1
|
Zuo B, Chen R, Tang X, Shao Y, Liu X, Nneji LM, Sun Y. Genomic Insights Into Genetic Basis of Evolutionary Conservatism and Innovation in Frogs. Integr Zool 2024. [PMID: 39663509 DOI: 10.1111/1749-4877.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Examining closely related species evolving in similar environments offers valuable insights into the mechanisms driving phylogenetic conservatism and evolutionary lability. This can elucidate the intricate relationship between inheritance and environmental factors. Nonetheless, the precise genomic dynamics and molecular underpinnings of this process remain enigmatic. This study explores the evolutionary conservatism and adaptation exhibited by two closely related high-altitude frog species: Nanorana parkeri and N. pleskei. We assembled a high-quality genome for Tibetan N. pleskei and compared it to the genomes of N. parkeri and their lowland relatives. Our findings reveal that these two Tibetan frog species diverged approximately 16.6 million years ago, pointing to a possible ancestral colonization of high-elevation habitats. Following this colonization, significant adaptive evolution occurred in both coding and non-coding regions of the ancestral lineage. This evolution led to notable phenotypic alterations, as evidenced by the reduced body size. Also, due to purifying selection, most ancestral adaptive features persisted in descendant species, indicating a strong element of evolutionary conservatism. However, descendant species evolved novel adaptations to exacerbated environmental challenges in the Tibet Plateau, mainly related to hypoxia response. Furthermore, our analysis underscores the critical role of regulatory variations in descendant adaptive evolution. Notably, hub genes in networks, such as EGLN3, accumulated more variations in regulatory regions as they were transmitted from ancestors to descendants. In sum, our study sheds light on the profound and lasting impact of genetic heritage on species' adaptive evolution.
Collapse
Affiliation(s)
- Bin Zuo
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Rongmei Chen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaolong Liu
- School of Life Sciences, Southwest University, Chongqing, China
| | - Lotanna M Nneji
- Department of Biology, Howard University, Washington, DC, USA
| | - Yanbo Sun
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| |
Collapse
|
2
|
Niimura Y, Biswa BB, Kishida T, Toyoda A, Fujiwara K, Ito M, Touhara K, Inoue-Murayama M, Jenkins SH, Adenyo C, Kayang BB, Koide T. Synchronized Expansion and Contraction of Olfactory, Vomeronasal, and Taste Receptor Gene Families in Hystricomorph Rodents. Mol Biol Evol 2024; 41:msae071. [PMID: 38649162 PMCID: PMC11035023 DOI: 10.1093/molbev/msae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/02/2024] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
Chemical senses, including olfaction, pheromones, and taste, are crucial for the survival of most animals. There has long been a debate about whether different types of senses might influence each other. For instance, primates with a strong sense of vision are thought to have weakened olfactory abilities, although the oversimplified trade-off theory is now being questioned. It is uncertain whether such interactions between different chemical senses occur during evolution. To address this question, we examined four receptor gene families related to olfaction, pheromones, and taste: olfactory receptor (OR), vomeronasal receptor type 1 and type 2 (V1R and V2R), and bitter taste receptor (T2R) genes in Hystricomorpha, which is morphologically and ecologically the most diverse group of rodents. We also sequenced and assembled the genome of the grasscutter, Thryonomys swinderianus. By examining 16 available genome assemblies alongside the grasscutter genome, we identified orthologous gene groups among hystricomorph rodents for these gene families to separate the gene gain and loss events in each phylogenetic branch of the Hystricomorpha evolutionary tree. Our analysis revealed that the expansion or contraction of the four gene families occurred synchronously, indicating that when one chemical sense develops or deteriorates, the others follow suit. The results also showed that V1R/V2R genes underwent the fastest evolution, followed by OR genes, and T2R genes were the most evolutionarily stable. This variation likely reflects the difference in ligands of V1R/V2Rs, ORs, and T2Rs: species-specific pheromones, environment-based scents, and toxic substances common to many animals, respectively.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Bhim B Biswa
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Shizuoka, Japan
| | - Takushi Kishida
- Curatorial Division, Museum of Natural and Environmental History, Shizuoka, Japan
- Present address: College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Kazumichi Fujiwara
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Japan
| | - Masato Ito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Scott H Jenkins
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Present address: Biosphere Informatics Laboratory, Department of Social Informatics, Graduate School of Informatics, Kyoto, Japan
| | - Christopher Adenyo
- Livestock and Poultry Research Centre, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Boniface B Kayang
- Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Shizuoka, Japan
| |
Collapse
|
3
|
Sun Y, Hao Y, Zhang Q, Liu X, Wang L, Li J, Li M, Li D. Coping with extremes: Alternations in diet, gut microbiota, and hepatic metabolic functions in a highland passerine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167079. [PMID: 37714349 DOI: 10.1016/j.scitotenv.2023.167079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
In wild animals, diet and gut microbiota interactions are critical moderators of metabolic functions and are highly contingent on habitat conditions. Challenged by the extreme conditions of high-altitude environments, the strategies implemented by highland animals to adjust their diet and gut microbial composition and modulate their metabolic substrates remain largely unexplored. By employing a typical human commensal species, the Eurasian tree sparrow (Passer montanus, ETS), as a model species, we studied the differences in diet, digestive tract morphology and enzyme activity, gut microbiota, and metabolic energy profiling between highland (the Qinghai-Tibet Plateau, QTP; 3230 m) and lowland (Shijiazhuang, Hebei; 80 m) populations. Our results showed that highland ETSs had enlarged digestive organs and longer small intestinal villi, while no differences in key digestive enzyme activities were observed between the two populations. The 18S rRNA sequencing results revealed that the dietary composition of highland ETSs were more animal-based and less plant-based than those of the lowland ones. Furthermore, 16S rRNA sequencing results suggested that the intestinal microbial communities were structurally segregated between populations. PICRUSt metagenome predictions further indicated that the expression patterns of microbial genes involved in material and energy metabolism, immune system and infection, and xenobiotic biodegradation were strikingly different between the two populations. Analysis of liver metabolomics revealed significant metabolic differences between highland and lowland ETSs in terms of substrate utilization, as well as distinct sex-specific alterations in glycerophospholipids. Furthermore, the interplay between diet, liver metabolism, and gut microbiota suggests a dietary shift resulting in corresponding changes in gut microbiota and metabolic functions. Our findings indicate that highland ETSs have evolved to optimize digestion and absorption, rely on more protein-rich foods, and possess gut microbiota tailored to their dietary composition, likely adaptive physiological and ecological strategies adopted to cope with extreme highland environments.
Collapse
Affiliation(s)
- Yanfeng Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Qian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Juyong Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Mo Li
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061001, China.
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
4
|
Sun Y, Wang M, Cao L, Seim I, Zhou L, Chen J, Wang H, Zhong Z, Chen H, Fu L, Li M, Li C, Sun S. Mosaic environment-driven evolution of the deep-sea mussel Gigantidas platifrons bacterial endosymbiont. MICROBIOME 2023; 11:253. [PMID: 37974296 PMCID: PMC10652631 DOI: 10.1186/s40168-023-01695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The within-species diversity of symbiotic bacteria represents an important genetic resource for their environmental adaptation, especially for horizontally transmitted endosymbionts. Although strain-level intraspecies variation has recently been detected in many deep-sea endosymbionts, their ecological role in environmental adaptation, their genome evolution pattern under heterogeneous geochemical environments, and the underlying molecular forces remain unclear. RESULTS Here, we conducted a fine-scale metagenomic analysis of the deep-sea mussel Gigantidas platifrons bacterial endosymbiont collected from distinct habitats: hydrothermal vent and methane seep. Endosymbiont genomes were assembled using a pipeline that distinguishes within-species variation and revealed highly heterogeneous compositions in mussels from different habitats. Phylogenetic analysis separated the assemblies into three distinct environment-linked clades. Their functional differentiation follows a mosaic evolutionary pattern. Core genes, essential for central metabolic function and symbiosis, were conserved across all clades. Clade-specific genes associated with heavy metal resistance, pH homeostasis, and nitrate utilization exhibited signals of accelerated evolution. Notably, transposable elements and plasmids contributed to the genetic reshuffling of the symbiont genomes and likely accelerated adaptive evolution through pseudogenization and the introduction of new genes. CONCLUSIONS The current study uncovers the environment-driven evolution of deep-sea symbionts mediated by mobile genetic elements. Its findings highlight a potentially common and critical role of within-species diversity in animal-microbiome symbioses. Video Abstract.
Collapse
Affiliation(s)
- Yan Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Lei Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Li Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Jianwei Chen
- BGI Research-Qingdao, BGI, Qingdao, 266555, China
| | - Hao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Zhaoshan Zhong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Hao Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Lulu Fu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Mengna Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Chaolun Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Song Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Hao Y, Song G, Zhang YE, Zhai W, Jia C, Ji Y, Tang S, Lv H, Qu Y, Lei F. Divergent contributions of coding and noncoding sequences to initial high-altitude adaptation in passerine birds endemic to the Qinghai-Tibet Plateau. Mol Ecol 2023; 32:3524-3540. [PMID: 37000417 DOI: 10.1111/mec.16942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
Early events in the evolution of an ancestral lineage can shape the adaptive patterns of descendant species, but the evolutionary mechanisms driving initial adaptation from an ancestor remain largely unexplored. High-altitude adaptations have been extensively explored from the viewpoint of protein-coding genes; however, the contribution of noncoding regions remains relatively neglected. Here, we integrate genomic and transcriptomic data to investigate adaptive evolution in the ancestor of three high-altitude snowfinch species endemic to the Qinghai-Tibet Plateau. Our genome-wide scan for adaptation in the snowfinch ancestor identifies strong adaptation signals in functions of development and metabolism for the coding genes, but in functions of the nervous system development for noncoding regions. This pattern is exclusive to the snowfinch ancestor compared to a control ancestral lineage subject to weak selection. Changes in noncoding regions in the snowfinch ancestor, especially those nearest to coding genes, may be disproportionately associated with the differential expression of genes in the brain tissue compared to other tissues. Extensive gene expression in the brain tissue can be further altered via genetic regulatory networks of transcription factors harbouring potential accelerated regulatory regions (e.g., the development-related transcription factor YEATS4). Altogether, our study provides new evidence concerning how coding and noncoding sequences work through decoupled pathways in initial adaptation to the selective pressure of high-altitude environments. The analysis highlights the idea that noncoding sequences may be promising elements in facilitating the rapid evolution and adaptation to high altitudes.
Collapse
Affiliation(s)
- Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanzhu Ji
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shiyu Tang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongrui Lv
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
6
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
7
|
Bondareva O, Petrova T, Bodrov S, Gavrilo M, Smorkatcheva A, Abramson N. How voles adapt to subterranean lifestyle: Insights from RNA-seq. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1085993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Life under the earth surface is highly challenging and associated with a number of morphological, physiological and behavioral modifications. Subterranean niche protects animals from predators, fluctuations in environmental parameters, but is characterized by high levels of carbon dioxide and low levels of oxygen and implies high energy requirements associated with burrowing. Moreover, it lacks most of the sensory inputs available above ground. The current study describes results from RNA-seq analysis of four subterranean voles from subfamily Arvicolinae: Prometheomys schaposchnikowi, Ellobius lutescens, Terricola subterraneus, and Lasiopodomys mandarinus. Original RNA-seq data were obtained for eight species, for nine species, SRA data were downloaded from the NCBI SRA database. Additionally assembled transcriptomes of Mynomes ochrogaster and Cricetulus griseus were included in the analysis. We searched for the selection signatures and parallel amino acid substitutions in a total of 19 species. Even within this limited data set, we found significant changes of dN/dS ratio by free-ratio model analysis for subterranean Arvicolinae. Parallel substitutions were detected in genes RAD23B and PYCR2. These genes are associated with DNA repair processes and response to oxidative stress. Similar substitutions were discovered in the RAD23 genes for highly specialized subterranean Heterocephalus glaber and Fukomys damarensis. The most pronounced signatures of adaptive evolution related to subterranean niche within species of Arvicolinae subfamily were detected for Ellobius lutescens. Our results suggest that genomic adaptations can occur very quickly so far as the amount of selection signatures was found to be compliant with the degree of specialization to the subterranean niche and independent from the evolutionary age of the taxon. We found that the number of genomic signatures of selection does not depend on the age of the taxon, but is positively correlated with the degree of specialization to the subterranean niche.
Collapse
|
8
|
Yao B, Hegab IM, Kang Y, Tan Y, Zhang D, Su J. Underground environment increases the differentiation of personality traits between male and female plateau zokors (Eospalax baileyi). Acta Ethol 2023. [DOI: 10.1007/s10211-023-00414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
9
|
Hu B, Wang J, Li Y, Ge J, Pan J, Li G, He Y, Zhong H, Wang B, Huang Y, Han S, Xing Y, He H. Gut microbiota facilitates adaptation of the plateau zokor ( Myospalax baileyi) to the plateau living environment. Front Microbiol 2023; 14:1136845. [PMID: 36910168 PMCID: PMC9998695 DOI: 10.3389/fmicb.2023.1136845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Gut microbiota not only helps the hosts to perform many key physiological functions such as food digestion, energy harvesting and immune regulation, but also influences host ecology and facilitates adaptation of the host to extreme environments. Plateau zokors epitomize successful physiological adaptation to their living environment in the face of the harsh environment characterized by low temperature, low pressure and hypoxia in the Tibetan plateau region and high concentrations of CO2 in their burrows. Therefore, here we used a metagenomic sequencing approach to explore how gut microbiota contributed to the adaptive evolution of the plateau zokor on the Qinghai-Tibet Plateau. Our metagenomic results show that the gut microbiota of plateau zokors on the Tibetan plateau is not only enriched in a large number of species related to energy metabolism and production of short-chain fatty acids (SCFAs), but also significantly enriched the KO terms that involve carbohydrate uptake pathways, which well address energy uptake in plateau zokors while also reducing inflammatory responses due to low pressure, hypoxia and high CO2 concentrations. There was also a significant enrichment of tripeptidyl-peptidase II (TPPII) associated with antigen processing, apoptosis, DNA damage repair and cell division, which may facilitate the immune response and tissue damage repair in plateau zokors under extreme conditions. These results suggest that these gut microbiota and their metabolites together contribute to the physiological adaptation of plateau zokors, providing new insights into the contribution of the microbiome to the evolution of mammalian adaptation.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiamin Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Jin Ge
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jinchao Pan
- College of Animal Sciences, Anhui University of Science and Technology, Huainan, China
| | - Gaojian Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yongcai He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Haishun Zhong
- Animal Husbandry and Veterinary Station of Xunhua, Xining, Qinghai, China
| | - Bo Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Huang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Xing
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Li J, Sun K, Dai W, Leng H, Feng J. Divergence in interspecific and intersubspecific gene expression between two closely related horseshoe bats ( Rhinolophus). J Mammal 2022. [DOI: 10.1093/jmammal/gyac103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Closely related species have been used as representative systems to investigate the genetic mechanisms involved in the early stages of species differentiation. Previous studies have indicated that variation in gene expression might be a sensitive indicator of initial species divergence, although the role of expression divergence, and especially that associated with phenotypic variation remained relatively undefined. For three organs (cochlea, brain, and liver) from two closely related bat species (Rhinolophus siamensis and R. episcopus), the interspecific and intersubspecific gene expression profiles were compared using transcriptomics in this study. Striking organ specificity of expression was observed, and expression profiles exhibited similarities between cochlea and brain tissues. Numerous differentially expressed genes (DEGs) were identified for each organ in the interspecific comparison (cochlea/brain/liver: 1,069/647/692) and intersubspecific comparison (608/528/368). Functional enrichment analysis indicated vital variation in expression related to the immune system, ion activities, neuronal function, and multisensory system regulation in both comparisons. DEGs relevant to the variation in echolocation calls (RF) were found, and some of them were involved in the pivotal patterns of expression variation. The regulation of immune, ion channel, neural activity, and sophisticated sensory functions at the expression level might be key mechanisms in the early species divergence of bats, and the expression variation related to acoustical signal could have played a crucial part. This study expands our knowledge of gene expression and patterns of variation for three key organs to echolocation at both the interspecific and intersubspecific levels. Further, the framework described here provides insight into the genetic basis of phenotypic variation during the incipient stage of species differentiation.
Collapse
Affiliation(s)
- Jun Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- College of Life Science, Jilin Agricultural University , Changchun 130118 , China
| |
Collapse
|
11
|
Zhou J, Ji C, Dong K, Chu B, Wang L, Hua L. Dynamic changes in the home range of the subterranean rodent Myospalax baileyi. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1041322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
As ecosystem engineers, subterranean rodents excavate and inhabit burrow systems. However, the changes in their use of underground space are poorly recorded. There is conflicting evidence about whether the burrow systems of subterranean rodents, once established, are relatively stable as a result of the high energy costs of digging. We monitored the size of the home ranges of the plateau zokor (Myospalax baileyi) during different stages of its life cycle to show whether mating behavior and the characteristics of its habitat influence the size and location of its home range. We used radio-tracking to quantify the changes in, and overlap of, the home range of M. baileyi during a one-year period. The average size of the home ranges of male zokors was 6.5 times larger than that of female zokors during the mating season. The males expanded their burrows to overlap with multiple females to increase their chances of mating. However, there was no overlap between estrus females or males, perhaps to reduce the number of encounters and unnecessary fights. The home ranges of male and female zokors were similar in size after courtship and the home ranges of single zokors overlapped with those of several neighbors. Most individuals remained territorial and excluded intraspecific interactions from their home ranges. The location of female zokors was stable throughout the year, but half of the males changed the location of their nests and established completely new home ranges in the non-breeding season, mainly in October. The use of space by M. baileyi is flexible in response to a need for physical contact during the mating season and food resources. The home ranges of subterranean plateau zokors are dynamic and the home ranges of male zokors can change within one breeding cycle.
Collapse
|
12
|
Hu B, Wang J, Zhang S, Wang B, Xing Y, Han S, He H. Novel genotypes of Cryptosporidium and Enterocytozoon bieneusi detected in plateau zokors ( Myospalax baileyi) from the Tibetan Plateau. Int J Parasitol Parasites Wildl 2022; 19:263-268. [PMID: 36388721 PMCID: PMC9661441 DOI: 10.1016/j.ijppaw.2022.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
The plateau zokor (Myospalax baileyi) is a small subterranean rodent endemic to China that lives alone in sealed underground burrows at altitudes ranging from 2000 to 4200 m above sea level on the Tibetan Plateau. Due to the unique environmental factors in the Tibetan Plateau, intestinal parasites in the local population may be more likely to develop host-adapted genotypes. We therefore conducted an epidemiological survey of common intestinal parasites in plateau zokors on the Tibetan plateau to estimate their actual gastrointestinal parasite status. Two areas with high populations of plateau zokor in Xunhua County, Qinghai Province were selected as sampling sites, and a total of 98 zokors were trapped. Four parasites, Cryptosporidium spp., Enterocytozoon bieneusi, Giardia lamblia and Blastocystis hominis, were tested in the faecal samples. The results showed that a new genotype of Cryptosporidium sp. was identified by amplification and sequencing of a portion of the small subunit ribosomal RNA (SSU rRNA) gene with an infection rate of 1.0% (1/98), and new genotypes of E. bieneusi were identified by amplification and sequencing of a portion of the internal transcribed spacer (ITS) region of the ribosomal RNA gene sequences with an infection rate of 4.1% (4/98). Neither of the two intestinal parasites, G. lamblia and B. hominis, was detected.
Collapse
Affiliation(s)
- Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiamin Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuairan Zhang
- College of Shenyang Institute of Technology, Fushun, Liaoning, China
| | - Bo Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Xing
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
| |
Collapse
|
13
|
Functional genomics analysis reveals the evolutionary adaptation and demographic history of pygmy lorises. Proc Natl Acad Sci U S A 2022; 119:e2123030119. [PMID: 36161902 DOI: 10.1073/pnas.2123030119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lorises are a group of globally threatened strepsirrhine primates that exhibit many unusual physiological and behavioral features, including a low metabolic rate, slow movement, and hibernation. Here, we assembled a chromosome-level genome sequence of the pygmy loris (Xanthonycticebus pygmaeus) and resequenced whole genomes from 50 pygmy lorises and 6 Bengal slow lorises (Nycticebus bengalensis). We found that many gene families involved in detoxification have been specifically expanded in the pygmy loris, including the GSTA gene family, with many newly derived copies functioning specifically in the liver. We detected many genes displaying evolutionary convergence between pygmy loris and koala, including PITRM1. Significant decreases in PITRM1 enzymatic activity in these two species may have contributed to their characteristic low rate of metabolism. We also detected many evolutionarily convergent genes and positively selected genes in the pygmy loris that are involved in muscle development. Functional assays demonstrated the decreased ability of one positively selected gene, MYOF, to up-regulate the fast-type muscle fiber, consistent with the lower proportion of fast-twitch muscle fibers in the pygmy loris. The protein product of another positively selected gene in the pygmy loris, PER2, exhibited weaker binding to the key circadian core protein CRY, a finding that may be related to this species' unusual circadian rhythm. Finally, population genomics analysis revealed that these two extant loris species, which coexist in the same habitat, have exhibited an inverse relationship in terms of their demography over the past 1 million years, implying strong interspecies competition after speciation.
Collapse
|
14
|
The Complex and Well-Developed Morphological and Histological Structures of the Gastrointestinal Tract of the Plateau Zokor Improve Its Digestive Adaptability to High-Fiber Foods. Animals (Basel) 2022; 12:ani12182447. [PMID: 36139307 PMCID: PMC9494992 DOI: 10.3390/ani12182447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
The morphological and histological traits of the gastrointestinal tract (GIT) enable the animal to perform some specific functions that enhance the species’ adaptability to environments. The plateau zokor (Eospalax baileyi) is a subterranean rodent that mainly forages on plant roots in the Qinghai-Tibet Plateau, but little is known about the mechanism by which the plateau zokor digests roots that have high fiber contents. In this study, we used comparative anatomy methods to compare the morphological and histological traits of the GIT of both the plateau zokor and the plateau pika (Ochotona curzoniae), a small, fossorial lagomorph that forages aboveground plant parts, in order to clarify the traits of the plateau zokor’s GIT and to understand its adaptations to high-fiber foods. The results showed that the foods which plateau zokors eat have a higher fiber content than those which the plateau pikas eat. The plateau zokor has a double-chambered and hemi-glandular stomach (the tubular glands are only in the gastric corpus II, and the gastric fundus is keratinized), whereas the plateau pika has a simple, wholly glandular stomach. The gross morphological indicators (organ index and relative length) of the GIT were significantly lower in the plateau zokor than they were in the plateau pika (p < 0.001). However, the thickness of the gastric corpus II mucosal layer and the gastric fundus muscle layer are significantly higher in the plateau zokor than they are in the plateau pika (p < 0.001), and the thickness of each layer of intestinal tissue is higher in the plateau zokor than it is in the plateau pika. Additionally, the small intestinal villi also are higher and wider in the plateau zokor than they are in the plateau pika. Our results suggest that instead of adapting to digest the high-fiber diet by expanding the size of the GIT, the plateau zokor has evolved a complex stomach and a well-developed gastrointestinal histological structure, and that these specialized GIT structures are consistent with an optimal energy-economy evolutionary adaptation strategy.
Collapse
|
15
|
Chen X, An Z, Wei L, Zhang J, Li J, Wang Z, Gao C, Wei D. Vitamin D 3 Metabolic Enzymes in Plateau Zokor ( Myospalax baileyi) and Plateau Pika ( Ochotona curzoniae): Expression and Response to Hypoxia. Animals (Basel) 2022; 12:ani12182371. [PMID: 36139230 PMCID: PMC9495108 DOI: 10.3390/ani12182371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D3 (D3) is produced endogenously from 7-dehydrocholesterol by irradiation and is an important secosteroid for the absorption of calcium and phosphate. Lithocholic acid (LCA) increases intestinal paracellular calcium absorption in a vitamin D receptor-dependent manner in vitamin D-deficient rats. The plateau zokor (Myospalax baileyi), a strictly subterranean species, and plateau pika are endemic to the Qinghai-Tibet Plateau. To verify whether the zokors were deficient in D3 and reveal the effects of hypoxia on D3 metabolism in the zokors and pikas, we measured the levels of 25(OH)D3, calcium, and LCA, and quantified the expression levels of D3 metabolism-related genes. The results showed an undetectable serum level of 25(OH)D3 and a significantly higher concentration of LCA in the serum of plateau zokor, but its calcium concentration was within the normal range compared with that of plateau pika and Sprague-Dawley rats. With increasing altitude, the serum 25(OH)D3 levels in plateau pika decreased significantly, and the mRNA and protein levels of CYP2R1 (in the liver) and CYP27B1 (in the kidney) in plateau pika decreased significantly. Our results indicate that plateau zokors were deficient in D3 and abundant in LCA, which might be a substitution of D3 in the zokor. Furthermore, hypoxia suppresses the metabolism of D3 by down-regulating the expression of CYP2R1 and CYP27B1 in plateau pika.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Zhifang An
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Linna Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jiayu Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jimei Li
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Zhijie Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Conghui Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Dengbang Wei
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: ; Tel.: +86-971-531-0695
| |
Collapse
|
16
|
An Z, Chen X, Li J. Response to Different Oxygen Partial Pressures and Evolution Analysis of Apoptosis-Related Genes in Plateau Zokor ( Myospalax baileyi). Front Genet 2022; 13:865301. [PMID: 35754836 PMCID: PMC9214310 DOI: 10.3389/fgene.2022.865301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
The plateau zokor (Myospalax baileyi) is a native species of the Qinghai–Tibet Plateau that spends its entire life underground in sealed burrows with hypoxic conditions. The present study aimed to assess the sequence characteristics of apoptosis-related genes and the response to different oxygen partial pressures (pO2) in plateau zokor and Sprague-Dawley rats. The sequences of the p53-induced protein with a death domain (Pidd), p53-upregulated modulator of apoptosis (Puma), insulin-like growth factor binding protein 3 (Igfbp3), and apoptosis protease-activating factor 1 (Apaf1) were evaluated concerning homology and convergent evolution sites, and their mRNA levels were evaluated in different tissues under 14.13 (3,300 m) and 16.12 kPa (2,260 m) pO2 conditions. Our results showed that, (1) the sequences of the apoptosis-related genes in plateau zokor were highly similar to those of Nannospalax galili, followed by Rattus norvegicus; (2). Pidd, Puma, Igfbp3, and Apaf1 of plateau zokor were found to have five, one, two, and five convergent sites in functional domains with N. galili, respectively. Lastly (3), under low pO2, the expression of Pidd and Puma was downregulated in the lung of plateau zokors. In turn, Igfbp3 and Apaf1 were upregulated in the liver and lung, and Puma was upregulated in the skeletal muscle of plateau zokor under low pO2. In Sprague-Dawley rats, low pO2 downregulated Puma and Apaf1 expression in the liver and downregulated Igfbp3 and Puma in the lung and skeletal muscle separately. In contrast, low pO2 upregulated Pidd expression in the liver and skeletal muscle of Sprague-Dawley rats. Overall, the expression patterns of Apaf1, Igfbp3, and Puma showed the opposite pattern in the liver, lung, and skeletal muscle, respectively, of plateau zokor as compared with Sprague-Dawley rats. In conclusion, for the long-time adaptation to hypoxic environments, Pidd, Puma, Igfbp3, and Apaf1 of plateau zokor underwent convergent evolution, which we believe may have led to upregulation of their levels under low oxygen partial pressures to induce apoptosis, so as to suppress tumorigenesis under hypoxic environments in plateau zokor.
Collapse
Affiliation(s)
- Zhifang An
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Xiaoqi Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,Department of Obstetrics and Gynaecology, Affiliated Hospital of Qinghai University, Xining, China.,Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Jimei Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Department of General Medicine, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
17
|
Li J, An Z, Wei L, Xu B, Wang Z, Gao C, Wei L, Qi D, Shi P, Zhang T, Wei D. A New Homotetramer Hemoglobin in the Pulmonary Surfactant of Plateau Zokors (Myospalax Baileyi). Front Genet 2022; 13:824049. [PMID: 35368669 PMCID: PMC8967358 DOI: 10.3389/fgene.2022.824049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
The plateau zokor (Myospalax baileyi) is a native species to the Qinghai-Tibetan Plateau, inhabiting hypoxia and hypercapnia sealed subterranean burrows that pose several unique physiological challenges. In this study, we observed a novel heme-containing protein in the pulmonary surfactant (PS) of plateau zokor, identified the encoding gene of the protein, predicted its origination and structure, verified its expression in alveolar epithelial cells, and determined the protein’s affinity to oxygen and its effect on the oxygen-dissolving capability in the PS of plateau zokors. The protein is an unusual homotetramer hemoglobin consisting of four γ-like subunits, and the subunit is encoded by a paralog gene of γ, that is γ-like. The divergence time of γ-like from γ is estimated by the molecular clock to be about 2.45 Mya. The generation of γ-like in plateau zokors might well relate to long-time stress of the high land hypoxia. Unlike γ, the γ-like has a hypoxia response element (HRE) and a lung tissue-specific enhancer in its upstream region, and it is expressed specifically in lung tissues and up-regulated by hypoxia. The protein is named as γ4-like which is expressed specifically in Alveolar epithelial type II (ATII) cells and secreted into the alveolar cavities through the osmiophilic multilamellar body (LBs). The γ4-like has a higher affinity to oxygen, and that increases significantly oxygen-dissolving capability in the PS of plateau zokors by its oxygenation function, which might be beneficial for the plateau zokors to obtain oxygen from the severe hypoxia environments by facilitating oxygen diffusion from alveoli to blood.
Collapse
Affiliation(s)
- Jimei Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Zhifang An
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Linna Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Bo Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zhijie Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Conghui Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Lian Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Dengbang Wei, ; Tongzuo Zhang, ; Peng Shi,
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- *Correspondence: Dengbang Wei, ; Tongzuo Zhang, ; Peng Shi,
| | - Dengbang Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- *Correspondence: Dengbang Wei, ; Tongzuo Zhang, ; Peng Shi,
| |
Collapse
|
18
|
Zheng Z, Hua R, Xu G, Yang H, Shi P. Gene losses may contribute to subterranean adaptations in naked mole-rat and blind mole-rat. BMC Biol 2022; 20:44. [PMID: 35172813 PMCID: PMC8851862 DOI: 10.1186/s12915-022-01243-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Naked mole-rats (Heterocephalus glaber, NMRs) and blind mole-rats (Spalax galili, BMRs) are representative subterranean rodents that have evolved many extraordinary traits, including hypoxia tolerance, longevity, and cancer resistance. Although multiple candidate loci responsible for these traits have been uncovered by genomic studies, many of them are limited to functional changes to amino acid sequence and little is known about the contributions of other genetic events. To address this issue, we focused on gene losses (unitary pseudogenes) and systematically analyzed gene losses in NMRs and BMRs, aiming to elucidate the potential roles of pseudogenes in their adaptation to subterranean lifestyle. Results We obtained the pseudogene repertoires in NMRs and BMRs, as well as their respective aboveground relatives, guinea pigs and rats, on a genome-wide scale. As a result, 167, 139, 341, and 112 pseudogenes were identified in NMRs, BMRs, guinea pigs, and rats, respectively. Functional enrichment analysis identified 4 shared and 2 species-specific enriched functional groups (EFGs) in subterranean lineages. Notably, the pseudogenes in these EFGs might be associated with either regressive (e.g., visual system) or adaptive (e.g., altered DNA damage response) traits. In addition, several pseudogenes including TNNI3K and PDE5A might be associated with specific cardiac features observed in subterranean lineages. Interestingly, we observed 20 convergent gene losses in NMRs and BMRs. Given that the functional investigations of these genes are generally scarce, we provided functional evidence that independent loss of TRIM17 in NMRs and BMRs might be beneficial for neuronal survival under hypoxia, supporting the positive role of eliminating TRIM17 function in hypoxia adaptation. Our results also suggested that pseudogenes, together with positively selected genes, reinforced subterranean adaptations cooperatively. Conclusions Our study provides new insights into the molecular underpinnings of subterranean adaptations and highlights the importance of gene losses in mammalian evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01243-0.
Collapse
Affiliation(s)
- Zhizhong Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Rong Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.,Joint Laboratory of Animal Models for Human Diseases and Drug Development, Soochow University and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China. .,Joint Laboratory of Animal Models for Human Diseases and Drug Development, Soochow University and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
19
|
Shao Y, Wang XB, Zhang ML, Liu Y, Wang S, Zhang BL, Yang MM, Yang MH, Jia T, Pu TC, Lu Y, Liu H, Xu Z, Li B, Liu N, Onsongo VM, Wu DD, Zhang CL, Ruan J, Li Y. Long-read genome sequencing provides molecular insights into scavenging and societal complexity in spotted hyena Crocuta crocuta. Mol Biol Evol 2022; 39:6509522. [PMID: 35038730 PMCID: PMC8890499 DOI: 10.1093/molbev/msac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The spotted hyena (Crocuta crocuta) is a large and unique terrestrial carnivore. It is a particularly fascinating species due to its distinct phenotypic traits, especially its complex social structure and scavenging lifestyle, with associated high dietary exposure to microbial pathogens. However, the underlying molecular mechanisms related to these phenotypes remain elusive. Here, we sequenced and assembled a high-quality long-read genome of the spotted hyena, with a contig N50 length of ∼13.75 Mb. Based on comparative genomics, immunoglobulin family members (e.g., IGKV4-1) showed significant adaptive duplications in the spotted hyena and striped hyena. Furthermore, immune-related genes (e.g., CD8A, LAG3, and TLR3) experienced species-specific positive selection in the spotted hyena lineage. These results suggest that immune tolerance between the spotted hyena and closely related striped hyena has undergone adaptive divergence to cope with prolonged dietary exposure to microbial pathogens from scavenging. Furthermore, we provided the potential genetic insights underlying social complexity, hinting at social behavior and cognition. Specifically, the RECNE-associated genes (e.g., UGP2 and ACTR2) in the spotted hyena genome are involved in regulation of social communication. Taken together, our genomic analyses provide molecular insights into the scavenging lifestyle and societal complexity of spotted hyenas.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Xiao-Bo Wang
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Mei-Ling Zhang
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, Yunnan, 650022, China
| | - Yan Liu
- Beijing Zoo, Beijing, 100044, China
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Min-Min Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | | | - Ting Jia
- Beijing Zoo, Beijing, 100044, China
| | | | - Yan Lu
- Beijing Zoo, Beijing, 100044, China
| | - He Liu
- Beijing Zoo, Beijing, 100044, China
| | - Zhe Xu
- Beijing Zoo, Beijing, 100044, China
| | - Bo Li
- Beijing Zoo, Beijing, 100044, China
| | - Ning Liu
- Beijing Zoo, Beijing, 100044, China
| | - Violet Magoma Onsongo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | | | - Jue Ruan
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
20
|
Sjodin BMF, Galbreath KE, Lanier HC, Russello MA. Chromosome-Level Reference Genome Assembly for the American Pika (Ochotona princeps). J Hered 2021; 112:549-557. [PMID: 34036348 PMCID: PMC8558581 DOI: 10.1093/jhered/esab031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
The American pika (Ochotona princeps) is an alpine lagomorph found throughout western North America. Primarily inhabiting talus slopes at higher elevations (>2000 m), American pikas are well adapted to cold, montane environments. Warming climates on both historical and contemporary scales have contributed to population declines in American pikas, positioning them as a focal mammalian species for investigating the ecological effects of climate change. To support and expand ongoing research efforts, here, we present a highly contiguous and annotated reference genome assembly for the American pika (OchPri4.0). This assembly was produced using Dovetail de novo proximity ligation methods and annotated through the NCBI Eukaryotic Genome Annotation pipeline. The resulting assembly was chromosome- scale, with a total length of 2.23 Gb across 9350 scaffolds and a scaffold N50 of 75.8 Mb. The vast majority (>97%) of the total assembly length was found within 36 large scaffolds; 33 of these scaffolds correlated to whole autosomes, while the X chromosome was covered by 3 large scaffolds. Additionally, we identified 17 enriched gene ontology terms among American pika-specific genes putatively related to adaptation to high-elevation environments. This high-quality genome assembly will serve as a springboard for exploring the evolutionary underpinnings of behavioral, ecological, and taxonomic diversification in pikas as well as broader-scale eco-evolutionary questions pertaining to cold-adapted species in general.
Collapse
Affiliation(s)
- Bryson M F Sjodin
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada
| | - Kurt E Galbreath
- Department of Biology, Northern Michigan University, Marquette, MI, USA
| | - Hayley C Lanier
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada
| |
Collapse
|
21
|
Bondareva OV, Potapova NA, Konovalov KA, Petrova TV, Abramson NI. Searching for signatures of positive selection in cytochrome b gene associated with subterranean lifestyle in fast-evolving arvicolines (Arvicolinae, Cricetidae, Rodentia). BMC Ecol Evol 2021; 21:92. [PMID: 34016058 PMCID: PMC8136191 DOI: 10.1186/s12862-021-01819-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background Mitochondrial genes encode proteins involved in oxidative phosphorylation. Variations in lifestyle and ecological niche can be directly reflected in metabolic performance. Subterranean rodents represent a good model for testing hypotheses on adaptive evolution driven by important ecological shifts. Voles and lemmings of the subfamily Arvicolinae (Rodentia: Cricetidae) provide a good example for studies of adaptive radiation. This is the youngest group within the order Rodentia showing the fastest rates of diversification, including the transition to the subterranean lifestyle in several phylogenetically independent lineages. Results We evaluated the signatures of selection in the mitochondrial cytochrome b (cytB) gene in 62 Arvicolinae species characterized by either subterranean or surface-dwelling lifestyle by assessing amino acid sequence variation, exploring the functional consequences of the observed variation in the tertiary protein structure, and estimating selection pressure. Our analysis revealed that: (1) three of the convergent amino acid substitutions were found among phylogenetically distant subterranean species and (2) these substitutions may have an influence on the protein complex structure, (3) cytB showed an increased ω and evidence of relaxed selection in subterranean lineages, relative to non-subterranean, and (4) eight protein domains possess increased nonsynonymous substitutions ratio in subterranean species. Conclusions Our study provides insights into the adaptive evolution of the cytochrome b gene in the Arvicolinae subfamily and its potential implications in the molecular mechanism of adaptation. We present a framework for future characterizations of the impact of specific mutations on the function, physiology, and interactions of the mtDNA-encoded proteins involved in oxidative phosphorylation. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01819-4.
Collapse
Affiliation(s)
| | - Nadezhda A Potapova
- Institute for Information Transmission Problems (Kharkevich Institute) RAS, Moscow, Russia
| | | | | | | |
Collapse
|
22
|
Pejo M, Tomasco IH. Adaptive evolution of β-globin gene in subterranean in South America octodontid rodents. Gene 2020; 772:145352. [PMID: 33359035 DOI: 10.1016/j.gene.2020.145352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/15/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
The convergent evolution of subterranean rodents is an excellent model to study how natural selection operates and the genetic bases of these adaptations, but the study on the different taxa has been very uneven and still insufficient. In the octodontoid caviomorph rodent superfamily there are two independent lineages where they have recently evolved into totally underground lifestyles: the genera Ctenomys (tuco-tucos) and Spalacopus (coruro). The underground habitat is characterized by an hypoxic and hypercapnic atmosphere, thus gas exchange is one of the most important challenges for these animals. The invasion of the underground niche could have modified the selective regimes of proteins involved in the respiration and transport of O2 of these rodents, positively selecting mutations of higher affinity for O2. Here we examine the sequence variation in the beta globin gene in these two lineages, within a robust phylogenetic context. Using different approaches (classical and Bayesian maximum likelihood (PAML/Datamonkey) and alternatives methods (TreeSAAP)) we found at least three sites with evidence of positive selection in underground lineages, especially the basal branch that leads to the Octodontidae family and the branch that leads to the coruro, suggesting some adaptive changes to the underground life. We also found a convergence with another underground rodent, which cannot be identified by the above methods.
Collapse
Affiliation(s)
- Mariana Pejo
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ivanna H Tomasco
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
23
|
Pamenter ME, Hall JE, Tanabe Y, Simonson TS. Cross-Species Insights Into Genomic Adaptations to Hypoxia. Front Genet 2020; 11:743. [PMID: 32849780 PMCID: PMC7387696 DOI: 10.3389/fgene.2020.00743] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Over millions of years, vertebrate species populated vast environments spanning the globe. Among the most challenging habitats encountered were those with limited availability of oxygen, yet many animal and human populations inhabit and perform life cycle functions and/or daily activities in varying degrees of hypoxia today. Of particular interest are species that inhabit high-altitude niches, which experience chronic hypobaric hypoxia throughout their lives. Physiological and molecular aspects of adaptation to hypoxia have long been the focus of high-altitude populations and, within the past decade, genomic information has become increasingly accessible. These data provide an opportunity to search for common genetic signatures of selection across uniquely informative populations and thereby augment our understanding of the mechanisms underlying adaptations to hypoxia. In this review, we synthesize the available genomic findings across hypoxia-tolerant species to provide a comprehensive view of putatively hypoxia-adaptive genes and pathways. In many cases, adaptive signatures across species converge on the same genetic pathways or on genes themselves [i.e., the hypoxia inducible factor (HIF) pathway). However, specific variants thought to underlie function are distinct between species and populations, and, in most cases, the precise functional role of these genomic differences remains unknown. Efforts to standardize these findings and explore relationships between genotype and phenotype will provide important clues into the evolutionary and mechanistic bases of physiological adaptations to environmental hypoxia.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - James E. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yuuka Tanabe
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
24
|
Feijó A, Ge D, Wen Z, Xia L, Yang Q. Divergent adaptations in resource‐use traits explain how pikas thrive on the roof of the world. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| |
Collapse
|
25
|
Zhang QL, Li HW, Dong ZX, Yang XJ, Lin LB, Chen JY, Yuan ML. Comparative transcriptomic analysis of fireflies (Coleoptera: Lampyridae) to explore the molecular adaptations to fresh water. Mol Ecol 2020; 29:2676-2691. [PMID: 32512643 DOI: 10.1111/mec.15504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Aquatic insects are well adapted to freshwater environments, but the molecular basis of these adaptations remains largely unknown. Most firefly species (Coleoptera: Lampyridae) are terrestrial, but the larvae of several species are aquatic. Here, larval and adult transcriptomes from Aquatica leii (freshwater) and Lychnuris praetexta (terrestrial) were generated to test whether the genes associated with metabolic efficiency and morphology have undergone adaptive evolution to fresh water. The aquatic fireflies had a significantly lower ratio of nonsynonymous to synonymous substitutions than the terrestrial insects, indicating a genomewide evolutionary constraint in the aquatic fireflies. We identified 341 fast-evolving genes and 116 positively selected genes in the aquatic fireflies. Of these, 76 genes exhibiting both fast evolution and positive selection were primarily involved in ATP production, energy metabolism and the hypoxia response. We identified 7,271 differentially expressed genes (DEGs) in A. leii (adults versus larvae) and 8,309 DEGs in L. praetexta (adults versus larvae). DEGs specific to the aquatic firefly (n = 1,445) were screened via interspecific comparisons (A. leii versus L. praetexta) and were significantly enriched for genes involved in metabolic efficiency (e.g., ATP production, hypoxia, and immune responses) and certain aspects of morphology (e.g., cuticle chitin, tracheal and compound eye morphology). These results indicate that sequence and expression-level changes in genes associated with both metabolic efficiency and morphological attributes related to the freshwater lifestyle contributed to freshwater adaptation in fireflies. This study provides new insights into the molecular mechanisms of aquatic adaptation in insects.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiao-Jie Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jun-Yuan Chen
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
26
|
He Z, Xu S, Shi S. Adaptive convergence at the genomic level-prevalent, uncommon or very rare? Natl Sci Rev 2020; 7:947-951. [PMID: 34692116 PMCID: PMC8289048 DOI: 10.1093/nsr/nwaa076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ziwen He
- School of Life Sciences, Sun Yat-sen University, China
| | - Shaohua Xu
- School of Life Sciences, Sun Yat-sen University, China
| | - Suhua Shi
- School of Life Sciences, Sun Yat-sen University, China
| |
Collapse
|
27
|
Kang Y, Su J, Yao B, Ji W, Hegab IM, Hanafy AM, Zhang D. Geometric morphometric analysis of the plateau zokor (Eospalax baileyi) revealed significant effects of environmental factors on skull variations. ZOOLOGY 2020; 140:125779. [PMID: 32361214 DOI: 10.1016/j.zool.2020.125779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/29/2022]
Abstract
The plateau zokor (Eospalax baileyi) is employed as an ideal model for examining the relationships between phenotypic and ecological adaptations to the underground conditions in which the skull morphology evolves to adapt to tunnel environment. We evaluated the influence of environmental factors (altitude, temperature, and precipitation) and geographical distance on the variations in skull morphology of a native subterranean rodent plateau zokor population. Thin-plate spline showed that the trend of morphological changes along the CV1 axis was as follows: the two zygomatic arch and the two postorbital processes moved down, the two mastoid processes and the tooth row moved upward, and the tympanic bulla grew longer. The changes along the CV2 axis were as follows: the nasal bone and the tooth row became longer, the distance between the two anterior tips of zygomatic arch lengthened, the infraorbital foramen became smaller, the whole posterior part of the skull became shorter, the zygomatic bone and the two posterior tips of zygomatic arch moved down, and the foramen magnum became bigger. Thus we found significant differences in the skull shape among the seven populations studied. Along with the reduction in the altitude and increase in the mean annual temperature and mean annual precipitation, the nasal bone became shorter, the distance between the two anterior tips of the zygomatic arch became shorter, the whole posterior part of the skull lengthened, the infraorbital foramen became smaller, the two mastoid processes moved upward, and the occipital bone moved down on the dorsal surface of the skull. On the ventral surface of the skull, with an increase in the altitude, mean annual temperature, and mean annual precipitation, the tympanic bulla became shorter, the tooth row moved down, and the foramen magnum became smaller. The morphological changes in the skull were significantly positively correlated with environmental factors. Finally, there was a significant positive correlation between the Procrustes distance matrix of the skull and the geographic distance matrix, which indicates that the evolution of the plateau zokor follows the distance isolation model, but it needs to be further explored from genetic perspectives.
Collapse
Affiliation(s)
- Yukun Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China.
| | - Baohui Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Weihong Ji
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China; Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102904 North Shore Mail Centre 0632, Auckland, New Zealand
| | - Ibrahim M Hegab
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China; Department of Hygiene, Zoonoses and Animal Behavior and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed M Hanafy
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China; Animal Production Department, Faculty of Agriculture, Suez Canal University, 41522, Ismailia, Egypt
| | - Degang Zhang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
28
|
Chen Q, Zhao H, Wen M, Li J, Zhou H, Wang J, Zhou Y, Liu Y, Du L, Kang H, Zhang J, Cao R, Xu X, Zhou JJ, Ren B, Wang Y. Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its rapid invasion and spread. BMC Genomics 2020; 21:242. [PMID: 32183717 PMCID: PMC7079503 DOI: 10.1186/s12864-020-6629-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The fall webworm Hyphantria cunea is an invasive and polyphagous defoliator pest that feeds on nearly any type of deciduous tree worldwide. The silk web of H. cunea aids its aggregating behavior, provides thermal regulation and is regarded as one of causes for its rapid spread. In addition, both chemosensory and detoxification genes are vital for host adaptation in insects. RESULTS Here, a high-quality genome of H. cunea was obtained. Silk-web-related genes were identified from the genome, and successful silencing of the silk protein gene HcunFib-H resulted in a significant decrease in silk web shelter production. The CAFE analysis showed that some chemosensory and detoxification gene families, such as CSPs, CCEs, GSTs and UGTs, were expanded. A transcriptome analysis using the newly sequenced H. cunea genome showed that most chemosensory genes were specifically expressed in the antennae, while most detoxification genes were highly expressed during the feeding peak. Moreover, we found that many nutrient-related genes and one detoxification gene, HcunP450 (CYP306A1), were under significant positive selection, suggesting a crucial role of these genes in host adaptation in H. cunea. At the metagenomic level, several microbial communities in H. cunea gut and their metabolic pathways might be beneficial to H. cunea for nutrient metabolism and detoxification, and might also contribute to its host adaptation. CONCLUSIONS These findings explain the host and environmental adaptations of H. cunea at the genetic level and provide partial evidence for the cause of its rapid invasion and potential gene targets for innovative pest management strategies.
Collapse
Affiliation(s)
- Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Ming Wen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jiaxin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Haifeng Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jiatong Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Yuxin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Yulin Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Lixin Du
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hui Kang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jian Zhang
- School of Life Sciences, Changchun Normal University, Changchun, Jilin, China
| | - Rui Cao
- Meihekou Forest Pest Control Station, Changchun, Jilin, China
| | - Xiaoming Xu
- Garden and Plant Protection Station of Changchun, Changchun, Jilin, China
| | - Jing-Jiang Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
- Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China.
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China.
| |
Collapse
|
29
|
ZokorDB: tissue specific regulatory network annotation for non-coding elements of plateau zokor. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0195-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Cao W, Pu P, Wang J, Niu Z, Zhang T, He J, Tang X, Chen Q. Suppressed LPS-mediated TLR4 signaling in the plateau zokor (Eospalax baileyi) compared to the bamboo rat (Rhizomys pruinosus) and rat (Rattus norvegicus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:240-251. [PMID: 31994847 DOI: 10.1002/jez.2346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 11/08/2022]
Abstract
Ecological immunology involves the study of the immune function of wildlife, which is seldom compared with that of model animals. Here, we evaluated and compared the level of the innate immune response in the plateau zokor (Eospalax baileyi), an indigenous underground rodent from the Tibetan Plateau, with that in the bamboo rat (Rhizomys pruinosus) and Sprague-Dawley (SD) rat (Rattus norvegicus). The spleen was observed by ordinary light and transmission electron microscopy, and the spleen index was calculated. After liposaccharide (LPS) challenge, the expression of Toll-like receptor 2 (TLR2), TLR4, and hypoxia-inducible factor 1α (HIF-1α) in the spleen was detected by Western blot analysis and immunofluorescence. The expression of nuclear factor-κB1 (NF-κB1) and mitogen-activated protein kinase 14 (MAPK14) in the spleen was detected by real-time quantitative polymerase chain reaction, and the levels of interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and interferon-β (IFN-β) in the spleen were detected by enzyme-linked immunoassay. The spleen index of the plateau zokor was lower than that of the bamboo rat and SD rat. The expression of TLR4, NF-κB1, and MAPK14 and the levels of IL-6 and TNF-α in the spleen of the plateau zokor were lower than those of the bamboo rat and SD rat, while the expression of TLR2 and HIF-1α and the level of IFN-β were higher than those of the bamboo rat and SD rat. We speculate that suppression of the TLR4 signaling pathway in the plateau zokor is an adaptation to hypoxic tunnels that decreases antigenic risk and maintains immune homeostasis. Moreover, the spleen of the plateau zokor is reduced in size, reducing the innate immunity investment in the spleen. We also noted that high levels of HIF-1α in the spleen of the plateau zokor suppressed crosstalk between HIF-1α and TLR4, promoting the innate immune response.
Collapse
Affiliation(s)
- Wangjie Cao
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Peng Pu
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Jinzhou Wang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Zhiyi Niu
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Tao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Jie He
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
31
|
Assessing spatial learning and working memory in plateau zokors in comparison with plateau pikas and laboratory rats. Acta Ethol 2019. [DOI: 10.1007/s10211-019-00320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Witt KE, Huerta-Sánchez E. Convergent evolution in human and domesticate adaptation to high-altitude environments. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180235. [PMID: 31154977 PMCID: PMC6560271 DOI: 10.1098/rstb.2018.0235] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Humans and their domestic animals have lived and thrived in high-altitude environments worldwide for thousands of years. These populations have developed a number of adaptations to survive in a hypoxic environment, and several genomic studies have been conducted to identify the genes that drive these adaptations. Here, we discuss the various adaptations and genetic variants that have been identified as adaptive in human and domestic animal populations and the ways in which convergent evolution has occurred as these populations have adapted to high-altitude environments. We found that human and domesticate populations have adapted to hypoxic environments in similar ways. Specific genes and biological pathways have been involved in high-altitude adaptation for multiple populations, although the specific variants differ between populations. Additionally, we found that the gene EPAS1 is often a target of selection in hypoxic environments and has been involved in multiple adaptive introgression events. High-altitude environments exert strong selective pressures, and human and animal populations have evolved in convergent ways to cope with a chronic lack of oxygen. This article is part of the theme issue ‘Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Kelsey E Witt
- 1 Cell and Molecular Biology, University of California-Merced , 5200 Lake Road., Merced, CA 95340 , USA
| | - Emilia Huerta-Sánchez
- 1 Cell and Molecular Biology, University of California-Merced , 5200 Lake Road., Merced, CA 95340 , USA.,2 Ecology and Evolutionary Biology, Brown University , Box G-W, 80 Waterman Street, Providence, RI 02912 , USA.,3 Center for Computational Biology, Brown University , Box G-W, 115 Waterman Street., Providence, RI 02912 , USA
| |
Collapse
|
33
|
Davies KTJ, Bennett NC, Faulkes CG, Rossiter SJ. Limited Evidence for Parallel Molecular Adaptations Associated with the Subterranean Niche in Mammals: A Comparative Study of Three Superorders. Mol Biol Evol 2018; 35:2544-2559. [PMID: 30137400 PMCID: PMC6188548 DOI: 10.1093/molbev/msy161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Among mammals, several lineages have independently adapted to a subterranean niche and possess similar phenotypic traits for burrowing (e.g., cylindrical bodies, short limbs, and absent pinnae). Previous research on mole-rats has revealed molecular adaptations for coping with reduced oxygen, elevated carbon dioxide, and the absence of light. In contrast, almost nothing is known regarding molecular adaptations in other subterranean lineages (e.g., true moles and golden moles). Therefore, the extent to which the recurrent phenotypic adaptations of divergent subterranean taxa have arisen via parallel routes of molecular evolution remains untested. To address these issues, we analyzed ∼8,000 loci in 15 representative subterranean taxa of four independent transitions to an underground niche for signatures of positive selection and convergent amino acid substitutions. Complementary analyses were performed in nonsubterranean "control" taxa to assess the biological significance of results. We found comparable numbers of positively selected genes in each of the four subterranean groups; however, correspondence in terms of gene identity between gene sets was low. Furthermore, we did not detect evidence of more convergent amino acids among subterranean species pairs compared with levels found between nonsubterranean controls. Comparisons with nonsubterranean taxa also revealed loci either under positive selection or with convergent substitutions, with similar functional enrichment (e.g., cell adhesion, immune response, and coagulation). Given the limited indication that positive selection and convergence occurred in the same loci, we conclude that selection may have acted on different loci across subterranean mammal lineages to produce similar phenotypes.
Collapse
Affiliation(s)
- Kalina T J Davies
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nigel C Bennett
- Department of Zoology & Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Chris G Faulkes
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Stephen J Rossiter
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
34
|
Gender difference in unconditioned and conditioned predator fear responses in Smith's zokors (Eospalax smithii). Glob Ecol Conserv 2018. [DOI: 10.1016/j.gecco.2018.e00503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
35
|
Su J, Hegab IM, Ji W, Nan Z. Function-related Drivers of Skull Morphometric Variation and Sexual Size Dimorphism in a Subterranean Rodent, Plateau Zokor ( Eospalax baileyi). Ecol Evol 2018; 8:4631-4643. [PMID: 29760903 PMCID: PMC5938458 DOI: 10.1002/ece3.3986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/16/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Sexual dimorphism is prevalent in most living organisms. The difference in size between sexes of a given species is generally known as sexual size dimorphism (SSD). The magnitude of the SSD is determined by Rensch's rule where size dimorphism increases with increasing body size when the male is the larger sex and decreases with increasing average body size when the female is the larger sex. The unique underground environment that zokors (Eospalax baileyi) live under in the severe habitat of the Qinghai‐Tibetan Plateau (QTP) could create SSD selection pressures that may or may not be supported by Rensch's rule, making this scientific question worthy of investigation. In this study, we investigated the individual variation between sexes in body size and SSD of plateau zokors using measurements of 19 morphological traits. We also investigated the evolutionary mechanisms underlying SSD in plateau zokors. Moreover, we applied Rensch's rule to all extant zokor species. Our results showed male‐biased SSD in plateau zokors: The body‐ and head‐related measurements were greater in males than in females. Linear regression analysis between body length, body weight, and carcass weight showed significant relationships with some traits such as skull length, lower incisor length, and tympanic bulla width, which might support our prediction that males have faster growth rates than females. Further, the SSD pattern corroborated the assumption of Rensch's rule in plateau zokors but not in the other zokor species. Our findings suggest that the natural underground habitat and behavioral differences between sexes can generate selection pressures on male traits and contribute to the evolution of SSD in plateau zokors.
Collapse
Affiliation(s)
- Junhu Su
- State Key Laboratory of Grassland Agro-ecosystems College of Pastoral Agriculture Science and Technology Lanzhou University Lanzhou China.,College of Grassland Science Key Laboratory of Grassland Ecosystem (Ministry of Education) Gansu Agricultural University Lanzhou China.,Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity Gansu Agricultural University Lanzhou China
| | - Ibrahim M Hegab
- College of Grassland Science Key Laboratory of Grassland Ecosystem (Ministry of Education) Gansu Agricultural University Lanzhou China.,Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity Gansu Agricultural University Lanzhou China.,Faculty of Veterinary Medicine Department of Hygiene, Zoonosis and Animal Behavior & Management Suez Canal University Ismailia Egypt
| | - Weihong Ji
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity Gansu Agricultural University Lanzhou China.,Institute of Natural and Mathematical Sciences Massey University Auckland New Zealand
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems College of Pastoral Agriculture Science and Technology Lanzhou University Lanzhou China
| |
Collapse
|
36
|
Wang Y, Zhang J, Chen Q, Zhao H, Wang J, Wen M, Xi J, Ren B. Identification and evolution of olfactory genes in the small poplar longhorn beetle Saperda populnea. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 26:58-68. [PMID: 29626726 DOI: 10.1016/j.cbd.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/03/2018] [Accepted: 03/17/2018] [Indexed: 01/26/2023]
Abstract
Saperda populnea is a serious pest of poplar and willow trees in the Palaearctic region, causing extensive damage to forests and the lumber industry. Until recently, there is no safe and effective chemical method to control this pest due to the lack of sufficient knowledge on the molecular basis of its olfactory genes, moreover, the evolutionary history of the olfactory gene family in subfamily Lamiinae is still fully unknown. Our RNA sequencing of the antennae of S. populnea identified 43 odorant binding proteins (OBPs), 15 chemosensory proteins (CSPs), 56 odorant receptors (ORs) and 24 inotropic receptors (IRs) in S. populnea. The RT-PCR results showed several genes were expressed in a sex specific manner, suggesting that these genes might play key role in their olfactory-sensing and sex-related behaviors. Further evolutionary studies were performed on these olfactory genes, overall comparison of the Ka/Ks values of orthologous genes in S. populnea and two other Lamiinae species showed three main conclusions: 1. olfactory genes have evolved more rapidly than the non-olfactory genes in the tested long horn beetles; 2. the IR gene family are under a strong purifying selection; 3. the OBPs of Monochamus alternatus evolved more rapidly than the other two species, which is speculated to be correlated with differentiation of selective pressure in different geographic origins. Detailed evolutionary studies on each olfactory genes showed that several OBPs and ORs are under significantly purifying/relaxed selective pressure, and several positive selection sites were also detected, modeling of SpopOR14 and SpopOBP4/5 showed that most of the positive selection sites were distributed at the N-terminus of SpopOR14, while the positive selection sites in SpopOBP4/5 were located in H-bond donors, results suggest that these sites are more likely to be linked with the selectivity of modeled olfactory genes. The research provided a better understanding of the molecular basis and evolutionary history of the olfactory genes in Lamiinae, through elaborating the mechanism whereby amino structural evolution affects specific variants in OBPs and ORs.
Collapse
Affiliation(s)
- Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jian Zhang
- College of Plant Science, Jilin University, Changchun, Jilin, China; Institute of Forest Protection, Jilin Provincial Academy of Forestry, Changchun, Jilin, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jiatong Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Ming Wen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun, Jilin, China.
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China.
| |
Collapse
|
37
|
An ZF, Zhao K, Wei LN, Wang ZJ, Li SH, Wei L, Wei DB. p53 gene cloning and response to hypoxia in the plateau zokor, Myospalax baileyi. ANIM BIOL 2018. [DOI: 10.1163/15707563-18000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The plateau zokor (Myospalax baileyi) is a specialized subterranean rodent that lives on the Qinghai-Tibet Plateau. The species has evolved a series of strategies to adapt to its hypoxic environment and hypercapnia. p53 is a tumour suppressor gene that plays a crucial role in the cellular response to hypoxia by inducing cell cycle arrest, cell apoptosis, DNA damage repair and angiogenesis. To investigate the sequence characteristics of p53 and the response to hypoxia in plateau zokor, we cloned the p53 coding DNA sequence, analysed it, and measured the expression level of p53 at different altitudes in plateau zokor and rats. Our results show that the coding DNA sequence is 1179 bp, consisting of 392 amino acid residues. Compared to human p53, the subterranean rodents have two mutation sites in common with the human hotspots in the DNA-binding domain. Compared to subterranean rodents, plateau zokor have a mutation at residue 309. In addition, subterranean rodents have two convergent sites at residues 78 and 84. The expression levels of p53 in plateau zokor tissues increase significantly from 2260 m to 3300 m, but there was no significant difference in rats at those altitudes. Our results suggest that subterranean rodents have two mutation sites in common with the human hotspots in the DNA-binding domain, the mutation of Gly309Asp is a unique mutation site of plateau zokor p53, and there are two convergent sites enhancing subterranean rodent adaptation to hypoxic conditions. In addition, p53 is sensitive to the oxygen concentration in plateau zokor, and hypoxia upregulates the levels of p53. Generally, plateau zokor use this strategy to adapt to a hypoxic environment.
Collapse
Affiliation(s)
- Zhi-fang An
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
- 2Research Center for High Altitude Medicine, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
| | - Kang Zhao
- 3College of Medical, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
| | - Lin-na Wei
- 4College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
| | - Zhi-jie Wang
- 4College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
| | - Su-hua Li
- 2Research Center for High Altitude Medicine, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
| | - Lian Wei
- 4College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
| | - Deng-bang Wei
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
- 4College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, Qinghai 810016, China
| |
Collapse
|
38
|
Examining object recognition and object-in-Place memory in plateau zokors, Eospalax baileyi. Behav Processes 2018; 146:34-41. [DOI: 10.1016/j.beproc.2017.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022]
|
39
|
Zhang QL, Zhang L, Yang XZ, Wang XT, Li XP, Wang J, Chen JY, Yuan ML. Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments. Sci Rep 2017; 7:16972. [PMID: 29208990 PMCID: PMC5717227 DOI: 10.1038/s41598-017-17051-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023] Open
Abstract
Adaptation of insects to different altitudes remain largely unknown, especially those endemic to the Tibetan Plateau (TP). Here, we generated the transcriptomes of Gynaephora menyuanensis and G. alpherakii, inhabiting different high altitudes on the TP, and used these and the previously available transcriptomic and genomic sequences from low-altitude insects to explore potential genetic basis for divergent high-altitude adaptation in Gynaephora. An analysis of 5,869 orthologous genes among Gynaephora and other three low-altitude insects uncovered that fast-evolving genes and positively selected genes (PSGs) in the two Gynaephora species were enriched in energy metabolism and hypoxia response categories (e.g. mitochondrion, oxidation-reduction process, and response to oxidative stress). Particularly, mTOR signaling pathway involving hypoxia was enriched by PSGs, indicating this well-known pathway in mammal hypoxia adaptation may be an important signaling system in Gynaephora. Furthermore, some PSGs were associated with response to hypoxia (e.g. cytochrome proteins), cold (e.g. dehydrogenase) and DNA repair (e.g. DNA repair proteins). Interestingly, several insect-specific genes that were associated with exoskeleton and cuticle development (e.g. chitinase and ecdysteroids) had experienced positive selection, suggesting the specific adaptive mechanisms in insects. This study is favourable for understanding the adaptive evolution of Gynaephora and even TP insects to divergent altitudes.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China.,Evo-devo Institute, School of Life Science, Nanjing University, Nanjing 210023, China; Nanjing Institute of Geology and Paleontology, Nanjing, 210008, China
| | - Li Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of, Agriculture, China
| | - Xing-Zhuo Yang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of, Agriculture, China
| | - Xiao-Tong Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiao-Peng Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Juan Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jun-Yuan Chen
- Evo-devo Institute, School of Life Science, Nanjing University, Nanjing 210023, China; Nanjing Institute of Geology and Paleontology, Nanjing, 210008, China.
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China. .,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of, Agriculture, China.
| |
Collapse
|
40
|
Rankin AM, Galbreath KE, Teeter KC. Signatures of adaptive molecular evolution in American pikas (Ochotona princeps). J Mammal 2017. [DOI: 10.1093/jmammal/gyx059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
41
|
Genetic Adaptation of Schizothoracine Fish to the Phased Uplifting of the Qinghai-Tibetan Plateau. G3-GENES GENOMES GENETICS 2017; 7:1267-1276. [PMID: 28209761 PMCID: PMC5386875 DOI: 10.1534/g3.116.038406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many species of Schizothoracine, a subfamily of Cyprinidae, are highly endemic to the Qinghai–Tibetan Plateau (QTP). To characterize the adaptive changes associated with the Schizothoracine expansion at high altitudes, we sequenced tissue transcriptomes of two highland and two subhighland Schizothoracines and analyzed gene evolution patterns by comparing with lowland cyprinids. Phylogenetic tree reconstruction and divergence time estimation indicated that the common ancestor of Schizothoracine fish lived ∼32.7 million years ago (MYA), coinciding with the timing of the first phase of QTP uplifting. Both high- and subhigh-Schizothoracines demonstrated elevated dN/dS ratios in the protein-coding genes compared to lowland cyprinids, from which some biological processes implicated in altitude adaptation were commonly identified. On the other hand, the highland and subhighland lineages presented drastically divergent landscapes of positively selected genes (PSGs), enriched with very different gene ontology (GO) profiles, including those in “sensory organ morphogenesis,” “regulation of protein ubiquitination,” “blood circulation,” and “blood vessel development.” These results indicated different selection pressures imposed on the highland and subhighland lineages of the Schizothoracine subfamily, with a higher number of genes in the high-altitude species involved in adaptations such as sensory perception, blood circulation, and protein metabolism. Our study indicated divergent genetic adaptations in the aquatic species facing the phased uplifting of QTP.
Collapse
|
42
|
Yu M, Zhang D, Hu P, Peng S, Li W, He S, Zhai W, Xu Q, Chen L. Divergent adaptation to Qinghai-Tibetan Plateau implicated from transciptome study of Gymnocypris dobula and Schizothorax nukiangensis. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Lewis KN, Soifer I, Melamud E, Roy M, McIsaac RS, Hibbs M, Buffenstein R. Unraveling the message: insights into comparative genomics of the naked mole-rat. Mamm Genome 2016; 27:259-78. [PMID: 27364349 PMCID: PMC4935753 DOI: 10.1007/s00335-016-9648-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/09/2016] [Indexed: 12/21/2022]
Abstract
Animals have evolved to survive, and even thrive, in different environments. Genetic adaptations may have indirectly created phenotypes that also resulted in a longer lifespan. One example of this phenomenon is the preternaturally long-lived naked mole-rat. This strictly subterranean rodent tolerates hypoxia, hypercapnia, and soil-based toxins. Naked mole-rats also exhibit pronounced resistance to cancer and an attenuated decline of many physiological characteristics that often decline as mammals age. Elucidating mechanisms that give rise to their unique phenotypes will lead to better understanding of subterranean ecophysiology and biology of aging. Comparative genomics could be a useful tool in this regard. Since the publication of a naked mole-rat genome assembly in 2011, analyses of genomic and transcriptomic data have enabled a clearer understanding of mole-rat evolutionary history and suggested molecular pathways (e.g., NRF2-signaling activation and DNA damage repair mechanisms) that may explain the extraordinarily longevity and unique health traits of this species. However, careful scrutiny and re-analysis suggest that some identified features result from incorrect or imprecise annotation and assembly of the naked mole-rat genome: in addition, some of these conclusions (e.g., genes involved in cancer resistance and hairlessness) are rejected when the analysis includes additional, more closely related species. We describe how the combination of better study design, improved genomic sequencing techniques, and new bioinformatic and data analytical tools will improve comparative genomics and ultimately bridge the gap between traditional model and nonmodel organisms.
Collapse
Affiliation(s)
- Kaitlyn N Lewis
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Ilya Soifer
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Eugene Melamud
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Margaret Roy
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - R Scott McIsaac
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Matthew Hibbs
- Computer Science Department, Trinity University, San Antonio, TX, 78212, USA
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA.
| |
Collapse
|