1
|
Nazari N, Imani R, Nasiraie LR. Fiber/hydrogel hybrid wound dressing based on eggshell membrane containing postbiotic ingredients. BIOMATERIALS ADVANCES 2024; 165:214004. [PMID: 39213956 DOI: 10.1016/j.bioadv.2024.214004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Skin is the largest organ in body which has important functions. Therefore, to have a healthy skin is very essential, and wound dressings are specifically designed to promote the wound healing process. The aim of this study is to prepare and characterize a fiber-hydrogel wound dressing based on eggshell membrane (ESM) enriched with postbiotic compounds extracted from Lactobacillus plantarum NIMBB003 bacteria. For this purpose, ESM was effectively separated from eggshells through acidic treatment. Then, ultrasound was used for an optimal duration of 1.89 min at 95 % of device's power to expand the pore size of ESM from 6.89 to 10.84 μm to enhance hydrogel infiltration into ESM. The hydrogel (alginate and oxidized alginate) was then infiltrated into the ESM. ATR, SEM, and weight measurement of samples showed the proper infiltration of the hydrogel within the ESM structure. However, biostability analysis revealed that alginate hydrogel was more stable in the hybrid structure compared to oxidase alginate hydrogel. Alginate infiltration into ESM, improved the ultimate strength of the ESM to 1.89 ± 0.17 MPa and water uptake degree to 368.05 % ± 24.34 %. The water vapor transmission rate of the designed dressing was 34.14 ± 1.05 mg/cm2 after 72 h, which means the proper moist management in wound bed. Finally, addition of postbiotics at a concentration of 10 mg/ml into the hydrogel improved cell proliferation in five days. Furthermore, human dermal fibroblast cells adhered to the wound dressings properly and spread along the fibers of the ESM. In general, the developed wound dressing composed of natural biomaterials with extracellular matrix-like structure, can be used effectively to assist the wound healing process.
Collapse
Affiliation(s)
- Neda Nazari
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Leila Roozbeh Nasiraie
- Department of Food Science & Technology, Islamic Azad University, Nour, Iran; Research and Development Center, Shams Bavarane Salamate Nour Consulting & Production Services, Tehran, Iran
| |
Collapse
|
2
|
Barai M, Manna E, Sultana H, Mandal MK, Manna T, Patra A, Roy B, Gowda V, Chang CH, Akentiev AV, Bykov AG, Noskov BA, Moitra P, Ghosh C, Yusa SI, Bhattacharya S, Kumar Panda A. Physicochemical Studies on Amino Acid Based Metallosurfactants in Combination with Phospholipid. Chem Asian J 2024; 19:e202400284. [PMID: 38953124 DOI: 10.1002/asia.202400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Dicarboxylate metallosurfactants (AASM), synthesized by mixing N-dodecyl aminomalonate, -aspartate and -glutamate with CaCl2, MnCl2 and CdCl2, were characterized by XRD, FTIR, and NMR spectroscopy. Layered structures, formed by metallosurfactants, were evidenced from differential scanning calorimetry and thermogravimetric analyses. Solvent-spread monolayer of AASM in combination with soyphosphatidylcholine (SPC) and cholesterol (CHOL) were studied using Langmuir surface balance. With increasing mole fraction of AASM mean molecular area increased and passed through maxima at ~60 mol% of AASMs, indicating molecular packing reorganization. Systems with 20 and 60 mol% AASM exhibited positive deviations from ideal behavior signifying repulsive interaction between the AASM and SPC, while synergistic interactions were established from the negative deviation at other combinations. Dynamic surface elasticity increased with increasing surface pressure signifying formation of rigid monolayer. Transition of monolayer from gaseous to liquid expanded to liquid condensed state was established by Brewster angle microscopic studies. Stability of the hybrid vesicles, formed by AASM+SPC+CHOL, were established by monitoring their size, zeta potential and polydispersity index values over 100 days. Size and spherical morphology of hybrid vesicles were confirmed by transmission electron microscopic studies. Biocompatibility of the hybrid vesicles were established by cytotoxicity studies revealing their possible applications in drug delivery and imaging.
Collapse
Affiliation(s)
- Manas Barai
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Emili Manna
- Centre for Life Sciences, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Habiba Sultana
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Manas Kumar Mandal
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Tuhin Manna
- Department of Human Physiology, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Anuttam Patra
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Biplab Roy
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Vasantha Gowda
- Department of Biomedical Science, Malmö University, SE-20506, Malmö, Sweden
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Alexander V Akentiev
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. Sankt-Peterburg, 26, 198504, St. Petersburg, Russia
| | - Alexey G Bykov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. Sankt-Peterburg, 26, 198504, St. Petersburg, Russia
| | - Boris A Noskov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. Sankt-Peterburg, 26, 198504, St. Petersburg, Russia
| | - Parikshit Moitra
- Department of Chemical Sciences, IISER, Berhampur, Odisha, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore, -721102, West Bengal, India
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Hyogo, 671-2280, Japan
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
- Indian Institute of Science Education and Research, Tirupati, -517507, Andhra Pradesh, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, -721102, West Bengal, India
| |
Collapse
|
3
|
Enrique SL, Ricardo A, Concepción A. Antioxidant and Emulsifying Activity of the Exopolymer Produced by Bacillus licheniformis. Int J Mol Sci 2024; 25:8249. [PMID: 39125818 PMCID: PMC11312135 DOI: 10.3390/ijms25158249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
The exopolymer (ESPp) was obtained from Bacillus licheniformis IDN-EC, composed of a polyglutamic acid and polyglycerol phosphate chain O-substituted with αGal moieties (αGal/αGlcNH2 3:1 molar ratio) and with a 5000 Da molecular weight. The cytotoxicity activity of EPSp was determined by reducing the MTT (3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyltetrazolium bromide) to formazan on HeLa cells. This EPS did not show cytotoxicity against the tested cell line. The ESPp presented great advantages as an antioxidant with free radical scavenging activities (1,1-diphenyl-2-picryl-hydrazyl radical (DPPH),hydroxyl radical (OH), and superoxide anion (O2-)) (65 ± 1.2%, 98.7 ± 1.9%, and 97 ± 1.7%), respectively. Moreover, EPSp increased the enzyme activity for catalase (CAT) and glutathione peroxidase (GSH-Px) in HeLa cells (CAT, 2.6 ± 0.24 U/mL; and GSH-Px, 0.75 ± 0.3 U/L). The presence of ESPp showed a significant protective effect against H2O2 in the cell line studied, showing great viability (91.8 ± 2.8, 89.9 ± 2.9, and 93.5 ± 3.6%). The EPSp presented good emulsifying activity, only for vegetable oils, olive oil (50 ± 2.1%) and sesame (72 ± 3%). Sesame was effective compared to commercials products, Triton X-100 (52.38 ± 1.6%), Tween 20 (14.29 ± 1.1%), and sodium dodecyl sulphate (SDS) (52.63 ± 1.6%). Furthermore, the EPS produced at 0.6 M has potential for environmental applications, such as the removal of hazardous materials by emulsification whilst resulting in positive health effects such as antioxidant activity and non-toxicity. EPSp is presented as a good exopolysaccharide for various applications.
Collapse
Affiliation(s)
- Sánchez-León Enrique
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
| | - Amils Ricardo
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Abrusci Concepción
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| |
Collapse
|
4
|
Manna E, Barai M, Mandal MK, Sultana H, Guchhait KC, Gawali SL, Aswal VK, Ghosh C, Patra A, Misra AK, Yusa SI, Hassan PA, Panda AK. Impact of Ionic Liquids on the Physicochemical Behavior of Vesicles. J Phys Chem B 2024; 128:6816-6829. [PMID: 38959082 DOI: 10.1021/acs.jpcb.4c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The effects of two ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF4) and 1-butyl-1-methyl pyrrolidinium tetrafluoroborate ([bmp]BF4), on a mixture of phospholipids (PLs) 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) (6:3:1, M/M/M, 70% PL) in combination with 30 mol % cholesterol (CHOL) were investigated in the form of a solvent-spread monolayer and bilayer (vesicle). Surface pressure (π)-area (A) isotherm studies, using a Langmuir surface balance, revealed the formation of an expanded monolayer, while the cationic moiety of the IL molecules could electrostatically and hydrophobically bind to the PLs on the palisade layer. Turbidity, dynamic light scattering (size, ζ-potential, and polydispersity index), electron microscopy, small-angle X-ray/neutron scattering, fluorescence spectroscopy, and differential scanning calorimetric studies were carried out to evaluate the effects of IL on the structural organization of bilayer in the vesicles. The ILs could induce vesicle aggregation by acting as a "glue" at lower concentrations (<1.5 mM), while at higher concentrations, the ILs disrupt the bilayer structure. Besides, ILs could result in the thinning of the bilayer, evidenced from the scattering studies. Steady-state fluorescence anisotropy and lifetime studies suggest asymmetric insertion of ILs into the lipid bilayer. MTT assay using human blood lymphocytes indicates the safe application of vesicles in the presence of ILs, with a minimal toxicity of up to 2.5 mM IL in the dispersion. These results are proposed to have applications in the field of drug delivery systems with benign environmental impact.
Collapse
Affiliation(s)
- Emili Manna
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Manas Barai
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Manas K Mandal
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Habiba Sultana
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Kartik C Guchhait
- Department of Human Physiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Santosh L Gawali
- Solid State Physics Division, Bhaba Atomic Research Centre, Mumbai 400085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhaba Atomic Research Centre, Mumbai 400085, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Anuttam Patra
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Ajay K Misra
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Shin-Ichi Yusa
- Department of Applied Chemistry,Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | | | - Amiya K Panda
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| |
Collapse
|
5
|
Wu J, Huang M, Liu H, Wu Y, Hu X, Wang J, Wang X. Engineering Escherichia coli to Efficiently Produce Colanic Acid with Low Molecular Mass and Viscosity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15811-15822. [PMID: 38975865 DOI: 10.1021/acs.jafc.4c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Colanic acid (CA) is exopolysaccharide that presents growing potential in the food and healthcare industry as a versatile polymer. Previously, we have constructed the Escherichia coli strain WWM16 which can efficiently produce CA. In this study, WWM16 has been further engineered to produce a higher yield of CA with low molecular mass and viscosity. The gene mcbR encoding a transcriptional factor, and the genes opgD, opgG, and opgH related to the biosynthesis of osmoregulated periplasmic glucans were deleted in E. coli WWM16, and the resulting strain WWM166 produced 18.1 g/L CA. The expression level of wcaD encoding the polymerase in WWM166 was downregulated using CRISPRi. As a result, the strain WWM166/pWpD1 could produce 49.9 g/L CA with lower molecular mass. CA products were purified from both WWM166 and WWM166/pWpD1, and their molecular mass, viscosity, fluidity, hygroscopicity, and antioxidant activity were determined and compared. These findings demonstrate the potential application of CA with different molecular masses to prolong life and protect skin in the food and cosmetic industries.
Collapse
Affiliation(s)
- Jiaxin Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ming Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - He Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuanming Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianli Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Gan L, Huang X, He Z, He T. Exopolysaccharide production by salt-tolerant bacteria: Recent advances, current challenges, and future prospects. Int J Biol Macromol 2024; 264:130731. [PMID: 38471615 DOI: 10.1016/j.ijbiomac.2024.130731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Natural biopolymers derived from exopolysaccharides (EPSs) are considered eco-friendly and sustainable alternatives to available traditional synthetic counterparts. Salt-tolerant bacteria inhabiting harsh ecological niches have evolved a number of unique adaptation strategies allowing them to maintain cellular integrity and assuring their long-term survival; among these, producing EPSs can be adopted as an effective strategy to thrive under high-salt conditions. A great diversity of EPSs from salt-tolerant bacteria have attracted widespread attention recently. Because of factors such as their unique structural, physicochemical, and functional characteristics, EPSs are commercially valuable for the global market and their application potential in various sectors is promising. However, large-scale production and industrial development of these biopolymers are hindered by their low yields and high costs. Consequently, the research progress and future prospects of salt-tolerant bacterial EPSs must be systematically reviewed to further promote their application and commercialization. In this review, the structure and properties of EPSs produced by a variety of salt-tolerant bacterial strains isolated from different sources are summarized. Further, feasible strategies for solving production bottlenecks are discussed, which provides a scientific basis and direct reference for more scientific and rational EPS development.
Collapse
Affiliation(s)
- Longzhan Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Xin Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Zhicheng He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
7
|
Benhadda F, Zykwinska A, Colliec-Jouault S, Sinquin C, Thollas B, Courtois A, Fuzzati N, Toribio A, Delbarre-Ladrat C. Marine versus Non-Marine Bacterial Exopolysaccharides and Their Skincare Applications. Mar Drugs 2023; 21:582. [PMID: 37999406 PMCID: PMC10672628 DOI: 10.3390/md21110582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Bacteria are well-known to synthesize high molecular weight polysaccharides excreted in extracellular domain, which constitute their protective microenvironment. Several bacterial exopolysaccharides (EPS) are commercially available for skincare applications in cosmetic products due to their unique structural features, conferring valuable biological and/or textural properties. This review aims to give an overview of bacterial EPS, an important group of macromolecules used in cosmetics as actives and functional ingredients. For this purpose, the main chemical characteristics of EPS are firstly described, followed by the basics of the development of cosmetic ingredients. Then, a focus on EPS production, including upstream and downstream processes, is provided. The diversity of EPS used in the cosmetic industry, and more specifically of marine-derived EPS is highlighted. Marine bacteria isolated from extreme environments are known to produce EPS. However, their production processes are highly challenging due to high or low temperatures; yield must be improved to reach economically viable ingredients. The biological properties of marine-derived EPS are then reviewed, resulting in the highlight of the challenges in this field.
Collapse
Affiliation(s)
- Fanny Benhadda
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Sylvia Colliec-Jouault
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | | | | | - Nicola Fuzzati
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Alix Toribio
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Christine Delbarre-Ladrat
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| |
Collapse
|
8
|
Kim SJ, Youn UJ, Kang P, Kim TK, Kim IC, Han SJ, Lee DW, Yim JH. A novel exopolysaccharide (p-CY01) from the Antarctic bacterium Pseudoalteromonas sp. strain CY01 cryopreserves human red blood cells. Biomater Sci 2023; 11:7146-7157. [PMID: 37718649 DOI: 10.1039/d3bm00917c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Cryopreservation of human red blood cells (RBCs) is vital for regenerative medicine and organ transplantation, but current cryoprotectants (CPAs) like glycerol and hydroxyethyl starch (HES) have limitations. Glycerol requires post-thaw washing due to cell membrane penetration, while HES causes high viscosity. To address these issues, we explored exopolysaccharides (EPS) from Antarctic Pseudoalteromonas sp. strain CY01 as a non-penetrating CPA for RBC cryopreservation. The EPS, p-CY01, consisted mainly of repeating (1-4) glucose and (1-6) galactose linkages with a molecular mass of 1.1 × 107 Da. Through mild acid hydrolysis, we obtained low molecular weight p-CY01 (p-CY01 LM) with a molecular weight of 2.7 × 105 Da, offering reduced viscosity, improved solubility, and cryoprotective properties. Notably, combining low concentrations of penetrating CPAs (>1% glycerol and dimethyl sulfoxide) with 2.5% (w/v) p-CY01 LM demonstrated significant cryoprotective effects. These findings highlight the potential of p-CY01 LM as a highly effective CPA for human RBC cryopreservation, replacing HES and glycerol and enabling the long-term storage of biological materials.
Collapse
Affiliation(s)
- Sung Jin Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
- Graduate Program in Biomaterials Science & Engineering, Yonsei University, Seoul 03722, South Korea
| | - Ui Joung Youn
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Pilsung Kang
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Tai Kyoung Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Se Jong Han
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Dong-Woo Lee
- Graduate Program in Biomaterials Science & Engineering, Yonsei University, Seoul 03722, South Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, South Korea.
| | - Joung Han Yim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| |
Collapse
|
9
|
Jeewon R, Aullybux AA, Puchooa D, Nazurally N, Alrefaei AF, Zhang Y. Marine Microbial Polysaccharides: An Untapped Resource for Biotechnological Applications. Mar Drugs 2023; 21:420. [PMID: 37504951 PMCID: PMC10381399 DOI: 10.3390/md21070420] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
As the largest habitat on Earth, the marine environment harbors various microorganisms of biotechnological potential. Indeed, microbial compounds, especially polysaccharides from marine species, have been attracting much attention for their applications within the medical, pharmaceutical, food, and other industries, with such interest largely stemming from the extensive structural and functional diversity displayed by these natural polymers. At the same time, the extreme conditions within the aquatic ecosystem (e.g., temperature, pH, salinity) may not only induce microorganisms to develop a unique metabolism but may also increase the likelihood of isolating novel polysaccharides with previously unreported characteristics. However, despite their potential, only a few microbial polysaccharides have actually reached the market, with even fewer being of marine origin. Through a synthesis of relevant literature, this review seeks to provide an overview of marine microbial polysaccharides, including their unique characteristics. In particular, their suitability for specific biotechnological applications and recent progress made will be highlighted before discussing the challenges that currently limit their study as well as their potential for wider applications. It is expected that this review will help to guide future research in the field of microbial polysaccharides, especially those of marine origin.
Collapse
Affiliation(s)
- Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aadil Ahmad Aullybux
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Daneshwar Puchooa
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Nadeem Nazurally
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ying Zhang
- School of Ecology and Natural Conservation, Beijing Forestry University, 35 East Qinghua Road, Haidian District, Beijing 100083, China
| |
Collapse
|
10
|
Zou X, Suo CL, Geng XM, Li CY, Fu HH, Zhang Y, Wang P, Sun ML. Complete genome sequence of Bacillus cereus 2-6A, a marine exopolysaccharide-producing bacterium isolated from deep-sea hydrothermal sediment of the Pacific Ocean. Mar Genomics 2023; 69:101029. [PMID: 37100528 DOI: 10.1016/j.margen.2023.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Bacillus cereus 2-6A, was isolated from the sediments in the hydrothermal area of the Pacific Ocean with a water depth of 2628 m. In this study, we report the whole genome sequence of strain 2-6A and analyze that to understand its metabolic capacities and biosynthesis potential of natural products. The genome of strain 2-6A consists of a circular chromosome of 5,191,018 bp with a GC content of 35.3 mol% and two plasmids of 234,719 bp and 411,441 bp, respectively. Genomic data mining reveals that strain 2-6A has several gene clusters involved in exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs) production and complex polysaccharides degradation. It also possesses a variety of genes for allowing strain 2-6A to cope with osmotic stress, oxidative stress, heat shock, cold shock and heavy metal stress, which could play a vital role in the adaptability of the strain to hydrothermal environments. Gene clusters for secondary metabolite production, such as lasso peptide and siderophore, are also predicted. Therefore, genome sequencing and data mining provide insights into the molecular mechanisms of Bacillus in adapting to hydrothermal deep ocean environments and can facilitate further experimental exploration.
Collapse
Affiliation(s)
- Xuan Zou
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Chuan-Lei Suo
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Xiao-Mei Geng
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Chun-Yang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Yi Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China.
| | - Mei-Ling Sun
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Sánchez-León E, Huang-Lin E, Amils R, Abrusci C. Production and Characterisation of an Exopolysaccharide by Bacillus amyloliquefaciens: Biotechnological Applications. Polymers (Basel) 2023; 15:polym15061550. [PMID: 36987330 PMCID: PMC10056187 DOI: 10.3390/polym15061550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The Bacillus amyloliquefaciens RT7 strain was isolated from an extreme acidic environment and identified. The biodegradation capabilities of the strain using different carbon sources (glucose, oleic acid, Tween 80, PEG 200, and the combination of glucose-Tween 80) were evaluated via an indirect impedance technique. The glucose-Tween 80 combination was further studied using nuclear magnetic resonance (NMR). The exopolysaccharide (EPSRT7) that had been produced with the strain when biodegrading glucose-Tween 80 was isolated and characterised using different techniques (GC-MS, HPLC/MSMS, ATR-FTIR, TGA, and DSC), and its molecular weight was estimated. The results show that the average molecular weight of EPSRT7 was approximately 7.0794 × 104 Da and a heteropolysaccharide composed of mannose, glucose, galactose, and xylose (molar ratio, 1:0.5:0.1:0.1) with good thermostability. EPSRT7 showed good emulsifying activity against different natural oils and hydrocarbons at high concentrations (2 mg/mL) and at the studied pH range (3.1-7.2). It also presented good emulsifying activity compared to that of commercial emulsifiers. Lastly, EPSRT7 showed antioxidant capacity for different free radicals, a lack of cytotoxicity, and antioxidant activity at the cellular level. EPSRT7 has promising applications in bioremediation processes and other industrial applications.
Collapse
Affiliation(s)
- Enrique Sánchez-León
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
| | - Elisa Huang-Lin
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
| | - Ricardo Amils
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Concepción Abrusci
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| |
Collapse
|
12
|
Hamidi M, Okoro OV, Rashidi K, Salami MS, Mirzaei Seveiri R, Samadian H, Shavandi A. Evaluation of two fungal exopolysaccharides as potential biomaterials for wound healing applications. World J Microbiol Biotechnol 2022; 39:49. [PMID: 36542187 DOI: 10.1007/s11274-022-03459-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Microbial exopolysaccharides (EPSs) are mostly produced by bacteria and fungi and have potential use in the production of biomedical products such as nutraceuticals and in tissue engineering applications. The present study investigated the in vitro biological activities and in vivo wound healing effects of EPSs produced from a Sclerotium-forming fungus (Sclerotium glucanicum DSM 2159) and a yeast (Rhodosporidium babjevae), denoted as scleroglucan (Scl) and EPS-R, respectively. EPS yields of 0.9 ± 0.07 g/L and 1.11 ± 0.4 g/L were obtained from S. glucanicum and R. babjevae, respectively. The physicochemical properties of the EPSs were characterized using infrared spectroscopy and scanning electron microscopy. Further investigations of the biological properties showed that both EPSs were cytocompatible toward the human fibroblast cell line and demonstrated hemocompatibility. Favorable wound healing capacities of the EPSs (10 mg/mL) were also established via in vivo tests. The present study therefore showed that the EPSs produced by S. glucanicum and R. babjevae have the potential use as biocompatible components for the promotion of dermal wound healing.
Collapse
Affiliation(s)
- Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium.,Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Oseweuba Valentine Okoro
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Khodabakhsh Rashidi
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Saeid Salami
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rasool Mirzaei Seveiri
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium.
| |
Collapse
|
13
|
Khan R, Shah MD, Shah L, Lee PC, Khan I. Bacterial polysaccharides-A big source for prebiotics and therapeutics. Front Nutr 2022; 9:1031935. [PMID: 36407542 PMCID: PMC9671505 DOI: 10.3389/fnut.2022.1031935] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 07/29/2023] Open
Abstract
Bacterial polysaccharides are unique due to their higher purity, hydrophilic nature, and a finer three-dimensional fibrous structure. Primarily, these polymers provide protection, support, and energy to the microorganism, however, more recently several auxiliary properties of these biopolymers have been unmasked. Microbial polysaccharides have shown therapeutic abilities against various illnesses, augmented the healing abilities of the herbal and Western medicines, improved overall health of the host, and have exerted positive impact on the growth of gut dwelling beneficial bacteria. Specifically, the review is discussing the mechanism through which bacterial polysaccharides exert anti-inflammatory, antioxidant, anti-cancer, and anti-microbial properties. In addition, they are holding promising application in the 3D printing. The review is also discussing a perspective about the metagenome-based screening of polysaccharides, their integration with other cutting-edge tools, and synthetic microbiome base intervention of polysaccharides as a strategy for prebiotic intervention. This review has collected interesting information about the bacterial polysaccharides from Google Scholar, PubMed, Scopus, and Web of Science databases. Up to our knowledge, this is the first of its kind review article that is summarizing therapeutic, prebiotics, and commercial application of bacterial polysaccharides.
Collapse
Affiliation(s)
- Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Dawood Shah
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Luqman Shah
- Department of Biochemistry, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Ping-Chin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Imran Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
14
|
Rizzo C, Perrin E, Poli A, Finore I, Fani R, Lo Giudice A. Characterization of the exopolymer-producing Pseudoalteromonas sp. S8-8 from Antarctic sediment. Appl Microbiol Biotechnol 2022; 106:7173-7185. [PMID: 36156161 PMCID: PMC9592659 DOI: 10.1007/s00253-022-12180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/14/2022]
Abstract
Abstract A synergistic approach using cultivation methods, chemical, and bioinformatic analyses was applied to explore the potential of Pseudoalteromonas sp. S8-8 in the production of extracellular polymeric substances (EPSs) and the possible physiological traits related to heavy metal and/or antibiotic resistance. The effects of different parameters (carbon source, carbon source concentration, temperature, pH and NaCl supplement) were tested to ensure the optimization of growth conditions for EPS production by the strain S8-8. The highest yield of EPS was obtained during growth in culture medium supplemented with glucose (final concentration 2%) and NaCl (final concentration 3%), at 15 °C and pH 7. The EPS was mainly composed of carbohydrates (35%), followed by proteins and uronic acids (2.5 and 2.77%, respectively) and showed a monosaccharidic composition of glucose: mannose: galactosamine: galactose in the relative molar proportions of 1:0.7:0.5:0.4, as showed by the HPAE-PAD analysis. The detection of specific molecular groups (sulfates and uronic acid content) supported the interesting properties of EPSs, i.e. the emulsifying and cryoprotective action, heavy metal chelation, with interesting implication in bioremediation and biomedical fields. The analysis of the genome allowed to identify a cluster of genes involved in cellulose biosynthesis, and two additional gene clusters putatively involved in EPS biosynthesis. Key points • A cold-adapted Pseudoalteromonas strain was investigated for EPS production. • The EPS showed emulsifying, cryoprotective, and heavy metal chelation functions. • Three gene clusters putatively involved in EPS biosynthesis were evidenced by genomic insights. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12180-x.
Collapse
Affiliation(s)
- Carmen Rizzo
- Marine Biotechnology Department, Stazione Zoologica "Anton Dohrn", Sicily Marine Centre, Villa Pace, Messina, Italy
| | - Elena Perrin
- Department of Biology, University of Florence, Florence, Italy
| | - Annarita Poli
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Pozzuoli, NA), Italy
| | - Ilaria Finore
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Pozzuoli, NA), Italy
| | - Renato Fani
- Department of Biology, University of Florence, Florence, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata San Raineri 86, 98122, Messina, Italy. .,Italian Collection of Antarctic Bacteria, National Antarctic Museum (CIBAN-MNA), Section of Messina, Messina, Italy.
| |
Collapse
|
15
|
Potential Applications of an Exopolysaccharide Produced by Bacillus xiamenensis RT6 Isolated from an Acidic Environment. Polymers (Basel) 2022; 14:polym14183918. [PMID: 36146061 PMCID: PMC9505781 DOI: 10.3390/polym14183918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The Bacillus xiamenensis RT6 strain was isolated and identified by morphological, biochemical and molecular tests from an extreme acidic environment, Rio Tinto (Huelva). Optimisation tests for exopolysaccharide (EPS) production in different culture media determined that the best medium was a minimal medium with glucose as the only carbon source. The exopolymer (EPSt) produced by the strain was isolated and characterised using different techniques (GC-MS, HPLC/MSMS, ATR-FTIR, TGA, DSC). The molecular weight of EPSt was estimated. The results showed that the average molecular weight of EPSt was approximately 2.71 × 104 Da and was made up of a heteropolysaccharide composed of glucose (60%), mannose (20%) and galactose (20%). The EPSt showed antioxidant capabilities that significantly improved cell viability. Metal chelation determined that EPSt could reduce the concentration of transition metals such as iron at the highest concentrations tested. Finally, the emulsification study showed that EPSt was able to emulsify different natural polysaccharide oils, reaching up to an 80% efficiency (olive and sesame oil), and was a good candidate for the substitution of the most polluting emulsifiers. The EPSt was found to be suitable for pharmaceutical and industrial applications.
Collapse
|
16
|
Qi M, Zheng C, Wu W, Yu G, Wang P. Exopolysaccharides from Marine Microbes: Source, Structure and Application. Mar Drugs 2022; 20:md20080512. [PMID: 36005515 PMCID: PMC9409974 DOI: 10.3390/md20080512] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
The unique living environment of marine microorganisms endows them with the potential to produce novel chemical compounds with various biological activities. Among them, the exopolysaccharides produced by marine microbes are an important factor for them to survive in these extreme environments. Up to now, exopolysaccharides from marine microbes, especially from extremophiles, have attracted more and more attention due to their structural complexity, biodegradability, biological activities, and biocompatibility. With the development of culture and separation methods, an increasing number of novel exopolysaccharides are being found and investigated. Here, the source, structure and biological activities of exopolysaccharides, as well as their potential applications in environmental restoration fields of the last decade are summarized, indicating the commercial potential of these versatile EPS in different areas, such as food, cosmetic, and biomedical industries, and also in environmental remediation.
Collapse
Affiliation(s)
- Mingxing Qi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (W.W.); (G.Y.); (P.W.); Tel.: +86-021-61900388 (W.W.); +86-0532-8203-1609 (G.Y.); +86-021-61900388 (P.W.)
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266237, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (W.W.); (G.Y.); (P.W.); Tel.: +86-021-61900388 (W.W.); +86-0532-8203-1609 (G.Y.); +86-021-61900388 (P.W.)
| | - Peipei Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (W.W.); (G.Y.); (P.W.); Tel.: +86-021-61900388 (W.W.); +86-0532-8203-1609 (G.Y.); +86-021-61900388 (P.W.)
| |
Collapse
|
17
|
Zhang T, Guo Q, Xin Y, Liu Y. Comprehensive review in moisture retention mechanism of polysaccharides from algae, plants, bacteria and fungus. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
18
|
Srivastava N, Kumari S, Kurmi S, Pinnaka AK, Choudhury AR. Isolation, purification, and characterization of a novel exopolysaccharide isolated from marine bacteria Brevibacillus borstelensis M42. Arch Microbiol 2022; 204:399. [PMID: 35713724 DOI: 10.1007/s00203-022-02993-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Marine microbes produce polysaccharides with unique physicochemical and functional properties that help them survive in harsh marine environments. However, only a handful of marine exopolysaccharides (EPSs) have been reported to date. The present study explored the seashore of Visakhapatnam, India, to report a novel exopolysaccharide designated as Br42 produced by Brevibacillus borstelensis M42. The isolate was identified through morphological, biochemical, phylogenetic, and genome sequencing analysis. The studies on fermentation kinetics revealed that EPS Br42 was a primary metabolite with a maximum production of 1.88 ± 0.02 g/L after 60 h when production broth was fortified with 2% glucose. Additionally, EPS Br42 was found to be a heteropolysaccharide consisting of glucose and galacturonic acid with a molecular weight of about 286 kDa. Interestingly, this molecule possesses industrially relevant functional properties such as water-holding (510 ± 0.35%), oil-holding (374 ± 0.12% for coconut oil and 384 ± 0.35% for olive oil), and swelling capacities (146.6 ± 5.75%). EPS Br42 could form an emulsion that was stable at a wide pH range for about 72 h and, in fact, performed better as compared to Span 20, a commercially used synthetic emulsifier. Moreover, this EPS was also found to be heat stable and exhibited non-Newtonian pseudoplastic behavior. These physicochemical and functional properties of polysaccharides suggest that the EPS Br42 has potential for multifarious industrial applications as an emulsifier, stabilizer, viscosifier, and binding agent.
Collapse
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumeeta Kumari
- Microbial Type Culture Collection and Gene Bank (MTCC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Shubham Kurmi
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Anil Kumar Pinnaka
- Microbial Type Culture Collection and Gene Bank (MTCC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
19
|
Ding J, Wu B, Chen L. Application of Marine Microbial Natural Products in Cosmetics. Front Microbiol 2022; 13:892505. [PMID: 35711762 PMCID: PMC9196241 DOI: 10.3389/fmicb.2022.892505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
As the market size of the cosmetics industry increases, the safety and effectiveness of new products face higher requirements. The marine environment selects for species of micro-organisms with metabolic pathways and adaptation mechanisms different from those of terrestrial organisms, resulting in their natural products exhibiting unique structures, high diversity, and significant biological activities. Natural products are usually safe and non-polluting. Therefore, considerable effort has been devoted to searching for cosmetic ingredients that are effective, safe, and natural for marine micro-organisms. However, marine micro-organisms can be difficult, or impossible, to culture because of their special environmental requirements. Metagenomics technology can help to solve this problem. Moreover, using marine species to produce more green and environmentally friendly products through biotransformation has become a new choice for cosmetic manufacturers. In this study, the natural products of marine micro-organisms are reviewed and evaluated with respect to various cosmetic applications.
Collapse
Affiliation(s)
- Jinwang Ding
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Baochuan Wu
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Liqun Chen
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- *Correspondence: Liqun Chen,
| |
Collapse
|
20
|
Purification, characterization and partial biological activities of exopolysaccharide produced by Saccharomyces cerevisiae Y3. Int J Biol Macromol 2022; 206:777-787. [DOI: 10.1016/j.ijbiomac.2022.03.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022]
|
21
|
Xiao M, Ren X, Yu Y, Gao W, Zhu C, Sun H, Kong Q, Fu X, Mou H. Fucose-containing bacterial exopolysaccharides: Sources, biological activities, and food applications. Food Chem X 2022; 13:100233. [PMID: 35498987 PMCID: PMC9039932 DOI: 10.1016/j.fochx.2022.100233] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Bacterial exopolysaccharides are high molecular weight polysaccharides that are secreted by a wide range of bacteria, with diverse structures and easy preparation. Fucose, fucose-containing oligosaccharides (FCOs), and fucose-containing polysaccharides (FCPs) have important applications in the food and medicine fields, including applications in products for removing Helicobacter pylori and infant formula powder. Fucose-containing bacterial exopolysaccharide (FcEPS) is a prospective source of fucose, FCOs, and FCPs. This review systematically summarizes the common sources and applications of FCPs and FCOs and the bacterial strains capable of producing FcEPS reported in recent years. The repeated-unit structures, synthesis pathways, and factors affecting the production of FcEPS are reviewed, as well as the degradation methods of FcEPS for preparing FCOs. Finally, the bioactivities of FcEPS, including anti-oxidant, prebiotic, anti-cancer, anti-inflammatory, anti-viral, and anti-microbial activities, are discussed and may serve as a reference strategy for further applications of FcEPS in the functional food and medicine industries.
Collapse
Key Words
- 2′-FL, 2′-fucosyllactose
- 3-FL, 3-fucosyllactose
- ABTS, 2,2′-azinobis-3-ethylbenzothiazoline-6-sulphonate
- Bacterial exopolysaccharides
- Bioactivity
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- EPS, exopolysaccharides
- FCOs, fucose-containing oligosaccharides
- FCPs, fucose-containing polysaccharides
- FcEPS, fucose-containing EPS
- Food application
- Fucose
- HMOs, human milk oligosaccharides
- MAPK, mitogen-activated protein kinase
- PBMCs, peripheral blood mononuclear cells
- ROS, reactive oxygen species
- SCFAs, short-chain fatty acids
- Structure
Collapse
Affiliation(s)
- Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Ying Yu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Wei Gao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Han Sun
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi Province, People's Republic of China
- Corresponding authors.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
- Corresponding authors.
| |
Collapse
|
22
|
Vinothkanna A, Sathiyanarayanan G, Rai AK, Mathivanan K, Saravanan K, Sudharsan K, Kalimuthu P, Ma Y, Sekar S. Exopolysaccharide Produced by Probiotic Bacillus albus DM-15 Isolated From Ayurvedic Fermented Dasamoolarishta: Characterization, Antioxidant, and Anticancer Activities. Front Microbiol 2022; 13:832109. [PMID: 35308379 PMCID: PMC8927020 DOI: 10.3389/fmicb.2022.832109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
An exopolysaccharide (EPS) was purified from the probiotic bacterium Bacillus albus DM-15, isolated from the Indian Ayurvedic traditional medicine Dasamoolarishta. Gas chromatography-mass spectrophotometry and nuclear magnetic resonance (NMR) analyses revealed the heteropolymeric nature of the purified EPS with monosaccharide units of glucose, galactose, xylose, and rhamnose. Size-exclusion chromatography had shown the molecular weight of the purified EPS as around 240 kDa. X-ray powder diffraction analysis confirmed the non-crystalline amorphous nature of the EPS. Furthermore, the purified EPS showed the maximum flocculation activity (72.80%) with kaolin clay and emulsification activity (67.04%) with xylene. In addition, the EPS exhibits significant antioxidant activities on DPPH (58.17 ± 0.054%), ABTS (70.47 ± 0.854%) and nitric oxide (58.92 ± 0.744%) radicals in a concentration-dependent way. Moreover, the EPS showed promising cytotoxic activity (20 ± 0.97 μg mL–1) against the lung carcinoma cells (A549), and subsequent cellular staining revealed apoptotic necrotic characters in damaged A549 cells. The EPS purified from the probiotic strain B. albus DM-15 can be further studied and exploited as a potential carbohydrate polymer in food, cosmetic, pharmaceutical, and biomedical applications.
Collapse
Affiliation(s)
- Annadurai Vinothkanna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Department of Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | | | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, India
| | | | - Kandasamy Saravanan
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, India
| | - Kumaresan Sudharsan
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Dindigul, India
| | - Palanisamy Kalimuthu
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Dindigul, India
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | |
Collapse
|
23
|
Mousavian Z, Safavi M, Azizmohseni F, Hadizadeh M, Mirdamadi S. Characterization, antioxidant and anticoagulant properties of exopolysaccharide from marine microalgae. AMB Express 2022; 12:27. [PMID: 35239029 PMCID: PMC8894541 DOI: 10.1186/s13568-022-01365-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
The sulfated exopolysaccharide extracted from marine microalgae attracted considerable attention from both the nutraceutical and pharmaceutical industries. In the present study biomass of five marine microalgae were screened to find strains with high capacity for the production of sulfated exopolysaccharides. The anticoagulant and antioxidant activities of extracted sulfated polysaccharides were evaluated using activated partial thromboplastin time (aPTT), prothrombin time (PT), DPPH and ABTS assays, respectively. The sulfated polysaccharides extracted from Picochlorum sp. showed a strong DPPH scavenging effect with 85% antioxidant activity. The sulfated polysaccharides of Chlorella sorokiniana, Chlorella sp. (L2) and Chlorella sp. (D1) scavenged more than 90% of the ABTS radicals. However, the sulfated polysaccharide extracted from Chlorella sorokiniana, and Chlorella sp. (N4) showed anticoagulant properties. The dual anticoagulant-antioxidant activities in Chlorella sorokiniana could be explained by the combination of various factors including sulfate content and their binding site, monosaccharide residue and glycoside bond which are involved in the polysaccharide’s bioactivity. Sulfated exopolysaccharides (sPS) were extracted from marine green microalgae by the heated acid extraction method. sPS with the higher sulfate/sugar ratio presented potent ABTS radical scavenging activity. Some of the sPS revealed anticoagulant effects in activated partial thromboplastin time (aPTT) and prothrombin time (PT) assays.
Collapse
|
24
|
Shang Y, Wu X, Wang X, Wei Q, Ma S, Sun G, Zhang H, Wang L, Dou H, Zhang H. Factors affecting seasonal variation of microbial community structure in Hulun Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150294. [PMID: 34536882 DOI: 10.1016/j.scitotenv.2021.150294] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities play an important role in water quality regulation and biogeochemical cycling in freshwater ecosystems. However, there is a lack of research on the seasonal variation in lake water microorganisms in cold environments. In this study, 16S rRNA gene high-throughput sequencing was used to explore the microbial community and its influencing factors in Hulun Lake water during different seasons. The results showed that Proteobacteria, Actinobacteria, and Bacteroidetes were the most important phyla in the microbial community of Hulun Lake, but they had significant seasonal differences in their distribution. In addition, significant seasonal differences were observed in the α diversity of microorganisms, with bacterial diversity being higher in winter than in summer. Changes in environmental variables were significantly correlated with changes in the microbial community, and the rapid changes in temperature, pH, and dissolved oxygen are potentially the major factors influencing seasonal bacterial diversity trends. The findings of the present study enhance our understanding of the microbial communities in alpine lake ecosystems and are of great significance for the management and protection of lake ecosystems.
Collapse
Affiliation(s)
- Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Shengchao Ma
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Guolei Sun
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Huanxin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lidong Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir, China.
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China.
| |
Collapse
|
25
|
Effect of Different Initial Fermentation pH on Exopolysaccharides Produced by Pseudoalteromonas agarivorans Hao 2018 and Identification of Key Genes Involved in Exopolysaccharide Synthesis via Transcriptome Analysis. Mar Drugs 2022; 20:md20020089. [PMID: 35200619 PMCID: PMC8877158 DOI: 10.3390/md20020089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 01/07/2023] Open
Abstract
Exopolysaccharides (EPSs) are carbohydrate polymers produced and secreted by microorganisms. In a changing marine environment, EPS secretion can reduce damage from external environmental disturbances to microorganisms. Meanwhile, EPSs have promising application prospects in the fields of food, cosmetics, and pharmaceuticals. Changes in external environmental pH have been shown to affect the synthesis of EPSs in microorganisms. In this study, we analyzed the effects of different initial fermentation pHs on the production, monosaccharide composition, and antioxidant activity of the EPSs of Pseudoalteromonas agarivorans Hao 2018. In addition, the transcriptome sequence of P. agarivorans Hao 2018 under different initial fermentation pH levels was determined. GO and KEGG analyses showed that the differentially expressed genes were concentrated in the two-component regulatory system and bacterial chemotaxis pathways. We further identified the expression of key genes involved in EPS synthesis during pH changes. In particular, the expression of genes encoding the glucose/galactose MFS transporter, phosphomannomutase, and mannose-1-phosphate guanylyltransferase was upregulated when the environmental pH increased, thus promoting EPS synthesis. This study not only contributes to elucidating the environmental adaptation mechanisms of P. agarivorans, but also provides important theoretical guidance for the directed development of new products using biologically active polysaccharides.
Collapse
|
26
|
A Novel Gelatinase from Marine Flocculibacter collagenilyticus SM1988: Characterization and Potential Application in Collagen Oligopeptide-Rich Hydrolysate Preparation. Mar Drugs 2022; 20:md20010048. [PMID: 35049903 PMCID: PMC8780967 DOI: 10.3390/md20010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
Although the S8 family in the MEROPS database contains many peptidases, only a few S8 peptidases have been applied in the preparation of bioactive oligopeptides. Bovine bone collagen is a good source for preparing collagen oligopeptides, but has been so far rarely applied in collagen peptide preparation. Here, we characterized a novel S8 gelatinase, Aa2_1884, from marine bacterium Flocculibacter collagenilyticus SM1988T, and evaluated its potential application in the preparation of collagen oligopeptides from bovine bone collagen. Aa2_1884 is a multimodular S8 peptidase with a distinct domain architecture from other reported peptidases. The recombinant Aa2_1884 over-expressed in Escherichia coli showed high activity toward gelatin and denatured collagens, but no activity toward natural collagens, indicating that Aa2_1884 is a gelatinase. To evaluate the potential of Aa2_1884 in the preparation of collagen oligopeptides from bovine bone collagen, three enzymatic hydrolysis parameters, hydrolysis temperature, hydrolysis time and enzyme-substrate ratio (E/S), were optimized by single factor experiments, and the optimal hydrolysis conditions were determined to be reaction at 60 ℃ for 3 h with an E/S of 400 U/g. Under these conditions, the hydrolysis efficiency of bovine bone collagen by Aa2_1884 reached 95.3%. The resultant hydrolysate contained 97.8% peptides, in which peptides with a molecular weight lower than 1000 Da and 500 Da accounted for 55.1% and 39.5%, respectively, indicating that the hydrolysate was rich in oligopeptides. These results indicate that Aa2_1884 likely has a promising potential application in the preparation of collagen oligopeptide-rich hydrolysate from bovine bone collagen, which may provide a feasible way for the high-value utilization of bovine bone collagen.
Collapse
|
27
|
Gangalla R, Gattu S, Palaniappan S, Ahamed M, Macha B, Thampu RK, Fais A, Cincotti A, Gatto G, Dama M, Kumar A. Structural Characterisation and Assessment of the Novel Bacillus amyloliquefaciens RK3 Exopolysaccharide on the Improvement of Cognitive Function in Alzheimer's Disease Mice. Polymers (Basel) 2021; 13:polym13172842. [PMID: 34502882 PMCID: PMC8434388 DOI: 10.3390/polym13172842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
In this study Bacillus amyloliquefaciens RK3 was isolated from a sugar mill effluent-contaminated soil and utilised to generate a potential polysaccharide with anti-Alzheimer's activity. Traditional and molecular methods were used to validate the strain. The polysaccharide produced by B. amyloliquefaciens RK3 was purified, and the yield was estimated to be 10.35 gL-1. Following purification, the polysaccharide was structurally and chemically analysed. The structural analysis revealed the polysaccharide consists of α-d-mannopyranose (α-d-Manp) and β-d-galactopyranose (β-d-Galp) monosaccharide units connected through glycosidic linkages (i.e., β-d-Galp(1→6)β-d-Galp (1→6)β-d-Galp(1→2)β-d-Galp(1→2)[β-d-Galp(1→6)]β-d-Galp(1→2)α-d-Manp(1→6)α-d-Manp (1→6)α-d-Manp(1→6)α-d-Manp(1→6)α-d-Manp). The scanning electron microscopy and energy-dispersive X-ray spectroscopy imaging of polysaccharides emphasise their compactness and branching in the usual tubular heteropolysaccharide structure. The purified exopolysaccharide significantly impacted the plaques formed by the amyloid proteins during Alzheimer's disease. Further, the results also highlighted the potential applicability of exopolysaccharide in various industrial and pharmaceutical applications.
Collapse
Affiliation(s)
- Ravi Gangalla
- Department of Microbiology, Kakatiya University, Warangal 506009, India;
| | - Sampath Gattu
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India;
| | - Sivasankar Palaniappan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, India
- Correspondence: (S.P.); (R.K.T.)
| | - Maqusood Ahamed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Baswaraju Macha
- Medicinal Chemistry Division, University College of Pharmaceutical Sciences, Kakatiya University, Warangal 506009, India;
| | - Raja Komuraiah Thampu
- Department of Microbiology, Kakatiya University, Warangal 506009, India;
- Correspondence: (S.P.); (R.K.T.)
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy;
| | - Alberto Cincotti
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy;
| | - Gianluca Gatto
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy; (G.G.); (A.K.)
| | - Murali Dama
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy; (G.G.); (A.K.)
| |
Collapse
|
28
|
Barai M, Manna E, Sultana H, Mandal MK, Guchhait KC, Manna T, Patra A, Chang CH, Moitra P, Ghosh C, Larsson AC, Bhattacharya S, Panda AK. Micro-structural investigations on oppositely charged mixed surfactant gels with potential dermal applications. Sci Rep 2021; 11:15527. [PMID: 34330954 PMCID: PMC8324821 DOI: 10.1038/s41598-021-94777-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Dicarboxylic amino acid-based surfactants (N-dodecyl derivatives of -aminomalonate, -aspartate, and -glutamate) in combination with hexadecyltrimethylammonium bromide (HTAB) form a variety of aggregates. Composition and concentration-dependent mixtures exhibit liquid crystal, gel, precipitate, and clear isotropic phases. Liquid crystalline patterns, formed by surfactant mixtures, were identified by polarizing optical microscopy. FE-SEM studies reveal the existence of surface morphologies of different mixed aggregates. Phase transition and associated weight loss were found to depend on the composition where thermotropic behaviours were revealed through combined differential scanning calorimetry and thermogravimetric studies. Systems comprising more than 60 mol% HTAB demonstrate shear-thinning behaviour. Gels cause insignificant toxicity to human peripheral lymphocytes and irritation to bare mouse skin; they do not display the symptoms of cutaneous irritation, neutrophilic invasion, and inflammation (erythema, edema, and skin thinning) as evidenced by cumulative irritancy index score. Gels also exhibit substantial antibacterial effects on Staphylococcus aureus, a potent causative agent of skin and soft tissue infections, suggesting its possible application as a vehicle for topical dermatological drug delivery.
Collapse
Affiliation(s)
- Manas Barai
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Emili Manna
- Centre for Life Sciences, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Habiba Sultana
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Manas Kumar Mandal
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Kartik Chandra Guchhait
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Tuhin Manna
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Anuttam Patra
- Chemistry of Interfaces Group, Luleå University of Technology, 97187, Luleå, Sweden
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Parikshit Moitra
- India and School of Applied & interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Anna-Carin Larsson
- Chemistry of Interfaces Group, Luleå University of Technology, 97187, Luleå, Sweden
| | - Santanu Bhattacharya
- India and School of Applied & interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India.
| |
Collapse
|
29
|
Abstract
Long life expectancy of populations in the developing world together with some cultural and social issues has driven the need to pay special attention to health and physical appearance. Cosmeceuticals are gaining interest in the cosmetic industry as their uses fulfills a double purpose: the requirements of a cosmetic (clean, perfume, protect, change the appearance of the external parts of the body or keeping them in good condition) with a particular bioactivity function. The cosmetics industry, producing both cosmetics and cosmeceuticals, is currently facing numerous challenges to satisfy different attitudes of consumers (vegetarianism, veganism, cultural or religious concerns, health or safety reasons, eco-friendly process, etc.). A currently growing trend in the market is the interest in products of low environmental impact. Marine origin ingredients are increasingly being incorporated into cosmeceutical preparations because they are able to address several consumer requirements and also due to the wide range of bioactivities they present (antioxidant, whitening, anti-aging, etc.). Many companies claim “Marine” as a distinctive marketing signal; however, only a few indicate whether they use sustainable ingredient sources. Sustainable marine ingredients might be obtained using wild marine biomass through a sustainable extractive fishing activity; by adopting valorization strategies including the use of fish discards and fish by-products; and by sustainably farming and culturing marine organisms.
Collapse
|
30
|
Das S. Structural and mechanical characterization of biofilm-associated bacterial polymer in the emulsification of petroleum hydrocarbon. 3 Biotech 2021; 11:239. [PMID: 33968582 DOI: 10.1007/s13205-021-02795-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
The marine bacterium Pseudomonas furukawaii PPS-19 isolated from the oil-polluted site of Paradip port, Odisha, India, was found to form a strong biofilm in 2% (v/v) crude oil. Confocal Laser Scanning Microscopy (CLSM) revealed biofilm components along with multi-layered dense biofilm of rod-shaped cells with 64.7 µm thickness. Scanning electron micrographs showed similar biofilm architecture covered with a gluey matrix of extracellular polymeric substances (EPS) in the presence of 2% (v/v) crude oil. The architecture of purified EPS was also studied through FESEM that exposed its porous and three-dimensional flakes-like structure. The structural characterization by FTIR revealed that EPS was composed of primary alkane, amines, halide, hydroxyl groups, uronic acid, and saccharides. The XRD profile exhibited an amorphous phase of the EPS with a crystallinity index of 0.336. The EPS showed three-step thermal decomposition and thermal stability up to 600 °C, as confirmed by TGA and DSC thermogram. EPS produced by marine bacterium P. furukawaii PPS-19 could act as bioemulsifier and showed the highest emulsifying activity of 66.23% on petrol. The emulsifying ability of the EPS was superior to the commercial polymer xanthan. The emulsion also showed high stability with time and temperature exposure. The marine bacterium P. furukawaii PPS-19 and the EPS complex showed 89.52% degradation of crude oil within 5 days. These properties demonstrated the potential of biofilm-forming marine bacterium as bioemulsifier for its application in the bioremediation of oil-polluted sites. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02795-8.
Collapse
Affiliation(s)
- Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769 008 India
| |
Collapse
|
31
|
Ruocco N, Esposito R, Bertolino M, Zazo G, Sonnessa M, Andreani F, Coppola D, Giordano D, Nuzzo G, Lauritano C, Fontana A, Ianora A, Verde C, Costantini M. A Metataxonomic Approach Reveals Diversified Bacterial Communities in Antarctic Sponges. Mar Drugs 2021; 19:173. [PMID: 33810171 PMCID: PMC8004616 DOI: 10.3390/md19030173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Marine sponges commonly host a repertoire of bacterial-associated organisms, which significantly contribute to their health and survival by producing several anti-predatory molecules. Many of these compounds are produced by sponge-associated bacteria and represent an incredible source of novel bioactive metabolites with biotechnological relevance. Although most investigations are focused on tropical and temperate species, to date, few studies have described the composition of microbiota hosted by Antarctic sponges and the secondary metabolites that they produce. The investigation was conducted on four sponges collected from two different sites in the framework of the XXXIV Italian National Antarctic Research Program (PNRA) in November-December 2018. Collected species were characterized as Mycale (Oxymycale) acerata, Haliclona (Rhizoniera) dancoi, Hemigellius pilosus and Microxina sarai by morphological analysis of spicules and amplification of four molecular markers. Metataxonomic analysis of these four Antarctic sponges revealed a considerable abundance of Amplicon Sequence Variants (ASVs) belonging to the phyla Proteobacteria, Bacteroidetes, Actinobacteria and Verrucomicrobia. In particular, M. (Oxymycale) acerata, displayed several genera of great interest, such as Endozoicomonas, Rubritalea, Ulvibacter, Fulvivirga and Colwellia. On the other hand, the sponges H. pilosus and H. (Rhizoniera) dancoi hosted bacteria belonging to the genera Pseudhongella, Roseobacter and Bdellovibrio, whereas M. sarai was the sole species showing some strains affiliated to the genus Polaribacter. Considering that most of the bacteria identified in the present study are known to produce valuable secondary metabolites, the four Antarctic sponges could be proposed as potential tools for the discovery of novel pharmacologically active compounds.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
| | - Roberta Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Marco Bertolino
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Gianluca Zazo
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Michele Sonnessa
- Bio-Fab Research srl, Via Mario Beltrami, 5, 00135 Roma, Italy; (M.S.); (F.A.)
| | - Federico Andreani
- Bio-Fab Research srl, Via Mario Beltrami, 5, 00135 Roma, Italy; (M.S.); (F.A.)
| | - Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Daniela Giordano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Genoveffa Nuzzo
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy; (G.N.); (A.F.)
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
| | - Angelo Fontana
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy; (G.N.); (A.F.)
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
| | - Cinzia Verde
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
32
|
Guillonneau R, Baraquet C, Molmeret M. Marine Bacteria Display Different Escape Mechanisms When Facing Their Protozoan Predators. Microorganisms 2020; 8:microorganisms8121982. [PMID: 33322808 PMCID: PMC7763514 DOI: 10.3390/microorganisms8121982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Free-living amoeba are members of microbial communities such as biofilms in terrestrial, fresh, and marine habitats. Although they are known to live in close association with bacteria in many ecosystems such as biofilms, they are considered to be major bacterial predators in many ecosystems. Little is known on the relationship between protozoa and marine bacteria in microbial communities, more precisely on how bacteria are able survive in environmental niches where these bacterial grazers also live. The objective of this work is to study the interaction between the axenized ubiquitous amoeba Acanthamoeba castellanii and four marine bacteria isolated from immersed biofilm, in order to evaluate if they would be all grazed upon by amoeba or if they would be able to survive in the presence of their predator. At a low bacteria-to-amoeba ratio, we show that each bacterium is phagocytized and follows a singular intracellular path within this host cell, which appears to delay or to prevent bacterial digestion. In particular, one of the bacteria was found in the amoeba nucleolar compartment whereas another strain was expelled from the amoeba in vesicles. We then looked at the fate of the bacteria grown in a higher bacteria-to-amoeba ratio, as a preformed mono- or multi-species biofilm in the presence of A. castellanii. We show that all biofilms were subjected to detachment from the surface in the presence of the amoeba or its supernatant. Overall, these results show that bacteria, when facing the same predator, exhibit a variety of escape mechanisms at the cellular and population level, when we could have expected a simple bacterial grazing. Therefore, this study unravels new insights into the survival of environmental bacteria when facing predators that they could encounter in the same microbial communities.
Collapse
Affiliation(s)
- Richard Guillonneau
- Laboratoire MAPIEM, EA4323, Université de Toulon, 83130 La Garde, France; (R.G.); (C.B.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Claudine Baraquet
- Laboratoire MAPIEM, EA4323, Université de Toulon, 83130 La Garde, France; (R.G.); (C.B.)
| | - Maëlle Molmeret
- Laboratoire MAPIEM, EA4323, Université de Toulon, 83130 La Garde, France; (R.G.); (C.B.)
- Correspondence:
| |
Collapse
|
33
|
Vitale GA, Coppola D, Palma Esposito F, Buonocore C, Ausuri J, Tortorella E, de Pascale D. Antioxidant Molecules from Marine Fungi: Methodologies and Perspectives. Antioxidants (Basel) 2020; 9:E1183. [PMID: 33256101 PMCID: PMC7760651 DOI: 10.3390/antiox9121183] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022] Open
Abstract
The marine environment represents a prosperous existing resource for bioprospecting, covering 70% of the planet earth, and hosting a huge biodiversity. Advances in the research are progressively uncovering the presence of unknown microorganisms, which have evolved unique metabolic and genetic pathways for the production of uncommon secondary metabolites. Fungi have a leading role in marine bioprospecting since they represent a prolific source of structurally diverse bioactive metabolites. Several bioactive compounds from marine fungi have already been characterized including antibiotics, anticancer, antioxidants and antivirals. Nowadays, the search for natural antioxidant molecules capable of replacing those synthetic currently used, is an aspect that is receiving significant attention. Antioxidants can inactivate reactive oxygen and nitrogen species, preventing the insurgence of several degenerative diseases including cancer, autoimmune disorders, cardiovascular and neurodegenerative diseases. Moreover, they also find applications in different fields, including food preservation, healthcare and cosmetics. This review focuses on the production of antioxidants from marine fungi. We begin by proposing a survey of the available tools suitable for the evaluation of antioxidants, followed by the description of various classes of marine fungi antioxidants together with their extraction strategies. In addition, a view of the future perspectives and trends of these natural products within the "blue economy" is also presented.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Fortunato Palma Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
| | - Carmine Buonocore
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Janardhan Ausuri
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Emiliana Tortorella
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Donatella de Pascale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
| |
Collapse
|
34
|
Wang J, Salem DR, Sani RK. Two new exopolysaccharides from a thermophilic bacterium Geobacillus sp. WSUCF1: Characterization and bioactivities. N Biotechnol 2020; 61:29-39. [PMID: 33188978 DOI: 10.1016/j.nbt.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022]
Abstract
The production, characterization and bioactivities of exopolysaccharides (EPSs) from a thermophilic bacterium Geobacillus sp. strain WSUCF1 were investigated. Using glucose as a carbon source 525.7 mg/L of exoproduct were produced in a 40-L bioreactor at 60 °C. Two purified EPSs were obtained: EPS-1 was a glucomannan containing mannose and glucose in a molar ratio of 1:0.21, while EPS-2 was composed of mannan only. The molecular weights of both EPSs were estimated to be approximately 1000 kDa, their FTIR and NMR spectra indicated the presence of α-type glycosidic bonds in a linear structure, and XRD analysis indicated a low degree of crystallinity of 0.11 (EPS-1) and 0.27 (EPS-2). EPS-1 and EPS-2 demonstrated high degradation temperatures of 319 °C and 314 °C, respectively, and non-cytotoxicity to HEK-293 cells at 2 and 3 mg/mL, respectively. In addition, both showed antioxidant activities. EPSs from strain WSUCF1 may expand the applications of microorganisms isolated from extreme environments and provide a valuable resource for exploitation in biomedical fields such as drug delivery carriers.
Collapse
Affiliation(s)
- Jia Wang
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - David R Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; Composite and Nanocomposite Advanced Manufacturing Center - Biomaterials (CNAM-Bio Center), Rapid City, SD, 57701, USA.
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; Composite and Nanocomposite Advanced Manufacturing Center - Biomaterials (CNAM-Bio Center), Rapid City, SD, 57701, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| |
Collapse
|
35
|
Rizzo C, Lo Giudice A. The Variety and Inscrutability of Polar Environments as a Resource of Biotechnologically Relevant Molecules. Microorganisms 2020; 8:microorganisms8091422. [PMID: 32947905 PMCID: PMC7564310 DOI: 10.3390/microorganisms8091422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022] Open
Abstract
The application of an ever-increasing number of methodological approaches and tools is positively contributing to the development and yield of bioprospecting procedures. In this context, cold-adapted bacteria from polar environments are becoming more and more intriguing as valuable sources of novel biomolecules, with peculiar properties to be exploited in a number of biotechnological fields. This review aims at highlighting the biotechnological potentialities of bacteria from Arctic and Antarctic habitats, both biotic and abiotic. In addition to cold-enzymes, which have been intensively analysed, relevance is given to recent advances in the search for less investigated biomolecules, such as biosurfactants, exopolysaccharides and antibiotics.
Collapse
Affiliation(s)
- Carmen Rizzo
- Stazione Zoologica Anton Dohrn, Department Marine Biotechnology, National Institute of Biology, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
- Correspondence:
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata San Raineri 86, 98122 Messina, Italy;
| |
Collapse
|
36
|
Andryukov BG, Besednova NN, Kuznetsova TA, Zaporozhets TS, Ermakova SP, Zvyagintseva TN, Chingizova EA, Gazha AK, Smolina TP. Sulfated Polysaccharides from Marine Algae as a Basis of Modern Biotechnologies for Creating Wound Dressings: Current Achievements and Future Prospects. Biomedicines 2020; 8:E301. [PMID: 32842682 PMCID: PMC7554790 DOI: 10.3390/biomedicines8090301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Wound healing involves a complex cascade of cellular, molecular, and biochemical responses and signaling processes. It consists of successive interrelated phases, the duration of which depends on a multitude of factors. Wound treatment is a major healthcare issue that can be resolved by the development of effective and affordable wound dressings based on natural materials and biologically active substances. The proper use of modern wound dressings can significantly accelerate wound healing with minimum scar mark. Sulfated polysaccharides from seaweeds, with their unique structures and biological properties, as well as with a high potential to be used in various wound treatment methods, now undoubtedly play a major role in innovative biotechnologies of modern natural interactive dressings. These natural biopolymers are a novel and promising biologically active source for designing wound dressings based on alginates, fucoidans, carrageenans, and ulvans, which serve as active and effective therapeutic tools. The goal of this review is to summarize available information about the modern wound dressing technologies based on seaweed-derived polysaccharides, including those successfully implemented in commercial products, with a focus on promising and innovative designs. Future perspectives for the use of marine-derived biopolymers necessitate summarizing and analyzing results of numerous experiments and clinical trial data, developing a scientifically substantiated approach to wound treatment, and suggesting relevant practical recommendations.
Collapse
Affiliation(s)
- Boris G. Andryukov
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russian
| | - Natalya N. Besednova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana A. Kuznetsova
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana S. Zaporozhets
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Svetlana P. Ermakova
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Tatyana N. Zvyagintseva
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Ekaterina A. Chingizova
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC) FEB RAS, 690022 Vladivostok, Russian; (S.P.E.); (T.N.Z.); (E.A.C.)
| | - Anna K. Gazha
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| | - Tatyana P. Smolina
- Somov Research Institute of Epidemiology and Microbiology, 690087 Vladivostok, Russian; (N.N.B.); (T.A.K.); (T.S.Z.); (A.K.G.); (T.P.S.)
| |
Collapse
|
37
|
Osemwegie OO, Adetunji CO, Ayeni EA, Adejobi OI, Arise RO, Nwonuma CO, Oghenekaro AO. Exopolysaccharides from bacteria and fungi: current status and perspectives in Africa. Heliyon 2020; 6:e04205. [PMID: 32577572 PMCID: PMC7303563 DOI: 10.1016/j.heliyon.2020.e04205] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/13/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial and fungal exopolysaccharides (EPSs) are extracellular metabolites of living organisms (plants, animals, algae, bacteria and fungi) associated with adaptation, survival and functionalities. The EPSs also afford humans multiple value-adding applications across different spheres of endeavors. The variable chemical and biochemical architecture that characterizes an EPS presets its biological functionality and potential biotechnological benefits. Suffices to say that it is amenable to genetic, biotechnological and biochemical maneuverability for desired bioactivity or application during their production and extraction. EPSs have been shown to have, antioxidant, anti-tumor and antiviral activities; enhance soil aridity and nutritional value of food consumed by humans. Their innocuous domestic and commercial versatility and biotechnological relevance is a reliable confirmation of the recent attention accorded EPSs by the global research community. This is especially with respect to their biosynthesis, composition, production, structure, characterization, sources, functional properties and applications. It is also responsible for the development of newer strategies for their extraction. EPSs' relative prospects, perspectives and orientation in the African context are seldom reported in recognized scientific literature data bases. A random preliminary study showed that EPS applications, biotechnological and research orientations are still developing, and influenced by preponderant vegetation, level of industrialization, political will and culture. Africa is endowed with untapped bioresources (biomaterials), bioproducts and bioequivalents that can mediate several global foods, industrial and technological challenges for which EPS may be a potential remedy.
Collapse
Affiliation(s)
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, PMB 04, Auchi, Edo State, Nigeria
| | - Eugene Ayodele Ayeni
- Department of Biological Sciences, Microbiology Unit, Landmark University, P.M.B 1001, Omu-Aran, Kwara State, Nigeria
| | - Oluwaniyi Isaiah Adejobi
- Department of Biological Sciences, Microbiology Unit, Landmark University, P.M.B 1001, Omu-Aran, Kwara State, Nigeria
- Chinese Academy of Sciences, Kunming Institute of Botany, Key Laboratory for Economic Plants and Biotechnology, Yunnan Province, China
| | - Rotimi Olusunya Arise
- Chinese Academy of Sciences, Kunming Institute of Botany, Key Laboratory for Economic Plants and Biotechnology, Yunnan Province, China
| | | | - Abbot Okotie Oghenekaro
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, PMB1154, Benin City, Edo State, Nigeria
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3N 2N2, Canada
| |
Collapse
|
38
|
Improvement of the production of an Arctic bacterial exopolysaccharide with protective effect on human skin cells against UV-induced oxidative stress. Appl Microbiol Biotechnol 2020; 104:4863-4875. [PMID: 32285173 DOI: 10.1007/s00253-020-10524-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 01/24/2023]
Abstract
Although microbial exopolysaccharides (EPSs) are applied in different fields, no EPS has been used to protect human skin cells against UV-induced oxidative stress. The EPS produced by the Arctic bacterium Polaribacter sp. SM1127 has high moisture-retention ability and antioxidant activity, suggesting its good industrial potentials. In this study, we improved the EPS production of SM1127 and evaluated its protective effect on human dermal fibroblasts (HDFs) against UV-induced oxidative stress. With glucose as carbon source, the EPS yield was increased from 2.11 to 6.12 g/L by optimizing the fermentation conditions using response surface methodology. To lower the fermentation cost and decrease corrosive speed in stainless steel tanks, whole sugar, whose price is only 8% of that of glucose, was used to replace glucose and NaCl concentration was reduced to 4 g/L in the medium. With the optimized conditions, fed-batch fermentation in a 5-L bioreactor was conducted, and the EPS production reached 19.25 g/L, which represents the highest one reported for a polar microorganism. Moreover, SM1127 EPS could maintain the cell viability and integrity of HDFs under UV-B radiation, probably via decreasing intracellular reactive oxygen species level and increasing intracellular glutathione content and superoxide dismutase activity. Therefore, SM1127 EPS has significant protective effect on HDFs against UV-induced oxidative stress, suggesting its potential to be used in preventing photoaging and photocarcinogenesis. Altogether, this study lays a good foundation for the industrialization of SM1127 EPS, which has promising potential to be used in cosmetics and medical fields.
Collapse
|
39
|
Zampieri RM, Adessi A, Caldara F, Codato A, Furlan M, Rampazzo C, De Philippis R, La Rocca N, Dalla Valle L. Anti-Inflammatory Activity of Exopolysaccharides from Phormidium sp. ETS05, the Most Abundant Cyanobacterium of the Therapeutic Euganean Thermal Muds, Using the Zebrafish Model. Biomolecules 2020; 10:biom10040582. [PMID: 32290043 PMCID: PMC7226003 DOI: 10.3390/biom10040582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
The Euganean Thermal District (Italy) represents the oldest and largest thermal center in Europe, and its therapeutic mud is considered a unique product whose beneficial effects have been documented since Ancient Roman times. Mud properties depend on the heat and electrolytes of the thermal water, as well as on the bioactive molecules produced by its biotic component, mainly represented by cyanobacteria. The investigation of the healing effects of compounds produced by the Euganean cyanobacteria represents an important goal for scientific validation of Euganean mud therapies and for the discovering of new health beneficial biomolecules. In this work, we evaluated the therapeutic potential of exopolysaccharides (EPS) produced by Phormidium sp. ETS05, the most abundant cyanobacterium of the Euganean mud. Specifically, Phormidium EPS resulted in exerting anti-inflammatory and pro-resolution activities in chemical and injury-induced zebrafish inflammation models as demonstrated using specific transgenic zebrafish lines and morphometric and expression analyses. Moreover, in vivo and in vitro tests showed no toxicity at all for the EPS concentrations tested. The results suggest that these EPS, with their combined anti-inflammatory and pro-resolution activities, could be one of the most important therapeutic molecules present in the Euganean mud and confirm the potential of these treatments for chronic inflammatory disease recovery.
Collapse
Affiliation(s)
- Raffaella Margherita Zampieri
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (R.M.Z.); (A.C.); (M.F.); (C.R.)
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via Maragliano 77, 50144 Firenze, Italy; (A.A.); (R.D.P.)
| | - Fabrizio Caldara
- Pietro d’Abano Thermal Studies Center, Via Jappelli 5, Abano Terme, 35031 Padova, Italy;
| | - Alessia Codato
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (R.M.Z.); (A.C.); (M.F.); (C.R.)
| | - Mattia Furlan
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (R.M.Z.); (A.C.); (M.F.); (C.R.)
| | - Chiara Rampazzo
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (R.M.Z.); (A.C.); (M.F.); (C.R.)
| | - Roberto De Philippis
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via Maragliano 77, 50144 Firenze, Italy; (A.A.); (R.D.P.)
| | - Nicoletta La Rocca
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (R.M.Z.); (A.C.); (M.F.); (C.R.)
- Correspondence: (N.L.R.); (L.D.V.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (R.M.Z.); (A.C.); (M.F.); (C.R.)
- Correspondence: (N.L.R.); (L.D.V.)
| |
Collapse
|
40
|
Mirzaei Seveiri R, Hamidi M, Delattre C, Sedighian H, Pierre G, Rahmani B, Darzi S, Brasselet C, Karimitabar F, Razaghpoor A, Amani J. Characterization and Prospective Applications of the Exopolysaccharides Produced by Rhodosporidium babjevae. Adv Pharm Bull 2020; 10:254-263. [PMID: 32373494 PMCID: PMC7191244 DOI: 10.34172/apb.2020.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose: Due to the potential industrial and therapeutic applications of the yeast exopolysaccharides (EPSs), there has been an increasing demand to assess these biopolymers with improved characteristics. This study aimed to characterize the EPSs from Rhodosporidium babjevae (ATCC 90942 and IBRC-M 30088) as well as to evaluate their possible antioxidant, emulsifying and antiproliferative activities. Methods: Rhodosporidium babjevae was cultured for 5 days and following isolation of supernatant, EPSs precipitated with adding of cold absolute ethanol and freeze-dried. The EPSs chemical structure was determined by FT-IR, SEM, HPLC-SEC and GC-MS. Additionally the solubility, water holding capacity and emulsifying activity of EPSs were evaluated. In vitro, antioxidant activity was investigated against DPPH, superoxide and hydroxyl radicals. Finally the EPSs consequence on the cell proliferation of human breast adenocarcinoma (MCF-7) and Madin-Darby canine kidney (MDCK) cell lines was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Results: R. babjevae excreted 1.6±0.2 g/L of the EPSs. The EPSs had three fractions with molecular weights of 1.02 ×106 , 5×105 and 2×105 Da. Mannose and glucose were found as the main monosaccharides of the EPSs (84:16 mol%, respectively). The EPSs exhibited emulsifying activity on sun flower oil. The scavenging activities were found to be dose-dependent and higher than hyaluronic acid. Significant difference among the EPSs treatments on the proliferation of MCF-7 and MDCK cell lines was not observed (P>0.05). Conclusion: These results show the interesting potential of the EPSs from R. babjevae as biocompatible compounds for using in food and pharmaceutical fields.
Collapse
Affiliation(s)
- Rasool Mirzaei Seveiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.,Food and Drug Research Center, Vice-Chancellery of Food and Drug, Guilan University of Medical Sciences, Rasht, Iran
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.,Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Babak Rahmani
- Department of Molecular Medicine, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sina Darzi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Clément Brasselet
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Fatemeh Karimitabar
- Food and Drug Research Center, Vice-Chancellery of Food and Drug, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Razaghpoor
- Student Research Committee, Nursing and Midwifery Faculty, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Sun ML, Zhao F, Chen XL, Zhang XY, Zhang YZ, Song XY, Sun CY, Yang J. Promotion of Wound Healing and Prevention of Frostbite Injury in Rat Skin by Exopolysaccharide from the Arctic Marine Bacterium Polaribacter sp. SM1127. Mar Drugs 2020; 18:md18010048. [PMID: 31940773 PMCID: PMC7024241 DOI: 10.3390/md18010048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Many marine microorganisms synthesize exopolysaccharides (EPSs), and some of these EPSs have been reported to have potential in different fields. However, the pharmaceutical potentials of marine EPSs are rarely reported. The EPS secreted by the Artic marine bacterium Polaribacter sp. SM1127 has good antioxidant activity, outstanding moisture-retention ability, and considerable protective property on human dermal fibroblasts (HDFs) at low temperature. Here, the effects of SM1127 EPS on skin wound healing and frostbite injury prevention were studied. Scratch wound assay showed that SM1127 EPS could stimulate the migration of HDFs. In the full-thickness cutaneous wound experiment of Sprague-Dawley (SD) rats, SM1127 EPS increased the wound healing rate and stimulated tissue repair detected by macroscopic observation and histologic examination, showing the ability of SM1127 EPS to promote skin wound healing. In the skin frostbite experiment of SD rats, pretreatment of rat skin with SM1127 EPS increased the rate of frostbite wound healing and promoted the repair of the injured skin significantly, indicating the good effect of SM1127 EPS on frostbite injury prevention. These results suggest the promising potential of SM1127 EPS in the pharmaceutical area to promote skin wound healing and prevent frostbite injury.
Collapse
Affiliation(s)
- Mei-Ling Sun
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
| | - Fang Zhao
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266003, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
| | - Cai-Yun Sun
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
| | - Jie Yang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
- Correspondence:
| |
Collapse
|
42
|
Andrew M, Jayaraman G. Structural features of microbial exopolysaccharides in relation to their antioxidant activity. Carbohydr Res 2020; 487:107881. [DOI: 10.1016/j.carres.2019.107881] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
|
43
|
Hamidi M, Kozani PS, Kozani PS, Pierre G, Michaud P, Delattre C. Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications? Mar Drugs 2019; 18:E28. [PMID: 31905716 PMCID: PMC7024282 DOI: 10.3390/md18010028] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Natural bioactive compounds with antioxidant activity play remarkable roles in the prevention of reactive oxygen species (ROS) formation. ROS, which are formed by different pathways, have various pathological influences such as DNA damage, carcinogenesis, and cellular degeneration. Incremental demands have prompted the search for newer and alternative resources of natural bioactive compounds with antioxidant properties. The marine environment encompasses almost three-quarters of our planet and is home to many eukaryotic and prokaryotic microorganisms. Because of extreme physical and chemical conditions, the marine environment is a rich source of chemical and biological diversity, and marine microorganisms have high potential as a source of commercially interesting compounds with various pharmaceutical, nutraceutical, and cosmeceutical applications. Bacteria and microalgae are the most important producers of valuable molecules including antioxidant enzymes (such as superoxide dismutase and catalase) and antioxidant substances (such as carotenoids, exopolysaccharides, and bioactive peptides) with various valuable biological properties and applications. Here, we review the current knowledge of these bioactive compounds while highlighting their antioxidant properties, production yield, health-related benefits, and potential applications in various biological and industrial fields.
Collapse
Affiliation(s)
- Masoud Hamidi
- Food and Drug Research Center, Vice-Chancellery of Food and Drug, Guilan University of Medical Sciences, Rasht P.O. Box 41446/66949, Iran;
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115/111, Iran;
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
44
|
Isolation, Optimization of Fermentation Conditions, and Characterization of an Exopolysaccharide from Pseudoalteromonas agarivorans Hao 2018. Mar Drugs 2019; 17:md17120703. [PMID: 31847202 PMCID: PMC6950073 DOI: 10.3390/md17120703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
In recent years, the wide application of exopolysaccharides (EPSs) in food, cosmetics, medicine, and other fields has drawn tremendous attention. In this study, an EPS produced by Pseudoalteromonas agarivorans Hao 2018 was isolated and purified, and its fermentation conditions were optimized. Its structure and biological functions were also studied. The purity and molecular weight of EPS were determined by high performance liquid chromatography (HPLC), and the EPS exhibited a number average of 2.26 × 105 and a weight average of 2.84 × 105. EPS has good adsorption for Cu2+ and Pb2+. The adsorption rates can reach up to 69.79% and 82.46%, respectively. The hygroscopic property of EPS was higher than that of chitosan, but slightly lower than that of sodium hyaluronate. However, the water-retaining activity of EPS was similar to that of chitosan and sodium hyaluronate. EPS has strong ability to scavenge free radicals, including OH radical and O2− radical. Further, its activity on O2− radicals has similarities with that of vitamin C. EPS has broad application prospects in many fields, such as cosmetics, environmental protection.
Collapse
|
45
|
Zhong Q, Wei B, Wang S, Ke S, Chen J, Zhang H, Wang H. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview. Mar Drugs 2019; 17:E674. [PMID: 31795427 PMCID: PMC6950075 DOI: 10.3390/md17120674] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Marine-derived antioxidant polysaccharides have aroused extensive attention because of their potential nutritional and therapeutic benefits. However, the comprehensive comparison of identified marine-derived antioxidant polysaccharides is still inaccessible, which would facilitate the discovery of more efficient antioxidants from marine organisms. Thus, this review summarizes the sources, chemical composition, structural characteristics, and antioxidant capacity of marine antioxidant polysaccharides, as well as their protective in vivo effects mediated by antioxidative stress reported in the last few years (2013-2019), and especially highlights the dominant role of marine algae as antioxidant polysaccharide source. In addition, the relationships between the chemical composition and structural characteristics of marine antioxidant polysaccharides with their antioxidant capacity were also discussed. The antioxidant activity was found to be determined by multiple factors, including molecular weight, monosaccharide composition, sulfate position and its degree.
Collapse
Affiliation(s)
- Qiwu Zhong
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Sijia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, CA 90024, USA
| | - Songze Ke
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| |
Collapse
|
46
|
Adimoolam SR, Nanjan Easwaran S, Subramanian Mohanakrishnan A, Mahadevan S. Metabolic heat coherent growth of Halomonas variabilis (HV) for enhanced production of Extracellular Polymeric Substances (EPS) in a Bio Reaction Calorimeter (BioRC). Prep Biochem Biotechnol 2019; 50:56-65. [PMID: 31648576 DOI: 10.1080/10826068.2019.1663532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The optimum condition at which the halophilic salt-tolerant bacterium Halomonas variabilis (MTCC 3712) produces the maximum amount of extracellular polymeric substances (EPS) was investigated experimentally using response surface methodology based on the central composite design (CCD). Hyper-saline medium containing 1.5% w/v NaCl enriched nutrient medium with 1.5% glucose as a carbon source was used to produce about 4.74 g/L of EPS in 16 h compared to various other EPS production of this kind. The metabolic heat profile confirms net EPS production by HV was a growth-associated aerobic process. There is a good agreement between metabolic heat and Oxygen Uptake Rate (OUR). The maximum observed heat release was 2.1 W. The total protein content of the sample is 53% of the total EPS (Soluble EPS, Loosely bound EPS, and tightly bound EPS). The emulsifying and flocculating activities of the EPS were measured to explore the possibility of using the biopolymer for effluent treatment.
Collapse
Affiliation(s)
- Saravana Raj Adimoolam
- Department of Chemical Engineering, Vel Tech High Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Avadi, India
| | | | | | | |
Collapse
|
47
|
Niknezhad SV, Najafpour Darzi G, Kianpour S, Jafarzadeh S, Mohammadi H, Ghasemi Y, Heidari R, Shahbazi MA. Bacteria-assisted biogreen synthesis of radical scavenging exopolysaccharide-iron complexes: an oral nano-sized nutritional supplement with high in vivo compatibility. J Mater Chem B 2019; 7:5211-5221. [PMID: 31364687 DOI: 10.1039/c9tb01077g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial exopolysaccharides (EPSs) have recently served as an efficient substrate for the production of biocompatible metal nanoparticles (NPs) given their favorable stabilizing and reducing properties due to the presence of polyanionic functional groups in their structure. In the present work, Pantoea sp. BCCS 001 GH was used to produce EPS-stabilized biogenic Fe NPs as a complex through a novel biosynthesis reaction. Physicochemical characterization of the EPS-Fe complex was performed, indicating high thermal stability, desirable magnetic properties due to the uniform distribution of the Fe NPs with the average size of ∼10 nm and spherical shape within the EPS matrix. In addition, the in vivo toxicity of the EPS-stabilized Fe NPs was evaluated to investigate their potential for the treatment of iron deficiency anemia. Biological blood parameters and organ histology studies confirmed very high safety of the biosynthesized composite, making EPS-Fe a suitable candidate with an economical and environment friendly synthesis method for a wide spectrum of potential fields in medicine.
Collapse
Affiliation(s)
- Seyyed Vahid Niknezhad
- Department of Chemical Engineering, Faculty of Engineering, Noshirvani University of Technology, Babol, Iran and Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Ghasem Najafpour Darzi
- Department of Chemical Engineering, Faculty of Engineering, Noshirvani University of Technology, Babol, Iran
| | - Sedigheh Kianpour
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Sina Jafarzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran
| | - Hamidreza Mohammadi
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran and Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland. and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran
| |
Collapse
|
48
|
Casillo A, Ricciardelli A, Parrilli E, Tutino ML, Corsaro MM. Cell-wall associated polysaccharide from the psychrotolerant bacterium Psychrobacter arcticus 273-4: isolation, purification and structural elucidation. Extremophiles 2019; 24:63-70. [PMID: 31309337 DOI: 10.1007/s00792-019-01113-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 01/27/2023]
Abstract
In this paper, the structure of the capsular polysaccharide isolated from the psychrotolerant bacterium Psychrobacter arcticus 273-4 is reported. The polymer was purified by gel filtration chromatography and the structure was elucidated by means of one- and two-dimensional NMR spectroscopy, in combination with chemical analyses. The polysaccharide consists of a trisaccharidic repeating unit containing two residues of glucose and a residue of a N,N-diacetyl-pseudaminic acid.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy.
| | - Annarita Ricciardelli
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy.
| |
Collapse
|
49
|
Kowalkowski T, Krakowska A, Złoch M, Hrynkiewicz K, Buszewski B. Cadmium-affected synthesis of exopolysaccharides by rhizosphere bacteria. J Appl Microbiol 2019; 127:713-723. [PMID: 31211899 DOI: 10.1111/jam.14354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/20/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023]
Abstract
AIM Study is focused on the influence of cadmium addition to growth media on production yield, their size and molecular mass of exopolysaccharides (EPS) synthesized by three rhizosphere bacteria strains. Inhibition of bacterial growth by increasing concentrations of Cd2+ was also analysed. METHODS AND RESULTS The highest impact of Cd2+ was noticed on the growth of Arthrobacter sp. and Rhizobium metallidurans. Chryseobacterium sp. and Arthrobacter sp. produced significantly lower when compared to R. metallidurans amounts of EPS under the influence of Cd2+ . In all bacterial strains both size and molecular mass decreased after addition of Cd2+ to growth media. It causes a change in EPS conformation to more planar, which minimizes the volume of liquid in the interglobular space next to the bacterial wall. Results confirmed strong effect of Cd2+ on the structure and synthesis of bacterial EPS what can be a key factor in the interactions between rhizosphere bacteria and host plants in heavy metal polluted soils. CONCLUSION This work proves that due to the presence of cadmium ions, the size and conformation of EPS produced by selected bacterial strains is changed to minimize their impact on cell. We suggest that shifting in EPS conformation from bigger globular particles to the smaller planar ones could be one of the probable mechanisms of Cd resistance in metallotolerant bacteria, and finally explain increased efficiency of heavy metal phytoextraction by EPS-producing plant growth-promoting micro-organisms. SIGNIFICANCE AND IMPACT OF THE STUDY One of the most promising remediation technique for Cd-contaminated areas is the phytoremediation in which rhizosphere bacteria play an important role by protecting plants' roots from toxic condition thus enhancing efficiency of intake. EPS secretion by bacteria is one of the most common mechanisms to protect the cell from impact of unpleasant environmental conditions, for example, toxicity of heavy metals like Cd.
Collapse
Affiliation(s)
- T Kowalkowski
- Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - A Krakowska
- Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - M Złoch
- Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - K Hrynkiewicz
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - B Buszewski
- Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
50
|
Phylogenetics and antibacterial properties of exopolysaccharides from marine bacteria isolated from Mauritius seawater. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01487-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|