1
|
Celona B, Salomonsson SE, Wu H, Dang B, Kratochvil HT, Clelland CD, DeGrado WF, Black BL. Zfp106 binds to G-quadruplex RNAs and inhibits RAN translation and formation of RNA foci caused by G4C2 repeats. Proc Natl Acad Sci U S A 2024; 121:e2220020121. [PMID: 39042693 PMCID: PMC11295049 DOI: 10.1073/pnas.2220020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Expansion of intronic GGGGCC repeats in the C9orf72 gene causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Transcription of the expanded repeats results in the formation of RNA-containing nuclear foci and altered RNA metabolism. In addition, repeat-associated non-AUG (RAN) translation of the expanded GGGGCC-repeat sequence results in the production of highly toxic dipeptide-repeat (DPR) proteins. GGGGCC repeat-containing transcripts form G-quadruplexes, which are associated with formation of RNA foci and RAN translation. Zfp106, an RNA-binding protein essential for motor neuron survival in mice, suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Here, we show that Zfp106 inhibits formation of RNA foci and significantly reduces RAN translation caused by GGGGCC repeats in cultured mammalian cells, and we demonstrate that Zfp106 coexpression reduces the levels of DPRs in C9orf72 patient-derived cells. Further, we show that Zfp106 binds to RNA G-quadruplexes and causes a conformational change in the G-quadruplex structure formed by GGGGCC repeats. Together, these data demonstrate that Zfp106 suppresses the formation of RNA foci and DPRs caused by GGGGCC repeats and suggest that the G-quadruplex RNA-binding function of Zfp106 contributes to its suppression of GGGGCC repeat-mediated cytotoxicity.
Collapse
Affiliation(s)
- Barbara Celona
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
| | - Sally E. Salomonsson
- Weill Institute for Neurosciences, University of California, San Francisco, CA94143
- Memory & Aging Center, Department of Neurology, University of California, San Francisco, CA94143
| | - Haifan Wu
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Bobo Dang
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Huong T. Kratochvil
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Claire D. Clelland
- Weill Institute for Neurosciences, University of California, San Francisco, CA94143
- Memory & Aging Center, Department of Neurology, University of California, San Francisco, CA94143
| | - William F. DeGrado
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
| |
Collapse
|
2
|
Błaszczyk L, Ryczek M, Das B, Mateja-Pluta M, Bejger M, Śliwiak J, Nakatani K, Kiliszek A. Antisense RNA C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms a triplex-like structure and binds small synthetic ligand. Nucleic Acids Res 2024; 52:6707-6717. [PMID: 38738637 PMCID: PMC11194091 DOI: 10.1093/nar/gkae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
The abnormal expansion of GGGGCC/GGCCCC hexanucleotide repeats (HR) in C9orf72 is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Structural polymorphisms of HR result in the multifactorial pathomechanism of ALS/FTD. Consequently, many ongoing studies are focused at developing therapies targeting pathogenic HR RNA. One of them involves small molecules blocking sequestration of important proteins, preventing formation of toxic nuclear foci. However, rational design of potential therapeutics is hindered by limited number of structural studies of RNA-ligand complexes. We determined the crystal structure of antisense HR RNA in complex with ANP77 ligand (1.1 Å resolution) and in the free form (0.92 and 1.5 Å resolution). HR RNA folds into a triplex structure composed of four RNA chains. ANP77 interacted with two neighboring single-stranded cytosines to form pseudo-canonical base pairs by adopting sandwich-like conformation and adjusting the position of its naphthyridine units to the helical twist of the RNA. In the unliganded structure, the cytosines formed a peculiar triplex i-motif, assembled by trans C•C+ pair and a third cytosine located at the Hoogsteen edge of the C•C+ pair. These results extend our knowledge of the structural polymorphisms of HR and can be used for rational design of small molecules targeting disease-related RNAs.
Collapse
Affiliation(s)
- Leszek Błaszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Marcin Ryczek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Bimolendu Das
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Martyna Mateja-Pluta
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Magdalena Bejger
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Joanna Śliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| |
Collapse
|
3
|
Trajkovski M, Pastore A, Plavec J. Dimeric structures of DNA ATTTC repeats promoted by divalent cations. Nucleic Acids Res 2024; 52:1591-1601. [PMID: 38296828 PMCID: PMC10899783 DOI: 10.1093/nar/gkae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Structural studies of repetitive DNA sequences may provide insights why and how certain repeat instabilities in their number and nucleotide sequence are managed or even required for normal cell physiology, while genomic variability associated with repeat expansions may also be disease-causing. The pentanucleotide ATTTC repeats occur in hundreds of genes important for various cellular processes, while their insertion and expansion in noncoding regions are associated with neurodegeneration, particularly with subtypes of spinocerebellar ataxia and familial adult myoclonic epilepsy. We describe a new striking domain-swapped DNA-DNA interaction triggered by the addition of divalent cations, including Mg2+ and Ca2+. The results of NMR characterization of d(ATTTC)3 in solution show that the oligonucleotide folds into a novel 3D architecture with two central C:C+ base pairs sandwiched between a couple of T:T base pairs. This structural element, referred to here as the TCCTzip, is characterized by intercalative hydrogen-bonding, while the nucleobase moieties are poorly stacked. The 5'- and 3'-ends of TCCTzip motif are connected by stem-loop segments characterized by A:T base pairs and stacking interactions. Insights embodied in the non-canonical DNA structure are expected to advance our understanding of why only certain pyrimidine-rich DNA repeats appear to be pathogenic, while others can occur in the human genome without any harmful consequences.
Collapse
Affiliation(s)
- Marko Trajkovski
- Slovenian NMR Centre, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Annalisa Pastore
- King's College London, the Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
- EN-FIST, Center of Excellence, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Zalar M, Wang B, Plavec J, Šket P. Insight into Tetramolecular DNA G-Quadruplexes Associated with ALS and FTLD: Cation Interactions and Formation of Higher-Ordered Structure. Int J Mol Sci 2023; 24:13437. [PMID: 37686239 PMCID: PMC10487854 DOI: 10.3390/ijms241713437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The G4C2 hexanucleotide repeat expansion in the c9orf72 gene is a major genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), with the formation of G-quadruplexes directly linked to the development of these diseases. Cations play a crucial role in the formation and structure of G-quadruplexes. In this study, we investigated the impact of biologically relevant potassium ions on G-quadruplex structures and utilized 15N-labeled ammonium cations as a substitute for K+ ions to gain further insights into cation binding and exchange dynamics. Through nuclear magnetic resonance spectroscopy and molecular dynamics simulations, we demonstrate that the single d(G4C2) repeat, in the presence of 15NH4+ ions, adopts a tetramolecular G-quadruplex with an all-syn quartet at the 5'-end. The movement of 15NH4+ ions through the central channel of the G-quadruplex, as well as to the bulk solution, is governed by the vacant cation binding site, in addition to the all-syn quartet at the 5'-end. Furthermore, the addition of K+ ions to G-quadruplexes folded in the presence of 15NH4+ ions induces stacking of G-quadruplexes via their 5'-end G-quartets, leading to the formation of stable higher-ordered species.
Collapse
Affiliation(s)
- Matja Zalar
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
| | - Baifan Wang
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
- EN-FIST Center of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
| |
Collapse
|
5
|
Parameswaran J, Zhang N, Braems E, Tilahun K, Pant DC, Yin K, Asress S, Heeren K, Banerjee A, Davis E, Schwartz SL, Conn GL, Bassell GJ, Van Den Bosch L, Jiang J. Antisense, but not sense, repeat expanded RNAs activate PKR/eIF2α-dependent ISR in C9ORF72 FTD/ALS. eLife 2023; 12:e85902. [PMID: 37073950 PMCID: PMC10188109 DOI: 10.7554/elife.85902] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023] Open
Abstract
GGGGCC (G4C2) hexanucleotide repeat expansion in the C9ORF72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The repeat is bidirectionally transcribed and confers gain of toxicity. However, the underlying toxic species is debated, and it is not clear whether antisense CCCCGG (C4G2) repeat expanded RNAs contribute to disease pathogenesis. Our study shows that C9ORF72 antisense C4G2 repeat expanded RNAs trigger the activation of the PKR/eIF2α-dependent integrated stress response independent of dipeptide repeat proteins that are produced through repeat-associated non-AUG-initiated translation, leading to global translation inhibition and stress granule formation. Reducing PKR levels with either siRNA or morpholinos mitigates integrated stress response and toxicity caused by the antisense C4G2 RNAs in cell lines, primary neurons, and zebrafish. Increased phosphorylation of PKR/eIF2α is also observed in the frontal cortex of C9ORF72 FTD/ALS patients. Finally, only antisense C4G2, but not sense G4C2, repeat expanded RNAs robustly activate the PKR/eIF2α pathway and induce aberrant stress granule formation. These results provide a mechanism by which antisense C4G2 repeat expanded RNAs elicit neuronal toxicity in FTD/ALS caused by C9ORF72 repeat expansions.
Collapse
Affiliation(s)
| | - Nancy Zhang
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Elke Braems
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | | | - Devesh C Pant
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Keena Yin
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Seneshaw Asress
- Department of Neurology, Emory UniversityAtlantaUnited States
| | - Kara Heeren
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | - Anwesha Banerjee
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Emma Davis
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | | | - Graeme L Conn
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Gary J Bassell
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | - Jie Jiang
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
6
|
Teng Y, Zhu M, Qiu Z. G-Quadruplexes in Repeat Expansion Disorders. Int J Mol Sci 2023; 24:ijms24032375. [PMID: 36768697 PMCID: PMC9916761 DOI: 10.3390/ijms24032375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The repeat expansions are the main genetic cause of various neurodegeneration diseases. More than ten kinds of repeat sequences with different lengths, locations, and structures have been confirmed in the past two decades. G-rich repeat sequences, such as CGG and GGGGCC, are reported to form functional G-quadruplexes, participating in many important bioprocesses. In this review, we conducted an overview concerning the contribution of G-quadruplex in repeat expansion disorders and summarized related mechanisms in current pathological studies, including the increasing genetic instabilities in replication and transcription, the toxic RNA foci formed in neurons, and the loss/gain function of proteins and peptides. Furthermore, novel strategies targeting G-quadruplex repeats were developed based on the understanding of disease mechanism. Small molecules and proteins binding to G-quadruplex in repeat expansions were investigated to protect neurons from dysfunction and delay the progression of neurodegeneration. In addition, the effects of environment on the stability of G-quadruplex were discussed, which might be critical factors in the pathological study of repeat expansion disorders.
Collapse
|
7
|
Shibata T, Nakatani K. A small molecule binding to TGGAA pentanucleotide repeats that cause spinocerebellar ataxia type 31. Bioorg Med Chem Lett 2023; 79:129082. [PMID: 36414174 DOI: 10.1016/j.bmcl.2022.129082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Spinocerebellar ataxia type 31 is an autosomal dominant neurodegenerative disease caused by aberrant insertion of d(TGGAA)n into the intron shared by brain expressed, associated with Nedd4 and thymidine kinase 2 genes in chromosome 16. We reported that a naphthyridine dimer derivative with amidated linker structure (ND-amide) bound to GGA/GGA motifs in hairpin structures of d(TGGAA)n. The binding of naphthyridine dimer derivatives to the GGA/GGA motif was sensitive to the linker structures. The amidation of the linker in naphthyridine dimer improved the binding property to the GGA/GGA motif as compared with non-amidated naphthyridine dimer.
Collapse
Affiliation(s)
- Tomonori Shibata
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
| |
Collapse
|
8
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. Signaling by LncRNAs: Structure, Cellular Homeostasis, and Disease Pathology. Cells 2022; 11:2517. [PMID: 36010595 PMCID: PMC9406440 DOI: 10.3390/cells11162517] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
The cellular signaling network involves co-ordinated regulation of numerous signaling molecules that aid the maintenance of cellular as well as organismal homeostasis. Aberrant signaling plays a major role in the pathophysiology of many diseases. Recent studies have unraveled the superfamily of long non-coding RNAs (lncRNAs) as critical signaling nodes in diverse signaling networks. Defective signaling by lncRNAs is emerging as a causative factor underlying the pathophysiology of many diseases. LncRNAs have been shown to be involved in the multiplexed regulation of diverse pathways through both genetic and epigenetic mechanisms. They can serve as decoys, guides, scaffolds, and effector molecules to regulate cell signaling. In comparison with the other classes of RNAs, lncRNAs possess unique structural modifications that contribute to their diversity in modes of action within the nucleus and cytoplasm. In this review, we summarize the structure and function of lncRNAs as well as their vivid mechanisms of action. Further, we provide insights into the role of lncRNAs in the pathogenesis of four major disease paradigms, namely cardiovascular diseases, neurological disorders, cancers, and the metabolic disease, diabetes mellitus. This review serves as a succinct treatise that could open windows to investigate the role of lncRNAs as novel therapeutic targets.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Korea
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Fakharzadeh A, Zhang J, Roland C, Sagui C. Novel eGZ-motif formed by regularly extruded guanine bases in a left-handed Z-DNA helix as a major motif behind CGG trinucleotide repeats. Nucleic Acids Res 2022; 50:4860-4876. [PMID: 35536254 PMCID: PMC9122592 DOI: 10.1093/nar/gkac339] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 12/19/2022] Open
Abstract
The expansion of d(CGG) trinucleotide repeats (TRs) lies behind several important neurodegenerative diseases. Atypical DNA secondary structures have been shown to trigger TR expansion: their characterization is important for a molecular understanding of TR disease. CD spectroscopy experiments in the last decade have unequivocally demonstrated that CGG runs adopt a left-handed Z-DNA conformation, whose features remain uncertain because it entails accommodating GG mismatches. In order to find this missing motif, we have carried out molecular dynamics (MD) simulations to explore all the possible Z-DNA helices that potentially form after the transition from B- to Z-DNA. Such helices combine either CpG or GpC Watson-Crick steps in Z-DNA form with GG-mismatch conformations set as either intrahelical or extrahelical; and participating in BZ or ZZ junctions or in alternately extruded conformations. Characterization of the stability and structural features (especially overall left-handedness, higher-temperature and steered MD simulations) identified two novel Z-DNA helices: the most stable one displays alternately extruded Gs, and is followed by a helix with symmetrically extruded ZZ junctions. The G-extrusion favors a seamless stacking of the Watson-Crick base pairs; extruded Gs favor syn conformations and display hydrogen-bonding and stacking interactions. Such conformations could have the potential to hijack the MMR complex, thus triggering further expansion.
Collapse
Affiliation(s)
- Ashkan Fakharzadeh
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Jiahui Zhang
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
10
|
Amato J, Iaccarino N, D'Aria F, D'Amico F, Randazzo A, Giancola C, Cesàro A, Di Fonzo S, Pagano B. Conformational plasticity of DNA secondary structures: probing the conversion between i-motif and hairpin species by circular dichroism and ultraviolet resonance Raman spectroscopies. Phys Chem Chem Phys 2022; 24:7028-7044. [PMID: 35258065 DOI: 10.1039/d2cp00058j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The promoter regions of important oncogenes such as BCL2 and KRAS contain GC-rich sequences that can form distinctive noncanonical DNA structures involved in the regulation of transcription: G-quadruplexes on the G-rich strand and i-motifs on the C-rich strand. Interestingly, BCL2 and KRAS promoter i-motifs are highly dynamic in nature and exist in a pH-dependent equilibrium with hairpin and even with hybrid i-motif/hairpin species. Herein, the effects of pH and presence of cell-mimicking molecular crowding conditions on conformational equilibria of the BCL2 and KRAS i-motif-forming sequences were investigated by ultraviolet resonance Raman (UVRR) and circular dichroism (CD) spectroscopies. Multivariate analysis of CD data was essential to model the presence and identity of the species involved. Analysis of UVRR spectra measured as a function of pH, performed also by the two-dimensional correlation spectroscopy (2D-COS) technique, showed the role of several functional groups in the DNA conformational transitions, and provided structural and dynamic information. Thus, the UVRR investigation of intramolecular interactions and of local and environmental dynamics in promoting the different species induced by the solution conditions provided valuable insights into i-motif conformational transitions. The combined use of the two spectroscopic tools is emphasized by the relevant possibility of working in the same DNA concentration range and by the heterospectral UVRR/CD 2D-COS analysis. The results of this study shed light on the factors that can influence at the molecular level the equilibrium between the different conformational species putatively involved in the oncogene expression.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Francesco D'Amico
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste, I-34149, Italy.
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Attilio Cesàro
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste, I-34149, Italy.
| | - Silvia Di Fonzo
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste, I-34149, Italy.
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| |
Collapse
|
11
|
Ngai CK, Lam SL, Lee HK, Guo P. A purine and a backbone discontinuous site alter the structure and thermal stability of DNA minidumbbells containing two pentaloops. FEBS Lett 2022; 596:826-840. [DOI: 10.1002/1873-3468.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Cheuk Kit Ngai
- Department of Chemistry The Chinese University of Hong Kong Shatin New Territories Hong Kong SAR China
| | - Sik Lok Lam
- Department of Chemistry The Chinese University of Hong Kong Shatin New Territories Hong Kong SAR China
| | - Hung Kay Lee
- Department of Chemistry The Chinese University of Hong Kong Shatin New Territories Hong Kong SAR China
| | - Pei Guo
- School of Biology and Biological Engineering South China University of Technology Guangzhou Guangdong 51006 China
| |
Collapse
|
12
|
Sharpe JL, Harper NS, Garner DR, West RJH. Modeling C9orf72-Related Frontotemporal Dementia and Amyotrophic Lateral Sclerosis in Drosophila. Front Cell Neurosci 2021; 15:770937. [PMID: 34744635 PMCID: PMC8566814 DOI: 10.3389/fncel.2021.770937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
An intronic hexanucleotide (GGGGCC) expansion in the C9orf72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In the decade following its discovery, much progress has been made in enhancing our understanding of how it precipitates disease. Both loss of function caused by reduced C9orf72 transcript levels, and gain of function mechanisms, triggered by the production of repetitive sense and antisense RNA and dipeptide repeat proteins, are thought to contribute to the toxicity. Drosophila models, with their unrivaled genetic tractability and short lifespan, have played a key role in developing our understanding of C9orf72-related FTD/ALS. There is no C9orf72 homolog in fly, and although this precludes investigations into loss of function toxicity, it is useful for elucidating mechanisms underpinning gain of function toxicity. To date there are a range of Drosophila C9orf72 models, encompassing different aspects of gain of function toxicity. In addition to pure repeat transgenes, which produce both repeat RNA and dipeptide repeat proteins (DPRs), RNA only models and DPR models have been generated to unpick the individual contributions of RNA and each dipeptide repeat protein to C9orf72 toxicity. In this review, we discuss how Drosophila models have shaped our understanding of C9orf72 gain of function toxicity, and address opportunities to utilize these models for further research.
Collapse
Affiliation(s)
- Joanne L. Sharpe
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Nikki S. Harper
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Duncan R. Garner
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Ryan J. H. West
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
13
|
Laneve P, Tollis P, Caffarelli E. RNA Deregulation in Amyotrophic Lateral Sclerosis: The Noncoding Perspective. Int J Mol Sci 2021; 22:10285. [PMID: 34638636 PMCID: PMC8508793 DOI: 10.3390/ijms221910285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
RNA metabolism is central to cellular physiopathology. Almost all the molecular pathways underpinning biological processes are affected by the events governing the RNA life cycle, ranging from transcription to degradation. The deregulation of these processes contributes to the onset and progression of human diseases. In recent decades, considerable efforts have been devoted to the characterization of noncoding RNAs (ncRNAs) and to the study of their role in the homeostasis of the nervous system (NS), where they are highly enriched. Acting as major regulators of gene expression, ncRNAs orchestrate all the steps of the differentiation programs, participate in the mechanisms underlying neural functions, and are crucially implicated in the development of neuronal pathologies, among which are neurodegenerative diseases. This review aims to explore the link between ncRNA dysregulation and amyotrophic lateral sclerosis (ALS), the most frequent motoneuron (MN) disorder in adults. Notably, defective RNA metabolism is known to be largely associated with this pathology, which is often regarded as an RNA disease. We also discuss the potential role that these transcripts may play as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Paolo Tollis
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy;
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| |
Collapse
|
14
|
Zhou S, Yu X, Wang M, Meng Y, Song D, Yang H, Wang D, Bi J, Xu S. Long Non-coding RNAs in Pathogenesis of Neurodegenerative Diseases. Front Cell Dev Biol 2021; 9:719247. [PMID: 34527672 PMCID: PMC8435612 DOI: 10.3389/fcell.2021.719247] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence addresses the link between the aberrant epigenetic regulation of gene expression and numerous diseases including neurological disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). LncRNAs, a class of ncRNAs, have length of 200 nt or more, some of which crucially regulate a variety of biological processes such as epigenetic-mediated chromatin remodeling, mRNA stability, X-chromosome inactivation and imprinting. Aberrant regulation of the lncRNAs contributes to pathogenesis of many diseases, such as the neurological disorders at the transcriptional and post-transcriptional levels. In this review, we highlight the latest research progress on the contributions of some lncRNAs to the pathogenesis of neurodegenerative diseases via varied mechanisms, such as autophagy regulation, Aβ deposition, neuroinflammation, Tau phosphorylation and α-synuclein aggregation. Meanwhile, we also address the potential challenges on the lncRNAs-mediated epigenetic study to further understand the molecular mechanism of the neurodegenerative diseases.
Collapse
Affiliation(s)
- Shiyue Zhou
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Department of Nutrition, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yujie Meng
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dandan Song
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Yang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dewei Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
15
|
Božič J, Motaln H, Janež AP, Markič L, Tripathi P, Yamoah A, Aronica E, Lee YB, Heilig R, Fischer R, Thompson AJ, Goswami A, Rogelj B. Interactome screening of C9orf72 dipeptide repeats reveals VCP sequestration and functional impairment by polyGA. Brain 2021; 145:684-699. [PMID: 34534264 PMCID: PMC9014755 DOI: 10.1093/brain/awab300] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Repeat expansions in the C9orf72 gene are a common cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, two devastating neurodegenerative disorders. One of the proposed mechanisms of GGGGCC repeat expansion is their translation into non-canonical dipeptide repeats, which can then accumulate as aggregates and contribute to these pathologies. There are five different dipeptide repeat proteins (polyGA, polyGR, polyPR, polyPA and polyGP), some of which are known to be neurotoxic. In the present study, we used BioID2 proximity labelling to identify the interactomes of all five dipeptide repeat proteins consisting of 125 repeats each. We identified 113 interacting partners for polyGR, 90 for polyGA, 106 for polyPR, 25 for polyPA and 27 for polyGP. Gene Ontology enrichment analysis of the proteomic data revealed that these target interaction partners are involved in a variety of functions, including protein translation, signal transduction pathways, protein catabolic processes, amide metabolic processes and RNA-binding. Using autopsy brain tissue from patients with C9orf72 expansion complemented with cell culture analysis, we evaluated the interactions between polyGA and valosin containing protein (VCP). Functional analysis of this interaction revealed sequestration of VCP with polyGA aggregates, altering levels of soluble valosin-containing protein. VCP also functions in autophagy processes, and consistent with this, we observed altered autophagy in cells expressing polyGA. We also observed altered co-localization of polyGA aggregates and p62 in cells depleted of VCP. All together, these data suggest that sequestration of VCP with polyGA aggregates contributes to the loss of VCP function, and consequently to alterations in autophagy processes in C9orf72 expansion disorders.
Collapse
Affiliation(s)
- Janja Božič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Helena Motaln
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Anja Pucer Janež
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Lara Markič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Priyanka Tripathi
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Alfred Yamoah
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Youn-Bok Lee
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 8AF, UK
| | - Raphael Heilig
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Biomedical Research Institute (BRIS), Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
16
|
Novak V, Rogelj B, Župunski V. Therapeutic Potential of Polyphenols in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Antioxidants (Basel) 2021; 10:antiox10081328. [PMID: 34439576 PMCID: PMC8389294 DOI: 10.3390/antiox10081328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are severe neurodegenerative disorders that belong to a common disease spectrum. The molecular and cellular aetiology of the spectrum is a highly complex encompassing dysfunction in many processes, including mitochondrial dysfunction and oxidative stress. There is a paucity of treatment options aside from therapies with subtle effects on the post diagnostic lifespan and symptom management. This presents great interest and necessity for the discovery and development of new compounds and therapies with beneficial effects on the disease. Polyphenols are secondary metabolites found in plant-based foods and are well known for their antioxidant activity. Recent research suggests that they also have a diverse array of neuroprotective functions that could lead to better treatments for neurodegenerative diseases. We present an overview of the effects of various polyphenols in cell line and animal models of ALS/FTD. Furthermore, possible mechanisms behind actions of the most researched compounds (resveratrol, curcumin and green tea catechins) are discussed.
Collapse
Affiliation(s)
- Valentina Novak
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
| | - Boris Rogelj
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Vera Župunski
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
- Correspondence:
| |
Collapse
|
17
|
Herbert A. The Simple Biology of Flipons and Condensates Enhances the Evolution of Complexity. Molecules 2021; 26:molecules26164881. [PMID: 34443469 PMCID: PMC8400190 DOI: 10.3390/molecules26164881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
The classical genetic code maps nucleotide triplets to amino acids. The associated sequence composition is complex, representing many elaborations during evolution of form and function. Other genomic elements code for the expression and processing of RNA transcripts. However, over 50% of the human genome consists of widely dispersed repetitive sequences. Among these are simple sequence repeats (SSRs), representing a class of flipons, that under physiological conditions, form alternative nucleic acid conformations such as Z-DNA, G4 quartets, I-motifs, and triplexes. Proteins that bind in a structure-specific manner enable the seeding of condensates with the potential to regulate a wide range of biological processes. SSRs also encode the low complexity peptide repeats to patch condensates together, increasing the number of combinations possible. In situations where SSRs are transcribed, SSR-specific, single-stranded binding proteins may further impact condensate formation. Jointly, flipons and patches speed evolution by enhancing the functionality of condensates. Here, the focus is on the selection of SSR flipons and peptide patches that solve for survival under a wide range of environmental contexts, generating complexity with simple parts.
Collapse
Affiliation(s)
- Alan Herbert
- Unit 3412, Discovery, InsideOutBio 42 8th Street, Charlestown, MA 02129, USA
| |
Collapse
|
18
|
Supramolecular Polymorphism of (G 4C 2) n Repeats Associated with ALS and FTD. Int J Mol Sci 2021; 22:ijms22094532. [PMID: 33926081 PMCID: PMC8123662 DOI: 10.3390/ijms22094532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
Guanine-rich DNA sequences self-assemble into highly stable fourfold structures known as DNA-quadruplexes (or G-quadruplexes). G-quadruplexes have furthermore the tendency to associate into one-dimensional supramolecular aggregates termed G-wires. We studied the formation of G-wires in solutions of the sequences d(G4C2)n with n = 1, 2, and 4. The d(G4C2)n repeats, which are associated with some fatal neurological disorders, especially amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), represent a challenging research topic due to their extensive structural polymorphism. We used dynamic light scattering (DLS) to measure translational diffusion coefficients and consequently resolve the length of the larger aggregates formed in solution. We found that all three sequences assemble into longer structures than previously reported. The d(G4C2) formed extremely long G-wires with lengths beyond 80 nm. The d(G4C2)2 formed a relatively short stacked dimeric quadruplex, while d(G4C2)4 formed multimers corresponding to seven stacked intramolecular quadruplexes. Profound differences between the multimerization properties of the investigated sequences were also confirmed by the AFM imaging of surface films. We propose that π-π stacking of the basic G-quadruplex units plays a vital role in the multimerization mechanism, which might be relevant for transformation from the regular medium-length to disease-related long d(G4C2)n repeats.
Collapse
|
19
|
Ajjugal Y, Kolimi N, Rathinavelan T. Secondary structural choice of DNA and RNA associated with CGG/CCG trinucleotide repeat expansion rationalizes the RNA misprocessing in FXTAS. Sci Rep 2021; 11:8163. [PMID: 33854084 PMCID: PMC8046799 DOI: 10.1038/s41598-021-87097-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
CGG tandem repeat expansion in the 5'-untranslated region of the fragile X mental retardation-1 (FMR1) gene leads to unusual nucleic acid conformations, hence causing genetic instabilities. We show that the number of G…G (in CGG repeat) or C…C (in CCG repeat) mismatches (other than A…T, T…A, C…G and G…C canonical base pairs) dictates the secondary structural choice of the sense and antisense strands of the FMR1 gene and their corresponding transcripts in fragile X-associated tremor/ataxia syndrome (FXTAS). The circular dichroism (CD) spectra and electrophoretic mobility shift assay (EMSA) reveal that CGG DNA (sense strand of the FMR1 gene) and its transcript favor a quadruplex structure. CD, EMSA and molecular dynamics (MD) simulations also show that more than four C…C mismatches cannot be accommodated in the RNA duplex consisting of the CCG repeat (antisense transcript); instead, it favors an i-motif conformational intermediate. Such a preference for unusual secondary structures provides a convincing justification for the RNA foci formation due to the sequestration of RNA-binding proteins to the bidirectional transcripts and the repeat-associated non-AUG translation that are observed in FXTAS. The results presented here also suggest that small molecule modulators that can destabilize FMR1 CGG DNA and RNA quadruplex structures could be promising candidates for treating FXTAS.
Collapse
Affiliation(s)
- Yogeeshwar Ajjugal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | - Narendar Kolimi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | | |
Collapse
|
20
|
Wallace AD, Sasani TA, Swanier J, Gates BL, Greenland J, Pedersen BS, Varley KE, Quinlan AR. CaBagE: A Cas9-based Background Elimination strategy for targeted, long-read DNA sequencing. PLoS One 2021; 16:e0241253. [PMID: 33830997 PMCID: PMC8031414 DOI: 10.1371/journal.pone.0241253] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 11/29/2022] Open
Abstract
A substantial fraction of the human genome is difficult to interrogate with short-read DNA sequencing technologies due to paralogy, complex haplotype structures, or tandem repeats. Long-read sequencing technologies, such as Oxford Nanopore's MinION, enable direct measurement of complex loci without introducing many of the biases inherent to short-read methods, though they suffer from relatively lower throughput. This limitation has motivated recent efforts to develop amplification-free strategies to target and enrich loci of interest for subsequent sequencing with long reads. Here, we present CaBagE, a method for target enrichment that is efficient and useful for sequencing large, structurally complex targets. The CaBagE method leverages the stable binding of Cas9 to its DNA target to protect desired fragments from digestion with exonuclease. Enriched DNA fragments are then sequenced with Oxford Nanopore's MinION long-read sequencing technology. Enrichment with CaBagE resulted in a median of 116X coverage (range 39-416) of target loci when tested on five genomic targets ranging from 4-20kb in length using healthy donor DNA. Four cancer gene targets were enriched in a single reaction and multiplexed on a single MinION flow cell. We further demonstrate the utility of CaBagE in two ALS patients with C9orf72 short tandem repeat expansions to produce genotype estimates commensurate with genotypes derived from repeat-primed PCR for each individual. With CaBagE there is a physical enrichment of on-target DNA in a given sample prior to sequencing. This feature allows adaptability across sequencing platforms and potential use as an enrichment strategy for applications beyond sequencing. CaBagE is a rapid enrichment method that can illuminate regions of the 'hidden genome' underlying human disease.
Collapse
Affiliation(s)
- Amelia D. Wallace
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Utah Center for Genetic Discovery, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Thomas A. Sasani
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Jordan Swanier
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Brooke L. Gates
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Jeff Greenland
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Brent S. Pedersen
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Utah Center for Genetic Discovery, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Katherine E. Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Aaron R. Quinlan
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Utah Center for Genetic Discovery, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biomedical Informatics, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
21
|
Vangoor VR, Gomes‐Duarte A, Pasterkamp RJ. Long non-coding RNAs in motor neuron development and disease. J Neurochem 2021; 156:777-801. [PMID: 32970857 PMCID: PMC8048821 DOI: 10.1111/jnc.15198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) are RNAs that exceed 200 nucleotides in length and that are not translated into proteins. Thousands of lncRNAs have been identified with functions in processes such as transcription and translation regulation, RNA processing, and RNA and protein sponging. LncRNAs show prominent expression in the nervous system and have been implicated in neural development, function and disease. Recent work has begun to report on the expression and roles of lncRNAs in motor neurons (MNs). The cell bodies of MNs are located in cortex, brainstem or spinal cord and their axons project into the brainstem, spinal cord or towards peripheral muscles, thereby controlling important functions such as movement, breathing and swallowing. Degeneration of MNs is a pathological hallmark of diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. LncRNAs influence several aspects of MN development and disruptions in these lncRNA-mediated effects are proposed to contribute to the pathogenic mechanisms underlying MN diseases (MNDs). Accumulating evidence suggests that lncRNAs may comprise valuable therapeutic targets for different MNDs. In this review, we discuss the role of lncRNAs (including circular RNAs [circRNAs]) in the development of MNs, discuss how lncRNAs may contribute to MNDs and provide directions for future research.
Collapse
Affiliation(s)
- Vamshidhar R. Vangoor
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Andreia Gomes‐Duarte
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
22
|
Malnar M, Rogelj B. SFPQ regulates the accumulation of RNA foci and dipeptide repeat proteins from the expanded repeat mutation in C9orf72. J Cell Sci 2021; 134:jcs.256602. [PMID: 33495278 PMCID: PMC7904093 DOI: 10.1242/jcs.256602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
The expanded GGGGCC repeat mutation in the C9orf72 gene is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansion is transcribed to sense and antisense RNA, which form RNA foci and bind cellular proteins. This mechanism of action is considered cytotoxic. Translation of the expanded RNA transcripts also leads to the accumulation of toxic dipeptide repeat proteins (DPRs). The RNA-binding protein splicing factor proline and glutamine rich (SFPQ), which is being increasingly associated with ALS and FTD pathology, binds to sense RNA foci. Here, we show that SFPQ plays an important role in the C9orf72 mutation. Overexpression of SFPQ resulted in higher numbers of both sense and antisense RNA foci and DPRs in transfected human embryonic kidney (HEK) cells. Conversely, reduced SPFQ levels resulted in lower numbers of RNA foci and DPRs in both transfected HEK cells and C9orf72 mutation-positive patient-derived fibroblasts and lymphoblasts. Therefore, we have revealed a role of SFPQ in regulating the C9orf72 mutation that has implications for understanding and developing novel therapeutic targets for ALS and FTD. This article has an associated First Person interview with the first author of the paper. Summary: Expression level modulation of the core paraspeckle protein SFPQ regulates sense and antisense RNA foci and dipeptide repeat protein accumulation in the C9orf72 mutation; SFPQ could be a therapeutic target in C9orf72 ALS and FTD.
Collapse
Affiliation(s)
- Mirjana Malnar
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.,Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia .,Biomedical Research Institute, 1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Ghasemi M, Keyhanian K, Douthwright C. Glial Cell Dysfunction in C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2021; 10:cells10020249. [PMID: 33525344 PMCID: PMC7912327 DOI: 10.3390/cells10020249] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of the chromosome 9 open reading frame 72 (C9orf72) repeat expansion mutation in 2011 as the most common genetic abnormality in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) and frontotemporal dementia (FTD), progress in understanding the signaling pathways related to this mutation can only be described as intriguing. Two major theories have been suggested-(i) loss of function or haploinsufficiency and (ii) toxic gain of function from either C9orf72 repeat RNA or dipeptide repeat proteins (DPRs) generated from repeat-associated non-ATG (RAN) translation. Each theory has provided various signaling pathways that potentially participate in the disease progression. Dysregulation of the immune system, particularly glial cell dysfunction (mainly microglia and astrocytes), is demonstrated to play a pivotal role in both loss and gain of function theories of C9orf72 pathogenesis. In this review, we discuss the pathogenic roles of glial cells in C9orf72 ALS/FTD as evidenced by pre-clinical and clinical studies showing the presence of gliosis in C9orf72 ALS/FTD, pathologic hallmarks in glial cells, including TAR DNA-binding protein 43 (TDP-43) and p62 aggregates, and toxicity of C9orf72 glial cells. A better understanding of these pathways can provide new insights into the development of therapies targeting glial cell abnormalities in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Correspondence: ; Tel.: +1-774-441-7726; Fax: +1-508-856-4485
| | | | | |
Collapse
|
24
|
Brown SL, Kendrick S. The i-Motif as a Molecular Target: More Than a Complementary DNA Secondary Structure. Pharmaceuticals (Basel) 2021; 14:ph14020096. [PMID: 33513764 PMCID: PMC7911047 DOI: 10.3390/ph14020096] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/25/2022] Open
Abstract
Stretches of cytosine-rich DNA are capable of adopting a dynamic secondary structure, the i-motif. When within promoter regions, the i-motif has the potential to act as a molecular switch for controlling gene expression. However, i-motif structures in genomic areas of repetitive nucleotide sequences may play a role in facilitating or hindering expansion of these DNA elements. Despite research on the i-motif trailing behind the complementary G-quadruplex structure, recent discoveries including the identification of a specific i-motif antibody are pushing this field forward. This perspective reviews initial and current work characterizing the i-motif and providing insight into the biological function of this DNA structure, with a focus on how the i-motif can serve as a molecular target for developing new therapeutic approaches to modulate gene expression and extension of repetitive DNA.
Collapse
|
25
|
Riemslagh FW, van der Toorn EC, Verhagen RFM, Maas A, Bosman LWJ, Hukema RK, Willemsen R. Inducible expression of human C9ORF72 36x G 4C 2 hexanucleotide repeats is sufficient to cause RAN translation and rapid muscular atrophy in mice. Dis Model Mech 2021; 14:dmm.044842. [PMID: 33431483 PMCID: PMC7903916 DOI: 10.1242/dmm.044842] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
The hexanucleotide G4C2 repeat expansion in the first intron of the C9ORF72 gene explains the majority of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) cases. Numerous studies have indicated the toxicity of dipeptide repeats (DPRs) which are produced via repeat-associated non-AUG (RAN) translation from the repeat expansion and accumulate in the brain of C9FTD/ALS patients. Mouse models expressing the human C9ORF72 repeat and/or DPRs show variable pathological, functional, and behavioral characteristics of FTD and ALS. Here, we report a new Tet-on inducible mouse model that expresses 36x pure G4C2 repeats with 100bp upstream and downstream human flanking regions. Brain specific expression causes the formation of sporadic sense DPRs aggregates upon 6 months dox induction but no apparent neurodegeneration. Expression in the rest of the body evokes abundant sense DPRs in multiple organs, leading to weight loss, neuromuscular junction disruption, myopathy, and a locomotor phenotype within the time frame of four weeks. We did not observe any RNA foci or pTDP-43 pathology. Accumulation of DPRs and the myopathy phenotype could be prevented when 36x G4C2 repeat expression was stopped after 1 week. After 2 weeks of expression, the phenotype could not be reversed, even though DPR levels were reduced. In conclusion, expression of 36x pure G4C2 repeats including 100bp human flanking regions is sufficient for RAN translation of sense DPRs and evokes a functional locomotor phenotype. Our inducible mouse model suggests early diagnosis and treatment are important for C9FTD/ALS patients.
Collapse
Affiliation(s)
- F W Riemslagh
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - E C van der Toorn
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - R F M Verhagen
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A Maas
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - L W J Bosman
- Department of Neuroscience, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - R K Hukema
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - R Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Guo P, Lam SL. Minidumbbell structures formed by ATTCT pentanucleotide repeats in spinocerebellar ataxia type 10. Nucleic Acids Res 2020; 48:7557-7568. [PMID: 32520333 PMCID: PMC7367182 DOI: 10.1093/nar/gkaa495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 01/02/2023] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is a progressive genetic disorder caused by ATTCT pentanucleotide repeat expansions in intron 9 of the ATXN10 gene. ATTCT repeats have been reported to form unwound secondary structures which are likely linked to large-scale repeat expansions. In this study, we performed high-resolution nuclear magnetic resonance spectroscopic investigations on DNA sequences containing two to five ATTCT repeats. Strikingly, we found the first two repeats of all these sequences well folded into highly compact minidumbbell (MDB) structures. The 3D solution structure of the sequence containing two ATTCT repeats was successfully determined, revealing the MDB comprises a regular TTCTA and a quasi TTCT/A pentaloops with extensive stabilizing loop-loop interactions. We further carried out in vitro primer extension assays to examine if the MDB formed in the primer could escape from the proofreading function of DNA polymerase. Results showed that when the MDB was formed at 5-bp or farther away from the priming site, it was able to escape from the proofreading by Klenow fragment of DNA polymerase I and thus retained in the primer. The intriguing structural findings bring about new insights into the origin of genetic instability in SCA10.
Collapse
Affiliation(s)
- Pei Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
27
|
McEachin ZT, Parameswaran J, Raj N, Bassell GJ, Jiang J. RNA-mediated toxicity in C9orf72 ALS and FTD. Neurobiol Dis 2020; 145:105055. [PMID: 32829028 DOI: 10.1016/j.nbd.2020.105055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
A GGGGCC hexanucleotide repeat expansion in the first intron of C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Compelling evidence suggests that gain of toxicity from the bidirectionally transcribed repeat expanded RNAs plays a central role in disease pathogenesis. Two potential mechanisms have been proposed including RNA-mediated toxicity and/or the production of toxic dipeptide repeat proteins. In this review, we focus on the role of RNA mediated toxicity in ALS/FTD caused by the C9orf72 mutation and discuss arguments for and against this mechanism. In addition, we summarize how G4C2 repeat RNAs can elicit toxicity and potential therapeutic strategies to mitigate RNA-mediated toxicity.
Collapse
Affiliation(s)
- Zachary T McEachin
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Laboratory for Translational Cell Biology, Emory University, Atlanta, GA 30322, USA.
| | | | - Nisha Raj
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Laboratory for Translational Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Laboratory for Translational Cell Biology, Emory University, Atlanta, GA 30322, USA; Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Jie Jiang
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
28
|
Chu B, Zhang D, Paukstelis PJ. A DNA G-quadruplex/i-motif hybrid. Nucleic Acids Res 2020; 47:11921-11930. [PMID: 31724696 PMCID: PMC7145706 DOI: 10.1093/nar/gkz1008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/08/2019] [Accepted: 11/08/2019] [Indexed: 01/23/2023] Open
Abstract
DNA can form many structures beyond the canonical Watson–Crick double helix. It is now clear that noncanonical structures are present in genomic DNA and have biological functions. G-rich G-quadruplexes and C-rich i-motifs are the most well-characterized noncanonical DNA motifs that have been detected in vivo with either proscribed or postulated biological roles. Because of their independent sequence requirements, these structures have largely been considered distinct types of quadruplexes. Here, we describe the crystal structure of the DNA oligonucleotide, d(CCAGGCTGCAA), that self-associates to form a quadruplex structure containing two central antiparallel G-tetrads and six i-motif C–C+ base pairs. Solution studies suggest a robust structural motif capable of assembling as a tetramer of individual strands or as a dimer when composed of tandem repeats. This hybrid structure highlights the growing structural diversity of DNA and suggests that biological systems may harbor many functionally important non-duplex structures.
Collapse
Affiliation(s)
- Betty Chu
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Daoning Zhang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Paul J Paukstelis
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
29
|
Chen KW, Chen JA. Functional Roles of Long Non-coding RNAs in Motor Neuron Development and Disease. J Biomed Sci 2020; 27:38. [PMID: 32093746 PMCID: PMC7041250 DOI: 10.1186/s12929-020-00628-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained increasing attention as they exhibit highly tissue- and cell-type specific expression patterns. LncRNAs are highly expressed in the central nervous system and their roles in the brain have been studied intensively in recent years, but their roles in the spinal motor neurons (MNs) are largely unexplored. Spinal MN development is controlled by precise expression of a gene regulatory network mediated spatiotemporally by transcription factors, representing an elegant paradigm for deciphering the roles of lncRNAs during development. Moreover, many MN-related neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), are associated with RNA metabolism, yet the link between MN-related diseases and lncRNAs remains obscure. In this review, we summarize lncRNAs known to be involved in MN development and disease, and discuss their potential future therapeutic applications.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
30
|
Takahashi S, Bhattacharjee S, Ghosh S, Sugimoto N, Bhowmik S. Preferential targeting cancer-related i-motif DNAs by the plant flavonol fisetin for theranostics applications. Sci Rep 2020; 10:2504. [PMID: 32054927 PMCID: PMC7018961 DOI: 10.1038/s41598-020-59343-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/14/2020] [Indexed: 12/01/2022] Open
Abstract
The relationship of i-motif DNAs with cancer has prompted the development of specific ligands to detect and regulate their formation. Some plant flavonols show unique fluorescence and anti-cancer properties, which suggest the utility of the theranostics approach to cancer therapy related to i-motif DNA. We investigated the effect of the plant flavonol, fisetin (Fis), on the physicochemical property of i-motif DNAs. Binding of Fis to the i-motif from the promoter region of the human vascular endothelial growth factor (VEGF) gene dramatically induced the excited state intramolecular proton transfer (ESIPT) reaction that significantly enhanced the intensity of the tautomer emission band of Fis. This unique response was due to the coincidence of the structural change from i-motif to the hairpin-like structure which is stabilized via putative Watson-Crick base pairs between some guanines within the loop region of the i-motif and cytosines in the structure. As a result, the VEGF i-motif did not act as a replication block in the presence of Fis, which indicates the applicability of Fis for the regulation of gene expression of VEGF. The fluorescence and biological properties of Fis may be utilised for theranostics applications for cancers related to a specific cancer-related gene, such as VEGF.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Snehasish Bhattacharjee
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, University College of Science, 92, A.P.C. Road, Kolkata, 700009, India
| | - Saptarshi Ghosh
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan. .,FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, University College of Science, 92, A.P.C. Road, Kolkata, 700009, India.
| |
Collapse
|
31
|
Božič T, Zalar M, Rogelj B, Plavec J, Šket P. Structural Diversity of Sense and Antisense RNA Hexanucleotide Repeats Associated with ALS and FTLD. Molecules 2020; 25:molecules25030525. [PMID: 31991801 PMCID: PMC7037139 DOI: 10.3390/molecules25030525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
The hexanucleotide expansion GGGGCC located in C9orf72 gene represents the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). Since the discovery one of the non-exclusive mechanisms of expanded hexanucleotide G4C2 repeats involved in ALS and FTLD is RNA toxicity, which involves accumulation of pathological sense and antisense RNA transcripts. Formed RNA foci sequester RNA-binding proteins, causing their mislocalization and, thus, diminishing their biological function. Therefore, structures adopted by pathological RNA transcripts could have a key role in pathogenesis of ALS and FTLD. Utilizing NMR spectroscopy and complementary methods, we examined structures adopted by both guanine-rich sense and cytosine-rich antisense RNA oligonucleotides with four hexanucleotide repeats. While both oligonucleotides tend to form dimers and hairpins, the equilibrium of these structures differs with antisense oligonucleotide being more sensitive to changes in pH and sense oligonucleotide to temperature. In the presence of K+ ions, guanine-rich sense RNA oligonucleotide also adopts secondary structures called G-quadruplexes. Here, we also observed, for the first time, that antisense RNA oligonucleotide forms i-motifs under specific conditions. Moreover, simultaneous presence of sense and antisense RNA oligonucleotides promotes formation of heterodimer. Studied structural diversity of sense and antisense RNA transcripts not only further depicts the complex nature of neurodegenerative diseases but also reveals potential targets for drug design in treatment of ALS and FTLD.
Collapse
Affiliation(s)
- Tim Božič
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (T.B.); (M.Z.)
| | - Matja Zalar
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (T.B.); (M.Z.)
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia;
- Biomedical Research Institute BRIS, Puhova 10, SI-1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (T.B.); (M.Z.)
- EN-FIST Center of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
- Correspondence: (P.Š.); (J.P.); Tel.: +386-1-4760223 (P.Š.); +386-1-4760353 (J.P.)
| | - Primož Šket
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (T.B.); (M.Z.)
- Correspondence: (P.Š.); (J.P.); Tel.: +386-1-4760223 (P.Š.); +386-1-4760353 (J.P.)
| |
Collapse
|
32
|
Chasing Particularities of Guanine- and Cytosine-Rich DNA Strands. Molecules 2020; 25:molecules25030434. [PMID: 31972988 PMCID: PMC7037129 DOI: 10.3390/molecules25030434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/17/2023] Open
Abstract
By substitution of natural nucleotides by their abasic analogs (i.e., 1',2'-dideoxyribose phosphate residue) at critically chosen positions within 27-bp DNA constructs originating from the first intron of N-myc gene, we hindered hybridization within the guanine- and cytosine-rich central region and followed formation of non-canonical structures. The impeded hybridization between the complementary strands leads to time-dependent structural transformations of guanine-rich strand that are herein characterized with the use of solution-state NMR, CD spectroscopy, and native polyacrylamide gel electrophoresis. Moreover, the DNA structural changes involve transformation of intra- into inter-molecular G-quadruplex structures that are thermodynamically favored. Intriguingly, the transition occurs in the presence of complementary cytosine-rich strands highlighting the inability of Watson-Crick base-pairing to preclude the transformation between G-quadruplex structures that occurs via intertwining mechanism and corroborates a role of G-quadruplex structures in DNA recombination processes.
Collapse
|
33
|
Jiang J, Ravits J. Pathogenic Mechanisms and Therapy Development for C9orf72 Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Neurotherapeutics 2019; 16:1115-1132. [PMID: 31667754 PMCID: PMC6985338 DOI: 10.1007/s13311-019-00797-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In 2011, a hexanucleotide repeat expansion in the first intron of the C9orf72 gene was identified as the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The proposed disease mechanisms include loss of C9orf72 function and gain of toxicity from the bidirectionally transcribed repeat-containing RNAs. Over the last few years, substantial progress has been made to determine the contribution of loss and gain of function in disease pathogenesis. The extensive body of molecular, cellular, animal, and human neuropathological studies is conflicted, but the predominance of evidence favors gain of toxicity as the main pathogenic mechanism for C9orf72 repeat expansions. Alterations in several downstream cellular functions, such as nucleocytoplasmic transport and autophagy, are implicated. Exciting progress has also been made in therapy development targeting this mutation, such as by antisense oligonucleotide therapies targeting sense transcripts and small molecules targeting nucleocytoplasmic transport, and these are now in phase 1 clinical trials.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA.
| | - John Ravits
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
34
|
Truong THA, Winnerdy FR, Phan AT. An Unprecedented Knot‐like G‐Quadruplex Peripheral Motif. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thi Hong Anh Truong
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- NTU Institute of Structural BiologyNanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
35
|
Truong THA, Winnerdy FR, Phan AT. An Unprecedented Knot‐like G‐Quadruplex Peripheral Motif. Angew Chem Int Ed Engl 2019; 58:13834-13839. [DOI: 10.1002/anie.201907740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Thi Hong Anh Truong
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- NTU Institute of Structural BiologyNanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
36
|
Abstract
The discovery that repeat expansions in the C9orf72 gene are a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has revolutionized our understanding of these diseases. Substantial headway has been made in characterizing C9orf72-mediated disease and unravelling its underlying aetiopathogenesis. Three main disease mechanisms have been proposed: loss of function of the C9orf72 protein and toxic gain of function from C9orf72 repeat RNA or from dipeptide repeat proteins produced by repeat-associated non-ATG translation. Several downstream processes across a range of cellular functions have also been implicated. In this article, we review the pathological and mechanistic features of C9orf72-associated FTD and ALS (collectively termed C9FTD/ALS), the model systems used to study these conditions, and the probable initiators of downstream disease mechanisms. We suggest that a combination of upstream mechanisms involving both loss and gain of function and downstream cellular pathways involving both cell-autonomous and non-cell-autonomous effects contributes to disease progression.
Collapse
Affiliation(s)
- Rubika Balendra
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, London, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK. .,UK Dementia Research Institute at UCL, UCL Institute of Neurology, London, UK.
| |
Collapse
|
37
|
Brcic J, Plavec J. NMR structure of a G-quadruplex formed by four d(G4C2) repeats: insights into structural polymorphism. Nucleic Acids Res 2019; 46:11605-11617. [PMID: 30277522 PMCID: PMC6265483 DOI: 10.1093/nar/gky886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), is a largely increased number of d(G4C2)n•(G2C4)n repeats located in the non-coding region of C9orf72 gene. Non-canonical structures, including G-quadruplexes, formed within expanded repeats have been proposed to drive repeat expansion and pathogenesis of ALS and FTD. Oligonucleotide d[(G4C2)3G4], which represents the shortest oligonucleotide model of d(G4C2) repeats with the ability to form a unimolecular G-quadruplex, forms two major G-quadruplex structures in addition to several minor species which coexist in solution with K+ ions. Herein, we used solution-state NMR to determine the high-resolution structure of one of the major G-quadruplex species adopted by d[(G4C2)3G4]. Structural characterization of the G-quadruplex named AQU was facilitated by a single substitution of dG with 8Br-dG at position 21 and revealed an antiparallel fold composed of four G-quartets and three lateral C-C loops. The G-quadruplex exhibits high thermal stability and is favored kinetically and under slightly acidic conditions. An unusual structural element distinct from a C-quartet is observed in the structure. Two C•C base pairs are stacked on the nearby G-quartet and are involved in a dynamic equilibrium between symmetric N3-amino and carbonyl-amino geometries and protonated C+•C state.
Collapse
Affiliation(s)
- Jasna Brcic
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana SI-1000, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana SI-1000, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana SI-1000, Slovenia.,EN-FIST Center of Excellence, Ljubljana SI-1000, Slovenia
| |
Collapse
|
38
|
Bajc Česnik A, Darovic S, Prpar Mihevc S, Štalekar M, Malnar M, Motaln H, Lee YB, Mazej J, Pohleven J, Grosch M, Modic M, Fonovič M, Turk B, Drukker M, Shaw CE, Rogelj B. Nuclear RNA foci from C9ORF72 expansion mutation form paraspeckle-like bodies. J Cell Sci 2019; 132:jcs.224303. [PMID: 30745340 DOI: 10.1242/jcs.224303] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
The GGGGCC (G4C2) repeat expansion mutation in the C9ORF72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Transcription of the repeat and formation of nuclear RNA foci, which sequester specific RNA-binding proteins, is one of the possible pathological mechanisms. Here, we show that (G4C2) n repeat RNA predominantly associates with essential paraspeckle proteins SFPQ, NONO, RBM14, FUS and hnRNPH and colocalizes with known paraspeckle-associated RNA hLinc-p21. As formation of paraspeckles in motor neurons has been associated with early phases of ALS, we investigated the extent of similarity between paraspeckles and (G4C2) n RNA foci. Overexpression of (G4C2)72 RNA results in their increased number and colocalization with SFPQ-stained nuclear bodies. These paraspeckle-like (G4C2)72 RNA foci form independently of the known paraspeckle scaffold, the long non-coding RNA NEAT1 Moreover, the knockdown of SFPQ protein in C9ORF72 expansion mutation-positive fibroblasts significantly reduces the number of (G4C2) n RNA foci. In conclusion, (G4C2) n RNA foci have characteristics of paraspeckles, which suggests that both RNA foci and paraspeckles play roles in FTD and ALS, and implies approaches for regulation of their formation.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana 1000, Slovenia.,Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Simona Darovic
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana 1000, Slovenia.,Biomedical Research Institute BRIS, Ljubljana 1000, Slovenia
| | - Sonja Prpar Mihevc
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Maja Štalekar
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana 1000, Slovenia.,Biomedical Research Institute BRIS, Ljubljana 1000, Slovenia
| | - Mirjana Malnar
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana 1000, Slovenia.,Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Youn-Bok Lee
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King's College London, London SE5 9RT, UK
| | - Julija Mazej
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana 1000, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Jure Pohleven
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Markus Grosch
- Helmholtz Center Munich, Institute of Stem Cell Research, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Miha Modic
- Helmholtz Center Munich, Institute of Stem Cell Research, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Marko Fonovič
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Micha Drukker
- Helmholtz Center Munich, Institute of Stem Cell Research, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King's College London, London SE5 9RT, UK
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana 1000, Slovenia .,Biomedical Research Institute BRIS, Ljubljana 1000, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
39
|
pH-driven conformational switch between non-canonical DNA structures in a C-rich domain of EGFR promoter. Sci Rep 2019; 9:1210. [PMID: 30718769 PMCID: PMC6362134 DOI: 10.1038/s41598-018-37968-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023] Open
Abstract
EGFR is an oncogene that encodes for a trans-membrane tyrosine kinase receptor. Its mis-regulation is associated to several human cancers that, consistently, can be treated by selective tyrosine kinase inhibitors. The proximal promoter of EGFR contains a G-rich domain located at 272 bases upstream the transcription start site. We previously proved it folds into two main interchanging G-quadruplex structures, one of parallel and one of hybrid topology. Here we present the first evidences supporting the ability of the complementary C-rich strand (EGFR-272_C) to assume an intramolecular i-Motif (iM) structure that, according to the experimental conditions (pH, presence of co-solvent and salts), can coexist with a different arrangement we referred to as a hairpin. The herein identified iM efficiently competes with the canonical pairing of the two complementary strands, indicating it as a potential novel target for anticancer therapies. A preliminary screening for potential binders identified some phenanthroline derivatives as able to target EGFR-272_C at multiple binding sites when it is folded into an iM.
Collapse
|
40
|
Debnath M, Fatma K, Dash J. Chemical Regulation of DNA i‐Motifs for Nanobiotechnology and Therapeutics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Manish Debnath
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| | - Khushnood Fatma
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| | - Jyotirmayee Dash
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| |
Collapse
|
41
|
Debnath M, Fatma K, Dash J. Chemical Regulation of DNA i-Motifs for Nanobiotechnology and Therapeutics. Angew Chem Int Ed Engl 2019; 58:2942-2957. [PMID: 30600876 DOI: 10.1002/anie.201813288] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/27/2018] [Indexed: 12/20/2022]
Abstract
DNA sequences rich in cytosine have the propensity, under acidic pH, to fold into four-stranded intercalated DNA structures called i-motifs. Recent studies have provided significant breakthroughs that demonstrate how chemists can manipulate these structures for nanobiotechnology and therapeutics. The first section of this Minireview discusses the development of advanced functional nanostructures by synthetic conjugation of i-motifs with organic scaffolds and metal nanoparticles and their role in therapeutics. The second section highlights the therapeutic targeting of i-motifs with chemical scaffolds and their significance in biology. For this, first we shed light on the long-lasting debate regarding the stability of i-motifs under physiological conditions. Next, we present a comparative analysis of recently reported small molecules for specifically targeting i-motifs over other abundant DNA structures and modulating their function in cellular systems. These advances provide new insights into i-motif-targeted regulation of gene expression, telomere maintenance, and therapeutic applications.
Collapse
Affiliation(s)
- Manish Debnath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| | - Khushnood Fatma
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| |
Collapse
|
42
|
Molecular Mechanisms of Neurodegeneration Related to C9orf72 Hexanucleotide Repeat Expansion. Behav Neurol 2019; 2019:2909168. [PMID: 30774737 PMCID: PMC6350563 DOI: 10.1155/2019/2909168] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/28/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
Two clinically distinct diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), have recently been classified as two extremes of the FTD/ALS spectrum. The neuropathological correlate of FTD is frontotemporal lobar degeneration (FTLD), characterized by tau-, TDP-43-, and FUS-immunoreactive neuronal inclusions. An earlier discovery that a hexanucleotide repeat expansion mutation in chromosome 9 open reading frame 72 (C9orf72) gene causes ALS and FTD established a special subtype of ALS and FTLD with TDP-43 pathology (C9FTD/ALS). Normal individuals carry 2–10 hexanucleotide GGGGCC repeats in the C9orf72 gene, while more than a few hundred repeats represent a risk for ALS and FTD. The proposed molecular mechanisms by which C9orf72 repeat expansions induce neurodegenerative changes are C9orf72 loss-of-function through haploinsufficiency, RNA toxic gain-of-function, and gain-of-function through the accumulation of toxic dipeptide repeat proteins. However, many more cellular processes are affected by pathological processes in C9FTD/ALS, including nucleocytoplasmic transport, RNA processing, normal function of nucleolus, formation of membraneless organelles, translation, ubiquitin proteasome system, Notch signalling pathway, granule transport, and normal function of TAR DNA-binding protein 43 (TDP-43). Although the exact molecular mechanisms through which C9orf72 repeat expansions account for neurodegeneration have not been elucidated, some potential therapeutics, such as antisense oligonucleotides targeting hexanucleotide GGGGCC repeats in mRNA, were successful in preclinical trials and are awaiting phase 1 clinical trials. In this review, we critically discuss each proposed mechanism and provide insight into the most recent studies aiming to elucidate the molecular underpinnings of C9FTD/ALS.
Collapse
|
43
|
Vatsavayai SC, Nana AL, Yokoyama JS, Seeley WW. C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol 2019; 137:1-26. [PMID: 30368547 DOI: 10.1007/s00401-018-1921-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
What are the most important and treatable pathogenic mechanisms in C9orf72-FTD/ALS? Model-based efforts to address this question are forging ahead at a blistering pace, often with conflicting results. But what does the human neuropathological literature reveal? Here, we provide a critical review of the human studies to date, seeking to highlight key gaps or uncertainties in our knowledge. First, we engage the C9orf72-specific mechanisms, including C9orf72 haploinsufficiency, repeat RNA foci, and dipeptide repeat protein inclusions. We then turn to some of the most prominent C9orf72-associated features, such as TDP-43 loss-of-function, TDP-43 aggregation, and nuclear transport defects. Finally, we review potential disease-modifying epigenetic and genetic factors and the natural history of the disease across the lifespan. Throughout, we emphasize the importance of anatomical precision when studying how candidate mechanisms relate to neuronal, regional, and behavioral findings. We further highlight methodological approaches that may help address lingering knowledge gaps and uncertainties, as well as other logical next steps for the field. We conclude that anatomically oriented human neuropathological studies have a critical role to play in guiding this fast-moving field toward effective new therapies.
Collapse
Affiliation(s)
- Sarat C Vatsavayai
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Alissa L Nana
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA.
- Department of Pathology, University of California, San Francisco, Box 1207, San Francisco, CA, 94143-1207, USA.
| |
Collapse
|
44
|
Wang ZF, Ursu A, Childs-Disney JL, Guertler R, Yang WY, Bernat V, Rzuczek SG, Fuerst R, Zhang YJ, Gendron TF, Yildirim I, Dwyer BG, Rice JE, Petrucelli L, Disney MD. The Hairpin Form of r(G 4C 2) exp in c9ALS/FTD Is Repeat-Associated Non-ATG Translated and a Target for Bioactive Small Molecules. Cell Chem Biol 2018; 26:179-190.e12. [PMID: 30503283 DOI: 10.1016/j.chembiol.2018.10.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/16/2018] [Accepted: 10/20/2018] [Indexed: 12/13/2022]
Abstract
The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an expanded G4C2 repeat [(G4C2)exp] in C9ORF72. ALS/FTD-associated toxicity has been traced to the RNA transcribed from the repeat expansion [r(G4C2)exp], which sequesters RNA-binding proteins (RBPs) and undergoes repeat-associated non-ATG (RAN) translation to generate toxic dipeptide repeats. Using in vitro and cell-based assays, we identified a small molecule (4) that selectively bound r(G4C2)exp, prevented sequestration of an RBP, and inhibited RAN translation. Indeed, biophysical characterization showed that 4 selectively bound the hairpin form of r(G4C2)exp, and nuclear magnetic resonance spectroscopy studies and molecular dynamics simulations defined this molecular recognition event. Cellular imaging revealed that 4 localized to r(G4C2)exp cytoplasmic foci, the putative sites of RAN translation. Collectively, these studies highlight that the hairpin structure of r(G4C2)exp is a therapeutically relevant target and small molecules that bind it can ameliorate c9ALS/FTD-associated toxicity.
Collapse
Affiliation(s)
- Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Andrei Ursu
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Rea Guertler
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Wang-Yong Yang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Viachaslau Bernat
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Suzanne G Rzuczek
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Rita Fuerst
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Brendan G Dwyer
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Joseph E Rice
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
45
|
Douglas AGL. Non-coding RNA in C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia: A perfect storm of dysfunction. Noncoding RNA Res 2018; 3:178-187. [PMID: 30533567 PMCID: PMC6260478 DOI: 10.1016/j.ncrna.2018.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/15/2022] Open
Abstract
A hexanucleotide repeat expansion in the first intron/promoter region of C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both sense and antisense transcripts exist at the C9orf72 locus but the function of the antisense lncRNA is unknown. RNA toxicity of the transcribed repeat expansion has been implicated in the pathogenesis of C9orf72-related ALS/FTD, not only through direct sequestration of important RNA binding proteins but also indirectly through non-ATG dependent translation into dipeptide repeats. Formation of RNA/DNA hybrid R-loops may also play a key role in the pathogenesis of this condition and this mechanism could provide a link between the repeat expansion, DNA damage, repeat instability and deficiency of RNA binding proteins. Non-coding C9orf72 antisense transcripts could also act to epigenetically regulate gene expression at the locus. The potential effects of such non-coding RNAs should be considered in the design of antisense oligonucleotide therapeutics for C9orf72-related ALS/FTD. Furthermore, the mechanisms of RNA dysregulation exemplified by C9orf72-related disease may help illustrate more broadly how a “perfect storm” of dysfunction occurs in ALS/FTD and how targeting these factors could lead to corrective or preventative therapies.
Collapse
Affiliation(s)
- Andrew G L Douglas
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
46
|
Shibata T, Murakami E, Nakatani K. 1,3-Di(quinolin-2-yl)guanidine binds to GGCCCC hexanucleotide repeat DNA in C9ORF72. Bioorg Med Chem Lett 2018; 28:2364-2368. [DOI: 10.1016/j.bmcl.2018.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 12/14/2022]
|
47
|
Pagano A, Iaccarino N, Abdelhamid MAS, Brancaccio D, Garzarella EU, Di Porzio A, Novellino E, Waller ZAE, Pagano B, Amato J, Randazzo A. Common G-Quadruplex Binding Agents Found to Interact With i-Motif-Forming DNA: Unexpected Multi-Target-Directed Compounds. Front Chem 2018; 6:281. [PMID: 30137743 PMCID: PMC6066642 DOI: 10.3389/fchem.2018.00281] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/22/2018] [Indexed: 11/26/2022] Open
Abstract
G-quadruplex (G4) and i-motif (iM) are four-stranded non-canonical nucleic acid structural arrangements. Recent evidences suggest that these DNA structures exist in living cells and could be involved in several cancer-related processes, thus representing an attractive target for anticancer drug discovery. Efforts toward the development of G4 targeting compounds have led to a number of effective bioactive ligands. Herein, employing several biophysical methodologies, we studied the ability of some well-known G4 ligands to interact with iM-forming DNA. The data showed that the investigated compounds are actually able to interact with both DNA in vitro, thus acting de facto as multi-target-directed agents. Interestingly, while all the compounds stabilize the G4, some of them significantly reduce the stability of the iM. The present study highlights the importance, when studying G4-targeting compounds, of evaluating also their behavior toward the i-motif counterpart.
Collapse
Affiliation(s)
- Alessia Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Mahmoud A S Abdelhamid
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
48
|
(C2G4)n repeat expansion sequences from the C9orf72 gene form an unusual DNA higher-order structure in the pH range of 5-6. PLoS One 2018; 13:e0198418. [PMID: 29912891 PMCID: PMC6005549 DOI: 10.1371/journal.pone.0198418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/19/2018] [Indexed: 12/14/2022] Open
Abstract
Massive expansion of a DNA hexanucleotide sequence repeat (C2G4) within the human C9orf72 gene has been linked to a number of neurodegenerative diseases. In sodium or potassium salt solutions, single-stranded d(C2G4)n DNAs fold to form G-quadruplexes. We have found that in magnesium or lithium salt solutions, especially under slightly acidic conditions, d(C2G4)n oligonucleotides fold to form a distinctive higher order structure whose most striking feature is an “inverted” circular dichroism spectrum, which is distinguishable from the spectrum of the left handed DNA double-helix, Z-DNA. On the basis of CD spectroscopy, gel mobility as well as chemical protection analysis, we propose that this structure, which we call “iCD-DNA”, may be a left-handed Hoogsteen base-paired duplex, an unorthodox G-quadruplex/i-motif composite, or a non-canonical, “braided” DNA triplex. Given that iCD-DNA forms under slightly acidic solution conditions, we do not know at this point in time whether or not it forms within living cells.
Collapse
|
49
|
Differential expression of microRNAs and other small RNAs in muscle tissue of patients with ALS and healthy age-matched controls. Sci Rep 2018; 8:5609. [PMID: 29618798 PMCID: PMC5884852 DOI: 10.1038/s41598-018-23139-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/05/2018] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis is a late-onset disorder primarily affecting motor neurons and leading to progressive and lethal skeletal muscle atrophy. Small RNAs, including microRNAs (miRNAs), can serve as important regulators of gene expression and can act both globally and in a tissue-/cell-type-specific manner. In muscle, miRNAs called myomiRs govern important processes and are deregulated in various disorders. Several myomiRs have shown promise for therapeutic use in cellular and animal models of ALS; however, the exact miRNA species differentially expressed in muscle tissue of ALS patients remain unknown. Following small RNA-Seq, we compared the expression of small RNAs in muscle tissue of ALS patients and healthy age-matched controls. The identified snoRNAs, mtRNAs and other small RNAs provide possible molecular links between insulin signaling and ALS. Furthermore, the identified miRNAs are predicted to target proteins that are involved in both normal processes and various muscle disorders and indicate muscle tissue is undergoing active reinnervation/compensatory attempts thus providing targets for further research and therapy development in ALS.
Collapse
|
50
|
McRae EKS, Booy EP, Moya-Torres A, Ezzati P, Stetefeld J, McKenna SA. Human DDX21 binds and unwinds RNA guanine quadruplexes. Nucleic Acids Res 2017; 45:6656-6668. [PMID: 28472472 PMCID: PMC5499804 DOI: 10.1093/nar/gkx380] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/24/2017] [Indexed: 12/24/2022] Open
Abstract
Guanine quadruplexes (G4s) are an important structure of nucleic acids (DNA and RNA) with roles in several cellular processes. RNA G4s require specialized unwinding enzymes, of which only two have been previously identified. We describe the results of a simple and specific mass spectrometry guided method used to screen HEK293T cell lysate for G4 binding proteins. From these results, we validated the RNA helicase protein DDX21. DDX21 is an established RNA helicase, but has not yet been validated as a G4 binding protein. Through biochemical techniques, we confirm that DDX21-quadruplex RNA interactions are direct and mediated via a site of interaction at the C-terminus of the protein. Furthermore, through monitoring changes in nuclease sensitivity we show that DDX21 can unwind RNA G4. Finally, as proof of principle, we demonstrate the ability of DDX21 to suppress the expression of a protein with G4s in the 3΄ UTR of its mRNA.
Collapse
Affiliation(s)
- Ewan K S McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aniel Moya-Torres
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peyman Ezzati
- Manitoba Centre for Proteomics and Systems Biology, Section of Biomedical Proteomics, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba and Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|