1
|
Hu Q, Tang R, He X, Wang R. General relationship of local topologies, global dynamics, and bifurcation in cellular networks. NPJ Syst Biol Appl 2024; 10:135. [PMID: 39557967 PMCID: PMC11573990 DOI: 10.1038/s41540-024-00470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Cellular networks realize their functions by integrating intricate information embedded within local structures such as regulatory paths and feedback loops. However, the precise mechanisms of how local topologies determine global network dynamics and induce bifurcations remain unidentified. A critical step in unraveling the integration is to identify the governing principles, which underlie the mechanisms of information flow. Here, we develop the cumulative linearized approximation (CLA) algorithm to address this issue. Based on perturbation analysis and network decomposition, we theoretically demonstrate how perturbations affect the equilibrium variations through the integration of all regulatory paths and how stability of the equilibria is determined by distinct feedback loops. Two illustrative examples, i.e., a three-variable bistable system and a more intricate epithelial-mesenchymal transition (EMT) network, are chosen to validate the feasibility of this approach. These results establish a solid foundation for understanding information flow across cellular networks, highlighting the critical roles of local topologies in determining global network dynamics and the emergence of bifurcations within these networks. This work introduces a novel framework for investigating the general relationship between local topologies and global dynamics of cellular networks under perturbations.
Collapse
Affiliation(s)
- Qing Hu
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Ruoyu Tang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Xinyu He
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China.
- Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Śliwa A, Szczerba A, Pięta PP, Białas P, Lorek J, Nowak-Markwitz E, Jankowska A. A Recipe for Successful Metastasis: Transition and Migratory Modes of Ovarian Cancer Cells. Cancers (Basel) 2024; 16:783. [PMID: 38398174 PMCID: PMC10886816 DOI: 10.3390/cancers16040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
One of the characteristic features of ovarian cancer is its early dissemination. Metastasis and the invasiveness of ovarian cancer are strongly dependent on the phenotypical and molecular determinants of cancer cells. Invasive cancer cells, circulating tumor cells, and cancer stem cells, which are responsible for the metastatic process, may all undergo different modes of transition, giving rise to mesenchymal, amoeboid, and redifferentiated epithelial cells. Such variability is the result of the changing needs of cancer cells, which strive to survive and colonize new organs. This would not be possible if not for the variety of migration modes adopted by the transformed cells. The most common type of metastasis in ovarian cancer is dissemination through the transcoelomic route, but transitions in ovarian cancer cells contribute greatly to hematogenous and lymphatic dissemination. This review aims to outline the transition modes of ovarian cancer cells and discuss the migratory capabilities of those cells in light of the known ovarian cancer metastasis routes.
Collapse
Affiliation(s)
- Aleksandra Śliwa
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Anna Szczerba
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Paweł Piotr Pięta
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Piotr Białas
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Jakub Lorek
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Anna Jankowska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| |
Collapse
|
3
|
Hu Q, Luo M, Wang R. Identifying critical regulatory interactions in cell fate decision and transition by systematic perturbation analysis. J Theor Biol 2024; 577:111673. [PMID: 37984586 DOI: 10.1016/j.jtbi.2023.111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
One of the most significant challenges in biology is to elucidate the roles of various regulatory interactions in cell fate decision and transition. However, it remains to be fully clarified how they cooperate and determine fate transition. Here, a general framework based on statistical analysis and bifurcation theory is proposed to identify crucial regulatory interactions and how they play decisive roles in fate transition. More exactly, specific feedback loops determine occurrence of bifurcations by which cell fate transition can be realized. While regulatory interactions in the feedback loops determine the direction of transition. In addition, two-parameter bifurcation analysis further provides detailed understanding of how the fate transition based on statistical analysis occurs. Statistical analysis can also be used to reveal synergistic combinatorial perturbations by which fate transition can be more efficiently realized. The integrative analysis approach can be used to identify critical regulatory interactions in cell fate transition and reveal how specific cell fate transition occurs. To verify feasibility of the approach, the epithelial to mesenchymal transition (EMT) network is chosen as an illustrative example. In agreement with experimental observations, the approach reveals some critical regulatory interactions and underlying mechanisms in cell fate determination and transitions between three states. The approach can also be applied to analyze other regulatory networks related to cell fate decision and transition.
Collapse
Affiliation(s)
- Qing Hu
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Min Luo
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China; Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
4
|
Hosseini K, Frenzel A, Fischer-Friedrich E. EMT induces characteristic changes of Rho GTPases and downstream effectors with a mitosis-specific twist. Phys Biol 2023; 20:066001. [PMID: 37652025 DOI: 10.1088/1478-3975/acf5bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a key cellular transformation for many physiological and pathological processes ranging from cancer over wound healing to embryogenesis. Changes in cell migration, cell morphology and cellular contractility were identified as hallmarks of EMT. These cellular properties are known to be tightly regulated by the actin cytoskeleton. EMT-induced changes of actin-cytoskeletal regulation were demonstrated by previous reports of changes of actin cortex mechanics in conjunction with modifications of cortex-associated f-actin and myosin. However, at the current state, the changes of upstream actomyosin signaling that lead to corresponding mechanical and compositional changes of the cortex are not well understood. In this work, we show in breast epithelial cancer cells MCF-7 that EMT results in characteristic changes of the cortical association of Rho-GTPases Rac1, RhoA and RhoC and downstream actin regulators cofilin, mDia1 and Arp2/3. In the light of our findings, we propose that EMT-induced changes in cortical mechanics rely on two hitherto unappreciated signaling paths-i) an interaction between Rac1 and RhoC and ii) an inhibitory effect of Arp2/3 activity on cortical association of myosin II.
Collapse
Affiliation(s)
- Kamran Hosseini
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Annika Frenzel
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Elisabeth Fischer-Friedrich
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- Faculty of Physics, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Lai YH, Liu WL, Lee TY, Kuo CW, Liu YR, Huang CY, Chen YH, Chen IL, Wu SH, Wang SC, Lee PY, Liu CC, Lo J, Chang YC, Kuo HF, Hsieh CC, Li CY, Liu PL. Magnolol regulates miR-200c-3p to inhibit epithelial-mesenchymal transition and retinoblastoma progression by modulating the ZEB1/E-cadherin axis in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154597. [PMID: 36603340 DOI: 10.1016/j.phymed.2022.154597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Retinoblastoma, the most common pediatric intraocular malignancy, can develop during embryogenesis, with most children being diagnosed at 3-4 years of age. Multimodal therapies are typically associated with high levels of cytotoxicity and side effects. Therefore, the development of novel treatments with minimal side effects is crucial. Magnolol has a significant anti-tumor effect on various cancers. However, its antitumor effect on retinoblastoma remains unclear. PURPOSE The study aimed to determine the effects of magnolol on the regulation of EMT, migration, invasion, and cancer progression in retinoblastoma and the modulation of miR-200c-3p expression and the Wnt/ zinc finger E-box binding homeobox 1 (ZEB1)/E-cadherin axis in vivo and in vitro. METHODS The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay was used to evaluate magnolol-induced cell toxicity in the Y79 retinoblastoma cell line. Flow cytometry and immunostaining assays were performed to investigate the magnolol-regulated mitochondrial membrane potential and the intracellular and mitochondrial reactive oxygen species levels in Y79 retinoblastoma cells. Orthotopic and subcutaneous xenograft experiments were performed in eight-week-old male null mice to study retinoblastoma progression and metastasis. In situ hybridization and quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays were performed to evaluate the level of the anti-cancer miRNA miR-200c-3p. The mRNA and protein levels of E-cadherin, β-catenin, α-smooth muscle actin (α-SMA), fibronectin-1, and ZEB1 were analyzed using RT-qPCR, immunoblot, immunocytochemistry, and immunohistochemistry assays in vitro and in vivo. RESULTS Magnolol increased E-cadherin levels and reduced the activation of the EMT signaling pathway, EMT, tumor growth, metastasis, and cancer progression in the Y79 retinoblastoma cell line as well as in the orthotopic and subcutaneous xenograft animal models. Furthermore, magnolol increased the expression of miR-200c-3p. Our results demonstrate that miRNA-200c-3p inhibits EMT progression through the Wnt16/β-catenin/ZEB1/E-cadherin axis, and the ZEB1 silencing response shows that miR-200c-3p regulates ZEB1-mediated EMT in retinoblastoma. CONCLUSION Magnolol has an antitumor effect by increasing E-cadherin and miRNA-200c-3p expression to regulate ZEB1-mediated EMT and cancer progression in retinoblastoma. The anti-tumor effect of magnolol by increasing E-cadherin and miRNA-200c-3p expression to regulate ZEB1-mediated EMT and cancer progression in retinoblastoma has been elucidated for the first time.
Collapse
Affiliation(s)
- Yu-Hung Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Tsung-Ying Lee
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Wen Kuo
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Ru Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chi-Yuan Huang
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - I-Ling Chen
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Szu-Hui Wu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Yen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Chih Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Jung Lo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yo-Chen Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsuan-Fu Kuo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chong-Chao Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
6
|
Canciello A, Cerveró-Varona A, Peserico A, Mauro A, Russo V, Morrione A, Giordano A, Barboni B. "In medio stat virtus": Insights into hybrid E/M phenotype attitudes. Front Cell Dev Biol 2022; 10:1038841. [PMID: 36467417 PMCID: PMC9715750 DOI: 10.3389/fcell.2022.1038841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 08/22/2023] Open
Abstract
Epithelial-mesenchymal plasticity (EMP) refers to the ability of cells to dynamically interconvert between epithelial (E) and mesenchymal (M) phenotypes, thus generating an array of hybrid E/M intermediates with mixed E and M features. Recent findings have demonstrated how these hybrid E/M rather than fully M cells play key roles in most of physiological and pathological processes involving EMT. To this regard, the onset of hybrid E/M state coincides with the highest stemness gene expression and is involved in differentiation of either normal and cancer stem cells. Moreover, hybrid E/M cells are responsible for wound healing and create a favorable immunosuppressive environment for tissue regeneration. Nevertheless, hybrid state is responsible of metastatic process and of the increasing of survival, apoptosis and therapy resistance in cancer cells. The present review aims to describe the main features and the emerging concepts regulating EMP and the formation of E/M hybrid intermediates by describing differences and similarities between cancer and normal hybrid stem cells. In particular, the comprehension of hybrid E/M cells biology will surely advance our understanding of their features and how they could be exploited to improve tissue regeneration and repair.
Collapse
Affiliation(s)
- Angelo Canciello
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Adrián Cerveró-Varona
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Andrea Morrione
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- Sbarro Health Research Organization (SHRO), Philadelphia, PA, United States
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
7
|
Baldavira CM, Prieto TG, Machado-Rugolo J, de Miranda JT, de Oliveira LKR, Velosa APP, Teodoro WR, Ab’Saber A, Takagaki T, Capelozzi VL. Modeling extracellular matrix through histo-molecular gradient in NSCLC for clinical decisions. Front Oncol 2022; 12:1042766. [PMID: 36452484 PMCID: PMC9703002 DOI: 10.3389/fonc.2022.1042766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 09/26/2023] Open
Abstract
Lung cancer still represents a global health problem, being the main type of tumor responsible for cancer deaths. In this context, the tumor microenvironment, and the extracellular matrix (ECM) pose as extremely relevant. Thus, this study aimed to explore the prognostic value of epithelial-to-mesenchymal transition (EMT), Wnt signaling, and ECM proteins expression in patients with non-small-cell lung carcinoma (NSCLC) with clinical stages I-IIIA. For that, we used 120 tissue sections from patients and evaluated the immunohistochemical, immunofluorescence, and transmission electron microscopy (TEM) to each of these markers. We also used in silico analysis to validate our data. We found a strong expression of E-cadherin and β-catenin, which reflects the differential ECM invasion process. Therefore, we also noticed a strong expression of chondroitin sulfate (CS) and collagens III and V. This suggests that, after EMT, the basal membrane (BM) enhanced the motility of invasive cells. EMT proteins were directly associated with WNT5A, and collagens III and V, which suggests that the WNT pathway drives them. On the other hand, heparan sulfate (HS) was associated with WNT3A and SPARC, while WNT1 was associated with CS. Interestingly, the association between WNT1 and Col IV suggested negative feedback of WNT1 along the BM. In our cohort, WNT3A, WNT5A, heparan sulfate and SPARC played an important role in the Cox regression model, influencing the overall survival (OS) of patients, be it directly or indirectly, with the SPARC expression stratifying the OS into two groups: 97 months for high expression; and 65 for low expression. In conclusion, the present study identified a set of proteins that may play a significant role in predicting the prognosis of NSCLC patients with clinical stages I-IIIA.
Collapse
Affiliation(s)
| | | | - Juliana Machado-Rugolo
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Health Technology Assessment Center, Clinical Hospital, Medical School of São Paulo State University, Botucatu, São Paulo, Brazil
| | - Jurandir Tomaz de Miranda
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Lizandre Keren Ramos de Oliveira
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Paula Pereira Velosa
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Walcy Rosolia Teodoro
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Alexandre Ab’Saber
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Teresa Takagaki
- Division of Pneumology, Instituto do Coração (Incor), University of São Paulo Medical School (USP), São Paulo, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Bhavani GS, Palanisamy A. SNAIL driven by a feed forward loop motif promotes TGF βinduced epithelial to mesenchymal transition. Biomed Phys Eng Express 2022; 8. [PMID: 35700712 DOI: 10.1088/2057-1976/ac7896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022]
Abstract
Epithelial to Mesenchymal Transition (EMT) plays an important role in tissue regeneration, embryonic development, and cancer metastasis. Several signaling pathways are known to regulate EMT, among which the modulation of TGFβ(Transforming Growth Factor-β) induced EMT is crucial in several cancer types. Several mathematical models were built to explore the role of core regulatory circuit of ZEB/miR-200, SNAIL/miR-34 double negative feedback loops in modulating TGFβinduced EMT. Different emergent behavior including tristability, irreversible switching, existence of hybrid EMT states were inferred though these models. Some studies have explored the role of TGFβreceptor activation, SMADs nucleocytoplasmic shuttling and complex formation. Recent experiments have revealed that MDM2 along with SMAD complex regulates SNAIL expression driven EMT. Encouraged by this, in the present study we developed a mathematical model for p53/MDM2 dependent TGFβinduced EMT regulation. Inclusion of p53 brings in an additional mechanistic perspective in exploring the EM transition. The network formulated comprises a C1FFL moderating SNAIL expression involving MDM2 and SMAD complex, which functions as a noise filter and persistent detector. The C1FFL was also observed to operate as a coincidence detector driving the SNAIL dependent downstream signaling into phenotypic switching decision. Systems modelling and analysis of the devised network, displayed interesting dynamic behavior, systems response to various inputs stimulus, providing a better understanding of p53/MDM2 dependent TGF-βinduced Epithelial to Mesenchymal Transition.
Collapse
|
9
|
Burger GA, van de Water B, Le Dévédec SE, Beltman JB. Density-Dependent Migration Characteristics of Cancer Cells Driven by Pseudopod Interaction. Front Cell Dev Biol 2022; 10:854721. [PMID: 35547818 PMCID: PMC9084912 DOI: 10.3389/fcell.2022.854721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
The ability of cancer cells to invade neighboring tissue from primary tumors is an important determinant of metastatic behavior. Quantification of cell migration characteristics such as migration speed and persistence helps to understand the requirements for such invasiveness. One factor that may influence invasion is how local tumor cell density shapes cell migration characteristics, which we here investigate with a combined experimental and computational modeling approach. First, we generated and analyzed time-lapse imaging data on two aggressive Triple-Negative Breast Cancer (TNBC) cell lines, HCC38 and Hs578T, during 2D migration assays at various cell densities. HCC38 cells exhibited a counter-intuitive increase in speed and persistence with increasing density, whereas Hs578T did not exhibit such an increase. Moreover, HCC38 cells exhibited strong cluster formation with active pseudopod-driven migration, especially at low densities, whereas Hs578T cells maintained a dispersed positioning. In order to obtain a mechanistic understanding of the density-dependent cell migration characteristics and cluster formation, we developed realistic spatial simulations using a Cellular Potts Model (CPM) with an explicit description of pseudopod dynamics. Model analysis demonstrated that pseudopods exerting a pulling force on the cell and interacting via increased adhesion at pseudopod tips could explain the experimentally observed increase in speed and persistence with increasing density in HCC38 cells. Thus, the density-dependent migratory behavior could be an emergent property of single-cell characteristics without the need for additional mechanisms. This implies that pseudopod dynamics and interaction may play a role in the aggressive nature of cancers through mediating dispersal.
Collapse
Affiliation(s)
| | | | | | - Joost B. Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
10
|
Ghosh B, Nishida K, Chandrala L, Mahmud S, Thapa S, Swaby C, Chen S, Khosla AA, Katz J, Sidhaye VK. Epithelial plasticity in COPD results in cellular unjamming due to an increase in polymerized actin. J Cell Sci 2022; 135:jcs258513. [PMID: 35118497 PMCID: PMC8919336 DOI: 10.1242/jcs.258513] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
The airway epithelium is subjected to insults such as cigarette smoke (CS), a primary cause of chronic obstructive pulmonary disease (COPD) and serves as an excellent model to study cell plasticity. Here, we show that both CS-exposed and COPD-patient derived epithelia (CHBE) display quantitative evidence of cellular plasticity, with loss of specialized apical features and a transcriptional profile suggestive of partial epithelial-to-mesenchymal transition (pEMT), albeit with distinct cell motion indicative of cellular unjamming. These injured/diseased cells have an increased fraction of polymerized actin, due to loss of the actin-severing protein cofilin-1. We observed that decreasing polymerized actin restores the jammed state in both CHBE and CS-exposed epithelia, indicating that the fraction of polymerized actin is critical in unjamming the epithelia. Our kinetic energy spectral analysis suggests that loss of cofilin-1 results in unjamming, similar to that seen with both CS exposure and in CHBE cells. The findings suggest that in response to chronic injury, although epithelial cells display evidence of pEMT, their movement is more consistent with cellular unjamming. Inhibitors of actin polymerization rectify the unjamming features of the monolayer. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Kristine Nishida
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Lakshmana Chandrala
- Department of Mechanical Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Saborny Mahmud
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Shreeti Thapa
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Carter Swaby
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Si Chen
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Atulya Aman Khosla
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Venkataramana K. Sidhaye
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| |
Collapse
|
11
|
Albaradei S, Thafar M, Alsaedi A, Van Neste C, Gojobori T, Essack M, Gao X. Machine learning and deep learning methods that use omics data for metastasis prediction. Comput Struct Biotechnol J 2021; 19:5008-5018. [PMID: 34589181 PMCID: PMC8450182 DOI: 10.1016/j.csbj.2021.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Knowing metastasis is the primary cause of cancer-related deaths, incentivized research directed towards unraveling the complex cellular processes that drive the metastasis. Advancement in technology and specifically the advent of high-throughput sequencing provides knowledge of such processes. This knowledge led to the development of therapeutic and clinical applications, and is now being used to predict the onset of metastasis to improve diagnostics and disease therapies. In this regard, predicting metastasis onset has also been explored using artificial intelligence approaches that are machine learning, and more recently, deep learning-based. This review summarizes the different machine learning and deep learning-based metastasis prediction methods developed to date. We also detail the different types of molecular data used to build the models and the critical signatures derived from the different methods. We further highlight the challenges associated with using machine learning and deep learning methods, and provide suggestions to improve the predictive performance of such methods.
Collapse
Key Words
- AE, autoencoder
- ANN, Artificial Neural Network
- AUC, area under the curve
- Acc, Accuracy
- Artificial intelligence
- BC, Betweenness centrality
- BH, Benjamini-Hochberg
- BioGRID, Biological General Repository for Interaction Datasets
- CCP, compound covariate predictor
- CEA, Carcinoembryonic antigen
- CNN, convolution neural networks
- CV, cross-validation
- Cancer
- DBN, deep belief network
- DDBN, discriminative deep belief network
- DEGs, differentially expressed genes
- DIP, Database of Interacting Proteins
- DNN, Deep neural network
- DT, Decision Tree
- Deep learning
- EMT, epithelial-mesenchymal transition
- FC, fully connected
- GA, Genetic Algorithm
- GANs, generative adversarial networks
- GEO, Gene Expression Omnibus
- HCC, hepatocellular carcinoma
- HPRD, Human Protein Reference Database
- KNN, K-nearest neighbor
- L-SVM, linear SVM
- LIMMA, linear models for microarray data
- LOOCV, Leave-one-out cross-validation
- LR, Logistic Regression
- MCCV, Monte Carlo cross-validation
- MLP, multilayer perceptron
- Machine learning
- Metastasis
- NPV, negative predictive value
- PCA, Principal component analysis
- PPI, protein-protein interaction
- PPV, positive predictive value
- RC, ridge classifier
- RF, Random Forest
- RFE, recursive feature elimination
- RMA, robust multi‐array average
- RNN, recurrent neural networks
- SGD, stochastic gradient descent
- SMOTE, synthetic minority over-sampling technique
- SVM, Support Vector Machine
- Se, sensitivity
- Sp, specificity
- TCGA, The Cancer Genome Atlas
- k-CV, k-fold cross validation
- mRMR, minimum redundancy maximum relevance
Collapse
Affiliation(s)
- Somayah Albaradei
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- King Abdulaziz University, Faculty of Computing and Information Technology, Jeddah, Saudi Arabia
| | - Maha Thafar
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Taif University, Collage of Computers and Information Technology, Taif, Saudi Arabia
| | - Asim Alsaedi
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Christophe Van Neste
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
12
|
Pramanik D, Jolly MK, Bhat R. Matrix adhesion and remodeling diversifies modes of cancer invasion across spatial scales. J Theor Biol 2021; 524:110733. [PMID: 33933478 DOI: 10.1016/j.jtbi.2021.110733] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
The metastasis of malignant epithelial tumors begins with the egress of transformed cells from the confines of their basement membrane (BM) to their surrounding collagen-rich stroma. Invasion can be morphologically diverse: when breast cancer cells are separately cultured within BM-like matrix, collagen I (Coll I), or a combination of both, they exhibit collective-, dispersed mesenchymal-, and a mixed collective-dispersed (multimodal)- invasion, respectively. In this paper, we asked how distinct these invasive modes are with respect to the cellular and microenvironmental cues that drive them. A rigorous computational exploration of invasion was performed within an experimentally motivated Cellular Potts-based modeling environment. The model comprised of adhesive interactions between cancer cells, BM- and Coll I-like extracellular matrix (ECM), and reaction-diffusion-based remodeling of ECM. The model outputs were parameters cognate to dispersed- and collective- invasion. A clustering analysis of the output distribution curated through a careful examination of subsumed phenotypes suggested at least four distinct invasive states: dispersed, papillary-collective, bulk-collective, and multimodal, in addition to an indolent/non-invasive state. Mapping input values to specific output clusters suggested that each of these invasive states are specified by distinct input signatures of proliferation, adhesion and ECM remodeling. In addition, specific input perturbations allowed transitions between the clusters and revealed the variation in the robustness between the invasive states. Our systems-level approach proffers quantitative insights into how the diversity in ECM microenvironments may steer invasion into diverse phenotypic modes during early dissemination of breast cancer and contributes to tumor heterogeneity.
Collapse
Affiliation(s)
- D Pramanik
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India; Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - M K Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - R Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
13
|
Kurley SJ, Tischler V, Bierie B, Novitskiy SV, Noske A, Varga Z, Zürrer-Härdi U, Brandt S, Carnahan RH, Cook RS, Muller WJ, Richmond A, Reynolds AB. A requirement for p120-catenin in the metastasis of invasive ductal breast cancer. J Cell Sci 2021; 134:jcs250639. [PMID: 33097605 PMCID: PMC7990862 DOI: 10.1242/jcs.250639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
We report here the effects of targeted p120-catenin (encoded by CTNND1; hereafter denoted p120) knockout (KO) in a PyMT mouse model of invasive ductal (mammary) cancer (IDC). Mosaic p120 ablation had little effect on primary tumor growth but caused significant pro-metastatic alterations in the tumor microenvironment, ultimately leading to a marked increase in the number and size of pulmonary metastases. Surprisingly, although early effects of p120-ablation included decreased cell-cell adhesion and increased invasiveness, cells lacking p120 were almost entirely unable to colonized distant metastatic sites in vivo The relevance of this observation to human IDC was established by analysis of a large clinical dataset of 1126 IDCs. As reported by others, p120 downregulation in primary IDC predicted worse overall survival. However, as in the mice, distant metastases were almost invariably p120 positive, even in matched cases where the primary tumors were p120 negative. Collectively, our results demonstrate a strong positive role for p120 (and presumably E-cadherin) during metastatic colonization of distant sites. On the other hand, downregulation of p120 in the primary tumor enhanced metastatic dissemination indirectly via pro-metastatic conditioning of the tumor microenvironment.
Collapse
Affiliation(s)
- Sarah J Kurley
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Verena Tischler
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Brian Bierie
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sergey V Novitskiy
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Aurelia Noske
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Zsuzsanna Varga
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Ursina Zürrer-Härdi
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Simone Brandt
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Robert H Carnahan
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, USA
- Goodman Cancer Centre, Montreal, Quebec, H3A 1A3, Canada
| | - Rebecca S Cook
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - William J Muller
- Goodman Cancer Centre, Montreal, Quebec, H3A 1A3, Canada
- Departments of Biochemistry and Medicine, McGill University, Montreal, Quebec, H3A OG4, Canada
| | - Ann Richmond
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Nair MG, Somashekaraiah VM, Ramamurthy V, Prabhu JS, Sridhar TS. miRNAs: Critical mediators of breast cancer metastatic programming. Exp Cell Res 2021; 401:112518. [PMID: 33607102 DOI: 10.1016/j.yexcr.2021.112518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
MicroRNA mediated aberrant gene regulation has been implicated in several diseases including cancer. Recent research has highlighted the role of epigenetic modulation of the complex process of breast cancer metastasis by miRNAs. miRNAs play a crucial role in the process of metastatic evolution by facilitating alterations in the phenotype of tumor cells and the tumor microenvironment that promote this process. They act as critical determinants of the multi-step progression starting from carcinogenesis all the way to organotropism. In this review, we focus on the current understanding of the compelling role of miRNAs in breast cancer metastasis.
Collapse
Affiliation(s)
- Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India.
| | | | - Vishakha Ramamurthy
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - T S Sridhar
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| |
Collapse
|
15
|
Chedere A, Hari K, Kumar S, Rangarajan A, Jolly MK. Multi-Stability and Consequent Phenotypic Plasticity in AMPK-Akt Double Negative Feedback Loop in Cancer Cells. J Clin Med 2021; 10:jcm10030472. [PMID: 33530625 PMCID: PMC7865639 DOI: 10.3390/jcm10030472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022] Open
Abstract
Adaptation and survival of cancer cells to various stress and growth factor conditions is crucial for successful metastasis. A double-negative feedback loop between two serine/threonine kinases AMPK (AMP-activated protein kinase) and Akt can regulate the adaptation of breast cancer cells to matrix-deprivation stress. This feedback loop can significantly generate two phenotypes or cell states: matrix detachment-triggered pAMPKhigh/ pAktlow state, and matrix (re)attachment-triggered pAkthigh/ pAMPKlow state. However, whether these two cell states can exhibit phenotypic plasticity and heterogeneity in a given cell population, i.e., whether they can co-exist and undergo spontaneous switching to generate the other subpopulation, remains unclear. Here, we develop a mechanism-based mathematical model that captures the set of experimentally reported interactions among AMPK and Akt. Our simulations suggest that the AMPK-Akt feedback loop can give rise to two co-existing phenotypes (pAkthigh/ pAMPKlow and pAMPKhigh/pAktlow) in specific parameter regimes. Next, to test the model predictions, we segregated these two subpopulations in MDA-MB-231 cells and observed that each of them was capable of switching to another in adherent conditions. Finally, the predicted trends are supported by clinical data analysis of The Cancer Genome Atlas (TCGA) breast cancer and pan-cancer cohorts that revealed negatively correlated pAMPK and pAkt protein levels. Overall, our integrated computational-experimental approach unravels that AMPK-Akt feedback loop can generate multi-stability and drive phenotypic switching and heterogeneity in a cancer cell population.
Collapse
Affiliation(s)
- Adithya Chedere
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India; (A.C.); (S.K.)
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Saurav Kumar
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India; (A.C.); (S.K.)
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India; (A.C.); (S.K.)
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
- Correspondence: (A.R.); (M.K.J.)
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
- Correspondence: (A.R.); (M.K.J.)
| |
Collapse
|
16
|
Pais RJ. Simulation of multiple microenvironments shows a pivot role of RPTPs on the control of Epithelial-to-Mesenchymal Transition. Biosystems 2020; 198:104268. [PMID: 33068671 DOI: 10.1016/j.biosystems.2020.104268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
Epithelial-to-Mesenchymal Transition (EMT) is a natural and reversible process involved in embryogenesis, wound healing and thought to participate in the process of metastasis. Multiple signals from the microenvironment have been reported to drive EMT. However, the tight control of this process on physiological scenarios and how it is disrupted during cancer progression is not fully understood. Here, we analysed a regulatory network of EMT accounting for 10 key microenvironment signals focusing on the impact of two cell contact signals on the reversibility of EMT and the stability of resulting phenotypes. The analysis showed that the microenvironment is not enough for stabilizing Hybrid and Amoeboid-like phenotypes, requiring intracellular de-regulations as reported during cancer progression. Our simulations demonstrated that RPTP activation by cell contacts have the potential to inhibit the process of EMT and trigger its reversibility under tissue growth and chronic inflammation scenarios. Simulations also showed that hypoxia inhibits the capacity of RPTPs to control EMT. Our analysis further provided a theoretical explanation for the observed correlation between hypoxia and metastasis under chronic inflammation, and predicted that de-regulations in FAT4 signalling may promote Hybrid stabilization. Taken together, we propose a natural control mechanism of EMT that supports the idea that EMT is tightly regulated by the microenvironment.
Collapse
Affiliation(s)
- Ricardo Jorge Pais
- Centro de investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Caparica, Portugal; BioenhancerSystems, London, UK.
| |
Collapse
|
17
|
Boolean model of anchorage dependence and contact inhibition points to coordinated inhibition but semi-independent induction of proliferation and migration. Comput Struct Biotechnol J 2020; 18:2145-2165. [PMID: 32913583 PMCID: PMC7451872 DOI: 10.1016/j.csbj.2020.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/23/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
Epithelial cells respond to their physical neighborhood with mechano-sensitive behaviors required for development and tissue maintenance. These include anchorage dependence, matrix stiffness-dependent proliferation, contact inhibition of proliferation and migration, and collective migration that balances cell crawling with the maintenance of cell junctions. While required for development and tissue repair, these coordinated responses to the microenvironment also contribute to cancer metastasis. Predictive models of the signaling networks that coordinate these behaviors are critical in controlling cell behavior to halt disease. Here we propose a Boolean regulatory network model that synthesizes mechanosensitive signaling that links anchorage to a matrix of varying stiffness and cell density sensing to contact inhibition, proliferation, migration, and apoptosis. Our model can reproduce anchorage dependence and anoikis, detachment-induced cytokinesis errors, the effect of matrix stiffness on proliferation, and contact inhibition of proliferation and migration by two mechanisms that converge on the YAP transcription factor. In addition, we offer testable predictions related to cell cycle-dependent anoikis sensitivity, the molecular requirements for abolishing contact inhibition, and substrate stiffness dependent expression of the catalytic subunit of PI3K. Moreover, our model predicts heterogeneity in migratory vs. non-migratory phenotypes in sub-confluent monolayers, and co-inhibition but semi-independent induction of proliferation vs. migration as a function of cell density and mitogenic stimulation. Our model serves as a stepping-stone towards modeling mechanosensitive routes to the epithelial to mesenchymal transition, capturing the effects of the mesenchymal state on anoikis resistance, and understanding the balance between migration versus proliferation at each stage of the epithelial to mesenchymal transition.
Collapse
|
18
|
Alexandrova AY, Chikina AS, Svitkina TM. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:197-256. [PMID: 33066874 DOI: 10.1016/bs.ircmb.2020.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.
Collapse
Affiliation(s)
- Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.
| | - Aleksandra S Chikina
- Cell Migration and Invasion and Spatio-Temporal Regulation of Antigen Presentation teams, UMR144/U932 Institut Curie, Paris, France
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Identifying inhibitors of epithelial-mesenchymal plasticity using a network topology-based approach. NPJ Syst Biol Appl 2020; 6:15. [PMID: 32424264 PMCID: PMC7235229 DOI: 10.1038/s41540-020-0132-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the cause of over 90% of cancer-related deaths. Cancer cells undergoing metastasis can switch dynamically between different phenotypes, enabling them to adapt to harsh challenges, such as overcoming anoikis and evading immune response. This ability, known as phenotypic plasticity, is crucial for the survival of cancer cells during metastasis, as well as acquiring therapy resistance. Various biochemical networks have been identified to contribute to phenotypic plasticity, but how plasticity emerges from the dynamics of these networks remains elusive. Here, we investigated the dynamics of various regulatory networks implicated in Epithelial–mesenchymal plasticity (EMP)—an important arm of phenotypic plasticity—through two different mathematical modelling frameworks: a discrete, parameter-independent framework (Boolean) and a continuous, parameter-agnostic modelling framework (RACIPE). Results from either framework in terms of phenotypic distributions obtained from a given EMP network are qualitatively similar and suggest that these networks are multi-stable and can give rise to phenotypic plasticity. Neither method requires specific kinetic parameters, thus our results emphasize that EMP can emerge through these networks over a wide range of parameter sets, elucidating the importance of network topology in enabling phenotypic plasticity. Furthermore, we show that the ability to exhibit phenotypic plasticity correlates positively with the number of positive feedback loops in a given network. These results pave a way toward an unorthodox network topology-based approach to identify crucial links in a given EMP network that can reduce phenotypic plasticity and possibly inhibit metastasis—by reducing the number of positive feedback loops.
Collapse
|
20
|
Sahoo S, Singh D, Chakraborty P, Jolly MK. Emergent Properties of the HNF4α-PPARγ Network May Drive Consequent Phenotypic Plasticity in NAFLD. J Clin Med 2020; 9:E870. [PMID: 32235813 PMCID: PMC7141525 DOI: 10.3390/jcm9030870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in adults and children. It is characterized by excessive accumulation of lipids in the hepatocytes of patients without any excess alcohol intake. With a global presence of 24% and limited therapeutic options, the disease burden of NAFLD is increasing. Thus, it becomes imperative to attempt to understand the dynamics of disease progression at a systems-level. Here, we decoded the emergent dynamics of underlying gene regulatory networks that were identified to drive the initiation and the progression of NAFLD. We developed a mathematical model to elucidate the dynamics of the HNF4α-PPARγ gene regulatory network. Our simulations reveal that this network can enable multiple co-existing phenotypes under certain biological conditions: an adipocyte, a hepatocyte, and a "hybrid" adipocyte-like state of the hepatocyte. These phenotypes may also switch among each other, thus enabling phenotypic plasticity and consequently leading to simultaneous deregulation of the levels of molecules that maintain a hepatic identity and/or facilitate a partial or complete acquisition of adipocytic traits. These predicted trends are supported by the analysis of clinical data, further substantiating the putative role of phenotypic plasticity in driving NAFLD. Our results unravel how the emergent dynamics of underlying regulatory networks can promote phenotypic plasticity, thereby propelling the clinically observed changes in gene expression often associated with NAFLD.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Divyoj Singh
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
21
|
Chakraborty P, George JT, Tripathi S, Levine H, Jolly MK. Comparative Study of Transcriptomics-Based Scoring Metrics for the Epithelial-Hybrid-Mesenchymal Spectrum. Front Bioeng Biotechnol 2020; 8:220. [PMID: 32266244 PMCID: PMC7100584 DOI: 10.3389/fbioe.2020.00220] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/04/2020] [Indexed: 12/26/2022] Open
Abstract
The Epithelial-mesenchymal transition (EMT) is a cellular process implicated in embryonic development, wound healing, and pathological conditions such as cancer metastasis and fibrosis. Cancer cells undergoing EMT exhibit enhanced aggressive behavior characterized by drug resistance, tumor-initiation potential, and the ability to evade the immune system. Recent in silico, in vitro, and in vivo evidence indicates that EMT is not an all-or-none process; instead, cells can stably acquire one or more hybrid epithelial/mesenchymal (E/M) phenotypes which often can be more aggressive than purely E or M cell populations. Thus, the EMT status of cancer cells can prove to be a critical estimate of patient prognosis. Recent attempts have employed different transcriptomics signatures to quantify EMT status in cell lines and patient tumors. However, a comprehensive comparison of these methods, including their accuracy in identifying cells in the hybrid E/M phenotype(s), is lacking. Here, we compare three distinct metrics that score EMT on a continuum, based on the transcriptomics signature of individual samples. Our results demonstrate that these methods exhibit good concordance among themselves in quantifying the extent of EMT in a given sample. Moreover, scoring EMT using any of the three methods discerned that cells can undergo varying extents of EMT across tumor types. Separately, our analysis also identified tumor types with maximum variability in terms of EMT and associated an enrichment of hybrid E/M signatures in these samples. Moreover, we also found that the multinomial logistic regression (MLR)-based metric was capable of distinguishing between "pure" individual hybrid E/M vs. mixtures of E and M cells. Our results, thus, suggest that while any of the three methods can indicate a generic trend in the EMT status of a given cell, the MLR method has two additional advantages: (a) it uses a small number of predictors to calculate the EMT score and (b) it can predict from the transcriptomic signature of a population whether it is comprised of "pure" hybrid E/M cells at the single-cell level or is instead an ensemble of E and M cell subpopulations.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Jason T. George
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Shubham Tripathi
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Ph.D. Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
22
|
Chakraborty P, George JT, Tripathi S, Levine H, Jolly MK. Comparative Study of Transcriptomics-Based Scoring Metrics for the Epithelial-Hybrid-Mesenchymal Spectrum. Front Bioeng Biotechnol 2020; 8:220. [PMID: 32266244 DOI: 10.3389/fbioe.2020.00220/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/04/2020] [Indexed: 05/28/2023] Open
Abstract
The Epithelial-mesenchymal transition (EMT) is a cellular process implicated in embryonic development, wound healing, and pathological conditions such as cancer metastasis and fibrosis. Cancer cells undergoing EMT exhibit enhanced aggressive behavior characterized by drug resistance, tumor-initiation potential, and the ability to evade the immune system. Recent in silico, in vitro, and in vivo evidence indicates that EMT is not an all-or-none process; instead, cells can stably acquire one or more hybrid epithelial/mesenchymal (E/M) phenotypes which often can be more aggressive than purely E or M cell populations. Thus, the EMT status of cancer cells can prove to be a critical estimate of patient prognosis. Recent attempts have employed different transcriptomics signatures to quantify EMT status in cell lines and patient tumors. However, a comprehensive comparison of these methods, including their accuracy in identifying cells in the hybrid E/M phenotype(s), is lacking. Here, we compare three distinct metrics that score EMT on a continuum, based on the transcriptomics signature of individual samples. Our results demonstrate that these methods exhibit good concordance among themselves in quantifying the extent of EMT in a given sample. Moreover, scoring EMT using any of the three methods discerned that cells can undergo varying extents of EMT across tumor types. Separately, our analysis also identified tumor types with maximum variability in terms of EMT and associated an enrichment of hybrid E/M signatures in these samples. Moreover, we also found that the multinomial logistic regression (MLR)-based metric was capable of distinguishing between "pure" individual hybrid E/M vs. mixtures of E and M cells. Our results, thus, suggest that while any of the three methods can indicate a generic trend in the EMT status of a given cell, the MLR method has two additional advantages: (a) it uses a small number of predictors to calculate the EMT score and (b) it can predict from the transcriptomic signature of a population whether it is comprised of "pure" hybrid E/M cells at the single-cell level or is instead an ensemble of E and M cell subpopulations.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Shubham Tripathi
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Ph.D. Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
23
|
Ferro E, Enrico Bena C, Grigolon S, Bosia C. From Endogenous to Synthetic microRNA-Mediated Regulatory Circuits: An Overview. Cells 2019; 8:E1540. [PMID: 31795372 PMCID: PMC6952906 DOI: 10.3390/cells8121540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are short non-coding RNAs that are evolutionarily conserved and are pivotal post-transcriptional mediators of gene regulation. Together with transcription factors and epigenetic regulators, they form a highly interconnected network whose building blocks can be classified depending on the number of molecular species involved and the type of interactions amongst them. Depending on their topology, these molecular circuits may carry out specific functions that years of studies have related to the processing of gene expression noise. In this review, we first present the different over-represented network motifs involving microRNAs and their specific role in implementing relevant biological functions, reviewing both theoretical and experimental studies. We then illustrate the recent advances in synthetic biology, such as the construction of artificially synthesised circuits, which provide a controlled tool to test experimentally the possible microRNA regulatory tasks and constitute a starting point for clinical applications.
Collapse
Affiliation(s)
- Elsi Ferro
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy
| | - Chiara Enrico Bena
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy
| | - Silvia Grigolon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carla Bosia
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
24
|
Saxena K, Jolly MK. Acute vs. Chronic vs. Cyclic Hypoxia: Their Differential Dynamics, Molecular Mechanisms, and Effects on Tumor Progression. Biomolecules 2019; 9:E339. [PMID: 31382593 PMCID: PMC6722594 DOI: 10.3390/biom9080339] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Hypoxia has been shown to increase the aggressiveness and severity of tumor progression. Along with chronic and acute hypoxic regions, solid tumors contain regions of cycling hypoxia (also called intermittent hypoxia or IH). Cyclic hypoxia is mimicked in vitro and in vivo by periodic exposure to cycles of hypoxia and reoxygenation (H-R cycles). Compared to chronic hypoxia, cyclic hypoxia has been shown to augment various hallmarks of cancer to a greater extent: angiogenesis, immune evasion, metastasis, survival etc. Cycling hypoxia has also been shown to be the major contributing factor in increasing the risk of cancer in obstructive sleep apnea (OSA) patients. Here, we first compare and contrast the effects of acute, chronic and intermittent hypoxia in terms of molecular pathways activated and the cellular processes affected. We highlight the underlying complexity of these differential effects and emphasize the need to investigate various combinations of factors impacting cellular adaptation to hypoxia: total duration of hypoxia, concentration of oxygen (O2), and the presence of and frequency of H-R cycles. Finally, we summarize the effects of cycling hypoxia on various hallmarks of cancer highlighting their dependence on the abovementioned factors. We conclude with a call for an integrative and rigorous analysis of the effects of varying extents and durations of hypoxia on cells, including tools such as mechanism-based mathematical modelling and microfluidic setups.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
25
|
Gerashchenko TS, Novikov NM, Krakhmal NV, Zolotaryova SY, Zavyalova MV, Cherdyntseva NV, Denisov EV, Perelmuter VM. Markers of Cancer Cell Invasion: Are They Good Enough? J Clin Med 2019; 8:E1092. [PMID: 31344926 PMCID: PMC6723901 DOI: 10.3390/jcm8081092] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Invasion, or directed migration of tumor cells into adjacent tissues, is one of the hallmarks of cancer and the first step towards metastasis. Penetrating to adjacent tissues, tumor cells form the so-called invasive front/edge. The cellular plasticity afforded by different kinds of phenotypic transitions (epithelial-mesenchymal, collective-amoeboid, mesenchymal-amoeboid, and vice versa) significantly contributes to the diversity of cancer cell invasion patterns and mechanisms. Nevertheless, despite the advances in the understanding of invasion, it is problematic to identify tumor cells with the motile phenotype in cancer tissue specimens due to the absence of reliable and acceptable molecular markers. In this review, we summarize the current information about molecules such as extracellular matrix components, factors of epithelial-mesenchymal transition, proteases, cell adhesion, and actin cytoskeleton proteins involved in cell migration and invasion that could be used as invasive markers and discuss their advantages and limitations. Based on the reviewed data, we conclude that future studies focused on the identification of specific invasive markers should use new models one of which may be the intratumor morphological heterogeneity in breast cancer reflecting different patterns of cancer cell invasion.
Collapse
Affiliation(s)
- Tatiana S Gerashchenko
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia.
| | - Nikita M Novikov
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
- Department of Cytology and Genetics, Tomsk State University, 634050 Tomsk, Russia
| | - Nadezhda V Krakhmal
- Department of Pathological Anatomy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Sofia Y Zolotaryova
- Department of Cytology and Genetics, Tomsk State University, 634050 Tomsk, Russia
| | - Marina V Zavyalova
- Department of Pathological Anatomy, Siberian State Medical University, 634050 Tomsk, Russia
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
| | - Nadezhda V Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050 Tomsk, Russia
| | - Evgeny V Denisov
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
- Department of Organic Chemistry, Tomsk State University, 634050 Tomsk, Russia
| | - Vladimir M Perelmuter
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
| |
Collapse
|
26
|
Chen BJ, Tang YJ, Tang YL, Liang XH. What makes cells move: Requirements and obstacles for leader cells in collective invasion. Exp Cell Res 2019; 382:111481. [PMID: 31247191 DOI: 10.1016/j.yexcr.2019.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/15/2019] [Accepted: 06/23/2019] [Indexed: 02/05/2023]
Abstract
Most recently, mounting evidence has shown that cancer cells can invade as a cohesive and multicellular group with coordinated movement, which is called collective invasion. In this cohesive cancer cell group, cancer cells at the front of collective invasion are defined as leader cell that are responsible for many aspects of collective invasion, including sensing the microenvironment, determining the invasion direction, modifying the path of invasion and transmitting information to other cells. To fulfill their dispensable roles, leader cells are required to embark on some specific phenotypes with unusual expression of some proteins and it's very important to investigate into these proteins as they may serve as potential therapeutic targets. Here, in this review we will summarize current knowledge on four emerging proteins highly expressed in leader cells including K14, ΔNp63α, Dll4 and cysteine protease cathepsin B (CTSB), with a focus on their important roles in collective invasion and special mechanisms by which they promote collective invasion.
Collapse
Affiliation(s)
- Bing-Jun Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, China.
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Pathology, West China Hospital of Stomatology, Sichuan University.China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
27
|
Pastushenko I, Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol 2018; 29:212-226. [PMID: 30594349 DOI: 10.1016/j.tcb.2018.12.001] [Citation(s) in RCA: 1709] [Impact Index Per Article: 284.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features. In cancer, EMT is associated with tumor initiation, invasion, metastasis, and resistance to therapy. Recently, it has been demonstrated that EMT is not a binary process, but occurs through distinct cellular states. Here, we review the recent studies that demonstrate the existence of these different EMT states in cancer and the mechanisms regulating their functions. We discuss the different functional characteristics, such as proliferation, propagation, plasticity, invasion, and metastasis associated with the distinct EMT states. We summarize the role of the transcriptional and epigenetic landscapes, gene regulatory network and their surrounding niche in controlling the transition through the different EMT states.
Collapse
Affiliation(s)
- Ievgenia Pastushenko
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium; WELBIO, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
28
|
Kao YC, Wang IF, Tsai KJ. miRNA-34c Overexpression Causes Dendritic Loss and Memory Decline. Int J Mol Sci 2018; 19:ijms19082323. [PMID: 30096777 PMCID: PMC6121231 DOI: 10.3390/ijms19082323] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 01/03/2023] Open
Abstract
Microribonucleic acids (miRNAs) play a pivotal role in numerous aspects of the nervous system and are increasingly recognized as key regulators in neurodegenerative diseases. This study hypothesized that miR-34c, a miRNA expressed in mammalian hippocampi whose expression level can alter the hippocampal dendritic spine density, could induce memory impairment akin to that of patients with Alzheimer’s disease (AD) in mice. In this study, we showed that miR-34c overexpression in hippocampal neurons negatively regulated dendritic length and spine density. Hippocampal neurons transfected with miR-34c had shorter dendrites on average and fewer filopodia and spines than those not transfected with miR-34c (control mice). Because dendrites and synapses are key sites for signal transduction and fundamental structures for memory formation and storage, disrupted dendrites can contribute to AD. Therefore, we supposed that miR-34c, through its effects on dendritic spine density, influences synaptic plasticity and plays a key role in AD pathogenesis.
Collapse
Affiliation(s)
- Yu-Chia Kao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Department of Pediatrics, E-Da Hospital, Kaohsiung 824, Taiwan.
| | - I-Fang Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| |
Collapse
|
29
|
Zacharias M, Brcic L, Eidenhammer S, Popper H. Bulk tumour cell migration in lung carcinomas might be more common than epithelial-mesenchymal transition and be differently regulated. BMC Cancer 2018; 18:717. [PMID: 29976164 PMCID: PMC6034257 DOI: 10.1186/s12885-018-4640-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/27/2018] [Indexed: 11/26/2022] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) is one mechanism of carcinoma migration, while complex tumour migration or bulk migration is another - best demontrated by tumour cells invading blood vessels. Methods Thirty cases of non-small cell lung carcinomas were used for identifying genes responsible for bulk cell migration, 232 squamous cell and adenocarcinomas to identify bulk migration rates. Genes expressed differently in the primary tumour and in the invasion front were regarded as relevant in migration and further validated in 528 NSCLC cases represented on tissue microarrays (TMAs) and metastasis TMAs. Results Markers relevant for bulk cancer cell migration were regulated differently when compared with EMT: Twist expressed in primary tumour, invasion front, and metastasis was not associated with TGFβ1 and canonical Wnt, as Slug, Snail, and Smads were negative and β-Catenin expressed membraneously. In the majority of tumours, E-Cadherin was downregulated at the invasive front, but not absent, but, coexpressed with N-Cadherin. Vimentin was coexpressed with cytokeratins at the invasion site in few cases, whereas fascin expression was seen in a majority. Expression of ERK1/2 was downregulated, PLCγ was only expressed at the invasive front and in metastasis. Brk and Mad, genes identified in Drosophila border cell migration, might be important for bulk migration and metastasis, together with invadipodia proteins Tks5 and Rab40B, which were only upregulated at the invasive front and in metastasis. CXCR1 was expressed equally in all carcinomas, as opposed to CXCR2 and 4, which were only expressed in few tumours. Conclusion Bulk cancer cell migration seems predominant in AC and SCC. Twist, vimentin, fascin, Mad, Brk, Tsk5, Rab40B, ERK1/2 and PLCγ are associated with bulk cancer cell migration. This type of migration requires an orchestrated activation of proteins to keep the cells bound to each other and to coordinate movement. This hypothesis needs to be proven experimentally. Electronic supplementary material The online version of this article (10.1186/s12885-018-4640-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Zacharias
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria
| | - Luka Brcic
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria
| | - Sylvia Eidenhammer
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria
| | - Helmut Popper
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria.
| |
Collapse
|
30
|
Huang B, Jia D, Feng J, Levine H, Onuchic JN, Lu M. RACIPE: a computational tool for modeling gene regulatory circuits using randomization. BMC SYSTEMS BIOLOGY 2018; 12:74. [PMID: 29914482 PMCID: PMC6006707 DOI: 10.1186/s12918-018-0594-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/31/2018] [Indexed: 01/14/2023]
Abstract
Background One of the major challenges in traditional mathematical modeling of gene regulatory circuits is the insufficient knowledge of kinetic parameters. These parameters are often inferred from existing experimental data and/or educated guesses, which can be time-consuming and error-prone, especially for large networks. Results We present a user-friendly computational tool for the community to use our newly developed method named random circuit perturbation (RACIPE), to explore the robust dynamical features of gene regulatory circuits without the requirement of detailed kinetic parameters. Taking the network topology as the only input, RACIPE generates an ensemble of circuit models with distinct randomized parameters and uniquely identifies robust dynamical properties by statistical analysis. Here, we discuss the implementation of the software and the statistical analysis methods of RACIPE-generated data to identify robust gene expression patterns and the functions of genes and regulatory links. Finally, we apply the tool on coupled toggle-switch circuits and a published circuit of B-lymphopoiesis. Conclusions We expect our new computational tool to contribute to a more comprehensive and unbiased understanding of mechanisms underlying gene regulatory networks. RACIPE is a free open source software distributed under (Apache 2.0) license and can be downloaded from GitHub (https://github.com/simonhb1990/RACIPE-1.0). Electronic supplementary material The online version of this article (10.1186/s12918-018-0594-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin Huang
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.,Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX, USA
| | - Jingchen Feng
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA. .,Department of Bioengineering, Rice University, Houston, TX, USA. .,Department of Biosciences, Rice University, Houston, TX, USA. .,Department of Physics and Astronomy, Rice University, Houston, TX, USA.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA. .,Department of Biosciences, Rice University, Houston, TX, USA. .,Department of Physics and Astronomy, Rice University, Houston, TX, USA. .,Department of Chemistry, Rice University, Houston, TX, USA.
| | - Mingyang Lu
- The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
31
|
Miyake M, Hori S, Morizawa Y, Tatsumi Y, Toritsuka M, Ohnishi S, Shimada K, Furuya H, Khadka VS, Deng Y, Ohnishi K, Iida K, Gotoh D, Nakai Y, Inoue T, Anai S, Torimoto K, Aoki K, Tanaka N, Konishi N, Fujimoto K. Collagen type IV alpha 1 (COL4A1) and collagen type XIII alpha 1 (COL13A1) produced in cancer cells promote tumor budding at the invasion front in human urothelial carcinoma of the bladder. Oncotarget 2018; 8:36099-36114. [PMID: 28415608 PMCID: PMC5482641 DOI: 10.18632/oncotarget.16432] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/15/2017] [Indexed: 12/12/2022] Open
Abstract
Current knowledge of the molecular mechanism driving tumor budding is limited. Here, we focused on elucidating the detailed mechanism underlying tumor budding in urothelial cancer of the bladder. Invasive urothelial cancer was pathologically classified into three groups as follows: nodular, trabecular, and infiltrative (tumor budding). Pathohistological analysis of the orthotopic tumor model revealed that human urothelial cancer cell lines MGH-U3, UM-UC-14, and UM-UC-3 displayed typical nodular, trabecular, and infiltrative patterns, respectively. Based on the results of comprehensive gene expression analysis using microarray (25 K Human Oligo chip), we identified two collagens, COL4A1 and COL13A1, which may contribute to the formation of the infiltrative pattern. Visualization of protein interaction networks revealed that proteins associated with connective tissue disorders, epithelial-mesenchymal transition, growth hormone, and estrogen were pivotal factors in tumor cells. To evaluate the invasion pattern of tumor cells in vitro, 3-D collective cell invasion assay using Matrigel was performed. Invadopodial formation was evaluated using Gelatin Invadopodia Assay. Knockdown of collagens with siRNA led to dramatic changes in invasion patterns and a decrease in invasion capability through decreased invadopodia. The in vivo orthotopic experimental model of bladder tumors showed that intravesical treatment with siRNA targeting COL4A1 and COL13A1 inhibited the formation of the infiltrative pattern. COL4A1 and COL13A1 production by cancer cells plays a pivotal role in tumor invasion through the induction of tumor budding. Blocking of these collagens may be an attractive therapeutic approach for treatment of human urothelial cancer of the bladder.
Collapse
Affiliation(s)
- Makito Miyake
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Yoshihiro Tatsumi
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan.,Department of Pathology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Sayuri Ohnishi
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Keiji Shimada
- Department of Pathology, Nara City Hospital, Nara-shi, Nara, 630-8305, Japan
| | - Hideki Furuya
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Vedbar S Khadka
- Bioinformatics Core, Department of Complementary and Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Youping Deng
- Bioinformatics Core, Department of Complementary and Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Kenta Ohnishi
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Kota Iida
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Daisuke Gotoh
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Takeshi Inoue
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Satoshi Anai
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Kazumasa Torimoto
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Katsuya Aoki
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Noboru Konishi
- Department of Pathology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| |
Collapse
|
32
|
Jolly MK, Kulkarni P, Weninger K, Orban J, Levine H. Phenotypic Plasticity, Bet-Hedging, and Androgen Independence in Prostate Cancer: Role of Non-Genetic Heterogeneity. Front Oncol 2018; 8:50. [PMID: 29560343 PMCID: PMC5845637 DOI: 10.3389/fonc.2018.00050] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
It is well known that genetic mutations can drive drug resistance and lead to tumor relapse. Here, we focus on alternate mechanisms-those without mutations, such as phenotypic plasticity and stochastic cell-to-cell variability that can also evade drug attacks by giving rise to drug-tolerant persisters. The phenomenon of persistence has been well-studied in bacteria and has also recently garnered attention in cancer. We draw a parallel between bacterial persistence and resistance against androgen deprivation therapy in prostate cancer (PCa), the primary standard care for metastatic disease. We illustrate how phenotypic plasticity and consequent mutation-independent or non-genetic heterogeneity possibly driven by protein conformational dynamics can stochastically give rise to androgen independence in PCa, and suggest that dynamic phenotypic plasticity should be considered in devising therapeutic dosing strategies designed to treat and manage PCa.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC, United States
| | - John Orban
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
| |
Collapse
|
33
|
Jolly MK, Tripathi SC, Jia D, Mooney SM, Celiktas M, Hanash SM, Mani SA, Pienta KJ, Ben-Jacob E, Levine H. Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget 2017; 7:27067-84. [PMID: 27008704 PMCID: PMC5053633 DOI: 10.18632/oncotarget.8166] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/07/2016] [Indexed: 12/16/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) and its reverse – Mesenchymal to Epithelial Transition (MET) – are hallmarks of cellular plasticity during embryonic development and cancer metastasis. During EMT, epithelial cells lose cell-cell adhesion and gain migratory and invasive traits either partially or completely, leading to a hybrid epithelial/mesenchymal (hybrid E/M) or a mesenchymal phenotype respectively. Mesenchymal cells move individually, but hybrid E/M cells migrate collectively as observed during gastrulation, wound healing, and the formation of tumor clusters detected as Circulating Tumor Cells (CTCs). Typically, the hybrid E/M phenotype has largely been tacitly assumed to be transient and ‘metastable’. Here, we identify certain ‘phenotypic stability factors’ (PSFs) such as GRHL2 that couple to the core EMT decision-making circuit (miR-200/ZEB) and stabilize hybrid E/M phenotype. Further, we show that H1975 lung cancer cells can display a stable hybrid E/M phenotype and migrate collectively, a behavior that is impaired by knockdown of GRHL2 and another previously identified PSF - OVOL. In addition, our computational model predicts that GRHL2 can also associate hybrid E/M phenotype with high tumor-initiating potential, a prediction strengthened by the observation that the higher levels of these PSFs may be predictive of poor patient outcome. Finally, based on these specific examples, we deduce certain network motifs that can stabilize the hybrid E/M phenotype. Our results suggest that partial EMT, i.e. a hybrid E/M phenotype, need not be ‘metastable’, and strengthen the emerging notion that partial EMT, but not necessarily a complete EMT, is associated with aggressive tumor progression.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.,Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX, USA
| | - Steven M Mooney
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Muge Celiktas
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Red and Charline McCombs Institute for The Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth J Pienta
- The James Brady Urological Institute, and Departments of Urology, Oncology, Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.,Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX, USA.,School of Physics and Astronomy and The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Physics and Astronomy, Rice University, Houston, TX, USA.,Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
34
|
Stefania DD, Vergara D. The Many-Faced Program of Epithelial-Mesenchymal Transition: A System Biology-Based View. Front Oncol 2017; 7:274. [PMID: 29181337 PMCID: PMC5694026 DOI: 10.3389/fonc.2017.00274] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
System biology uses a range of experimental and statistical methods to dissect complex processes that results from alterations in biological models. Given the complexity of the epithelial–mesenchymal transition (EMT) program, system biology represents a promising approach to understanding its fine molecular regulation by the interpretation of high-throughput datasets. Herein, we review recent contributions of system biology applied to the field of EMT physiology and illustrate the importance of these approaches to model biological networks that are perturbed during the transition. Together, these results allowed the definition of an EMT signature across different tumor types, the identification of dysregulated processes and new modules of regulation, making possible to reveal the EMT molecular visage underneath.
Collapse
Affiliation(s)
- De Domenico Stefania
- Biotecgen, Department of Biological and Environmental Sciences and Technologies, Lecce, Italy.,Institute of Sciences of Food Production, National Research Council, Lecce, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
35
|
Burger GA, Danen EHJ, Beltman JB. Deciphering Epithelial-Mesenchymal Transition Regulatory Networks in Cancer through Computational Approaches. Front Oncol 2017; 7:162. [PMID: 28824874 PMCID: PMC5540937 DOI: 10.3389/fonc.2017.00162] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT), the process by which epithelial cells can convert into motile mesenchymal cells, plays an important role in development and wound healing but is also involved in cancer progression. It is increasingly recognized that EMT is a dynamic process involving multiple intermediate or “hybrid” phenotypes rather than an “all-or-none” process. However, the role of EMT in various cancer hallmarks, including metastasis, is debated. Given the complexity of EMT regulation, computational modeling has proven to be an invaluable tool for cancer research, i.e., to resolve apparent conflicts in experimental data and to guide experiments by generating testable hypotheses. In this review, we provide an overview of computational modeling efforts that have been applied to regulation of EMT in the context of cancer progression and its associated tumor characteristics. Moreover, we identify possibilities to bridge different modeling approaches and point out outstanding questions in which computational modeling can contribute to advance our understanding of pathological EMT.
Collapse
Affiliation(s)
- Gerhard A Burger
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Erik H J Danen
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Joost B Beltman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
36
|
Jolly MK, Ward C, Eapen MS, Myers S, Hallgren O, Levine H, Sohal SS. Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Dev Dyn 2017. [DOI: 10.1002/dvdy.24541] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics; Rice University; Houston Texas
| | - Chris Ward
- Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Mathew Suji Eapen
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease; University of Tasmania; Hobart Tasmania Australia
| | - Stephen Myers
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
| | - Oskar Hallgren
- Department of Experimental Medical Sciences; Department of Respiratory Medicine and Allergology, Lund University; Sweden
| | - Herbert Levine
- Center for Theoretical Biological Physics; Rice University; Houston Texas
| | - Sukhwinder Singh Sohal
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease; University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
37
|
Jolly MK, Tripathi SC, Somarelli JA, Hanash SM, Levine H. Epithelial/mesenchymal plasticity: how have quantitative mathematical models helped improve our understanding? Mol Oncol 2017; 11:739-754. [PMID: 28548388 PMCID: PMC5496493 DOI: 10.1002/1878-0261.12084] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022] Open
Abstract
Phenotypic plasticity, the ability of cells to reversibly alter their phenotypes in response to signals, presents a significant clinical challenge to treating solid tumors. Tumor cells utilize phenotypic plasticity to evade therapies, metastasize, and colonize distant organs. As a result, phenotypic plasticity can accelerate tumor progression. A well‐studied example of phenotypic plasticity is the bidirectional conversions among epithelial, mesenchymal, and hybrid epithelial/mesenchymal (E/M) phenotype(s). These conversions can alter a repertoire of cellular traits associated with multiple hallmarks of cancer, such as metabolism, immune evasion, invasion, and metastasis. To tackle the complexity and heterogeneity of these transitions, mathematical models have been developed that seek to capture the experimentally verified molecular mechanisms and act as ‘hypothesis‐generating machines’. Here, we discuss how these quantitative mathematical models have helped us explain existing experimental data, guided further experiments, and provided an improved conceptual framework for understanding how multiple intracellular and extracellular signals can drive E/M plasticity at both the single‐cell and population levels. We also discuss the implications of this plasticity in driving multiple aggressive facets of tumor progression.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jason A Somarelli
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| |
Collapse
|
38
|
Grisard E, Nicoloso MS. Following MicroRNAs Through the Cancer Metastatic Cascade. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:173-228. [PMID: 28729025 DOI: 10.1016/bs.ircmb.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Approximately a decade ago the first MicroRNAs (MiRNAs) participating in cancer metastasis were identified and metastmiRs were initially only a handful. Since those first reports, MiRNA research has explosively thrived, mainly due to their revolutionary mechanism of action and the hope of having at hand a novel tool to control cancer aggressiveness. This has ultimately led to delineate an almost impenetrable regulatory network: hundreds of MiRNAs transversally dominating every aspect of normal and cancer biology, each MiRNA having hundreds of targets and context-dependent activity. Providing a comprehensive description of MiRNA roles in cancer metastasis is a daunting task; nevertheless, we still believe that grasping the big picture of MiRNAs in cancer metastasis can give a different perspective on the potential insights and approaches that MiRNAs can offer to understand cancer complexity (e.g., as predictive and prognostic markers) and to tackle cancer metastasis (e.g., as therapeutic targets or tools). This chapter presents a schematic overview of the role of MiRNAs in governing cancer metastasis, describing step by step the cellular and molecular processes whereby cancer cells conquer distant organs and can grow as secondary tumors at different distant sites, and for each step, we will introduce how MiRNAs impinge on each one of them. We deeply apologize with our colleagues for any of their research work that, for clarity, for our effort to streamline and due to space limitations, we did not cite.
Collapse
|
39
|
Jia D, Jolly MK, Harrison W, Boareto M, Ben-Jacob E, Levine H. Operating principles of tristable circuits regulating cellular differentiation. Phys Biol 2017; 14:035007. [PMID: 28443829 DOI: 10.1088/1478-3975/aa6f90] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many cell-fate decisions during embryonic development are governed by a motif comprised of two transcription factors (TFs) A and B that mutually inhibit each other and may self-activate. This motif, called as a self-activating toggle switch (SATS), can typically have three stable states (phenotypes)-two corresponding to differentiated cell fates, each of which has a much higher level of one TF than the other-[Formula: see text] or [Formula: see text]-and the third state corresponding to an 'undecided' stem-like state with similar levels of both A and B-[Formula: see text]. Furthermore, two or more SATSes can be coupled together in various topologies in different contexts, thereby affecting the coordination between multiple cellular decisions. However, two questions remain largely unanswered: (a) what governs the co-existence and relative stability of these three stable states? (b) What orchestrates the decision-making of coupled SATSes? Here, we first demonstrate that the co-existence and relative stability of the three stable states in an individual SATS can be governed by the relative strength of self-activation, external signals activating and/or inhibiting A and B, and mutual degradation between A and B. Simultaneously, we investigate the effects of these factors on the decision-making of two coupled SATSes. Our results offer novel understanding into the operating principles of individual and coupled tristable self-activating toggle switches (SATSes) regulating cellular differentiation and can yield insights into synthesizing three-way genetic circuits and understanding of cellular reprogramming.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, United States of America. Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005-1827, United States of America
| | | | | | | | | | | |
Collapse
|
40
|
Friedl P, Mayor R. Tuning Collective Cell Migration by Cell-Cell Junction Regulation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029199. [PMID: 28096261 DOI: 10.1101/cshperspect.a029199] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph receptors, Slit/Robo, connexins and integrins, and an adaptive array of intracellular adapter and signaling proteins. Depending on molecular composition and signaling context, cell-cell junctions adapt their shape and stability, and this gradual junction plasticity enables different types of collective cell movements such as epithelial sheet and cluster migration, branching morphogenesis and sprouting, collective network migration, as well as coordinated individual-cell migration and streaming. Thereby, plasticity of cell-cell junction composition and turnover defines the type of collective movements in epithelial, mesenchymal, neuronal, and immune cells, and defines migration coordination, anchorage, and cell dissociation. We here review cell-cell adhesion systems and their functions in different types of collective cell migration as key regulators of collective plasticity.
Collapse
Affiliation(s)
- Peter Friedl
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands.,David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030.,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
41
|
Odenthal J, Takes R, Friedl P. Plasticity of tumor cell invasion: governance by growth factors and cytokines. Carcinogenesis 2016; 37:1117-1128. [PMID: 27664164 DOI: 10.1093/carcin/bgw098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/15/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023] Open
Abstract
Tumor cell migration, the basis for metastatic dissemination, is an adaptive process which depends upon coordinated cell interaction with the environment, influencing cell-matrix and cell-cell adhesion, cytoskeletal dynamics and extracellular matrix remodeling. Growth factors and cytokines, released within the reactive tumor microenvironment and their intracellular effector signals strongly impact mechanocoupling functions in tumor cells and thereby control the mode and extent of tumor invasion, including collective and single-cell migration and their interconversions. Besides their role in controlling tumor cell growth and survival, cytokines and growth factors thus provide complex orchestration of the metastatic cascade and tumor cell adaptation to environmental challenge. We here review the mechanisms by which growth factors and cytokines control the reciprocal interactions between tumor cells and their microenvironment, and the consequences for the efficacy and plasticity of invasion programs and metastasis.
Collapse
Affiliation(s)
- Julia Odenthal
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands.,Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Robert Takes
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands, .,Department of Genitourinary Medical Oncology - Research, Houston, TX 77030, USA and.,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
42
|
Abstract
Cell migration results from stepwise mechanical and chemical interactions between cells and their extracellular environment. Mechanistic principles that determine single-cell and collective migration modes and their interconversions depend upon the polarization, adhesion, deformability, contractility, and proteolytic ability of cells. Cellular determinants of cell migration respond to extracellular cues, including tissue composition, topography, alignment, and tissue-associated growth factors and cytokines. Both cellular determinants and tissue determinants are interdependent; undergo reciprocal adjustment; and jointly impact cell decision making, navigation, and migration outcome in complex environments. We here review the variability, decision making, and adaptation of cell migration approached by live-cell, in vivo, and in silico strategies, with a focus on cell movements in morphogenesis, repair, immune surveillance, and cancer metastasis.
Collapse
Affiliation(s)
- Veronika Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030;
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, 10129 Torino, Italy
| | - Peter Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; .,Department of Cell Biology, Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands; .,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
43
|
Bordeleau F, Reinhart-King CA. Tuning cell migration: contractility as an integrator of intracellular signals from multiple cues. F1000Res 2016; 5. [PMID: 27508074 PMCID: PMC4962296 DOI: 10.12688/f1000research.7884.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
There has been immense progress in our understanding of the factors driving cell migration in both two-dimensional and three-dimensional microenvironments over the years. However, it is becoming increasingly evident that even though most cells share many of the same signaling molecules, they rarely respond in the same way to migration cues. To add to the complexity, cells are generally exposed to multiple cues simultaneously, in the form of growth factors and/or physical cues from the matrix. Understanding the mechanisms that modulate the intracellular signals triggered by multiple cues remains a challenge. Here, we will focus on the molecular mechanism involved in modulating cell migration, with a specific focus on how cell contractility can mediate the crosstalk between signaling initiated at cell-matrix adhesions and growth factor receptors.
Collapse
Affiliation(s)
- Francois Bordeleau
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
44
|
Lai X, Wolkenhauer O, Vera J. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res 2016; 44:6019-35. [PMID: 27317695 PMCID: PMC5291278 DOI: 10.1093/nar/gkw550] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/06/2016] [Indexed: 12/19/2022] Open
Abstract
The discovery of microRNAs (miRNAs) has added a new player to the regulation of gene expression. With the increasing number of molecular species involved in gene regulatory networks, it is hard to obtain an intuitive understanding of network dynamics. Mathematical modelling can help dissecting the role of miRNAs in gene regulatory networks, and we shall here review the most recent developments that utilise different mathematical modelling approaches to provide quantitative insights into the function of miRNAs in the regulation of gene expression. Key miRNA regulation features that have been elucidated via modelling include: (i) the role of miRNA-mediated feedback and feedforward loops in fine-tuning of gene expression; (ii) the miRNA–target interaction properties determining the effectiveness of miRNA-mediated gene repression; and (iii) the competition for shared miRNAs leading to the cross-regulation of genes. However, there is still lack of mechanistic understanding of many other properties of miRNA regulation like unconventional miRNA–target interactions, miRNA regulation at different sub-cellular locations and functional miRNA variant, which will need future modelling efforts to deal with. This review provides an overview of recent developments and challenges in this field.
Collapse
Affiliation(s)
- Xin Lai
- Laboratory of Systems Tumour Immunology, Department of Dermatology, Erlangen University Hospital and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, University of Rostock, Rostock, 18051, Germany Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, 7600, South Africa
| | - Julio Vera
- Laboratory of Systems Tumour Immunology, Department of Dermatology, Erlangen University Hospital and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, 91054, Germany
| |
Collapse
|
45
|
Grigore AD, Jolly MK, Jia D, Farach-Carson MC, Levine H. Tumor Budding: The Name is EMT. Partial EMT. J Clin Med 2016; 5:jcm5050051. [PMID: 27136592 PMCID: PMC4882480 DOI: 10.3390/jcm5050051] [Citation(s) in RCA: 332] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022] Open
Abstract
Tumor budding is a histological phenomenon encountered in various cancers, whereby individual malignant cells and/or small clusters of malignant cells are seen in the tumor stroma. Postulated to be mirror epithelial-mesenchymal transition, tumor budding has been associated with poor cancer outcomes. However, the vast heterogeneity in its exact definition, methodology of assessment, and patient stratification need to be resolved before it can be routinely used as a standardized prognostic feature. Here, we discuss the heterogeneity in defining and assessing tumor budding, its clinical significance across multiple cancer types, and its prospective implementation in clinical practice. Next, we review the emerging evidence about partial, rather than complete, epithelial-mesenchymal phenotype at the tumor bud level, and its connection with tumor proliferation, quiescence, and stemness. Finally, based on recent literature, indicating a co-expression of epithelial and mesenchymal markers in many tumor buds, we posit tumor budding to be a manifestation of this hybrid epithelial/mesenchymal phenotype displaying collective cell migration.
Collapse
Affiliation(s)
- Alexandru Dan Grigore
- Departments of BioSciences, Rice University, Houston, TX 77005-1827, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.
| | - Mohit Kumar Jolly
- Departments of Bioengineering, Rice University, Houston, TX 77005-1827, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005-1827, USA.
| | - Mary C Farach-Carson
- Departments of BioSciences, Rice University, Houston, TX 77005-1827, USA.
- Departments of Bioengineering, Rice University, Houston, TX 77005-1827, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.
| | - Herbert Levine
- Departments of BioSciences, Rice University, Houston, TX 77005-1827, USA.
- Departments of Bioengineering, Rice University, Houston, TX 77005-1827, USA.
- Departments of Physics and Astronomy, Rice University, Houston, TX 77005-1827, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.
| |
Collapse
|
46
|
Fanale D, Barraco N, Listì A, Bazan V, Russo A. Non-coding RNAs Functioning in Colorectal Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 937:93-108. [PMID: 27573896 DOI: 10.1007/978-3-319-42059-2_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, the hypothesis of the presence of tumor-initiating cancer stem cells (CSCs) has received a considerable support. This model suggested the existence of CSCs which, thanks to their self-renewal properties, are able to drive the expansion and the maintenance of malignant cell populations with invasive and metastatic potential in cancer. Increasing evidence showed the ability of such cells to acquire self-renewal, multipotency, angiogenic potential, immune evasion, symmetrical and asymmetrical divisions which, along with the presence of several DNA repair mechanisms, further enhance their oncogenic potential making them highly resistant to common anticancer treatments. The main signaling pathways involved in the homeostasis of colorectal (CRC) stem cells are the Wnt, Notch, Sonic Hedgehog, and Bone Morfogenic Protein (BMP) pathways, which are mostly responsible for all the features that have been widely referred to stem cells. The same pathways have been identified in colorectal cancer stem cells (CRCSCs), conferring a more aggressive phenotype compared to non-stem CRC cells. Recently, several evidences suggested that non-coding RNAs (ncRNAs) may play a crucial role in the regulation of different biological mechanisms in CRC, by modulating the expression of critical stem cell transcription factors that have been found active in CSCs. In this chapter, we will discuss the involvement of ncRNAs, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in stemness acquisition and maintenance by CRCSCs, through the regulation of pathways modulating the CSC phenotype and growth, carcinogenesis, differentiation, and epithelial to mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Angela Listì
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy.
| |
Collapse
|