress Vibrio biofilm formation using a hypothesized mechanism of action.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| |
Collapse
|
14
|
Wu CQ, Zhang T, Zhang W, Shi M, Tu F, Yu A, Li M, Yang M. Two DsbA Proteins Are Important for Vibrio parahaemolyticus Pathogenesis. Front Microbiol 2019; 10:1103. [PMID: 31156607 PMCID: PMC6531988 DOI: 10.3389/fmicb.2019.01103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 01/05/2023] Open
Abstract
Bacterial pathogens maintain disulfide bonds for protein stability and functions that are required for pathogenesis. Vibrio parahaemolyticus is a Gram-negative pathogen that causes food-borne gastroenteritis and is also an important opportunistic pathogen of aquatic animals. Two genes encoding the disulfide bond formation protein A, DsbA, are predicted to be encoded in the V. parahaemolyticus genome. DsbA plays an important role in Vibrio cholerae virulence but its role in V. parahaemolyticus is largely unknown. In this study, the activities and functions of the two V. parahaemolyticus DsbA proteins were characterized. The DsbAs affected virulence factor expression at the post-translational level. The protein levels of adhesion factor VpadF (VP1767) and the thermostable direct hemolysin (TDH) were significantly reduced in the dsbA deletion mutants. V. parahaemolyticus lacking dsbA also showed reduced attachment to Caco-2 cells, decreased β-hemolytic activity, and less toxicity to both zebrafish and HeLa cells. Our findings demonstrate that DsbAs contribute to V. parahaemolyticus pathogenesis.
Collapse
Affiliation(s)
- Chun-Qin Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China.,Department of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Ting Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Wenwen Zhang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Mengting Shi
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Fei Tu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Ai Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Manman Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Menghua Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
15
|
Zhu Z, Dong C, Weng S, He J. Identification of outer membrane protein TolC as the major adhesin and potential vaccine candidate for Vibrio harveyi in hybrid grouper, Epinephelus fuscoguttatus (♀) × E. lanceolatus (♂). FISH & SHELLFISH IMMUNOLOGY 2019; 86:143-151. [PMID: 30453046 DOI: 10.1016/j.fsi.2018.11.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 05/21/2023]
Abstract
Vibrio harveyi is a serious pathogen of scale drop and muscle necrosis disease in marine commercial fishes. Adhesion to and colonization of the host cells surfaces is the first and crucial step for pathogenic bacterial infection, which is usually mediated by outer membrane proteins (Omps). The objectives of this study were to identify the major adhesin in Omps that plays the essential role in adhesion of V. harveyi to the host cells, and to assess the potential of this adhesin as a vaccine candidate for V. harveyi infection. We observed that pathogenic V. harveyi adhered to the surface of grouper embryonic cells (GEM cells) and induced apoptosis of them. Native Omps were extracted from nine different V. harveyi strains, and five common Omp bands were isolated by SDS-PAGE analysis. Western blot analysis and an anti-native Omp antibodies blocking assay indicated that one strong and several weak immunoreactivity Omps bands presence. Next, a total of five Omps, including TolC, Agg (Agglutination protein), Omp47, Fla (Flagellin), and OmpW, were identified and their encoding genes were cloned, characterized, and expressed in E. coli. The purified recombinant TolC could competitively inhibit the invasion of V. harveyi to GEM cells in vitro, and anti-TolC antibody also could significantly block the adhesion of V. harveyi to GEM cells. When used to immunize hybrid groupers, the recombinant TolC could confer significant protection to fish against experimental V. harveyi challenge. These data suggested that outer membrane protein TolC functions as a major adhesin in V. harveyi and could be a potential vaccine candidate for V. harveyi infection.
Collapse
Affiliation(s)
- Zhiming Zhu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Chuanfu Dong
- State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Shaoping Weng
- State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jianguo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; State Key Laboratory of Biocontrol / MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
16
|
Anupama KP, Chakraborty A, Karunasagar I, Karunasagar I, Maiti B. Loop-mediated isothermal amplification assay as a point-of-care diagnostic tool for Vibrio parahaemolyticus: recent developments and improvements. Expert Rev Mol Diagn 2019; 19:229-239. [PMID: 30657706 DOI: 10.1080/14737159.2019.1571913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION A number of DNA-based diagnostic tools have been developed for the detection of Vibrio parahaemolyticus in seafood. However, the loop-mediated isothermal amplification (LAMP) has distinct advantages with regards to its simplicity, speed and the ease of performing without any need for sophisticated equipment. Over the last decade, LAMP has emerged as a potential tool for the detection of V. parahaemolyticus. Area covered: The literature search was restricted to LAMP assay and its variants for the detection of V. parahaemolyticus. The focus in this review is to enlist the various techniques that have been developed using the principle of the LAMP towards improved simplicity, sensitivity and specificity of the assay. Expert commentary: LAMP assay and its variants are significantly faster and require minimum accessories compared to other DNA based molecular techniques such as PCR and their types. Despite the availability of several versions, LAMP-based diagnostics is not the first choice for the detection of V. parahaemolyticus in the seafood sector. Our recommendation would be to explore the possibilities of developing cost-effective LAMP kits and implementing these kits as point-of-care diagnostic tools for rapid and sensitive detection of pathogenic V. parahaemolyticus.
Collapse
Affiliation(s)
- Karanth Padyana Anupama
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India
| | - Anirban Chakraborty
- b Division of Molecular Genetics and Cancer , Nitte University Centre for Science Education and Research , Mangaluru , India
| | - Iddya Karunasagar
- c NITTE (Deemed to be University), University Enclave , Mangaluru, Medical Sciences Complex , India
| | - Indrani Karunasagar
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India.,c NITTE (Deemed to be University), University Enclave , Mangaluru, Medical Sciences Complex , India
| | - Biswajit Maiti
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India
| |
Collapse
|
17
|
Natural Transformation in Vibrio parahaemolyticus: a Rapid Method To Create Genetic Deletions. J Bacteriol 2018; 200:JB.00032-18. [PMID: 29555695 DOI: 10.1128/jb.00032-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/10/2018] [Indexed: 02/07/2023] Open
Abstract
The Gram-negative bacterium Vibrio parahaemolyticus is an opportunistic human pathogen and the leading cause of seafood-borne acute gastroenteritis worldwide. Recently, this bacterium was implicated as the etiologic agent of a severe shrimp disease with consequent devastating outcomes to shrimp farming. In both cases, acquisition of genetic material via horizontal transfer provided V. parahaemolyticus with new virulence tools to cause disease. Dissecting the molecular mechanisms of V. parahaemolyticus pathogenesis often requires manipulating its genome. Classically, genetic deletions in V. parahaemolyticus are performed using a laborious, lengthy, multistep process. Here, we describe a fast and efficient method to edit this bacterium's genome based on V. parahaemolyticus natural competence. Although this method is similar to one previously described, V. parahaemolyticus requires counterselection for curing of acquired plasmids due to its recalcitrant nature of retaining extrachromosomal DNA. We believe this approach will be of use to the Vibrio community.IMPORTANCE Spreading of vibrios throughout the world correlates with increased global temperatures. As they spread, they find new niches in which to survive, proliferate, and invade. Therefore, genetic manipulation of vibrios is of the utmost importance for studying these species. Here, we have delineated and validated a rapid method to create genetic deletions in Vibrio parahaemolyticus This study provides insightful methodology for studies with other Vibrio species.
Collapse
|
18
|
Liu M, Yang S, Zheng C, Luo X, Bei W, Cai P. Binding to type I collagen is essential for the infectivity of Vibrio parahaemolyticus to host cells. Cell Microbiol 2018; 20:e12856. [PMID: 29763968 DOI: 10.1111/cmi.12856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 01/20/2023]
Abstract
Vibrio parahaemolyticus is a globally present marine bacterium that often leads to acute gastroenteritis. Two type III secretion systems (T3SSs), T3SS1 and T3SS2, are important for host infection. Type I collagen is a component of the extracellular matrix and is abundant in the small intestine. However, whether type I collagen serves as the cellular receptor for V. parahaemolyticus infection of host cells remains enigmatic. In this study, we discovered that type I collagen is not only important for the attachment of V. parahaemolyticus to host cells but is also involved in T3SS1-dependent cytotoxicity. In addition, 2 virulence factors, MAM7 and VpadF enable V. parahaemolyticus to interact with type I collagen and mediate T3SS2-dependent host cell invasion. Type I collagen, the collagen receptor α1 integrin, and its downstream factor phosphatidylinositol 3-kinase (PI3K) are responsible for V. parahaemolyticus invasion of host cells. Further biochemical studies revealed that VpadF mainly relies on the C-terminal region for type I collagen binding and MAM7 relies on mce domains to bind to type I collagen. As MAM7 and/or VpadF homologues are widely distributed in the genus Vibrio, we propose that Vibrios have evolved a unique strategy to infect host cells by binding to type I collagen.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengkun Zheng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Weicheng Bei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Huang Q, Yu M, Chen H, Zeng M, Sun Y, Saha TT, Chen D. LRFN (leucine-rich repeat and fibronectin type-III domain-containing protein) recognizes bacteria and promotes hemocytic phagocytosis in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2018; 72:622-628. [PMID: 29190588 DOI: 10.1016/j.fsi.2017.11.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
In bivalve mollusks, circulating hemocyte mediated phagocytosis is one of the primary ways to eliminate invading microbes. Here, we have identified one CgLRFN (leucine-rich repeat and fibronectin type-III domain-containing protein) in the Crassostrea gigas as a novel transmembrane LRR (Leucine-rich repeat) domain containing protein in C. gigas, homologous to the jawless fish VLR protein, that plays an important role in recognizing bacteria and promoting hemocytic phagocytosis. Tissue distribution analysis of CgLRFN in Pacific oyster showed that it is widely expressed in various tissues like the gills, adductor muscles, digestive glands, gonads, heart and in the hemocytes. Furthermore, infection of Pacific oysters with two marine Vibrio strains V. alginolyticus and V. parahaemolyticus was found to significantly increase CgLRFN expression in the hemocytes. Analysis of subcellular localization showed that CgLRFN is primarily localized in the cell membrane. Additionally, CgLRFN was found to be able to bind both the bacterial strains, indicating its possible role as a cell surface receptor. Flow cytometry analysis revealed that CgLRFN coated bacteria was phagocytosed by oyster hemocytes at a significantly higher rate compared to the uncoated bacteria. Finally, RNAi mediated knockdown of CgLRFN in vivo resulted in reduced clearance of both the bacterial strains from the oyster hemolymph. Overall, our study demonstrates that CgLRFN acts as a pattern recognition receptor for Vibrio spp. and promotes hemocytic phagocytosis in the Pacific oyster, which is critical for understanding the mechanism of bacterial infection in lower invertebrates, and also contributes to disease management of this economically and ecologically important marine mollusk.
Collapse
Affiliation(s)
- Qingsong Huang
- School of Basic Courses of Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingjia Yu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Hongmei Chen
- School of Basic Courses of Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Manhong Zeng
- School of Basic Courses of Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Sun
- School of Basic Courses of Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tusar T Saha
- Institute for Integrative Genomic Biology, University of California, Riverside, CA 92521, USA
| | - Dongbo Chen
- School of Basic Courses of Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Pérez-Acosta JA, Martínez-Porchas M, Elizalde-Contreras JM, Leyva JM, Ruiz-May E, Gollas-Galván T, Martínez-Córdova LR, Huerta-Ocampo JÁ. Proteomic profiling of integral membrane proteins associated to pathogenicity inVibrio parahaemolyticusstrains. Microbiol Immunol 2018; 62:14-23. [DOI: 10.1111/1348-0421.12556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Jesús A. Pérez-Acosta
- Department of Scientific and Technological Research DICTUS; Sonora University; Boulevard Luis Donaldo Colosio entre Reforma y Sahuaripa; Hermosillo Sonora, 83000 Mexico
| | - Marcel Martínez-Porchas
- Research Center for Food and Development A.C.; Carretera a La Victoria; Hermosillo Sonora 83304 Mexico
| | | | - Juan Manuel Leyva
- Research Center for Food and Development A.C.; Carretera a La Victoria; Hermosillo Sonora 83304 Mexico
| | - Eliel Ruiz-May
- Institute of Ecology; Carretera antigua a Coatepec 351; El Haya, Xalapa Veracruz 91070 Mexico
| | - Teresa Gollas-Galván
- Research Center for Food and Development A.C.; Carretera a La Victoria; Hermosillo Sonora 83304 Mexico
| | - Luis R. Martínez-Córdova
- Department of Scientific and Technological Research DICTUS; Sonora University; Boulevard Luis Donaldo Colosio entre Reforma y Sahuaripa; Hermosillo Sonora, 83000 Mexico
| | - José Ángel Huerta-Ocampo
- CONACYT-Research Center for Food and Development A.C., Carretera a La Victoria; Hermosillo; Sonora, 83304 Mexico
| |
Collapse
|
21
|
Letchumanan V, Chan KG, Khan TM, Bukhari SI, Ab Mutalib NS, Goh BH, Lee LH. Bile Sensing: The Activation of Vibrio parahaemolyticus Virulence. Front Microbiol 2017; 8:728. [PMID: 28484445 PMCID: PMC5399080 DOI: 10.3389/fmicb.2017.00728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/07/2017] [Indexed: 01/21/2023] Open
Abstract
Bacteria must develop resistance to various inhospitable conditions in order to survive in the human gastrointestinal tract. Bile, which is secreted by the liver, and plays an important role in food digestion also has antimicrobial properties and is able to disrupt cellular homeostasis. Paradoxically, although bile is one of the guts defenses, many studies have reported that bacteria such as Vibrio parahaemolyticus can sense bile and use its presence as an environmental cue to upregulate virulence genes during infection. This article aims to discuss how bile is detected by V. parahaemolyticus and its role in regulating type III secretion system 2 leading to human infection. This bile–bacteria interaction pathway gives us a clearer understanding of the biochemical and structural analysis of the bacterial receptors involved in mediating a response to bile salts which appear to be a significant environmental cue during initiation of an infection.
Collapse
Affiliation(s)
- Vengadesh Letchumanan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia.,Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaSelangor, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Tahir M Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaSelangor, Malaysia.,Department of Pharmacy, Abasyn UniversityPeshawar, Pakistan
| | - Sarah I Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud UniversityRiyadh, Saudi Arabia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaSelangor, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaSelangor, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
22
|
Blondel CJ, Park JS, Hubbard TP, Pacheco AR, Kuehl CJ, Walsh MJ, Davis BM, Gewurz BE, Doench JG, Waldor MK. CRISPR/Cas9 Screens Reveal Requirements for Host Cell Sulfation and Fucosylation in Bacterial Type III Secretion System-Mediated Cytotoxicity. Cell Host Microbe 2016; 20:226-37. [PMID: 27453484 DOI: 10.1016/j.chom.2016.06.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/24/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022]
Abstract
Type III secretion systems (T3SSs) inject bacterial effector proteins into host cells and underlie the virulence of many gram-negative pathogens. Studies have illuminated bacterial factors required for T3SS function, but the required host processes remain largely undefined. We coupled CRISPR/Cas9 genome editing technology with the cytotoxicity of two Vibrio parahaemolyticus T3SSs (T3SS1 and T3SS2) to identify human genome disruptions conferring resistance to T3SS-dependent cytotoxicity. We identity non-overlapping genes required for T3SS1- and T3SS2-mediated cytotoxicity. Genetic ablation of cell surface sulfation reduces bacterial adhesion and thereby alters the kinetics of T3SS1-mediated cytotoxicity. Cell surface fucosylation is required for T3SS2-dependent killing, and genetic inhibition of fucosylation prevents membrane insertion of the T3SS2 translocon complex. These findings reveal the importance of ubiquitous surface modifications for T3SS function, potentially explaining the broad tropism of V. parahaemolyticus, and highlight the utility of genome-wide CRISPR/Cas9 screens to discover processes underlying host-pathogen interactions.
Collapse
Affiliation(s)
- Carlos J Blondel
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph S Park
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Boston University School of Medicine, Boston, MA 02118, USA
| | - Troy P Hubbard
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alline R Pacheco
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Carole J Kuehl
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael J Walsh
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Brigid M Davis
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Li J, Xue F, Yang Z, Zhang X, Zeng D, Chao G, Jiang Y, Li B. Vibrio parahaemolyticus Strains of Pandemic Serotypes Identified from Clinical and Environmental Samples from Jiangsu, China. Front Microbiol 2016; 7:787. [PMID: 27303379 PMCID: PMC4885827 DOI: 10.3389/fmicb.2016.00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/09/2016] [Indexed: 01/22/2023] Open
Abstract
Vibrio parahaemolyticus has emerged as a major foodborne pathogen in China, Japan, Thailand, and other Asian countries. In this study, 72 strains of V. parahaemolyticus were isolated from clinical and environmental samples between 2006 and 2014 in Jiangsu, China. The serotypes and six virulence genes including thermostable direct hemolysin (TDR) and TDR-related hemolysin (TRH) genes were assessed among the isolates. Twenty five serotypes were identified and O3:K6 was one of the dominant serotypes. The genetic diversity was assessed by multilocus sequence typing (MLST) analysis, and 48 sequence types (STs) were found, suggesting this V. parahaemolyticus group is widely dispersed and undergoing rapid evolution. A total of 25 strains of pandemic serotypes such as O3:K6, O5:K17, and O1:KUT were identified. It is worth noting that the pandemic serotypes were not exclusively identified from clinical samples, rather, nine strains were also isolated from environmental samples; and some of these strains harbored several virulence genes, which may render those strains pathogenicity potential. Therefore, the emergence of these "environmental" pandemic V. parahaemolyticus strains may poses a new threat to the public health in China. Furthermore, six novel serotypes and 34 novel STs were identified among the 72 isolates, indicating that V. parahaemolyticus were widely distributed and fast evolving in the environment in Jiangsu, China. The findings of this study provide new insight into the phylogenic relationship between V. parahaemolyticus strains of pandemic serotypes from clinical and environmental sources and enhance the MLST database; and our proposed possible O- and K- antigen evolving paths of V. parahaemolyticus may help understand how the serotypes of this dispersed bacterial population evolve.
Collapse
Affiliation(s)
- Jingjiao Li
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine BureauNanjing, China; Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai JiaoTong UniversityShanghai, China
| | - Feng Xue
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine Bureau Nanjing, China
| | - Zhenquan Yang
- Jiangsu Key Laboratory of Zoonosis, School of Food Science and Engineering, Yangzhou University Yanghzou, China
| | - Xiaoping Zhang
- Beijing Kemufeng Biopharmaceutical Company Beijing, China
| | - Dexin Zeng
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine Bureau Nanjing, China
| | - Guoxiang Chao
- Yangzhou Key Centre for Disease Control and Prevention Yanghzou, China
| | - Yuan Jiang
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine Bureau Nanjing, China
| | - Baoguang Li
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, US Food and Drug Administration Laurel, MD, USA
| |
Collapse
|