1
|
Wei X, Chang J, Cheng Z, Chen W, Guo H, Liu Z, Mai Y, Hu T, Zhang Y, Cai Q, Ge F, Fan Y, Guan X. mPFC DUSP1 mediates adolescent cocaine exposure-induced higher sensitivity to drug in adulthood. EMBO Rep 2023; 24:e56981. [PMID: 37535645 PMCID: PMC10481668 DOI: 10.15252/embr.202356981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Adolescent cocaine abuse increases the risk for developing addiction in later life, but the underlying molecular mechanism remains poorly understood. Here, we establish adolescent cocaine-exposed (ACE) male mouse models. A subthreshold dose of cocaine (sdC) treatment, insufficient to produce conditioned place preference (CPP) in adolescent mice, induces CPP in ACE mice during adulthood, along with more activated CaMKII-positive neurons, higher dual specificity protein kinase phosphatase-1 (Dusp1) mRNA, lower DUSP1 activity, and lower DUSP1 expression in CaMKII-positive neurons in the medial prefrontal cortex (mPFC). Overexpressing DUSP1 in CaMKII-positive neurons suppresses neuron activity and blocks sdC-induced CPP in ACE mice during adulthood. On the contrary, depleting DUSP1 in CaMKII-positive neurons activates more neurons and further enhances sdC-induced behavior in ACE mice during adulthood. Also, ERK1/2 might be a downstream signal of DUSP1 in the process. Our findings reveal a role of mPFC DUSP1 in ACE-induced higher sensitivity to the drug in adult mice. DUSP1 might be a potential pharmacological target to predict or treat the susceptibility to addictive drugs caused by adolescent substance use.
Collapse
Affiliation(s)
- Xiaoyan Wei
- Department of Human Anatomy and HistoembryologyNanjing University of Chinese MedicineNanjingChina
| | - Jiasong Chang
- Department of Human Anatomy and HistoembryologyNanjing University of Chinese MedicineNanjingChina
| | - Zhen Cheng
- Department of Human Anatomy and HistoembryologyNanjing University of Chinese MedicineNanjingChina
| | - Wenwen Chen
- Department of Human Anatomy and HistoembryologyNanjing University of Chinese MedicineNanjingChina
| | - Hao Guo
- Department of Human Anatomy and HistoembryologyNanjing University of Chinese MedicineNanjingChina
| | - Zhaoyu Liu
- Department of Human Anatomy and HistoembryologyNanjing University of Chinese MedicineNanjingChina
| | - Yuning Mai
- Department of Human Anatomy and HistoembryologyNanjing University of Chinese MedicineNanjingChina
| | - Tao Hu
- Department of Human Anatomy and HistoembryologyNanjing University of Chinese MedicineNanjingChina
| | - Yuanyuan Zhang
- Department of Human Anatomy and HistoembryologyNanjing University of Chinese MedicineNanjingChina
| | - Qinglong Cai
- Department of Human Anatomy and HistoembryologyNanjing University of Chinese MedicineNanjingChina
| | - Feifei Ge
- Department of Human Anatomy and HistoembryologyNanjing University of Chinese MedicineNanjingChina
| | - Yu Fan
- Department of Human Anatomy and HistoembryologyNanjing University of Chinese MedicineNanjingChina
| | - Xiaowei Guan
- Department of Human Anatomy and HistoembryologyNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
2
|
Davies RA, Barbee BR, Garcia-Sifuentes Y, Butkovich LM, Gourley SL. Subunit-selective PI3-kinase control of action strategies in the medial prefrontal cortex. Neurobiol Learn Mem 2023; 203:107789. [PMID: 37328026 PMCID: PMC10527156 DOI: 10.1016/j.nlm.2023.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
PI3-kinase (PI3K) is an intracellular signaling complex that is stimulated upon cocaine exposure and linked with the behavioral consequences of cocaine. We recently genetically silenced the PI3K p110β subunit in the medial prefrontal cortex following repeated cocaine in mice, reinstating the capacity of these mice to engage in prospective goal-seeking behavior. In the present short report, we address two follow-up hypotheses: 1) The control of decision-making behavior by PI3K p110β is attributable to neuronal signaling, and 2) PI3K p110β in the healthy (i.e., drug-naïve) medial prefrontal cortex has functional consequences in the control of reward-related decision-making strategies. In Experiment 1, we found that silencing neuronal p110β improved action flexibility following cocaine. In Experiment 2, we reduced PI3K p110β in drug-naïve mice that were extensively trained to respond for food reinforcers. Gene silencing caused mice to abandon goal-seeking strategies, unmasking habit-based behaviors that were propelled by interactions with the nucleus accumbens. Thus, PI3K control of goal-directed action strategies appears to act in accordance with an inverted U-shaped function, with "too much" (following cocaine) or "too little" (following p110β subunit silencing) obstructing goal seeking and causing mice to defer to habit-like response sequences.
Collapse
Affiliation(s)
- Rachel A Davies
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA
| | - Britton R Barbee
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA; Graduate Program in Molecular and Systems Pharmacology, Emory University, USA
| | - Yesenia Garcia-Sifuentes
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA; Graduate Program in Neuroscience, Emory University, USA
| | - Laura M Butkovich
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA; Graduate Program in Molecular and Systems Pharmacology, Emory University, USA; Graduate Program in Neuroscience, Emory University, USA.
| |
Collapse
|
3
|
Ehinger Y, Soneja D, Phamluong K, Salvi A, Ron D. Identification of Novel BDNF-Specific Corticostriatal Circuitries. eNeuro 2023; 10:ENEURO.0238-21.2023. [PMID: 37156610 PMCID: PMC10198608 DOI: 10.1523/eneuro.0238-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is released from axon terminals originating in the cerebral cortex onto striatal neurons. Here, we characterized BDNF neurons in the corticostriatal circuitry. First, we used BDNF-Cre and Ribotag transgenic mouse lines to label BDNF-positive neurons in the cortex and detected BDNF expression in all the subregions of the prefrontal cortex (PFC). Next, we used a retrograde viral tracing strategy, in combination with BDNF-Cre knock-in mice, to map the cortical outputs of BDNF neurons in the dorsomedial and dorsolateral striatum (DMS and DLS, respectively). We found that BDNF-expressing neurons located in the medial prefrontal cortex (mPFC) project mainly to the DMS, and those located in the primary and secondary motor cortices (M1 and M2, respectively) and agranular insular cortex (AI) project mainly to the DLS. In contrast, BDNF-expressing orbitofrontal cortical (OFC) neurons differentially target the dorsal striatum (DS) depending on their mediolateral and rostrocaudal location. Specifically, the DMS is mainly innervated by the medial and ventral part of the orbitofrontal cortex (MO and VO, respectively), whereas the DLS receives projections specifically from the lateral part of the OFC (LO). Together, our study uncovers previously unknown BDNF corticostriatal circuitries. These findings could have important implications for the role of BDNF signaling in corticostriatal pathways.
Collapse
Affiliation(s)
- Yann Ehinger
- Department of Neurology, University of California, San Francisco, 94143-0663 CA
| | - Drishti Soneja
- Department of Neurology, University of California, San Francisco, 94143-0663 CA
| | - Khanhky Phamluong
- Department of Neurology, University of California, San Francisco, 94143-0663 CA
| | - Alexandra Salvi
- Department of Neurology, University of California, San Francisco, 94143-0663 CA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, 94143-0663 CA
| |
Collapse
|
4
|
Shapiro LP, Pitts EG, Li DC, Barbee BR, Hinton EA, Bassell GJ, Gross C, Gourley SL. The PI3-Kinase p110β Isoform Controls Severity of Cocaine-Induced Sequelae and Alters the Striatal Transcriptome. Biol Psychiatry 2021; 89:959-969. [PMID: 33773752 PMCID: PMC8202243 DOI: 10.1016/j.biopsych.2021.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The PI3-kinase (PI3K) complex is a well-validated target for mitigating cocaine-elicited sequelae, but pan-PI3K inhibitors are not viable long-term treatment options. The PI3K complex is composed of p110 catalytic and regulatory subunits, which can be individually manipulated for therapeutic purposes. However, this possibility has largely not been explored in behavioral contexts. METHODS Here, we inhibited PI3K p110β in the medial prefrontal cortex (mPFC) of cocaine-exposed mice. Behavioral models for studying relapse, sensitization, and decision-making biases were paired with protein quantification, RNA sequencing, and cell type-specific chemogenetic manipulation and RNA quantification to determine whether and how inhibiting PI3K p110β confers resilience to cocaine. RESULTS Viral-mediated PI3K p110β silencing reduced cue-induced reinstatement of cocaine seeking by half, blocked locomotor sensitization, and restored mPFC synaptic marker content after exposure to cocaine. Cocaine blocked the ability of mice to select actions based on their consequences, and p110β inhibition restored this ability. Silencing dopamine D2 receptor-expressing excitatory mPFC neurons mimicked cocaine, impairing goal-seeking behavior, and again, p110β inhibition restored goal-oriented action. We verified the presence of p110β in mPFC neurons projecting to the dorsal striatum and orbitofrontal cortex and found that inhibiting p110β in the mPFC altered the expression of functionally defined gene clusters within the dorsal striatum and not orbitofrontal cortex. CONCLUSIONS Subunit-selective PI3K silencing potently mitigates drug seeking, sensitization, and decision-making biases after exposure to cocaine. We suggest that inhibiting PI3K p110β provides neuroprotection against cocaine by triggering coordinated corticostriatal adaptations.
Collapse
Affiliation(s)
- Lauren P. Shapiro
- Graduate Program in Molecular and Systems Pharmacology, Emory University,Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center
| | - Elizabeth G. Pitts
- Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center,Graduate Program in Neuroscience, Emory University
| | - Dan C. Li
- Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center,Graduate Program in Neuroscience, Emory University
| | - Britton R. Barbee
- Graduate Program in Molecular and Systems Pharmacology, Emory University,Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center
| | - Elizabeth A. Hinton
- Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center,Graduate Program in Neuroscience, Emory University
| | - Gary J. Bassell
- Graduate Program in Neuroscience, Emory University,Department of Cell Biology, Emory University
| | - Christina Gross
- Division of Neurology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine
| | - Shannon L. Gourley
- Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center,Graduate Program in Neuroscience, Emory University,Children’s Healthcare of Atlanta
| |
Collapse
|
5
|
Ifenprodil Attenuates Methamphetamine-Induced Behavioral Sensitization Through the GluN2B-PP2A-AKT Cascade in the Dorsal Striatum of Mice. Neurochem Res 2020; 45:891-901. [DOI: 10.1007/s11064-020-02966-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/08/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
|
6
|
Verma A, Bennett J, Örme AM, Polycarpou E, Rooney B. Cocaine addicted to cytoskeletal change and a fibrosis high. Cytoskeleton (Hoboken) 2019; 76:177-185. [PMID: 30623590 DOI: 10.1002/cm.21510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Cocaine is one of the most widely abused illicit drugs due to its euphoric and addictive properties. Cocaine-mediated cognitive impairments are the result of dynamic cytoskeletal rearrangements involved in mediating structural and behavioural plasticity. Cytoskeletal changes initiated following cocaine abuse are regulated by the Rho family of GTPases with significant downstream activity in key actin binding proteins. Moreover, signalling via the endoplasmic reticulum chaperone protein, sigma-1 receptor has highlighted the possibility of cocaine regulated pathology in other organ systems. However, the question of whether upstream stimulation of such a high affinity binding receptor is directly involved in cocaine-mediated cytoskeletal changes at present remains unknown. In this review, we describe the functional role of key cytoskeletal regulators in response to cocaine-induced signalling cues. In addition, we ascertain the extent of whether global cytoskeletal modulators involved in cocaine-induced neurological stimulation can be used as a platform for future studies into elucidating its fibrotic potential within the hepatic microenvironment. A focus on aspects still poorly understood relating to the nonneuronal pathological impact of cocaine is discussed in the sphere of hepatic dysregulation. Lastly, we suggest that cocaine may mediate its pathological capacity via the sigma1 receptor in regulating hepatoxicity, hepatic stellate cells activity, cytoskeletal dynamics, and the transcriptional regulation of key hepato-fibrogenic modulators.
Collapse
Affiliation(s)
- Avnish Verma
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ayşe Merve Örme
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| | - Elena Polycarpou
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| | - Brian Rooney
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| |
Collapse
|
7
|
Cooper JM, Halter KA, Prosser RA. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol Sleep Circadian Rhythms 2018; 5:15-36. [PMID: 31236509 PMCID: PMC6584685 DOI: 10.1016/j.nbscr.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/06/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023] Open
Abstract
The mammalian circadian and sleep-wake systems are closely aligned through their coordinated regulation of daily activity patterns. Although they differ in their anatomical organization and physiological processes, they utilize overlapping regulatory mechanisms that include an assortment of proteins and molecules interacting within the extracellular space. These extracellular factors include proteases that interact with soluble proteins, membrane-attached receptors and the extracellular matrix; and cell adhesion molecules that can form complex scaffolds connecting adjacent neurons, astrocytes and their respective intracellular cytoskeletal elements. Astrocytes also participate in the dynamic regulation of both systems through modulating neuronal appositions, the extracellular space and/or through release of gliotransmitters that can further contribute to the extracellular signaling processes. Together, these extracellular elements create a system that integrates rapid neurotransmitter signaling across longer time scales and thereby adjust neuronal signaling to reflect the daily fluctuations fundamental to both systems. Here we review what is known about these extracellular processes, focusing specifically on areas of overlap between the two systems. We also highlight questions that still need to be addressed. Although we know many of the extracellular players, far more research is needed to understand the mechanisms through which they modulate the circadian and sleep-wake systems.
Collapse
Key Words
- ADAM, A disintegrin and metalloproteinase
- AMPAR, AMPA receptor
- Astrocytes
- BDNF, brain-derived neurotrophic factor
- BMAL1, Brain and muscle Arnt-like-1 protein
- Bmal1, Brain and muscle Arnt-like-1 gene
- CAM, cell adhesion molecules
- CRY, cryptochrome protein
- Cell adhesion molecules
- Circadian rhythms
- Cry, cryptochrome gene
- DD, dark-dark
- ECM, extracellular matrix
- ECS, extracellular space
- EEG, electroencephalogram
- Endo N, endoneuraminidase N
- Extracellular proteases
- GFAP, glial fibrillary acidic protein
- IL, interleukin
- Ig, immunoglobulin
- LC, locus coeruleus
- LD, light-dark
- LH, lateral hypothalamus
- LRP-1, low density lipoprotein receptor-related protein 1
- LTP, long-term potentiation
- MMP, matrix metalloproteinases
- NCAM, neural cell adhesion molecule protein
- NMDAR, NMDA receptor
- NO, nitric oxide
- NST, nucleus of the solitary tract
- Ncam, neural cell adhesion molecule gene
- Nrl, neuroligin gene
- Nrx, neurexin gene
- P2, purine type 2 receptor
- PAI-1, plasminogen activator inhibitor-1
- PER, period protein
- PPT, peduculopontine tegmental nucleus
- PSA, polysialic acid
- Per, period gene
- REMS, rapid eye movement sleep
- RSD, REM sleep disruption
- SCN, suprachiasmatic nucleus
- SWS, slow wave sleep
- Sleep-wake system
- Suprachiasmatic nucleus
- TNF, tumor necrosis factor
- TTFL, transcriptional-translational negative feedback loop
- VIP, vasoactive intestinal polypeptide
- VLPO, ventrolateral preoptic
- VP, vasopressin
- VTA, ventral tegmental area
- dNlg4, drosophila neuroligin-4 gene
- nNOS, neuronal nitric oxide synthase gene
- nNOS, neuronal nitric oxide synthase protein
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
- uPAR, uPA receptor
Collapse
|
8
|
Epigenetic mechanisms associated with addiction-related behavioural effects of nicotine and/or cocaine: implication of the endocannabinoid system. Behav Pharmacol 2018; 28:493-511. [PMID: 28704272 DOI: 10.1097/fbp.0000000000000326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The addictive use of nicotine (NC) and cocaine (COC) continues to be a major public health problem, and their combined use has been reported, particularly during adolescence. In neural plasticity, commonly induced by NC and COC, as well as behavioural plasticity related to the use of these two drugs, the involvement of epigenetic mechanisms, in which the reversible regulation of gene expression occurs independently of the DNA sequence, has recently been reported. Furthermore, on the basis of intense interactions with the target neurotransmitter systems, the endocannabinoid (ECB) system has been considered pivotal for eliciting the effects of NC or COC. The combined use of marijuana with NC and/or COC has also been reported. This article presents the addiction-related behavioural effects of NC and/or COC, based on the common behavioural/neural plasticity and combined use of NC/COC, and reviews the interacting role of the ECB system. The epigenetic processes inseparable from the effects of NC and/or COC (i.e. DNA methylation, histone modifications and alterations in microRNAs) and the putative therapeutic involvement of the ECB system at the epigenetic level are also discussed.
Collapse
|
9
|
Fonteneau M, Filliol D, Anglard P, Befort K, Romieu P, Zwiller J. Inhibition of DNA methyltransferases regulates cocaine self-administration by rats: a genome-wide DNA methylation study. GENES BRAIN AND BEHAVIOR 2016; 16:313-327. [PMID: 27762100 DOI: 10.1111/gbb.12354] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/07/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022]
Abstract
DNA methylation is a major epigenetic process which regulates the accessibility of genes to the transcriptional machinery. In the present study, we investigated whether modifying the global DNA methylation pattern in the brain would alter cocaine intake by rats, using the cocaine self-administration test. The data indicate that treatment of rats with the DNA methyltransferase inhibitors 5-aza-2'-deoxycytidine (dAZA) and zebularine enhanced the reinforcing properties of cocaine. To obtain some insights about the underlying neurobiological mechanisms, a genome-wide methylation analysis was undertaken in the prefrontal cortex of rats self-administering cocaine and treated with or without dAZA. The study identified nearly 189 000 differentially methylated regions (DMRs), about half of them were located inside gene bodies, while only 9% of DMRs were found in the promoter regions of genes. About 99% of methylation changes occurred outside CpG islands. Gene expression studies confirmed the inverse correlation usually observed between increased methylation and transcriptional activation when methylation occurs in the gene promoter. This inverse correlation was not observed when methylation took place inside gene bodies. Using the literature-based Ingenuity Pathway Analysis, we explored how the differentially methylated genes were related. The analysis showed that increase in cocaine intake by rats in response to DNA methyltransferase inhibitors underlies plasticity mechanisms which mainly concern axonal growth and synaptogenesis as well as spine remodeling. Together with the Akt/PI3K pathway, the Rho-GTPase family was found to be involved in the plasticity underlying the effect of dAZA on the observed behavioral changes.
Collapse
Affiliation(s)
- M Fonteneau
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Strasbourg, France
| | - D Filliol
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Strasbourg, France
| | - P Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Strasbourg, France
| | - K Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Strasbourg, France
| | - P Romieu
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Strasbourg, France
| | - J Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Pitts EG, Taylor JR, Gourley SL. Prefrontal cortical BDNF: A regulatory key in cocaine- and food-reinforced behaviors. Neurobiol Dis 2016; 91:326-35. [PMID: 26923993 PMCID: PMC4913044 DOI: 10.1016/j.nbd.2016.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) affects synaptic plasticity and neural structure and plays key roles in learning and memory processes. Recent evidence also points to important, yet complex, roles for BDNF in rodent models of cocaine abuse and addiction. Here we examine the role of prefrontal cortical (PFC) BDNF in reward-related decision making and behavioral sensitivity to, and responding for, cocaine. We focus on BDNF within the medial and orbital PFC, its regulation by cocaine during early postnatal development and in adulthood, and how BDNF in turn influences responding for drug reinforcement, including in reinstatement models. When relevant, we draw comparisons and contrasts with experiments using natural (food) reinforcers. We also summarize findings supporting, or refuting, the possibility that BDNF in the medial and orbital PFC regulate the development and maintenance of stimulus-response habits. Further investigation could assist in the development of novel treatment approaches for cocaine use disorders.
Collapse
Affiliation(s)
- Elizabeth G Pitts
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Jane R Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Interdepartmental Neuroscience Program, Department of Psychology, Yale University, New Haven, CT, United States
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.
| |
Collapse
|