1
|
Enzel D, Kriventsov M, Sataieva T, Malygina V. Cellular and Molecular Genetic Mechanisms of Lung Fibrosis Development and the Role of Vitamin D: A Review. Int J Mol Sci 2024; 25:8946. [PMID: 39201632 PMCID: PMC11355055 DOI: 10.3390/ijms25168946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis remains a relevant problem of the healthcare system with an unfavorable prognosis for patients due to progressive fibrous remodeling of the pulmonary parenchyma. Starting with the damage of the epithelial lining of alveoli, pulmonary fibrosis is implemented through a cascade of complex mechanisms, the crucial of which is the TGF-β/SMAD-mediated pathway, involving various cell populations. Considering that a number of the available drugs (pirfenidone and nintedanib) have only limited effectiveness in slowing the progression of fibrosis, the search and justification of new approaches aimed at regulating the immune response, cellular aging processes, programmed cell death, and transdifferentiation of cell populations remains relevant. This literature review presents the key modern concepts concerning molecular genetics and cellular mechanisms of lung fibrosis development, based mainly on in vitro and in vivo studies in experimental models of bleomycin-induced pulmonary fibrosis, as well as the latest data on metabolic features, potential targets, and effects of vitamin D and its metabolites.
Collapse
Affiliation(s)
| | | | - Tatiana Sataieva
- Medical Institute Named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenina Boulevard 5/7, 295051 Simferopol, Russia; (D.E.); (M.K.); (V.M.)
| | | |
Collapse
|
2
|
Toker Ç, Kuyucu Y, Şaker D, Kara S, Güzelel B, Mete UÖ. Investigation of miR-26b and miR-27b expressions and the effect of quercetin on fibrosis in experimental pulmonary fibrosis. J Mol Histol 2024; 55:25-35. [PMID: 37857923 DOI: 10.1007/s10735-023-10168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
In this study, investigation of the effects of Quercetin on Bleomycin-induced pulmonary fibrosis and fibrosis-associated molecules miR-26b and miR-27b was aimed. Control group was given 10% saline on the 0th day, and saline was administered for 21 days starting from the 8th day. Group 2 was given 50 mg/kg Quercetin for 21 days starting from the 8th day. Group 3 was given 10 mg/kg Bleomycin Sulfate on day 0, and sacrificed on the 22nd and 29th day. Group 4 was given 10 mg/kg Bleomycin Sulfate on the 0th day, and was given 50 mg/kg Quercetin for 14 days, and 21 days starting from day 8. Lung tissues were examined using light and electron microscopic, immunohistochemical and molecular biological methods. Injury groups revealed impaired alveolar structure, collagen accumulation and increased inflammatory cells in interalveolar septum. Fibrotic response was decreased and the alveolar structure was improved with Quercetin treatment. α-SMA expressions were higher in the injury groups, but lower in the treatment groups compared to the injury groups. E-cadherin expressions were decreased in the injury groups and showed stronger immunoreactivity in the treatment groups compared to the injury groups. miR-26b and miR-27b expressions were lower in the injury groups than the control groups, and higher in the treatment groups than the injury groups. Quercetin can be considered as a new treatment agent in the idiopathic pulmonary fibrosis, since it increases the expression levels of miR-26b and miR-27b which decrease in fibrosis, and has therapeutic effects on the histopathological changes.
Collapse
Affiliation(s)
- Çağrı Toker
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | - Yurdun Kuyucu
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey.
| | - Dilek Şaker
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | - Samet Kara
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | - Bilge Güzelel
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | - Ufuk Özgü Mete
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| |
Collapse
|
3
|
Chamorro-Herrero I, Zambrano A. Modeling of Respiratory Diseases Evolving with Fibrosis from Organoids Derived from Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:ijms24054413. [PMID: 36901843 PMCID: PMC10002124 DOI: 10.3390/ijms24054413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Respiratory disease is one of the leading causes of morbidity and mortality worldwide. There is no cure for most diseases, which are treated symptomatically. Hence, new strategies are required to deepen the understanding of the disease and development of therapeutic strategies. The advent of stem cell and organoid technology has enabled the development of human pluripotent stem cell lines and adequate differentiation protocols for developing both airways and lung organoids in different formats. These novel human-pluripotent-stem-cell-derived organoids have enabled relatively accurate disease modeling. Idiopathic pulmonary fibrosis is a fatal and debilitating disease that exhibits prototypical fibrotic features that may be, to some extent, extrapolated to other conditions. Thus, respiratory diseases such as cystic fibrosis, chronic obstructive pulmonary disease, or the one caused by SARS-CoV-2 may reflect some fibrotic aspects reminiscent of those present in idiopathic pulmonary fibrosis. Modeling of fibrosis of the airways and the lung is a real challenge due to the large number of epithelial cells involved and interaction with other cell types of mesenchymal origin. This review will focus on the status of respiratory disease modeling from human-pluripotent-stem-cell-derived organoids, which are being used to model several representative respiratory diseases, such as idiopathic pulmonary fibrosis, cystic fibrosis, chronic obstructive pulmonary disease, and COVID-19.
Collapse
|
4
|
Yang L, Zhai Z, Zhang J. The Role of Serum 1,25-Dihydroxy Vitamin D3 and PCT in Idiopathic Pulmonary Fibrosis. Int J Gen Med 2022; 15:8081-8092. [PMID: 36389018 PMCID: PMC9653052 DOI: 10.2147/ijgm.s386984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/27/2022] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVE Biomarkers for the acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) are urgently needed to provide better patient management. We aimed to investigate whether serum 1,25(OH)2D3 (1,25-dihydroxy vitamin D3) levels predict AE-IPF and whether they could be a potential prognostic biomarker for IPF. PARTICIPANTS AND METHODS This prospective study included 72 patients with IPF (31 with stable IPF and 41 with AE-IPF). All participants were recruited during hospitalisation at Tianjin Chest Hospital and were followed up for at least 12 months. Demographics, comorbidities, arterial blood gas, and serum biochemical profile, radiological features, and anti-fibrotic therapy were evaluated. Serum concentrations of 1,25(OH)2D3 and transforming growth factor beta1 (TGFβ1) were detected using enzyme-linked immunosorbent assay (ELISA). Risk factors for AE-IPF were identified using multivariate analysis. Prognostic factors were assessed using Kaplan-Meier and Cox regression analyses. RESULTS Baseline values of alveolar-arterial oxygen difference (A-aDO2) (40.85 mmHg vs 29.2 mmHg, p =0.035), white blood cell counts (10.09 ± 4.2×109/L vs 7.46 ± 7.84×109/L, p <0.001), percentage of monocytes (7.36 ± 1.36% vs 6.6 ± 1.2%, p =0.017), C-reactive protein (CRP) (2.1 mg/dL vs 1.12 mg/dL, p =0.015) and procalcitonin (PCT) (36.59% vs 3.23%, p <0.001) were significantly higher in AE-IPF patients than in stable IPF patients. Instead, the mean concentration of serum calcium and 1,25(OH)2D3 at baseline were higher in IPF patients with stable disease than in those with acute exacerbation (2.17 ± 0.13 nmol/L vs 2.09 ± 0.13 nmol/L, p =0.023 and 16.62 pg/mL vs 11.58 pg/mL, p <0.001, respectively). In multivariate analysis, a higher proportion of patients with lower serum 1,25(OH)2D3 levels experienced AE-IPF (OR 0.884, 95% CI 0.791-0.987, p =0.029), and rising serum PCT level (PCT > 0.05 ng/mL) was associated with an increased risk of mortality (HR 3.664, 95% CI 1.010-12.900, p =0.043). CONCLUSION Decreased serum 1,25(OH)2D3 is associated with an increased risk of acute exacerbation for patients with IPF. A high serum PCT level is predictive of worse prognosis in IPF patients. 1,25(OH)2D3 may be a potential biomarker for AE-IPF, while PCT could be a prognostic biomarker for IPF.
Collapse
Affiliation(s)
- Li Yang
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| | - Zhinan Zhai
- Department of Medical Laboratory Science, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| | - Jinxiang Zhang
- Department of Nutrition, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
5
|
Riemekasten G, Distler JH. A broad look into the future of systemic sclerosis. Ther Adv Musculoskelet Dis 2022; 14:1759720X221109404. [PMID: 35966183 PMCID: PMC9373175 DOI: 10.1177/1759720x221109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Systemic sclerosis (SSc) is a systemic autoimmune disease with the key features of inflammation, vasculopathy and fibrosis. This article focussed on emerging fields based on the authors' current work and expertise. The authors provide a hierarchical structure into the studies of the pathogenesis of SSc starting with the contribution of environmental factors. Regulatory autoantibodies (abs) are discussed, which are parts of the human physiology and are specifically dysregulated in SSc. Abs against the angiotensin II receptor subtype 1 (AT1R) and the endothelin receptor type A (ETAR) are discussed in more detail. Extracellular vesicles are another novel player to possess disease processes. Fibroblasts are a key effector cell in SSc. Therefore, the current review will provide an overview about their plasticity in the phenotype and function. Promising nuclear receptors as key regulators of transcriptional programmes will be introduced as well as epigenetic modifications, which are pivotal to maintain the profibrotic fibroblast phenotype independent of external stimuli. Fibroblasts from SSc patients exhibit a specific signalling and reactivate developmental pathways and stem cell maintenance such as by employing hedgehog and WNT, which promote fibroblast-to-myofibroblast transition and extracellular matrix generation. Pharmacological interventions, although for other indications, are already in clinical use to address pathologic signalling.
Collapse
Affiliation(s)
- Gabriela Riemekasten
- Clinic for Rheumatology and Clinical
Immunology, University Clinic Schleswig-Holstein and University
of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jörg H.W. Distler
- Department of Internal Medicine 3,
Universitätsklinikum Erlangen, Friedrich-Alexander-University
(FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Effects of Hypocalcemic Vitamin D Analogs in the Expression of DNA Damage Induced in Minilungs from hESCs: Implications for Lung Fibrosis. Int J Mol Sci 2022; 23:ijms23094921. [PMID: 35563311 PMCID: PMC9104735 DOI: 10.3390/ijms23094921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
In our previous work, we evaluated the therapeutic effects of 1α,25-Dihydroxyvitamin D3, the biologically active form of vitamin D, in the context of bleomycin-induced lung fibrosis. Contrary to the expected, vitamin D supplementation increased the DNA damage expression and cellular senescence in alveolar epithelial type II cells and aggravated the overall lung pathology induced in mice by bleomycin. These effects were probably due to an alteration in the cellular DNA double-strand breaks’ repair capability. In the present work, we have evaluated the effects of two hypocalcemic vitamin D analogs (calcipotriol and paricalcitol) in the expression of DNA damage in the context of minilungs derived from human embryonic stem cells and in the cell line A549.
Collapse
|
7
|
Yavari M, Javad Mousavi SA, Janani L, Feizy Z, Vafa M. Effects of Supplementation of Vitamins D, C and E on Idiopathic Pulmonary Fibrosis (IPF): A Clinical Trial. Clin Nutr ESPEN 2022; 49:295-300. [DOI: 10.1016/j.clnesp.2022.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/20/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022]
|
8
|
Zhu W, Ding Q, Wang L, Xu G, Diao Y, Qu S, Chen S, Shi Y. Vitamin D3 alleviates pulmonary fibrosis by regulating the MAPK pathway via targeting PSAT1 expression in vivo and in vitro. Int Immunopharmacol 2021; 101:108212. [PMID: 34656907 DOI: 10.1016/j.intimp.2021.108212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal fibrotic lung disease. However, there are insufficient drugs available for IPF treatment, and the currently used drugs are accompanied by many adverse reactions. Deficiency of vitamin D3 (VD3) in the development of IPF and the potential role of VD3 in the treatment of IPF have attracted increasing attention. In vivo experimental results showed that VD3 could increase the survival rate in bleomycin (BLM)-induced models, relieve lung inflammation, reduce hydroxyproline content, and inhibit collagen deposition and cell apoptosis. We further performed proteomics analysis and screened 251 target proteins that reflect VD3 intervention in BLM-induced animal models. These target proteins were involved in acute inflammation, oxidative stress, antioxidant activity and extracellular matrix binding. Combined with the comprehensive analysis of clinical samples, PSAT1 was screened out as a candidate target related to IPF disease and VD3 treatment. Through further computational analysis, the MAPK signaling pathway was considered to be the most probable candidate pathway for VD3 function targeting IPF. In in vivo experiments, VD3 inhibited BLM-induced expression of PSAT1 and phosphorylation of p38 and ERK1/2 in mouse lung tissue. The experiments of cell proliferation and western blot confirmed that VD3 inhibited the expression of PSAT1 and the activation of the mitogen-activated protein kinase (MAPK) pathway in human pulmonary fibroblasts (HPF). Furthermore, experiments with transfection plasmids overexpressing PSAT1 proved that VD3 could attenuate the proliferation and differentiation of HPF by suppressing the effect of PSAT1 on the MAPK signaling pathway. Finally, we confirmed that vitamin D receptor (VDR) could occupy the PSAT1 promoter to reveal the transcriptional regulation effect of VD3 on PSAT1. In conclusion, VD3 exerted a therapeutic effect on IPF by down-regulating the MAPK signaling pathway via targeting the expression of PSAT1.
Collapse
Affiliation(s)
- Wenxiang Zhu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Qi Ding
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Lu Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Gonghao Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yirui Diao
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Sihao Qu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng Chen
- Shenzhen Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China.
| | - Yuanyuan Shi
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China.
| |
Collapse
|
9
|
Sun S, Xu M, Zhuang P, Chen G, Dong K, Dong R, Zheng S. Effect and mechanism of vitamin D activation disorder on liver fibrosis in biliary atresia. Sci Rep 2021; 11:19883. [PMID: 34615940 PMCID: PMC8494743 DOI: 10.1038/s41598-021-99158-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
To investigate the mechanism of 25 hydroxyvitamin D (25(OH)D) deficiency in children with biliary atresia (BA) and its effect on liver fibrosis. The serum vitamin D and 25(OH)D, and expression of 25 hydroxylase (CYP2R1 and CYP27A1) in the liver of BA patients were detected and compared with those in the control group. We investigated the effect of differential expression of CYP2R1 in hepatocytes on the expression of genes related to liver fibrosis in primary hepatic stellate cells (HSCs) of BA and animal models of cholestasis. The ratio of 25(OH)D/vitamin D in the BA group was significantly lower than that in the control group. The mRNA and protein expression of CYP2R1 and CYP27A1 in liver tissue of the BA group was significantly lower than that in the control group. Exogenous active vitamin D (calcitriol) inhibited the proliferation and migration of primary HSCs isolated from BA patients, and reduced the expression of fibrosis-related genes in vitro. Downregulation of expression of CYP2R1 in hepatocytes increased expression of transforming growth factor (TGF)-β1, collagen (Col)-1α1 and tissue inhibitor of metalloproteinase (TIMP)-1, and decreased the expression of matrix metalloproteinase (MMP)-2 in cocultured primary HSCs of BA. Upregulation of expression of CYP2R1 in mice with bile duct ligation significantly increased the level of 25(OH)D, decreased the expression of TGF-β1, Col-1α1 and TIMP-1, and increased the expression of MMP-2. Children with BA have impaired vitamin D activation due to CYP2R1 deficiency. The dysactivation of vitamin D can promote the proliferation and activation of HSCs and participate in the development of hepatic fibrosis in BA.
Collapse
Affiliation(s)
- Song Sun
- Surgical Department, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Menghua Xu
- The Center of Laboratory Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Peijun Zhuang
- Anesthesiology Department, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Gong Chen
- Surgical Department, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Kuiran Dong
- Surgical Department, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Rui Dong
- Surgical Department, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Shan Zheng
- Surgical Department, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
10
|
17,20S(OH) 2pD Can Prevent the Development of Skin Fibrosis in the Bleomycin-Induced Scleroderma Mouse Model. Int J Mol Sci 2021; 22:ijms22168926. [PMID: 34445632 PMCID: PMC8396226 DOI: 10.3390/ijms22168926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic sclerosis (SSc; scleroderma) is a chronic fibrotic disease involving TGF-β1. Low serum vitamin D (vit D) correlates with the degree of fibrosis and expression of TGF-β1. This study was designed to determine whether the noncalcemic vit D analog, 17,20S(OH)2pD, suppresses fibrosis and mediators of the TGF-β1 pathway in the bleomycin (BLM) model of fibrosis. Fibrosis was induced into the skin of female C57BL/6 mice by repeated injections of BLM (50 μg/100 μL) subcutaneously. Mice received daily oral gavage with either vehicle (propylene glycol) or 17,20S(OH)2pD using 5, 15, or 30 μg/kg for 21 days. The injected skin was biopsied; analyzed histologically; examined for total collagen by Sircol; and examined for mRNA expression of MMP-13, BMP-7, MCP-1, Gli1, and Gli2 by TR-PCR. Spleen was analyzed for lymphocytes using flow cytometry. Serum was analyzed for cytokines using a multiplexed ELISA. Results showed that all three doses of 17,20S(OH)2pD suppressed net total collagen production, dermal thickness, and total collagen content in the BLM fibrosis model. 17,20S(OH)2pD also increased MMP-13 expression, decreased MCP-1 and Gli-2 expression in vivo, and suppressed serum levels of IL-13, TNF-α, IL-6, IL-10, IL-17, and IL-12p70. In summary, 17,20S(OH)2pD modulates the mediators of fibrosis in vivo and suppresses total collagen production and dermal thickness. This antifibrotic property of 17,20S(OH)2pD offers new therapeutic approaches for fibrotic disorders.
Collapse
|
11
|
Chang J, Nie H, Ge X, Du J, Liu W, Li X, Sun Y, Wei X, Xun Z, Li YC. Vitamin D suppresses bleomycin-induced pulmonary fibrosis by targeting the local renin-angiotensin system in the lung. Sci Rep 2021; 11:16525. [PMID: 34400742 PMCID: PMC8367953 DOI: 10.1038/s41598-021-96152-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe disorder leading to progressive and irreversible loss of pulmonary function. In this study we investigated the anti-fibrotic effect of vitamin D using a mouse model of IPF. Lung fibrosis was induced with bleomycin in vitamin D-sufficient and vitamin D-deficient C57BL/6 mice. We found that treatment with active vitamin D analog paricalcitol prevented mouse body weight loss and alleviated lung fibrosis, whereas vitamin D deficiency severely aggravated lung injury. At the molecular level, paricalcitol treatment suppressed the induction of fibrotic inducer TGF-β and extracellular matrix proteins α-SMA, collagen type I and fibronectin in the lung, whereas vitamin D deficiency exacerbated the induction of these proteins. Interestingly, bleomycin treatment activated the local renin–angiotensin system (RAS) in the lung, manifested by the induction of renin, angiotensinogen, angiotensin II and angiotensin receptor type 1 (AT1R). Paricalcitol treatment suppressed the induction of these RAS components, whereas vitamin D deficiency enhanced the activation of the lung RAS. We also showed that treatment of bleomycin-induced vitamin D-deficient mice with AT1R antagonist losartan relieved weight loss, substantially ameliorated lung fibrosis and markedly blocked TGF-β induction in the lung. Moreover, we demonstrated that in lung fibroblast cultures, TGF-β and angiotensin II synergistically induced TGF-β, AT1R, α-SMA, collagen type I and fibronectin, whereas 1,25-dihydroxyvitamin D markedly suppressed the induction of these fibrotic markers. Collectively, these observations strongly suggest that vitamin D mitigates lung fibrosis by blocking the activation of the lung RAS in this mouse model of IPF.
Collapse
Affiliation(s)
- Jianjun Chang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.,Department of Physiology, China Medical University, Shenyang, Liaoning, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Xin Ge
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.,Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Jie Du
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Weicheng Liu
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Xue Li
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yue Sun
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xinzhi Wei
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zhe Xun
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yan Chun Li
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
12
|
Dees C, Chakraborty D, Distler JHW. Cellular and molecular mechanisms in fibrosis. Exp Dermatol 2021; 30:121-131. [PMID: 32931037 DOI: 10.1111/exd.14193] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
The activation of fibroblasts is required for physiological tissue remodelling such as wound healing. However, when the regulatory mechanisms are disrupted and fibroblasts remain persistently activated, the progressive deposition of extracellular matrix proteins leads to tissue fibrosis, which results in dysfunction or even loss of function of the affected organ. Although fibrosis has been recognized as a major cause of morbidity and mortality in modern societies, there are only few treatment options available that directly disrupt the release of extracellular matrix from fibroblasts. Intensive research in recent years, however, identified several pathways as core fibrotic mechanisms that are shared across different fibrotic diseases and organs. We discuss herein selection of those core pathways, especially downstream of the profibrotic TGF-β pathway, which are druggable and which may be transferable from bench to bedside.
Collapse
Affiliation(s)
- Clara Dees
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Debomita Chakraborty
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
13
|
Insights into the Role of Bioactive Food Ingredients and the Microbiome in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21176051. [PMID: 32842664 PMCID: PMC7503951 DOI: 10.3390/ijms21176051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease mainly associated with aging and, to date, its causes are still largely unknown. It has been shown that dietary habits can accelerate or delay the occurrence of aging-related diseases; however, their potential role in IPF development has been underestimated so far. The present review summarizes the evidence regarding the relationship between diet and IPF in humans, and in animal models of pulmonary fibrosis, in which we discuss the bioactivity of specific dietary food ingredients, including fatty acids, peptides, amino acids, carbohydrates, vitamins, minerals and phytochemicals. Interestingly, many animal studies reveal preventive and therapeutic effects of particular compounds. Furthermore, it has been recently suggested that the lung and gut microbiota could be involved in IPF, a relationship which may be linked to changes in immunological and inflammatory factors. Thus, all the evidence so far puts forward the idea that the gut-lung axis could be modulated by dietary factors, which in turn have an influence on IPF development. Overall, the data reviewed here support the notion of identifying food ingredients with potential benefits in IPF, with the ultimate aim of designing nutritional approaches as an adjuvant therapeutic strategy.
Collapse
|
14
|
Lv Q, Wang J, Xu C, Huang X, Ruan Z, Dai Y. Pirfenidone alleviates pulmonary fibrosis in vitro and in vivo through regulating Wnt/GSK-3β/β-catenin and TGF-β1/Smad2/3 signaling pathways. Mol Med 2020; 26:49. [PMID: 32448163 PMCID: PMC7245944 DOI: 10.1186/s10020-020-00173-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Pirfenidone (PFD) is effective for pulmonary fibrosis (PF), but its action mechanism has not been fully explained. This study explored the signaling pathways involved in anti-fibrosis role of PFD, thus laying a foundation for clinical application. Methods Pulmonary fibrosis mice models were constructed by bleomycin (BLM), and TGF-β1 was used to treat human fetal lung fibroblasts (HLFs). Then, PFD was added into treated mice and cells alone or in combination with β-catenin vector. The pathological changes, inflammatory factors levels, and Collagen I levels in mice lung tissues were assessed, as well as the activity of HLFs was measured. Levels of indices related to extracellular matrix, epithelial-mesenchymal transition (EMT), Wnt/GSK-3β/β-catenin and TGF-β1/Smad2/3 signaling pathways were determined in tissues or cells. Results After treatment with BLM, the inflammatory reaction and extracellular matrix deposition in mice lung tissues were serious, which were alleviated by PFD and aggravated by the addition of β-catenin. In HLFs, PFD reduced the activity of HLFs induced by TGF-β1, inhibited levels of vimentin and N-cadherin and promoted levels of E-cadherin, whereas β-catenin produced the opposite effects to PFD. In both tissues and cells, Wnt/GSK-3β/β-catenin and TGF-β1/Smad2/3 signaling pathways were activated, which could be suppressed by PFD. Conclusions PFD alleviated pulmonary fibrosis in vitro and in vivo through regulating Wnt/GSK-3β/β-catenin and TGF-β1/Smad2/3 signaling pathways, which might further improve the action mechanism of anti-fibrosis effect of PFD.
Collapse
Affiliation(s)
- Qun Lv
- Department of Pneumology, The Affiliated Hospital of Hangzhou Normal University, No. 126, Wenzhou Road, Hangzhou, 31000, Zhejiang, China.
| | - Jianjun Wang
- Department of Pneumology, The Affiliated Hospital of Hangzhou Normal University, No. 126, Wenzhou Road, Hangzhou, 31000, Zhejiang, China
| | - Changqing Xu
- Department of Pneumology, The Affiliated Hospital of Hangzhou Normal University, No. 126, Wenzhou Road, Hangzhou, 31000, Zhejiang, China
| | - Xuqing Huang
- Department of Pneumology, The Affiliated Hospital of Hangzhou Normal University, No. 126, Wenzhou Road, Hangzhou, 31000, Zhejiang, China
| | - Zhaoyang Ruan
- Department of Pneumology, The Affiliated Hospital of Hangzhou Normal University, No. 126, Wenzhou Road, Hangzhou, 31000, Zhejiang, China
| | - Yifan Dai
- Department of Pneumology, The Affiliated Hospital of Hangzhou Normal University, No. 126, Wenzhou Road, Hangzhou, 31000, Zhejiang, China
| |
Collapse
|
15
|
Zhang Y, Distler JHW. Therapeutic molecular targets of SSc-ILD. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:17-30. [DOI: 10.1177/2397198319899013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis is a fibrosing chronic connective tissue disease of unknown etiology. A major hallmark of systemic sclerosis is the uncontrolled and persistent activation of fibroblasts, which release excessive amounts of extracellular matrix, lead to organ dysfunction, and cause high mobility and motility of patients. Systemic sclerosis–associated interstitial lung disease is one of the most common fibrotic organ manifestations in systemic sclerosis and a major cause of death. Treatment options for systemic sclerosis–associated interstitial lung disease and other fibrotic manifestations, however, remain very limited. Thus, there is a huge medical need for effective therapies that target tissue fibrosis, vascular alterations, inflammation, and autoimmune disease in systemic sclerosis–associated interstitial lung disease. In this review, we discuss data suggesting therapeutic ways to target different genes in distinct tissues/organs that contribute to the development of SSc.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Internal Medicine 3—Rheumatology and Immunology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg HW Distler
- Department of Internal Medicine 3—Rheumatology and Immunology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
16
|
Li SR, Tan ZX, Chen YH, Hu B, Zhang C, Wang H, Zhao H, Xu DX. Vitamin D deficiency exacerbates bleomycin-induced pulmonary fibrosis partially through aggravating TGF-β/Smad2/3-mediated epithelial-mesenchymal transition. Respir Res 2019; 20:266. [PMID: 31775746 PMCID: PMC6882226 DOI: 10.1186/s12931-019-1232-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Background Our earlier report indicated that active vitamin D3 inhibited epithelial-mesenchymal transition (EMT) in bleomycin (BLM)-induced pulmonary fibrosis. The objective of this study was to further investigate whether vitamin D deficiency exacerbates BLM-induced pulmonary fibrosis. Methods This study consists of two independent experiments. Experiment 1, male mice were fed with vitamin D deficient (VDD) fodder. Experiment 2, Cyp27b1+/+, Cyp27b1+/− and Cyp27b1−/− mice were fed with standard diet. For pulmonary fibrosis, mice were intratracheally instilled with a single dose of BLM (1.5 mg/kg). Serum 25(OH) D level was measured. Pulmonary collagen deposition was assessed by Sirius red staining. EMT was measured and transforming growth factor-beta (TGF-β)/Smad3 signaling was evaluated in the lungs of BLM-treated mice. Results The relative weight of lungs was elevated in BLM-treated mice. Col1α1 and Col1α2, two collagen protein genes, were upregulated, and collagen deposition, as determined by Sirius red staining, was observed in the lungs of BLM-treated mice. E-cadherin, an epithelial marker, was downregulated. By contrast, vimentin and α-SMA, two EMT markers, were upregulated in the lungs of BLM-treated mice. Pulmonary TGF-β/Smad3 signaling was activated in BLM-induced lung fibrosis. Further analysis showed that feeding VDD diet, leading to vitamin D deficiency, aggravated elevation of BLM-induced relative lung weight. Moreover, feeding VDD diet aggravated BLM-induced TGF-β/Smad3 activation and subsequent EMT in the lungs. In addition, feeding VDD diet exacerbated BLM-induced pulmonary fibrosis. Additional experiment showed that Cyp27b1 gene knockout, leading to active vitamin D3 deficiency, exacerbated BLM-induced pulmonary fibrosis. Moreover, Cyp27b1 gene knockout aggravated pulmonary TGF-β/Smad2/3 activation and subsequent EMT in BLM-induced lung fibrosis. Conclusion Vitamin D deficiency exacerbates BLM-induced pulmonary fibrosis partially through aggravating TGF-β/Smad2/3-mediated EMT in the lungs.
Collapse
Affiliation(s)
- Se-Ruo Li
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Zhu-Xia Tan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Biao Hu
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
17
|
Distler JHW, Györfi AH, Ramanujam M, Whitfield ML, Königshoff M, Lafyatis R. Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol 2019; 15:705-730. [DOI: 10.1038/s41584-019-0322-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
|
18
|
Tsujino I, Ushikoshi-Nakayama R, Yamazaki T, Matsumoto N, Saito I. Pulmonary activation of vitamin D 3 and preventive effect against interstitial pneumonia. J Clin Biochem Nutr 2019; 65:245-251. [PMID: 31777427 PMCID: PMC6877402 DOI: 10.3164/jcbn.19-48] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/28/2022] Open
Abstract
Calcitriol [1,25(OH)2D3] is usually investigated in studies on the preventive effect of activated vitamin D against interstitial pneumonia. Although cholecalciferol (vitamin D3) can be easily obtained in the diet and has a longer half-life than calcitriol, there have been few investigations of its effect on interstitial pneumonia. We used human pulmonary fibroblast cell lines (HPFCs) and a mouse model of bleomycin-induced pulmonary fibrosis to evaluate whether vitamin D3 was activated in the lungs and had a preventive effect against interstitial pneumonia. Expression of the vitamin D receptor gene and genes for enzymes metabolizing vitamin D was evaluated in two HPFCs, and the suppressive effect of vitamin D3 on induction of inflammatory cytokines was also assessed. Gene expression of the vitamin D receptor and vitamin D-metabolizing enzymes was observed in both human pulmonary fibroblast cell lines. Vitamin D3 suppressed bleomycin-induced expression of inflammatory cytokines and fibrosis markers by the HPFCs. In mice, symptoms of bleomycin-induced pulmonary fibrosis were improved and expression of fibrosis markers/fibrosis inducers was decreased by a high vitamin D3 diet. Vitamin D3 is activated locally in lung tissues, suggesting that high dietary intake of vitamin D3 may have a preventive effect against interstitial pneumonia.
Collapse
Affiliation(s)
- Ichiro Tsujino
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Ryoko Ushikoshi-Nakayama
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Tomoe Yamazaki
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Naoyuki Matsumoto
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| |
Collapse
|
19
|
Yodoshi T, Orkin S, Arce-Clachar AC, Bramlage K, Liu C, Fei L, El-Khider F, Dasarathy S, Xanthakos SA, Mouzaki M. Vitamin D deficiency: prevalence and association with liver disease severity in pediatric nonalcoholic fatty liver disease. Eur J Clin Nutr 2019; 74:427-435. [PMID: 31444465 DOI: 10.1038/s41430-019-0493-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/05/2019] [Accepted: 07/31/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES To determine associations between serum 25-hydroxyvitamin D (25(OH)-D) concentrations and histologic nonalcoholic fatty liver disease (NAFLD) severity. SUBJECTS/METHODS Clinical, laboratory, and histology data were collected retrospectively in a pediatric cohort with biopsy-confirmed NAFLD. Serum 25(OH)-D concentrations were used to define vitamin D deficiency (≤20 ng/ml), insufficiency (21-30 ng/ml), and sufficiency (≥31 ng/ml). RESULTS In all, 234 patients (78% non-Hispanic, median age 14 years) were included. The majority (n = 193) were either vitamin D insufficient (50%) or deficient (32%). Eighty-four patients (36%) reported taking vitamin D supplements at the time of biopsy; serum 25(OH)-D concentrations were not higher in those supplemented. There were no differences in the demographic, clinical, and laboratory characteristics of the three vitamin D status groups. Severity of steatosis, ballooning, lobular/portal inflammation, and NAFLD activity score were also not different between the groups. The proportion of patients with significant fibrosis (stage ≥ 2) was higher in those with insufficiency (29%) compared to those who were sufficient (17%) or deficient (15%, p = 0.04). After controlling for important covariates selected from age, body mass index, ethnicity, vitamin D supplementation, and season, the insufficient group had increased odds of a higher fibrosis score compared to the sufficient group (adjusted OR, 2.04; 95%CI, 1.02-4.08). CONCLUSIONS Vitamin D deficiency and insufficiency are common in children with NAFLD, but not consistently related with histologic disease severity. Prospective longitudinal studies are needed to determine optimal dosing strategies to achieve sufficiency and to determine whether adequate supplementation has an impact on histology.
Collapse
Affiliation(s)
- Toshifumi Yodoshi
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sarah Orkin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ana Catalina Arce-Clachar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kristin Bramlage
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chunyan Liu
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lin Fei
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Faris El-Khider
- Division of Gastroenterology, Departments of Gastroenterology, Hepatology and Pathobiology, Cleveland Clinic, Cleveland, OH, USA
| | - Srinivasan Dasarathy
- Division of Gastroenterology, Departments of Gastroenterology, Hepatology and Pathobiology, Cleveland Clinic, Cleveland, OH, USA
| | - Stavra A Xanthakos
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marialena Mouzaki
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Tzilas V, Bouros E, Barbayianni I, Karampitsakos T, Kourtidou S, Ntassiou M, Ninou I, Aidinis V, Bouros D, Tzouvelekis A. Vitamin D prevents experimental lung fibrosis and predicts survival in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 2019; 55:17-24. [DOI: 10.1016/j.pupt.2019.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022]
|
21
|
Guijarro T, Magro-Lopez E, Manso J, Garcia-Martinez R, Fernandez-Aceñero MJ, Liste I, Zambrano A. Detrimental pro-senescence effects of vitamin D on lung fibrosis. Mol Med 2018; 24:64. [PMID: 30567504 PMCID: PMC6299997 DOI: 10.1186/s10020-018-0064-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
Background The multiple biological effects of vitamin D and its novel activities on inflammation and redox homeostasis have raised high expectations on its use as a therapeutic agent for multiple fibrogenic conditions. We have assessed the therapeutic effects of 1α,25-Dihydroxyvitamin D3, the biologically active form of vitamin D, in the context of lung fibrosis. Methods We have used representative cellular models for alveolar type II cells and human myofibroblasts. The extension of DNA damage and cellular senescence have been assessed by immunofluorescence, western-blot and senescence-associated β-galactosidase activity. We have also set up a murine model for lung fibrosis by intraperitoneal injections of bleomycin. Results Vitamin D induces cellular senescence in bleomycin-treated alveolar epithelial type II cells and aggravates the lung pathology induced by bleomycin. These effects are probably due to an alteration of the cellular DNA double-strand breaks repair in bleomycin-treated cells. Conclusions The detrimental effects of vitamin D in the presence of a DNA damaging agent might preclude its use as an antifibrogenic agent for pulmonary fibrosis characterized by DNA damage occurrence and cellular senescence.
Collapse
Affiliation(s)
- Trinidad Guijarro
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain
| | - Esmeralda Magro-Lopez
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain
| | - Joana Manso
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain
| | | | | | - Isabel Liste
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain
| | - Alberto Zambrano
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain.
| |
Collapse
|
22
|
Ng SY, Bettany-Saltikov J, Cheung IYK, Chan KKY. The Role of Vitamin D in the Pathogenesis of Adolescent Idiopathic Scoliosis. Asian Spine J 2018; 12:1127-1145. [PMID: 30322242 PMCID: PMC6284127 DOI: 10.31616/asj.2018.12.6.1127] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Several theories have been proposed to explain the etiology of adolescent idiopathic scoliosis (AIS) until present. However, limited data are available regarding the impact of vitamin D insufficiency or deficiency on scoliosis. Previous studies have shown that vitamin D deficiency and insufficiency are prevalent in adolescents, including AIS patients. A series of studies conducted in Hong Kong have shown that as many as 30% of these patients have osteopenia. The 25-hydroxyvitamin D3 level has been found to positively correlate with bone mineral density (BMD) in healthy adolescents and negatively with Cobb angle in AIS patients; therefore, vitamin D deficiency is believed to play a role in AIS pathogenesis. This study attempts to review the relevant literature on AIS etiology to examine the association of vitamin D and various current theories. Our review suggested that vitamin D deficiency is associated with several current etiological theories of AIS. We postulate that vitamin D deficiency and/or insufficiency affects AIS development by its effect on the regulation of fibrosis, postural control, and BMD. Subclinical deficiency of vitamin K2, a fat-soluble vitamin, is also prevalent in adolescents; therefore, it is possible that the high prevalence of vitamin D deficiency is related to decreased fat intake. Further studies are required to elucidate the possible role of vitamin D in the pathogenesis and clinical management of AIS.
Collapse
|
23
|
Gu Y, Huang B, Yang Y, Qi M, Lu G, Xia D, Li H. Ibrutinib Exacerbates Bleomycin-Induced Pulmonary Fibrosis via Promoting Inflammation. Inflammation 2018. [PMID: 29532266 DOI: 10.1007/s10753-018-0745-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease with high mortality rate. The etiology is unknown and treatment choices are limited. Thus, there is great interest to investigate novel agents for IPF therapy. Ibrutinib, BTK, and ITK irreversible inhibitor is a FDA-approved small molecule for the clinical therapy of B cell lymphoma. Its role in pulmonary fibrosis remains unknown. In this study, we investigated the anti-fibrotic activity of ibrutinib. Strikingly, ibrutinib did not inhibit but exacerbated bleomycin-induced pulmonary fibrosis by increased epithelial cell apoptosis, and inflammation in the lung. The upregulated TGF-β and EMT transformation also contributes to enhanced myofibroblast differentiation and ECM deposition. Our findings reveal the detrimental effects of ibrutinib against bleomycin-mediated fibrosis and added to the understanding of IPF pathogenesis.
Collapse
Affiliation(s)
- Yangyang Gu
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China.,Department of Respiratory Diseases, Jiaxing Second Hospital, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Bo Huang
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Yanfei Yang
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Mengdie Qi
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Guohua Lu
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Dajing Xia
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, 310058, China.,School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Hequan Li
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
24
|
Györfi AH, Matei AE, Distler JH. Targeting TGF-β signaling for the treatment of fibrosis. Matrix Biol 2018; 68-69:8-27. [DOI: 10.1016/j.matbio.2017.12.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 01/02/2023]
|
25
|
Schapochnik A, da Silva MR, Leal MP, Esteves J, Hebeda CB, Sandri S, de Fátima Teixeira da Silva D, Farsky SHP, Marcos RL, Lino-Dos-Santos-Franco A. Vitamin D treatment abrogates the inflammatory response in paraquat-induced lung fibrosis. Toxicol Appl Pharmacol 2018; 355:60-67. [PMID: 29944852 DOI: 10.1016/j.taap.2018.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Abstract
A high incidence of intentional or accidental paraquat (PQ) ingestion is related to irreversible lung fibrosis and no effective therapy is currently available. Vitamin D has emerged with promising results as an immunomodulatory molecule when abrogating the inflammatory responses of lung diseases. Therefore, we have investigated the role of vitamin D treatments on PQ-induced lung fibrosis in male C57/BL6 mice. Lung fibrosis was induced by a single injection of PQ (10 mg/kg; i.p.). The control group received PQ vehicle. Seven days later, after the PQ injection or the vehicle injection, the mice received vitamin D (5 μg/kg, i.p., once a day) or vehicle, for a further 7 days. Twenty-four hours after the last dose of vitamin D or the vehicle, the analysis were performed. The vitamin D treatments reduced the number of leukocytes in their BALF and they decreased the IL-6, IL-17, TGF-beta and MMP-9 levels and the abrogated collagenase deposits in their lung tissues. Conversely, the vitamin D treatments increased the resolvin D levels in their BALF. Moreover, their tracheal contractility was also significantly reduced by the vitamin D treatments. Altogether, the data that was obtained showed a promising use of vitamin D, in treating the lung fibrosis that had been induced by the PQ intoxications. This may improve its prognostic use for a non-invasive and low cost therapy.
Collapse
Affiliation(s)
- Adriana Schapochnik
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Marcia Rodrigues da Silva
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Mayara Peres Leal
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Janete Esteves
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Cristina Bichels Hebeda
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Sandra Helena Poliseli Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Labat Marcos
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Adriana Lino-Dos-Santos-Franco
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil.
| |
Collapse
|
26
|
Jiang F, Yang Y, Xue L, Li B, Zhang Z. 1α,25-dihydroxyvitamin D3 Attenuates TGF-β-Induced Pro-Fibrotic Effects in Human Lung Epithelial Cells through Inhibition of Epithelial-Mesenchymal Transition. Nutrients 2017; 9:E980. [PMID: 28878195 PMCID: PMC5622740 DOI: 10.3390/nu9090980] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Pulmonary fibrosis is a progressive fibrotic lung disease of persisting lung injury and ineffective wound repair, with poor prognosis. Epithelial-mesenchymal transition (EMT) of alveolar epithelia cells is an early event in the development of pulmonary fibrosis, and transforming growth factor β (TGF-β) is an acknowledged inducer of EMT. Epidemiological studies demonstrated that serum levels of 25-hydroxy-vitamin D were associated with the presence of fibrosis diseases. We investigated whether vitamin D attenuated TGF-β-induced pro-fibrotic effects through inhibiting EMT in human alveolar epithelia A549 cells. A549 cells were cultured with TGF-β alone or in combination with 1α,25-dihydroxyvitamin D3 (1α,25(OH)₂D₃). TGF-β increased the expression of the mesenchymal markers (N-cadherin and Vimentin), and decreased the expression of epithelial markers (E-cadherin). 1α,25(OH)₂D₃ attenuated these TGF-β-induced alterations. Furthermore, the EMT-related transcription factors (Snail and β-catenin) and the extracellular matrix genes (Collagen I and fibronectin) were inhibited by 1α,25(OH)₂D₃, while the expression of vitamin D receptor (VDR) was elevated. In addition, 1α,25(OH)₂D₃ alleviated the cell migration and the invasion abilities in TGF-β-stimulated A549 cells, determined by the scratch wound healing and transwell assays. Our findings suggested that 1α,25(OH)₂D₃ inhibited the pro-fibrotic phenotype of lung epithelial cells under TGF-β stimulation and provided new clues in the clinical management of pulmonary fibrosis.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Labor Hygiene and Environmental Health, School of Public Health of Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Yong Yang
- Department of Labor Hygiene and Environmental Health, School of Public Health of Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Lian Xue
- Department of Labor Hygiene and Environmental Health, School of Public Health of Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Zengli Zhang
- Department of Labor Hygiene and Environmental Health, School of Public Health of Soochow University, 199 Renai Road, Suzhou 215123, China.
| |
Collapse
|
27
|
Yu X, Gu P, Huang Z, Fang X, Jiang Y, Luo Q, Li X, Zhu X, Zhan M, Wang J, Fan L, Chen R, Yu J, Gu Y, Liang A, Yi X. Reduced expression of BMP3 contributes to the development of pulmonary fibrosis and predicts the unfavorable prognosis in IIP patients. Oncotarget 2017; 8:80531-80544. [PMID: 29113323 PMCID: PMC5655218 DOI: 10.18632/oncotarget.20083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) and idiopathic nonspecific interstitial pneumonia (INSIP) are two related diseases involving varying degrees of pulmonary fibrosis with no effective cure. Bone morphogenetic protein 3 (BMP3) is a member of the transforming growth factor-β (TGF-β) super-family, which has not been implicated in pulmonary fibrosis previously. In this study, we aimed to investigate the potential role of BMP3 playing in pulmonary fibrosis from clinical diagnosis to molecular signaling regulation. RNA sequencing was performed to explore the potential biomarker of IIP patients. The expression of BMP3 was evaluated in 83 cases of IPF and INSIP by immunohistochemistry. The function of BMP3 was investigated in both fibroblast cells and a bleomycin-induced murine pulmonary fibrosis model. The clinical relevance of BMP3 expression were analyzed in 47 IIP patients, which were included in 83 cases and possess more than five-year follow-up data. Both RNA-sequencing and immunohistochemistry staining revealed that BMP3 was significantly down-regulated in lung tissues of patients with IPF and INSIP. Consistently, lower expression of BMP3 also was found in pulmonary fibrotic tissues of bleomycin-induced mice model. Up-regulation of BMP3 prevented pulmonary fibrosis processing through inhibiting cellular proliferation of fibroblasts as well as TGF-β1 signal transduction. Finally, the relatively higher expression of BMP3 in IPF patients was associated with less/worse mortality. Intravenous injection of recombinant BMP3. Taken together, our results suggested that the low expression level of BMP3 may indicate the unfavorable prognosis of IPF patients, targeting BMP3 may represent a novel potential therapeutic method for pulmonary fibrosis management.
Collapse
Affiliation(s)
- Xiaoting Yu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Pan Gu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ziling Huang
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Xia Fang
- Department of Biotherapy, Tongji Hosptial, Tongji University School of Medicine, Shanghai 200065, China
| | - Ying Jiang
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Qun Luo
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xia Li
- Department of Respiratory, Shanghai Pulmonary Hospital, Tongji Universiy School of Medicine, Shanghai 200433, China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Mengna Zhan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbang Wang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Lichao Fan
- Department of Respiratory, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Rongchang Chen
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Juehua Yu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yingying Gu
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Aibin Liang
- Department of Biotherapy, Tongji Hosptial, Tongji University School of Medicine, Shanghai 200065, China
| | - Xianghua Yi
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
28
|
Lee SA, Yang HW, Um JY, Shin JM, Park IH, Lee HM. Vitamin D attenuates myofibroblast differentiation and extracellular matrix accumulation in nasal polyp-derived fibroblasts through smad2/3 signaling pathway. Sci Rep 2017; 7:7299. [PMID: 28779150 PMCID: PMC5544725 DOI: 10.1038/s41598-017-07561-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 06/29/2017] [Indexed: 02/04/2023] Open
Abstract
To investigate the potential role of vitamin D (1,25(OH)2D3) in preventing the development of nasal polyps, we examined the effect of vitamin D on myofibroblast differentiation and extracellular matrix (ECM) production in TGF-β1-induced nasal polyp-derived fibroblasts (NPDFs) and elucidated the mechanisms underlying its inhibitory effect. 1,25(OH)2D3 significantly reduced expression levels of α-SMA, a myofibroblast marker, and fibronectin, a representative ECM component, in a dose-dependent manner in TGF-β1-induced NPDFs. 1,25(OH)2D3 suppressed activated Smad2/3 in time-course. Up-regulation of α-SMA, fibronectin and phosphorylation of Smad2/3 by TGF-β1 was unaffected by 1,25(OH)2D3 in NPDFs after vitamin D receptor-specific siRNA transfection. We confirmed that the Smad2/3-specific inhibitor SIS3 inactivated Smad2/3 and reduced α-SMA and fibronectin expression. Furthermore, acetylation of histone H3 was compromised by 1,25(OH)2D3, leading to inhibition of collagen 1A1, collagen 1A2 and α-SMA gene expression. Treatment with 1,25(OH)2D3 also significantly suppressed TGF-β1-enhanced contractility and motility in a contraction assay and Transwell migration assay. Finally, 1,25(OH)2D3 had a similar effect in ex vivo organ cultures of nasal polyps. Taken together, our results suggest that 1,25(OH)2D3 might be an effective therapy for nasal polyps by reducing myofibroblast differentiation and ECM production mediated by Smad2/3-dependent TGF-β1 signaling pathways in NPDFs.
Collapse
Affiliation(s)
- Seoung-Ae Lee
- Institute for Medical Devices Clinical Trial Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea.,Research-Driven Hospital, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Hyun-Woo Yang
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Ji-Young Um
- Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Jae-Min Shin
- Institute for Medical Devices Clinical Trial Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Il-Ho Park
- Institute for Medical Devices Clinical Trial Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea.,Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Heung-Man Lee
- Institute for Medical Devices Clinical Trial Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea. .,Department of Biomedical Science, Korea University College of Medicine, Seoul, South Korea. .,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea. .,Research-Driven Hospital, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
29
|
Chronic vitamin D deficiency induces lung fibrosis through activation of the renin-angiotensin system. Sci Rep 2017; 7:3312. [PMID: 28607392 PMCID: PMC5468249 DOI: 10.1038/s41598-017-03474-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/28/2017] [Indexed: 01/20/2023] Open
Abstract
Pulmonary fibrosis, which influences lung function and exacerbates a patient’s condition, is the ultimate stage of many lung diseases. Vitamin D deficiency is associated with pulmonary fibrosis and impaired lung function, but the underlying mechanism has not yet been fully elucidated. Moreover, vitamin D deficiency may cause over-activation of the renin-angiotensin system (RAS), which aggravates extracellular matrix (ECM) deposition and lung fibrosis. This study aims to investigate the effect of chronic vitamin D deficiency on lung fibrosis in otherwise healthy mice and to explore the role of RAS in this process. Mice were depleted of vitamin D through diet control and were compared with healthy subjects. Chronic vitamin D deficiency destructs lung structures, impairs lung development and stimulates ECM deposition. RAS components are also found to increase. These effects seem to worsen with prolonged vitamin D deficiency. By giving RAS blockers, these changes can be largely rescued. However, a smooth muscle relaxant whose regulatory effect on blood pressure is independent of RAS does not show similar effects. This study demonstrated that chronic vitamin D deficiency may induce RAS activation, which subsequently stimulates the expression of profibrotic factors and activates the fibrotic cascade. This profibrotic effect of RAS is independent of elevated blood pressure.
Collapse
|
30
|
Li H, Hao Y, Zhang H, Ying W, Li D, Ge Y, Ying B, Cheng B, Lian Q, Jin S. Posttreatment with Protectin DX ameliorates bleomycin-induced pulmonary fibrosis and lung dysfunction in mice. Sci Rep 2017; 7:46754. [PMID: 28466866 PMCID: PMC5413938 DOI: 10.1038/srep46754] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
Protectin DX (10S,17S-dihydroxydocosa-4Z,7Z,11E,13Z,15E,19Z-hexaenoic acid) (PDX), generated from Ω-3 fatty docosahexaenoic acids, is believed to exert anti-inflammatory and proresolution bioactions. To date, few studies have been performed regarding its effect on pulmonary fibrosis. Herein we show that PDX exerts a potential therapeutic effect which is distinct from its anti-inflammation and pro-resolution activity on mice with pulmonary fibrosis. In the present study, we showed that bleomycin (BLM) increased inflammatory infiltration, collagen deposition, and lung dysfunction on day7 after challenged in mice. Posttreatment with PDX ameliorated BLM-induced inflammatory responses, extracellular matrix (ECM) deposition and the level of cytokines related to fibrosis as evaluated by histology analysis, transformation electron microscope (TEM), lung hydroxyproline content and cytokines test. Moreover, PDX improved lung respiratory function, remedied BLM-induced hypoxemia and prolonged life span. In addition, we found that PDX reversed epithelial–mesenchymal transition (EMT) phenotypic transformation in vivo and in vitro, reinforcing a potential mechanism of promoting fibrosis resolution. In summary, our findings showed that posttreatment with PDX could ameliorate BLM-induced pulmonary fibrosis and lung dysfunction in mice and PDX may be considered as a promising therapeutic approached to fibrotic lung diseases.
Collapse
Affiliation(s)
- Hui Li
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Yu Hao
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Huawei Zhang
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Weiyang Ying
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Dan Li
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Yahe Ge
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Binyu Ying
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Bihuan Cheng
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Qingquan Lian
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| |
Collapse
|
31
|
Piszczatowski RT, Lents NH. Regulation of the CCN genes by vitamin D: A possible adjuvant therapy in the treatment of cancer and fibrosis. Cell Signal 2016; 28:1604-13. [PMID: 27460560 DOI: 10.1016/j.cellsig.2016.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 01/21/2023]
Abstract
The CCN family is composed of six cysteine-rich, modular, and conserved proteins whose functions span a variety of tissues and include cell proliferation, adhesion, angiogenesis, and wound healing. Roles for the CCN proteins throughout the entire body including the skin, kidney, brain, blood vessels, hematopoietic compartment and others, are continuously being elucidated. Likewise, an understanding of the regulation of this important gene family is constantly becoming clearer, through identification of transcription factors that directly activate, repress, or respond to upstream cell signaling pathways, as well as other forms of gene expression control. Vitamin D (1,25-dihydroxyvitamin D3 or calcitriol), a vitamin essential for numerous biological processes, acts as a potent gene expression modulator. The regulation of the CCN gene family members by calcitriol has been described in many contexts. Here, we provide a concise and thorough overview of what is known about calcitriol and its regulation of the CCN genes, and argue that its regulation is of physiological importance in a wide breadth of tissues in which CCN genes function. In addition, we highlight the effects of vitamin D on CCN gene expression in the setting of two common pathologic conditions, fibrosis and cancer, and propose that the therapeutic effects of vitamin D3 described in these disease states may in part be attributable to CCN gene modulation. As vitamin D is perfectly safe in a wide range of doses and already showing promise as an adjuvant therapeutic agent, a deeper understanding of its control of CCN gene expression may have profound implications in clinical management of disease.
Collapse
Affiliation(s)
| | - Nathan H Lents
- Department of Sciences, John Jay College, The City University of New York, New York, NY 10019, USA.
| |
Collapse
|
32
|
Obaculactone protects against bleomycin-induced pulmonary fibrosis in mice. Toxicol Appl Pharmacol 2016; 303:21-29. [DOI: 10.1016/j.taap.2016.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/14/2016] [Accepted: 05/08/2016] [Indexed: 12/25/2022]
|
33
|
Alexander J, Cukierman E. Stromal dynamic reciprocity in cancer: intricacies of fibroblastic-ECM interactions. Curr Opin Cell Biol 2016; 42:80-93. [PMID: 27214794 DOI: 10.1016/j.ceb.2016.05.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/18/2022]
Abstract
Stromal dynamic reciprocity (SDR) consists of the biophysical and biochemical interplay between connective tissue elements that regulate and maintain organ homeostasis. In epithelial cancers, chronic alterations of SDR result in the once tumor-restrictive stroma evolving into a 'new' tumor-permissive environment. This altered stroma, known as desmoplasia, is initiated and maintained by cancer associated fibroblasts (CAFs) that remodel the extracellular matrix (ECM). Desmoplasia fuels a vicious cycle of stromal dissemination enriching both CAFs and desmoplastic ECM. Targeting specific drivers of desmoplasia, such as CAFs, either enhances or halts tumor growth and progression. These conflicting effects suggest that stromal interactions are not fully understood. This review highlights known fibroblastic-ECM interactions in an effort to encourage therapies that will restore cancer-restrictive stromal cues.
Collapse
Affiliation(s)
- Jennifer Alexander
- Fox Chase Cancer Center, Cancer Biology, Temple Health, 333 Cottman Ave, Philadelphia, PA 19111, USA; Drexel University College of Medicine, Department of Molecular Biology and Biochemistry, 245 N 15(th) St, Philadelphia, PA 19102, USA
| | - Edna Cukierman
- Fox Chase Cancer Center, Cancer Biology, Temple Health, 333 Cottman Ave, Philadelphia, PA 19111, USA.
| |
Collapse
|