1
|
Zhang N, Jiang N, Chen Q. Key Regulators of Parasite Biology Viewed Through a Post-Translational Modification Repertoire. Proteomics 2024:e202400120. [PMID: 39690890 DOI: 10.1002/pmic.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Parasites are the leading causes of morbidity and mortality in both humans and animals, imposing substantial socioeconomic burdens worldwide. Controlling parasitic diseases has become one of the key issues in achieving "One Health". Most parasites have sophisticated life cycles exhibiting progressive developmental stages, morphologies, and host-switching, which are controlled by various regulatory machineries including protein post-translational modifications (PTMs). PTMs have emerged as a key mechanism by which parasites modulate their virulence, developmental transitions, and environmental adaptations. PTMs are enzyme-mediated additions or removals of chemical groups that dynamically regulate the stability and functions of proteins and confer novel properties, playing vital roles in a variety of biological processes and cellular functions. In this review, we circumscribe how parasites utilize various PTMs to regulate their intricate lives, with a focus on the biological role of PTMs in parasite biology and pathogenesis.
Collapse
Affiliation(s)
- Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
2
|
Jia X, Wang Y, Wang M, Min H, Fang Z, Lu H, Li J, Cao Y, Bai L, Lu J. The phosphatase inhibitor BVT-948 can be used to efficiently screen functional sexual development proteins in the malaria parasite Plasmodium berghei. Int J Parasitol Drugs Drug Resist 2024; 26:100563. [PMID: 39153438 PMCID: PMC11378252 DOI: 10.1016/j.ijpddr.2024.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Studying and discovering the molecular mechanism of Plasmodium sexual development is crucial for the development of transmission blocking drugs and malaria eradication. The aim of this study was to investigate the feasibility of using phosphatase inhibitors as a tool for screening proteins essential for Plasmodium sexual development and to discover proteins affecting the sexual development of malaria parasites. METHODS Differences in protein phosphorylation among Plasmodium gametocytes incubated with BVT-948 under in vitro ookinete culture conditions were evaluated using phosphoproteomic methods. Gene Ontology (GO) analysis was performed to predict the mechanism by which BVT-948 affected gametocyte-ookinete conversion. The functions of 8 putative proteins involved in Plasmodium berghei sexual development were evaluated. Bioinformatic analysis was used to evaluate the possible mechanism of PBANKA_0100800 in gametogenesis and subsequent sexual development. RESULTS The phosphorylation levels of 265 proteins decreased while those of 67 increased after treatment with BVT-948. Seven of the 8 genes selected for phenotype screening play roles in P. berghei sexual development, and 4 of these were associated with gametocytogenesis. PBANKA_0100800 plays essential roles in gametocyte-ookinete conversion and transmission to mosquitoes. CONCLUSIONS Seven proteins identified by screening affect P. berghei sexual development, suggesting that phosphatase inhibitors can be used for functional protein screening.
Collapse
Affiliation(s)
- Xitong Jia
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, 110000, China; Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yong Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China; Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Meilian Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Zehou Fang
- The Second Clinical College of China Medical University, Shenyang, Liaoning, 110122, China
| | - Haifeng Lu
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Jiao Li
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| | - Jinghan Lu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
3
|
Paul P, Nayak B, Mishra S. The Role of Neddylation in Malaria Parasites. DNA Cell Biol 2024; 43:426-429. [PMID: 38885136 DOI: 10.1089/dna.2024.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Plasmodium parasites, the causative agents of malaria, rely on sophisticated cellular mechanisms to survive and proliferate within their hosts. Plasmodium complex life cycle requires posttranslational modifications (PTMs) to control cellular activities. Neddylation is a type of PTM in which NEDD8 is covalently attached to target proteins and plays an important role in cell cycle control and metabolism. Covalent attachment to its substrates requires the Nedd8-activating enzyme, E1; the NEDD8-conjugating enzyme, E2; and the ligase, E3. In Plasmodium, protein neddylation is essential for parasite development during the stage I-II transition from zygote to ookinete differentiation and malaria transmission. Here, we discuss the current understanding of protein neddylation in Plasmodium, which is involved in malaria transmission.
Collapse
Affiliation(s)
- Plabita Paul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bandita Nayak
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Lee JY, Dilones S, Maujean T, Asad M, Mohd A, Auslander N, Brady DC, Burslem GM, Witze ES. A selective S-acyltransferase inhibitor suppresses tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604152. [PMID: 39091878 PMCID: PMC11291081 DOI: 10.1101/2024.07.18.604152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
S-acyltransferases play integral roles in essential physiological processes including regulation of oncogenic signaling pathways. While discovered over 40 years ago the field still lacks specific S-acylation inhibitors thus the potential benefit of pharmacologically targeting S-acyltransferases for human disease is still unknown. Here we report the identification of an orally bioavailable acyltransferase inhibitor SD-066-4 that inhibits the acyltransferase ZDHHC20. We identified a specific alanine residue that accommodates the methyl group of SD-066-4, thus providing isoform selectivity. SD-066-4 stably reduces EGFR S-acylation in Kras mutant cells and blocks the growth of Kras mutant lung tumors extending overall survival. We find that lung cancer patients harboring deletions in ZDHHC20 or ZDHHC14 concurrent with Kras alterations have a significant survival benefit, underscoring the translational importance of these enzymes.
Collapse
|
5
|
Srivastava P, Bansal R, Madan E, Shoaib R, Singhal J, Kahlon AK, Gupta A, Garg S, Ranganathan A, Singh S. Identification of a De Novo Peptide against Palmitoyl Acyltransferase 6 to Block Survivability and Infectivity of Leishmania donovani. ACS Infect Dis 2024; 10:2074-2088. [PMID: 38717971 DOI: 10.1021/acsinfecdis.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Palmitoylation is an essential post-translational modification in Leishmania donovani, catalyzed by enzymes called palmitoyl acyl transferases (PATs) and has an essential role in virulence. Due to the toxicity and promiscuity of known PAT inhibitors, identification of new molecules is needed. Herein, we identified a specific novel de novo peptide inhibitor, PS1, against the PAT6 Leishmania donovani palmitoyl acyl transferase (LdPAT6). To demonstrate specific inhibition of LdPAT6 by PS1, we employed a bacterial orthologue system and metabolic labeling-coupled click chemistry where both LdPAT6 and PS1 were coexpressed and displayed palmitoylation suppression. Furthermore, strong binding of the LdPAT6-DHHC domain with PS1 was observed through analysis using microscale thermophoresis, ELISA, and dot blot assay. PS1 specific to LdPAT6 showed significant growth inhibition in promastigotes and amastigotes by expressing low cytokines levels and invasion. This study reveals discovery of a novel de novo peptide against LdPAT6-DHHC which has potential to block survivability and infectivity of L. donovani.
Collapse
Affiliation(s)
- Pallavi Srivastava
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ruby Bansal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Evanka Madan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rumaisha Shoaib
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biosciences, Jamia Millia Islamia University, New Delhi 110025, India
| | - Jhalak Singhal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amandeep Kaur Kahlon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
6
|
Qu Z, Li Y, Li W, Zhang N, Olajide JS, Mi X, Fu B. Global profiling of protein S-palmitoylation in the second-generation merozoites of Eimeria tenella. Parasitol Res 2024; 123:190. [PMID: 38647704 DOI: 10.1007/s00436-024-08204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
The intracellular protozoan Eimeria tenella is responsible for avian coccidiosis which is characterized by host intestinal damage. During developmental cycle, E. tenella undergoes versatile transitional stages such as oocyst, sporozoites, merozoites, and gametocytes. These developmental transitions involve changes in cell shape and cell size requiring cytoskeletal remodeling and changes in membrane proteins, which may require transcriptional and translational regulations as well as post-translational modification of proteins. Palmitoylation is a post-translational modification (PTM) of protein that orchestrates protein targeting, folding, stability, regulated enzymatic activity and even epigenetic regulation of gene expression. Previous research revealed that protein palmitoylation play essential role in Toxoplasma gondii, Trypanosoma cruzi, Trichomonas vaginalis, and several Plasmodium parasites. Until now, there is little information on the enzymes related to palmitoylation and role of protein acylation or palmitoylation in E. tenella. Therefore, palmitome of the second-generation merozoite of E. tenella was investigated. We identified a total of 2569 palmitoyl-sites that were assigned to 2145 palmitoyl-peptides belonging to 1561 protein-groups that participated in biological processes including parasite morphology, motility and host cell invasion. In addition, RNA biosynthesis, protein biosynthesis, folding, proteasome-ubiquitin degradation, and enzymes involved in PTMs, carbohydrate metabolism, glycan biosynthesis, and mitochondrial respiratory chain as well as vesicle trafficking were identified. The study allowed us to decipher the broad influence of palmitoylation in E. tenella biology, and its potential roles in the pathobiology of E. tenella infection. Raw data are publicly available at iProX with the dataset identifier PXD045061.
Collapse
Affiliation(s)
- Zigang Qu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Yuqiong Li
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, People's Republic of China
| | - Wenhui Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Nianzhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Joshua Seun Olajide
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Xiaoyun Mi
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, 830013, People's Republic of China.
| | - Baoquan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
- Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
7
|
Murata Y, Nishi T, Kaneko I, Iwanaga S, Yuda M. Coordinated regulation of gene expression in Plasmodium female gametocytes by two transcription factors. eLife 2024; 12:RP88317. [PMID: 38252559 PMCID: PMC10945693 DOI: 10.7554/elife.88317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Gametocytes play key roles in the Plasmodium lifecycle. They are essential for sexual reproduction as precursors of the gametes. They also play an essential role in parasite transmission to mosquitoes. Elucidation of the gene regulation at this stage is essential for understanding these two processes at the molecular level and for developing new strategies to break the parasite lifecycle. We identified a novel Plasmodium transcription factor (TF), designated as a partner of AP2-FG or PFG. In this article, we report that this TF regulates the gene expression in female gametocytes in concert with another female-specific TF AP2-FG. Upon the disruption of PFG, majority of female-specific genes were significantly downregulated, and female gametocyte lost the ability to produce ookinetes. ChIP-seq analysis showed that it was located in the same position as AP2-FG, indicating that these two TFs form a complex. ChIP-seq analysis of PFG in AP2-FG-disrupted parasites and ChIP-seq analysis of AP2-FG in PFG-disrupted parasites demonstrated that PFG mediates the binding of AP2-FG to a ten-base motif and that AP2-FG binds another motif, GCTCA, in the absence of PFG. In promoter assays, this five-base motif was identified as another female-specific cis-acting element. Genes under the control of the two forms of AP2-FG, with or without PFG, partly overlapped; however, each form had target preferences. These results suggested that combinations of these two forms generate various expression patterns among the extensive genes expressed in female gametocytes.
Collapse
Affiliation(s)
- Yuho Murata
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| | - Tsubasa Nishi
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| | - Izumi Kaneko
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Center for Infectious Disease ControlOsakaJapan
| | - Masao Yuda
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| |
Collapse
|
8
|
Ouologuem DT, Dara A, Kone A, Ouattara A, Djimde AA. Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies. Microorganisms 2023; 11:1966. [PMID: 37630530 PMCID: PMC10460021 DOI: 10.3390/microorganisms11081966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of Plasmodium spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host. Once ingested by the mosquito during blood meals, these sexual forms undergo a series of radical morphological and metabolic changes to survive and progress from the gut to the salivary glands, where they will be waiting to be injected into the vertebrate host. The design of effective transmission-blocking strategies requires a thorough understanding of all the mechanisms that drive the development of gametocytes, gametes, sexual reproduction, and subsequent differentiation within the mosquito. The drastic changes in Plasmodium falciparum shape and function throughout its life cycle rely on the tight regulation of stage-specific gene expression. This review outlines the mechanisms involved in Plasmodium falciparum sexual stage development in both the human and mosquito vector, and zygote to oocyst differentiation. Functional studies unravel mechanisms employed by P. falciparum to orchestrate the expression of stage-specific functional products required to succeed in its complex life cycle, thus providing us with potential targets for developing new therapeutics. These mechanisms are based on studies conducted with various Plasmodium species, including predominantly P. falciparum and the rodent malaria parasites P. berghei. However, the great potential of epigenetics, genomics, transcriptomics, proteomics, and functional genetic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in studies using human malaria parasites and field isolates.
Collapse
Affiliation(s)
- Dinkorma T. Ouologuem
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Aminatou Kone
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| |
Collapse
|
9
|
Counihan NA, Chernih HC, de Koning-Ward TF. Post-translational lipid modifications in Plasmodium parasites. Curr Opin Microbiol 2022; 69:102196. [PMID: 36037636 DOI: 10.1016/j.mib.2022.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
Most eukaryotic proteins undergo post-translational modifications (PTMs) that significantly alter protein properties, regulate diverse cellular processes and increase proteome complexity. Among these PTMs, lipidation plays a unique and key role in subcellular trafficking, signalling and membrane association of proteins through altering substrate function, and hydrophobicity via the addition and removal of lipid groups. Three prevalent classes of lipid modifications in Plasmodium parasites include prenylation, myristoylation, and palmitoylation that are important for regulating parasite-specific molecular processes. The enzymes that catalyse these lipid attachments have also been explored as potential drug targets for antimalarial development. In this review, we discuss these lipidation processes in Plasmodium spp. and the methodologies that have been used to identify these modifications in the deadliest species of malaria parasite, Plasmodium falciparum. We also discuss the development status of inhibitors that block these pathways.
Collapse
Affiliation(s)
- Natalie A Counihan
- School of Medicine, Deakin University, Geelong, Victoria, Australia; The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Hope C Chernih
- School of Medicine, Deakin University, Geelong, Victoria, Australia; The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Geelong, Victoria, Australia; The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
10
|
Fréville A, Gnangnon B, Tremp AZ, De Witte C, Cailliau K, Martoriati A, Aliouat EM, Fernandes P, Chhuon C, Silvie O, Marion S, Guerrera IC, Dessens JT, Pierrot C, Khalife J. Plasmodium berghei leucine-rich repeat protein 1 downregulates protein phosphatase 1 activity and is required for efficient oocyst development. Open Biol 2022; 12:220015. [PMID: 35920043 PMCID: PMC9346556 DOI: 10.1098/rsob.220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Protein phosphatase 1 (PP1) is a key enzyme for Plasmodium development. However, the detailed mechanisms underlying its regulation remain to be deciphered. Here, we report the functional characterization of the Plasmodium berghei leucine-rich repeat protein 1 (PbLRR1), an orthologue of SDS22, one of the most ancient and conserved PP1 interactors. Our study shows that PbLRR1 is expressed during intra-erythrocytic development of the parasite, and up to the zygote stage in mosquitoes. PbLRR1 can be found in complex with PbPP1 in both asexual and sexual stages and inhibits its phosphatase activity. Genetic analysis demonstrates that PbLRR1 depletion adversely affects the development of oocysts. PbLRR1 interactome analysis associated with phospho-proteomics studies identifies several novel putative PbLRR1/PbPP1 partners. Some of these partners have previously been characterized as essential for the parasite sexual development. Interestingly, and for the first time, Inhibitor 3 (I3), a well-known and direct interactant of Plasmodium PP1, was found to be drastically hypophosphorylated in PbLRR1-depleted parasites. These data, along with the detection of I3 with PP1 in the LRR1 interactome, strongly suggest that the phosphorylation status of PbI3 is under the control of the PP1-LRR1 complex and could contribute (in)directly to oocyst development. This study provides new insights into previously unrecognized PbPP1 fine regulation of Plasmodium oocyst development through its interaction with PbLRR1.
Collapse
Affiliation(s)
- Aline Fréville
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Annie Z. Tremp
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, WC1E 7HT London, UK
| | - Caroline De Witte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - El Moukthar Aliouat
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Priyanka Fernandes
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France
| | - Cerina Chhuon
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France
| | - Sabrina Marion
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Johannes T. Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, WC1E 7HT London, UK
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| |
Collapse
|
11
|
Kehrer J, Formaglio P, Muthinja JM, Weber S, Baltissen D, Lance C, Ripp J, Grech J, Meissner M, Funaya C, Amino R, Frischknecht F. Plasmodium
sporozoite disintegration during skin passage limits malaria parasite transmission. EMBO Rep 2022; 23:e54719. [PMID: 35403820 PMCID: PMC9253755 DOI: 10.15252/embr.202254719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
During transmission of malaria‐causing parasites from mosquitoes to mammals, Plasmodium sporozoites migrate rapidly in the skin to search for a blood vessel. The high migratory speed and narrow passages taken by the parasites suggest considerable strain on the sporozoites to maintain their shape. Here, we show that the membrane‐associated protein, concavin, is important for the maintenance of the Plasmodium sporozoite shape inside salivary glands of mosquitoes and during migration in the skin. Concavin‐GFP localizes at the cytoplasmic periphery and concavin(−) sporozoites progressively round up upon entry of salivary glands. Rounded concavin(−) sporozoites fail to pass through the narrow salivary ducts and are rarely ejected by mosquitoes, while normally shaped concavin(−) sporozoites are transmitted. Strikingly, motile concavin(−) sporozoites disintegrate while migrating through the skin leading to parasite arrest or death and decreased transmission efficiency. Collectively, we suggest that concavin contributes to cell shape maintenance by riveting the plasma membrane to the subtending inner membrane complex. Interfering with cell shape maintenance pathways might hence provide a new strategy to prevent a malaria infection.
Collapse
Affiliation(s)
- Jessica Kehrer
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
- Infectious Diseases Imaging Platform Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Pauline Formaglio
- Malaria Infection and Immunity Unit Department of Parasites and Insect Vectors Institut Pasteur Paris France
| | - Julianne Mendi Muthinja
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Sebastian Weber
- Electron Microscopy Core Facility Heidelberg University Heidelberg Germany
| | - Danny Baltissen
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Christopher Lance
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Johanna Ripp
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Janessa Grech
- Experimental Parasitology Ludwig Maximilian University Munich Planegg‐Martinsried Germany
| | - Markus Meissner
- Experimental Parasitology Ludwig Maximilian University Munich Planegg‐Martinsried Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility Heidelberg University Heidelberg Germany
| | - Rogerio Amino
- Malaria Infection and Immunity Unit Department of Parasites and Insect Vectors Institut Pasteur Paris France
| | - Friedrich Frischknecht
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg Heidelberg Germany
| |
Collapse
|
12
|
Qian P, Wang X, Zhong CQ, Wang J, Cai M, Nguitragool W, Li J, Cui H, Yuan J. Inner membrane complex proteomics reveals a palmitoylation regulation critical for intraerythrocytic development of malaria parasite. eLife 2022; 11:77447. [PMID: 35775739 PMCID: PMC9293000 DOI: 10.7554/elife.77447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Malaria is caused by infection of the erythrocytes by the parasites Plasmodium. Inside the erythrocytes, the parasites multiply via schizogony, an unconventional cell division mode. The inner membrane complex (IMC), an organelle located beneath the parasite plasma membrane, serving as the platform for protein anchorage, is essential for schizogony. So far, the complete repertoire of IMC proteins and their localization determinants remain unclear. Here we used biotin ligase (TurboID)-based proximity labeling to compile the proteome of the schizont IMC of the rodent malaria parasite Plasmodium yoelii. In total, 300 TurboID-interacting proteins were identified. 18 of 21 selected candidates were confirmed to localize in the IMC, indicating good reliability. In light of the existing palmitome of Plasmodium falciparum, 83 proteins of the P. yoelii IMC proteome are potentially palmitoylated. We further identified DHHC2 as the major resident palmitoyl-acyl-transferase of the IMC. Depletion of DHHC2 led to defective schizont segmentation and growth arrest both in vitro and in vivo. DHHC2 was found to palmitoylate two critical IMC proteins CDPK1 and GAP45 for their IMC localization. In summary, this study reports an inventory of new IMC proteins and demonstrates a central role of DHHC2 in governing the IMC localization of proteins during the schizont development.
Collapse
Affiliation(s)
- Pengge Qian
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xu Wang
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Chuan-Qi Zhong
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jiaxu Wang
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Mengya Cai
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
| | - Jian Li
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jing Yuan
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Johnson N, Philip N. Beyond phosphorylation: Putative roles of post-translational modifications in Plasmodium sexual stages. Mol Biochem Parasitol 2021; 245:111406. [PMID: 34324911 PMCID: PMC8505795 DOI: 10.1016/j.molbiopara.2021.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
Post-translational modifications (PTMs) allow proteins to regulate their structure, localisation and function in response to cell intrinsic and environmental signals. The diversity and number of modifications on proteins increase the complexity of cellular proteomes by orders of magnitude. Several proteomic and molecular studies have revealed an abundance of PTMs in malaria parasite proteome, where mediators of PTMs play crucial roles in parasite pathogenesis and transmission. In this article, we discuss recent findings in asexual stages of ten diverse PTMs and investigate whether these proteins are expressed in sexual stages. We discovered 25-50 % of proteins exhibiting post-translational modifications in asexual stages are also expressed in sexual stage gametocytes. Moreover we analyse the function of the modified proteins shared with the gametocyte proteome and try to encourage the scientific community to investigate the roles of diverse PTMs beyond phosphorylation in sexual stages which could not only reveal unique aspects of parasite biology, but also uncover new avenues for transmission blocking.
Collapse
Affiliation(s)
- Nila Johnson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Nisha Philip
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| |
Collapse
|
14
|
Rashidi S, Tuteja R, Mansouri R, Ali-Hassanzadeh M, Shafiei R, Ghani E, Karimazar M, Nguewa P, Manzano-Román R. The main post-translational modifications and related regulatory pathways in the malaria parasite Plasmodium falciparum: An update. J Proteomics 2021; 245:104279. [PMID: 34089893 DOI: 10.1016/j.jprot.2021.104279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
There are important challenges when investigating individual post-translational modifications (PTMs) or protein interaction network and delineating if PTMs or their changes and cross-talks are involved during infection, disease initiation or as a result of disease progression. Proteomics and in silico approaches now offer the possibility to complement each other to further understand the regulatory involvement of these modifications in parasites and infection biology. Accordingly, the current review highlights key expressed or altered proteins and PTMs are invisible switches that turn on and off the function of most of the proteins. PTMs include phosphorylation, glycosylation, ubiquitylation, palmitoylation, myristoylation, prenylation, acetylation, methylation, and epigenetic PTMs in P. falciparum which have been recently identified. But also other low-abundant or overlooked PTMs that might be important for the parasite's survival, infectivity, antigenicity, immunomodulation and pathogenesis. We here emphasize the PTMs as regulatory pathways playing major roles in the biology, pathogenicity, metabolic pathways, survival, host-parasite interactions and the life cycle of P. falciparum. Further validations and functional characterizations of such proteins might confirm the discovery of therapeutic targets and might most likely provide valuable data for the treatment of P. falciparum, the main cause of severe malaria in human.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammadreza Karimazar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- University of Navarra, ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), c/Irunlarrea 1, 31008 Pamplona, Spain.
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
15
|
Ramanto KN, Nurdiansyah R. Structural and immunogenicity analysis of reconstructed ancestral and consensus P48/45 for cross-species anti malaria transmission-blocking vaccine. Comput Biol Chem 2021; 92:107495. [PMID: 33940529 DOI: 10.1016/j.compbiolchem.2021.107495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022]
Abstract
The development of the anti-malaria vaccine holds a promising future in malaria control. One of the anti-malaria vaccine strategies known as the transmission-blocking vaccine (TBV) is to inhibit the parasite transmission between humans and mosquitoes by targeting the parasite gametocyte. Previously, we found that P48/45 included in the 6-Cysteine protein family shared by Plasmodium sp. We also detected vaccine properties possessed by all human-infecting Plasmodium and could be used as a cross-species anti-malaria vaccine. In this study, we investigated the efficacy of P48/45 through the ancestral and consensus reconstruction approach. P48/45 phylogenetic and time tree analysis was done by RAXML and BEAST2. GRASP server and Ugene software were used to reconstruct ancestral and consensus sequences, respectively. The protein structural prediction was made by using a psipred and Rosetta program. Each protein characteristic of P48/45 was analyzed by assessing hydrophobicity and Post-Translational Modification sites. Meanwhile, the Epitope sequence for B-cell, T-cell, and HLA was determined using an immunoinformatics approach. Lastly, molecular docking simulation was done to determine native binding interactions of P48/45-P230. The result showed a distinct protein characteristic of ancestral and consensus sequences. The immunogenicity analysis revealed the number of epitopes in the ancestral sequence is greater than the consensus sequence. The study also found a conserved epitope located in the binding site and consists of specific Post-Translational Modification sites. Hence, our research provides detailed insight into ancestral and consensus P48/45 efficacy for the cross-species anti-malaria vaccine.
Collapse
Affiliation(s)
- Kevin Nathanael Ramanto
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Rizky Nurdiansyah
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia.
| |
Collapse
|
16
|
Ferreira JL, Heincke D, Wichers JS, Liffner B, Wilson DW, Gilberger TW. The Dynamic Roles of the Inner Membrane Complex in the Multiple Stages of the Malaria Parasite. Front Cell Infect Microbiol 2021; 10:611801. [PMID: 33489940 PMCID: PMC7820811 DOI: 10.3389/fcimb.2020.611801] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023] Open
Abstract
Apicomplexan parasites, such as human malaria parasites, have complex lifecycles encompassing multiple and diverse environmental niches. Invading, replicating, and escaping from different cell types, along with exploiting each intracellular niche, necessitate large and dynamic changes in parasite morphology and cellular architecture. The inner membrane complex (IMC) is a unique structural element that is intricately involved with these distinct morphological changes. The IMC is a double membrane organelle that forms de novo and is located beneath the plasma membrane of these single-celled organisms. In Plasmodium spp. parasites it has three major purposes: it confers stability and shape to the cell, functions as an important scaffolding compartment during the formation of daughter cells, and plays a major role in motility and invasion. Recent years have revealed greater insights into the architecture, protein composition and function of the IMC. Here, we discuss the multiple roles of the IMC in each parasite lifecycle stage as well as insights into its sub-compartmentalization, biogenesis, disassembly and regulation during stage conversion of P. falciparum.
Collapse
Affiliation(s)
- Josie Liane Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Heinrich Pette Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Dorothee Heincke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Burnet Institute, Melbourne, VIC, Australia
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
17
|
Egarter S, Santos JM, Kehrer J, Sattler J, Frischknecht F, Mair GR. Gliding motility protein LIMP promotes optimal mosquito midgut traversal and infection by Plasmodium berghei. Mol Biochem Parasitol 2021; 241:111347. [PMID: 33347893 PMCID: PMC7856051 DOI: 10.1016/j.molbiopara.2020.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/02/2022]
Abstract
Substrate-dependent gliding motility is key to malaria transmission. It mediates host cell traversal, invasion and infection by Plasmodium and related apicomplexan parasites. The 110 amino acid-long cell surface protein LIMP is essential for P. berghei sporozoites where it is required for the invasion of the mosquito's salivary glands and the liver cells of the rodent host. Here we define an additional role for LIMP during mosquito invasion by the ookinete. limp mRNA is provided as a translationally repressed mRNP (messenger ribonucleoprotein) by the female gametocyte and the protein translated in the ookinete. Parasites depleted of limp (Δlimp) develop ookinetes with apparent normal morphology and no defect during in vitro gliding motility, and yet display a pronounced reduction in oocyst numbers; compared to wildtype 82 % more Δlimp ookinetes remain within the mosquito blood meal explaining the decrease in oocysts. As in the sporozoite, LIMP exerts a profound role on ookinete infection of the mosquito.
Collapse
Affiliation(s)
- Saskia Egarter
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Jorge M Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Jessica Kehrer
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia Sattler
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Gunnar R Mair
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal; Iowa State University, Biomedical Sciences, Ames, IA, United States.
| |
Collapse
|
18
|
The Riveting Cellular Structures of Apicomplexan Parasites. Trends Parasitol 2020; 36:979-991. [PMID: 33011071 DOI: 10.1016/j.pt.2020.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Parasitic protozoa of the phylum Apicomplexa cause a range of human and animal diseases. Their complex life cycles - often heteroxenous with sexual and asexual phases in different hosts - rely on elaborate cytoskeletal structures to enable morphogenesis and motility, organize cell division, and withstand diverse environmental forces. This review primarily focuses on studies using Toxoplasma gondii and Plasmodium spp. as the best studied apicomplexans; however, many cytoskeletal adaptations are broadly conserved and predate the emergence of the parasitic phylum. After decades cataloguing the constituents of such structures, a dynamic picture is emerging of the assembly and maintenance of apicomplexan cytoskeletons, illuminating how they template and orient critical processes during infection. These observations impact our view of eukaryotic diversity and offer future challenges for cell biology.
Collapse
|
19
|
Dogga SK, Frénal K. Two palmitoyl acyltransferases involved sequentially in the biogenesis of the inner membrane complex of Toxoplasma gondii. Cell Microbiol 2020; 22:e13212. [PMID: 32329212 DOI: 10.1111/cmi.13212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 01/05/2023]
Abstract
The phylum Apicomplexa includes a number of significant human pathogens like Toxoplasma gondii and Plasmodium species. These obligate intracellular parasites possess a membranous structure, the inner membrane complex (IMC), composed of flattened vesicles apposed to the plasma membrane. Numerous proteins associated with the IMC are anchored via a lipid post-translational modification termed palmitoylation. This acylation is catalysed by multi-membrane spanning protein S-acyl-transferases (PATs) containing a catalytic Asp-His-His-Cys (DHHC) motif, commonly referred to as DHHCs. Contrasting the redundancy observed in other organisms, several PATs are essential for T. gondii tachyzoite survival; 2 of them, TgDHHC2 and TgDHHC14 being IMC-resident. Disruption of either of these TgDHHCs results in a rapid collapse of the IMC in the developing daughter cells leading to dramatic morphological defects of the parasites while the impact on the other organelles is limited to their localisation but not to their biogenesis. The acyl-transferase activity of TgDHHC2 and TgDHHC14 is involved sequentially in the formation of the sub-compartments of the IMC. Investigation of proteins known to be palmitoylated and localised to these sub-compartments identified TgISP1/3 as well as TgIAP1/2 to lose their membrane association revealing them as likely substrates of TgDHHC2, while these proteins are not impacted by TgDHHC14 depletion.
Collapse
Affiliation(s)
- Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Wang X, Qian P, Cui H, Yao L, Yuan J. A protein palmitoylation cascade regulates microtubule cytoskeleton integrity in Plasmodium. EMBO J 2020; 39:e104168. [PMID: 32395856 PMCID: PMC7327484 DOI: 10.15252/embj.2019104168] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Morphogenesis of many protozoans depends on a polarized establishment of cytoskeletal structures. In malaria-causing parasites, this can be observed when a round zygote develops into an elongated motile ookinete within the mosquito stomach. This morphogenesis is mediated by the pellicle cytoskeletal structures, including the inner membrane complex (IMC) and the underlying subpellicular microtubules (SPMs). How the parasite maintains the IMC-SPM connection and establishes a dome-like structure of SPM to support cell elongation is unclear. Here, we show that palmitoylation of N-terminal cysteines of two IMC proteins (ISP1/ISP3) regulates the IMC localization of ISP1/ISP3 and zygote-to-ookinete differentiation. Palmitoylation of ISP1/ISP3 is catalyzed by an IMC-residing palmitoyl-S-acyl-transferase (PAT) DHHC2. Surprisingly, DHHC2 undergoes self-palmitoylation at C-terminal cysteines via its PAT activity, which controls DHHC2 localization in IMC after zygote formation. IMC-anchored ISP1 and ISP3 interact with microtubule component β-tubulin, serving as tethers to maintain the proper structure of SPM during zygote elongation. This study identifies the first PAT-substrate pair in malaria parasites and uncovers a protein palmitoylation cascade regulating microtubule cytoskeleton.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Pengge Qian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Kilian N, Zhang Y, LaMonica L, Hooker G, Toomre D, Mamoun CB, Ernst AM. Palmitoylated Proteins in Plasmodium falciparum-Infected Erythrocytes: Investigation with Click Chemistry and Metabolic Labeling. Bioessays 2020; 42:e1900145. [PMID: 32342554 DOI: 10.1002/bies.201900145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 02/22/2020] [Indexed: 12/13/2022]
Abstract
The examination of the complex cell biology of the human malaria parasite Plasmodium falciparum usually relies on the time-consuming generation of transgenic parasites. Here, metabolic labeling and click chemistry are employed as a fast transfection-independent method for the microscopic examination of protein S-palmitoylation, an important post-translational modification during the asexual intraerythrocytic replication of P. falciparum. Applying various microscopy approaches such as confocal, single-molecule switching, and electron microscopy, differences in the extent of labeling within the different asexual developmental stages of P. falciparum and the host erythrocytes over time are observed.
Collapse
Affiliation(s)
- Nicole Kilian
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8056, USA
| | - Yongdeng Zhang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA
| | - Lauren LaMonica
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA
| | - Giles Hooker
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA.,Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8056, USA
| | - Andreas M Ernst
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA
| |
Collapse
|
22
|
Siddiqui MA, Singh S, Malhotra P, Chitnis CE. Protein S-Palmitoylation Is Responsive to External Signals and Plays a Regulatory Role in Microneme Secretion in Plasmodium falciparum Merozoites. ACS Infect Dis 2020; 6:379-392. [PMID: 32003970 DOI: 10.1021/acsinfecdis.9b00321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein S-palmitoylation is an important post-translational modification (PTM) in blood stages of the malaria parasite, Plasmodium falciparum. S-palmitoylation refers to reversible covalent modification of cysteine residues of proteins by saturated fatty acids. In vivo, palmitoylation is regulated by concerted activities of DHHC palmitoyl acyl transferases (DHHC PATs) and acyl protein thioesterases (APTs), which are enzymes responsible for protein palmitoylation and depalmitoylation, respectively. Here, we investigate the role of protein palmitoylation in red blood cell (RBC) invasion by P. falciparum merozoites. We demonstrate for the first time that free merozoites require PAT activity for microneme secretion in response to exposure to the physiologically relevant low [K+] environment, characteristic of blood plasma. We have adapted copper catalyzed alkyne azide chemistry (CuAAC) to image palmitoylation in merozoites and found that exposure to low [K+] activates PAT activity in merozoites. Moreover, using acyl biotin exchange chemistry (ABE) and confocal imaging, we demonstrate that a calcium dependent protein kinase, PfCDPK1, an essential regulator of key invasion processes such as motility and microneme secretion, undergoes dynamic palmitoylation and localizes to the merozoite membrane. Treatment of merozoites with the PAT inhibitor, 2-bromopalmitate (2-BP), effectively inhibits microneme secretion and RBC invasion by the parasite, thus opening the possibility of targeting P. falciparum PATs for antimalarial drug discovery to inhibit blood stage growth of malaria parasites.
Collapse
Affiliation(s)
- Mansoor A. Siddiqui
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailja Singh
- Institut Pasteur, 25-28 Rue du Dr. Roux, Paris 75016, France
- Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Chetan E. Chitnis
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
- Institut Pasteur, 25-28 Rue du Dr. Roux, Paris 75016, France
| |
Collapse
|
23
|
Palmitoylation in apicomplexan parasites: from established regulatory roles to putative new functions. Mol Biochem Parasitol 2019; 230:16-23. [PMID: 30978365 DOI: 10.1016/j.molbiopara.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/17/2019] [Accepted: 04/07/2019] [Indexed: 01/28/2023]
Abstract
This minireview aims to provide a comprehensive synthesis on protein palmitoylation in apicomplexan parasites and higher eukaryotes where most of the data is available. Apicomplexan parasites encompass numerous obligate intracellular parasites with significant health risk to animals and humans. Protein palmitoylation is a widespread post-translational modification that plays important regulatory roles in several physiological and pathological states. Functional studies demonstrate that many processes important for parasites are regulated by protein palmitoylation. Structural analyses suggest that enzymes responsible for the palmitoylation process have a conserved architecture in eukaryotes although there are particular differences which could be related to their substrate specificities. Interestingly, with the publication of T. gondii and P. falciparum palmitoylomes new possible regulatory functions are unveiled. Here we focus our discussion on data from both palmitoylomes that suggest that palmitoylation of nuclear proteins regulate different chromatin-related processes such as nucleosome assembly and stability, transcription, translation and DNA repair.
Collapse
|
24
|
Obrova K, Cyrklaff M, Frank R, Mair GR, Mueller AK. Transmission of the malaria parasite requires ferlin for gamete egress from the red blood cell. Cell Microbiol 2019; 21:e12999. [PMID: 30597708 DOI: 10.1111/cmi.12999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/15/2018] [Accepted: 12/09/2018] [Indexed: 02/02/2023]
Abstract
Ferlins mediate calcium-dependent vesicular fusion. Although conserved throughout eukaryotic evolution, their function in unicellular organisms including apicomplexan parasites is largely unknown. Here, we define a crucial role for a ferlin-like protein (FLP) in host-to-vector transmission of the rodent malaria parasite Plasmodium berghei. Infection of the mosquito vectors requires the formation of free gametes and their fertilisation in the mosquito midgut. Mature gametes will only emerge upon secretion of factors that stimulate the disruption of the red blood cell membrane and the parasitophorous vacuole membrane. Genetic depletion of FLP in sexual stages leads to a complete life cycle arrest in the mosquito. Although mature gametes form normally, mutants lacking FLP remain trapped in the red blood cell. The egress defect is rescued by detergent-mediated membrane lysis. In agreement with ferlin vesicular localisation, HA-tagged FLP labels intracellular speckles, which relocalise to the cell periphery during gamete maturation. Our data define FLP as a novel critical factor for Plasmodium fertilisation and transmission and suggest an evolutionarily conserved example of ferlin-mediated exocytosis.
Collapse
Affiliation(s)
- Klara Obrova
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Marek Cyrklaff
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Roland Frank
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Gunnar R Mair
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Ann-Kristin Mueller
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infectious Diseases (DZIF), Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Screening the Pathogen Box for Molecules Active against Plasmodium Sexual Stages Using a New Nanoluciferase-Based Transgenic Line of P. berghei Identifies Transmission-Blocking Compounds. Antimicrob Agents Chemother 2018; 62:AAC.01053-18. [PMID: 30181368 DOI: 10.1128/aac.01053-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022] Open
Abstract
Malaria remains an important parasitic disease with a large morbidity and mortality burden. Plasmodium transmission-blocking (TB) compounds are essential for achieving malaria elimination efforts. Recent efforts to develop high-throughput screening (HTS) methods to identify compounds that inhibit or kill gametocytes, the Plasmodium sexual stage infectious to mosquitoes, have yielded insight into new TB compounds. However, the activities of these compounds against gametes, formed in the first minutes of mosquito infection, are typically not assessed, unless screened in a standard membrane feeding assay, a labor-intensive assay. We demonstrate here the generation of a Plasmodium model for drug screens against gametes and fertilization. The new P. berghei line, named Ookluc, was genetically and pharmacologically validated and scalable for HTS. Screening the Pathogen Box from the Medicines for Malaria Venture using the new model identified promising TB compounds. The use of Ookluc in different libraries of compounds may aid in the identification of transmission-blocking drugs not assessed in screens against asexual stages or gametocytes.
Collapse
|
26
|
Klug D, Kehrer J, Frischknecht F, Singer M. A synthetic promoter for multi-stage expression to probe complementary functions of Plasmodium adhesins. J Cell Sci 2018; 131:jcs.210971. [PMID: 30237220 DOI: 10.1242/jcs.210971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Gene expression of malaria parasites is mediated by the apicomplexan Apetala2 (ApiAP2) transcription factor family. Different ApiAP2s control gene expression at distinct stages in the complex life cycle of the parasite, ensuring timely expression of stage-specific genes. ApiAP2s recognize short cis-regulatory elements that are enriched in the upstream/promoter region of their target genes. This should, in principle, allow the generation of 'synthetic' promoters that drive gene expression at desired stages of the Plasmodium life cycle. Here we test this concept by combining cis-regulatory elements of two genes expressed successively within the mosquito part of the life cycle. Our tailored 'synthetic' promoters, named Spooki 1.0 and Spooki 2.0, activate gene expression in early and late mosquito stages, as shown by the expression of a fluorescent reporter. We used these promoters to address the specific functionality of two related adhesins that are exclusively expressed either during the early or late mosquito stage. By modifying the expression profile of both adhesins in absence of their counterpart we were able to test for complementary functions in gliding and invasion. We discuss the possible advantages and drawbacks of our approach.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Chen B, Sun Y, Niu J, Jarugumilli GK, Wu X. Protein Lipidation in Cell Signaling and Diseases: Function, Regulation, and Therapeutic Opportunities. Cell Chem Biol 2018; 25:817-831. [PMID: 29861273 PMCID: PMC6054547 DOI: 10.1016/j.chembiol.2018.05.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/06/2017] [Accepted: 05/01/2018] [Indexed: 01/08/2023]
Abstract
Protein lipidation is an important co- or posttranslational modification in which lipid moieties are covalently attached to proteins. Lipidation markedly increases the hydrophobicity of proteins, resulting in changes to their conformation, stability, membrane association, localization, trafficking, and binding affinity to their co-factors. Various lipids and lipid metabolites serve as protein lipidation moieties. The intracellular concentrations of these lipids and their derivatives are tightly regulated by cellular metabolism. Therefore, protein lipidation links the output of cellular metabolism to the regulation of protein function. Importantly, deregulation of protein lipidation has been linked to various diseases, including neurological disorders, metabolic diseases, and cancers. In this review, we highlight recent progress in our understanding of protein lipidation, in particular, S-palmitoylation and lysine fatty acylation, and we describe the importance of these modifications for protein regulation, cell signaling, and diseases. We further highlight opportunities and new strategies for targeting protein lipidation for therapeutic applications.
Collapse
Affiliation(s)
- Baoen Chen
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA
| | - Yang Sun
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA
| | - Jixiao Niu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA
| | - Gopala K Jarugumilli
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA.
| |
Collapse
|
28
|
Ayana R, Yadav P, Kumari R, Ramu D, Garg S, Pati S, Singh S. Identification and Characterization of a Novel Palmitoyl Acyltransferase as a Druggable Rheostat of Dynamic Palmitoylome in L. donovani. Front Cell Infect Microbiol 2018; 8:186. [PMID: 29977865 PMCID: PMC6022219 DOI: 10.3389/fcimb.2018.00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023] Open
Abstract
Palmitoylation has been recently identified as an important post-translational rheostat for controlling protein function in eukaryotes. However, the molecular machinery underlying palmitoylation remains unclear in the neglected tropical parasite, Leishmania donovani. Herein, we have identified a catalog of 20 novel palmitoyl acyltransferases (PATs) and characterized the promastigote-specific PAT (LdPAT4) containing the canonical Asp-His-His-Cys (DHHC) domain. Immunofluorescence analysis using in-house generated LdPAT4-specific antibody demonstrated distinct expression of LdPAT4 in the flagellar pocket of promastigotes. Using metabolic labeling-coupled click chemistry method, the functionality of this recombinant enzyme could be authenticated in E. coli strain expressing LdPAT4-DHHC domain. This was evident by the cellular uptake of palmitic acid analogs, which could be successfully inhibited by 2-BMP, a PAT-specific inhibitor. Using CSS-Palm based in-silico proteomic analysis, we could predict up to 23 palmitoylated sites per protein in the promastigotes, and further identify distinctive palmitoylated protein clusters involved in microtubule assembly, flagella motility and vesicular trafficking. To highlight, proteins such as Flagellar Member proteins (FLAM1, FLAM5), Intraflagellar Transport proteins (IFT88), and flagellar motor assembly proteins including the Dynein family were found to be enriched. Furthermore, analysis of global palmitoylation in promastigotes using Acyl-biotin exchange purification identified a set of S-palmitoylated proteins overlapping with the in-silico proteomics data. The attenuation of palmitoylation using 2-BMP demonstrated several phenotypic alterations in the promastigotes including distorted morphology, reduced motility (flagellar loss or slow flagellar beating), and inefficient invasion of promastigotes to host macrophages. These analyses confirm the essential role of palmitoylation in promastigotes. In summary, the findings suggest that LdPAT4 acts as a functional acyltransferase that can regulate palmitoylation of proteins involved in parasite motility and invasion, thus, can serve as a potential target for designing chemotherapeutics in Visceral Leishmaniasis.
Collapse
Affiliation(s)
- R Ayana
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Preeti Yadav
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rajesh Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Dandugudumula Ramu
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Swati Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
29
|
Protein S-palmitoylation in cellular differentiation. Biochem Soc Trans 2017; 45:275-285. [PMID: 28202682 PMCID: PMC5310721 DOI: 10.1042/bst20160236] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023]
Abstract
Reversible protein S-palmitoylation confers spatiotemporal control of protein function by modulating protein stability, trafficking and activity, as well as protein-protein and membrane-protein associations. Enabled by technological advances, global studies revealed S-palmitoylation to be an important and pervasive posttranslational modification in eukaryotes with the potential to coordinate diverse biological processes as cells transition from one state to another. Here, we review the strategies and tools to analyze in vivo protein palmitoylation and interrogate the functions of the enzymes that put on and take off palmitate from proteins. We also highlight palmitoyl proteins and palmitoylation-related enzymes that are associated with cellular differentiation and/or tissue development in yeasts, protozoa, mammals, plants and other model eukaryotes.
Collapse
|
30
|
Brown RWB, Sharma AI, Engman DM. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence. Crit Rev Biochem Mol Biol 2017; 52:145-162. [PMID: 28228066 PMCID: PMC5560270 DOI: 10.1080/10409238.2017.1287161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eukaryotic parasites possess complex life cycles and utilize an assortment of molecular mechanisms to overcome physical barriers, suppress and/or bypass the host immune response, including invading host cells where they can replicate in a protected intracellular niche. Protein S-palmitoylation is a dynamic post-translational modification in which the fatty acid palmitate is covalently linked to cysteine residues on proteins by the enzyme palmitoyl acyltransferase (PAT) and can be removed by lysosomal palmitoyl-protein thioesterase (PPT) or cytosolic acyl-protein thioesterase (APT). In addition to anchoring proteins to intracellular membranes, functions of dynamic palmitoylation include - targeting proteins to specific intracellular compartments via trafficking pathways, regulating the cycling of proteins between membranes, modulating protein function and regulating protein stability. Recent studies in the eukaryotic parasites - Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei, Cryptococcus neoformans and Giardia lamblia - have identified large families of PATs and palmitoylated proteins. Many palmitoylated proteins are important for diverse aspects of pathogenesis, including differentiation into infective life cycle stages, biogenesis and tethering of secretory organelles, assembling the machinery powering motility and targeting virulence factors to the plasma membrane. This review aims to summarize our current knowledge of palmitoylation in eukaryotic parasites, highlighting five exemplary mechanisms of parasite virulence dependent on palmitoylation.
Collapse
Affiliation(s)
- Robert W. B. Brown
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Aabha I. Sharma
- Departments of Pathology and Microbiology-Biology, Northwestern University, Chicago, IL, United States
| | - David M. Engman
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Departments of Pathology and Microbiology-Biology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
31
|
Tremp AZ, Al-Khattaf FS, Dessens JT. Palmitoylation of Plasmodium alveolins promotes cytoskeletal function. Mol Biochem Parasitol 2017; 213:16-21. [PMID: 28223095 PMCID: PMC5388192 DOI: 10.1016/j.molbiopara.2017.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/08/2017] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Abstract
The alveolin IMC1c is palmitoylated on a conserved cysteine motif. Non-palmitoylated IMC1c exhibits normal stability and trafficking. Palmitoylation of Plasmodium alveolins enhances tensile strength.
S-palmitoylation is a post-translational lipid modification that is widespread among Plasmodium proteins and essential for parasite development. Little is known about the contribution of palmitoylation to the function of individual parasite molecules and structures. Alveolins are major components of the subpellicular network (SPN), a cortical cytoskeleton primarily involved in providing mechanical strength to the cell. We show here that the alveolin IMC1c is palmitoylated on a conserved cysteine motif, and that non-palmitoylated IMC1c displays normal expression, stability and trafficking. However, mutant parasites exhibit reduced osmotic stress resistance and tensile strength. These findings support the hypothesis that alveolin palmitoylation enhances cytoskeletal function by strengthening the connection between the SPN and the adjoining inner membrane complex via lipid anchoring.
Collapse
Affiliation(s)
- Annie Z Tremp
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Fatimah S Al-Khattaf
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Johannes T Dessens
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
32
|
Klug D, Mair GR, Frischknecht F, Douglas RG. A small mitochondrial protein present in myzozoans is essential for malaria transmission. Open Biol 2016; 6:160034. [PMID: 27053680 PMCID: PMC4852462 DOI: 10.1098/rsob.160034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myzozoans (which include dinoflagellates, chromerids and apicomplexans) display notable divergence from their ciliate sister group, including a reduced mitochondrial genome and divergent metabolic processes. The factors contributing to these divergent processes are still poorly understood and could serve as potential drug targets in disease-causing protists. Here, we report the identification and characterization of a small mitochondrial protein from the rodent-infecting apicomplexan parasite Plasmodium berghei that is essential for development in its mosquito host. Parasites lacking the gene mitochondrial protein ookinete developmental defect (mpodd) showed malformed parasites that were unable to transmit to mosquitoes. Knockout parasites displayed reduced mitochondrial mass without affecting organelle integrity, indicating no role of the protein in mitochondrial biogenesis or morphology maintenance but a likely role in mitochondrial import or metabolism. Using genetic complementation experiments, we identified a previously unrecognized Plasmodium falciparum homologue that can rescue the mpodd(−) phenotype, thereby showing that the gene is functionally conserved. As far as can be detected, mpodd is found in myzozoans, has homologues in the phylum Apicomplexa and appears to have arisen in free-living dinoflagellates. This suggests that the MPODD protein has a conserved mitochondrial role that is important for myzozoans. While previous studies identified a number of essential proteins which are generally highly conserved evolutionarily, our study identifies, for the first time, a non-canonical protein fulfilling a crucial function in the mitochondrion during parasite transmission.
Collapse
Affiliation(s)
- Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Gunnar R Mair
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Ross G Douglas
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Pastrana-Mena R, Mathias DK, Delves M, Rajaram K, King JG, Yee R, Trucchi B, Verotta L, Dinglasan RR. A Malaria Transmission-Blocking (+)-Usnic Acid Derivative Prevents Plasmodium Zygote-to-Ookinete Maturation in the Mosquito Midgut. ACS Chem Biol 2016; 11:3461-3472. [PMID: 27978709 DOI: 10.1021/acschembio.6b00902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The evolution of drug resistance is a recurrent problem that has plagued efforts to treat and control malaria. Recent emergence of artemisinin resistance in Southeast Asia underscores the need to develop novel antimalarials and identify new targetable pathways in Plasmodium parasites. Transmission-blocking approaches, which typically target gametocytes in the host bloodstream or parasite stages in the mosquito gut, are recognized collectively as a strategy that when used in combination with antimalarials that target erythrocytic stages will not only cure malaria but will also prevent subsequent transmission. We tested four derivatives of (+)-usnic acid, a metabolite isolated from lichens, for transmission-blocking activity against Plasmodium falciparum using the standard membrane feeding assay. For two of the derivatives, BT37 and BT122, we observed a consistent dose-response relationship between concentration in the blood meal and oocyst intensity in the midgut. To explore their mechanism of action, we used the murine model Plasmodium berghei and found that both derivatives prevent ookinete maturation. Using fluorescence microscopy, we demonstrated that in the presence of each compound zygote vitality was severely affected, and those that did survive failed to elongate and mature into ookinetes. The observed phenotypes were similar to those described for mutants of specific kinases (NEK2/NEK4) and of inner membrane complex 1 (IMC1) proteins, which are all vital to the zygote-to-ookinete transition. We discuss the implications of our findings and our high-throughput screening approach to identifying next generation, transmission-blocking antimalarials based on the scaffolds of these (+)-usnic acid derivatives.
Collapse
Affiliation(s)
- Rebecca Pastrana-Mena
- W.
Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Derrick K. Mathias
- W.
Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Michael Delves
- Department
of Life Sciences, Imperial College of London, London, United Kingdom
| | - Krithika Rajaram
- W.
Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Jonas G. King
- W.
Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Rebecca Yee
- W.
Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | | | | | - Rhoel R. Dinglasan
- W.
Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| |
Collapse
|
34
|
Bennink S, Kiesow MJ, Pradel G. The development of malaria parasites in the mosquito midgut. Cell Microbiol 2016; 18:905-18. [PMID: 27111866 PMCID: PMC5089571 DOI: 10.1111/cmi.12604] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 01/01/2023]
Abstract
The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take-up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co-adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote-to-ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Meike J Kiesow
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
35
|
Maternally supplied S-acyl-transferase is required for crystalloid organelle formation and transmission of the malaria parasite. Proc Natl Acad Sci U S A 2016; 113:7183-8. [PMID: 27303037 DOI: 10.1073/pnas.1522381113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmission of the malaria parasite from the mammalian host to the mosquito vector requires the formation of adequately adapted parasite forms and stage-specific organelles. Here we show that formation of the crystalloid-a unique and short-lived organelle of the Plasmodium ookinete and oocyst stage required for sporogony-is dependent on the precisely timed expression of the S-acyl-transferase DHHC10. DHHC10, translationally repressed in female Plasmodium berghei gametocytes, is activated translationally during ookinete formation, where the protein is essential for the formation of the crystalloid, the correct targeting of crystalloid-resident protein LAP2, and malaria parasite transmission.
Collapse
|
36
|
Lasonder E, Rijpma SR, van Schaijk BCL, Hoeijmakers WAM, Kensche PR, Gresnigt MS, Italiaander A, Vos MW, Woestenenk R, Bousema T, Mair GR, Khan SM, Janse CJ, Bártfai R, Sauerwein RW. Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression. Nucleic Acids Res 2016; 44:6087-101. [PMID: 27298255 PMCID: PMC5291273 DOI: 10.1093/nar/gkw536] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Sexual differentiation of malaria parasites into gametocytes in the vertebrate host and subsequent gamete fertilization in mosquitoes is essential for the spreading of the disease. The molecular processes orchestrating these transitions are far from fully understood. Here, we report the first transcriptome analysis of male and female Plasmodium falciparum gametocytes coupled with a comprehensive proteome analysis. In male gametocytes there is an enrichment of proteins involved in the formation of flagellated gametes; proteins involved in DNA replication, chromatin organization and axoneme formation. On the other hand, female gametocytes are enriched in proteins required for zygote formation and functions after fertilization; protein-, lipid- and energy-metabolism. Integration of transcriptome and proteome data revealed 512 highly expressed maternal transcripts without corresponding protein expression indicating large scale translational repression in P. falciparum female gametocytes for the first time. Despite a high degree of conservation between Plasmodium species, 260 of these ‘repressed transcripts’ have not been previously described. Moreover, for some of these genes, protein expression is only reported in oocysts and sporozoites indicating that repressed transcripts can be partitioned into short- and long-term storage. Finally, these data sets provide an essential resource for identification of vaccine/drug targets and for further mechanistic studies.
Collapse
Affiliation(s)
- Edwin Lasonder
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth PL4 8AA, UK
| | - Sanna R Rijpma
- Parasitology, Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Ben C L van Schaijk
- Parasitology, Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands Malaria Epigenomics Group, Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Wieteke A M Hoeijmakers
- Malaria Epigenomics Group, Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Philip R Kensche
- Malaria Epigenomics Group, Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Mark S Gresnigt
- Parasitology, Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Annet Italiaander
- Parasitology, Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Martijn W Vos
- Parasitology, Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Rob Woestenenk
- Flow Cytometry Facility, Department of Laboratory Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Teun Bousema
- Parasitology, Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Gunnar R Mair
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, D-69120 Heidelberg, Germany
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Richárd Bártfai
- Malaria Epigenomics Group, Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Robert W Sauerwein
- Parasitology, Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
37
|
Hopp CS, Balaban AE, Bushell ESC, Billker O, Rayner JC, Sinnis P. Palmitoyl transferases have critical roles in the development of mosquito and liver stages of Plasmodium. Cell Microbiol 2016; 18:1625-1641. [PMID: 27084458 DOI: 10.1111/cmi.12601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/24/2016] [Accepted: 04/01/2016] [Indexed: 12/24/2022]
Abstract
As the Plasmodium parasite transitions between mammalian and mosquito host, it has to adjust quickly to new environments. Palmitoylation, a reversible and dynamic lipid post-translational modification, plays a central role in regulating this process and has been implicated with functions for parasite morphology, motility and host cell invasion. While proteins associated with the gliding motility machinery have been described to be palmitoylated, no palmitoyl transferase responsible for regulating gliding motility has previously been identified. Here, we characterize two palmityol transferases with gene tagging and gene deletion approaches. We identify DHHC3, a palmitoyl transferase, as a mediator of ookinete development, with a crucial role for gliding motility in ookinetes and sporozoites, and we co-localize the protein with a marker for the inner membrane complex in the ookinete stage. Ookinetes and sporozoites lacking DHHC3 are impaired in gliding motility and exhibit a strong phenotype in vivo; with ookinetes being significantly less infectious to their mosquito host and sporozoites being non-infectious to mice. Importantly, genetic complementation of the DHHC3-ko parasite completely restored virulence. We generated parasites lacking both DHHC3, as well as the palmitoyl transferase DHHC9, and found an enhanced phenotype for these double knockout parasites, allowing insights into the functional overlap and compensational nature of the large family of PbDHHCs. These findings contribute to our understanding of the organization and mechanism of the gliding motility machinery, which as is becoming increasingly clear, is mediated by palmitoylation.
Collapse
Affiliation(s)
- Christine S Hopp
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. .,Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.
| | - Amanda E Balaban
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | | | | | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
38
|
Silva PAGC, Guerreiro A, Santos JM, Braks JAM, Janse CJ, Mair GR. Translational Control of UIS4 Protein of the Host-Parasite Interface Is Mediated by the RNA Binding Protein Puf2 in Plasmodium berghei Sporozoites. PLoS One 2016; 11:e0147940. [PMID: 26808677 PMCID: PMC4726560 DOI: 10.1371/journal.pone.0147940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
UIS4 is a key protein component of the host-parasite interface in the liver stage of the rodent malaria parasite Plasmodium berghei and required for parasite survival after invasion. In the infectious sporozoite, UIS4 protein has variably been shown to be translated but also been reported to be translationally repressed. Here we show that uis4 mRNA translation is regulated by the P. berghei RNA binding protein Pumilio-2 (PbPuf2 or Puf2 from here on forward) in infectious salivary gland sporozoites in the mosquito vector. Using RNA immunoprecipitation we show that uis4 mRNA is bound by Puf2 in salivary gland sporozoites. In the absence of Puf2, uis4 mRNA translation is de-regulated and UIS4 protein expression upregulated in salivary gland sporozoites. Here, using RNA immunoprecipitation, we reveal the first Puf2-regulated mRNA in this parasite.
Collapse
Affiliation(s)
- Patrícia A. G. C. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Jorge M. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | | | | | - Gunnar R. Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- * E-mail:
| |
Collapse
|