1
|
Zou G, Ding Y, Xu J, Feng Z, Cao N, Chen H, Liu H, Zheng X, Liu X, Zhang L. Genome-wide dissection of genes shaping inflorescence morphology in 242 Chinese south-north sorghum accessions. Sci Rep 2024; 14:25828. [PMID: 39468118 DOI: 10.1038/s41598-024-76568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
The inflorescences morphology (IM) of sorghum (Sorghum bicolor L. Moench) affects its resistance to pests, diseases, and grain yields. However, the specific genetic factors underlying in IM are not yet fully elucidated. Here we conducted a comprehensive genome-wide association analysis (GWAS) to identify the stable and adaptive Quantitative Trait Loci (QTL) for five IM traits (panicle length, the number of cob nodes, the number of primary branches, the largest length of the primary branch, and panicle type) in a sorghum panel, which adapted to different environments from the south to north in China. Totally, 2,015,850 high quality single nucleotide polymorphisms (SNPs) were obtained. Population structure analysis showed that two distinct genetic sub-populations were divided according to their geographic origin. Seventy-one QTLs distributed in 41 genetic regions on 9 chromosomes were identified. These regions harbored 21 high-confident candidate genes that were homologous to rice domestication genes, including 7 related to IM. Two domestication-related genes (Sobic.003G052700 and Sobic.006G247700) were located into two major QTL regions (QTL3.4721839 and QTL6.58709500) which were identified in multi-environments. Allelic variations in the two genes displayed a geographical pattern, indicating that different IM traits were selected by south and north sorghum breeders, such as south sorghums had long and loose panicles in order to adapt the hot and humid climate, while north sorghums had short and compact panicle to increase planting density and grain yield per unit area due to dry climate. This work provides new breeding strategies and resources for developing locally adapted sorghum varieties.
Collapse
Affiliation(s)
- Guihua Zou
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Yanqing Ding
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Jianxia Xu
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Zhou Feng
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Ning Cao
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Heyun Chen
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Heqin Liu
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Xueqiang Zheng
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Xiuhui Liu
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Liyi Zhang
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
2
|
Wang SS, Tsai PH, Cheng SF, Chen RK, Chen KY. Identification of genomic regions controlling spikelet degeneration under FRIZZLE PANICLE (FZP) defect genetic background in rice. Sci Rep 2024; 14:12451. [PMID: 38816469 PMCID: PMC11139880 DOI: 10.1038/s41598-024-63362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024] Open
Abstract
The FZP gene plays a critical role in the formation of lateral branches and spikelets in rice panicle architecture. This study investigates the qSBN7 allele, a hypomorphic variant of FZP, and its influence on panicle architectures in different genetic backgrounds. We evaluated two backcross inbred lines (BILs), BC5_TCS10sbn and BC3_TCS10sbn, each possessing the homozygous qSBN7 allele but demonstrating differing degrees of spikelet degeneration. Our analysis revealed that BC5_TCS10sbn had markedly low FZP expression, which corresponded with an increase in axillary branches and severe spikelet degeneration. Conversely, BC3_TCS10sbn exhibited significantly elevated FZP expression, leading to fewer secondary and tertiary branches, and consequently decreased spikelet degeneration. Compared to BC5_TCS10sbn, BC3_TCS10sbn carries three additional chromosomal substitution segments from its donor parent, IR65598-112-2. All three segments significantly enhance the expression of FZP and reduce the occurrence of tertiary branch and spikelet degeneration. These findings enhance our understanding of the mechanisms regulating FZP and aid rice breeding efforts.
Collapse
Affiliation(s)
- Sheng-Shan Wang
- Tainan District Agricultural Research and Extension Station, No. 70, Muchang, Xinhua, Tainan, 71246, Taiwan.
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
| | - Pei-Hua Tsai
- Tainan District Agricultural Research and Extension Station, No. 70, Muchang, Xinhua, Tainan, 71246, Taiwan
| | - Shu-Fang Cheng
- Tainan District Agricultural Research and Extension Station, No. 70, Muchang, Xinhua, Tainan, 71246, Taiwan
| | - Rong-Kuen Chen
- Tainan District Agricultural Research and Extension Station, No. 70, Muchang, Xinhua, Tainan, 71246, Taiwan
| | - Kai-Yi Chen
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
Sun Z, Mei T, Tan X, Feng T, Li R, Duan S, Zhao H, Ye Y, Liu B, Zhou A, Ai H, Huang X. The ldp1 Mutation Affects the Expression of Auxin-Related Genes and Enhances SAM Size in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:759. [PMID: 38592751 PMCID: PMC10975181 DOI: 10.3390/plants13060759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
Panicle type is one of the important factors affecting rice (Oryza sativa L.) yield, and the identification of regulatory genes in panicle development can provide significant insights into the molecular network involved. This study identified a large and dense panicle 1 (ldp1) mutant produced from the Wuyunjing 7 (WYJ7) genotype, which displayed significant relative increases in panicle length, number of primary and secondary branches, number of grains per panicle, grain width, and grain yield per plant. Scanning electron microscopy results showed that the shoot apical meristem (SAM) of ldp1 was relatively larger at the bract stage (BM), with a significantly increased number of primary (PBM) and secondary branch (SBM) meristematic centers, indicating that the ldp1 mutation affects early stages in SAM development Comparative RNA-Seq analysis of meristem tissues from WYJ7 and ldp1 at the BM, PBM, and SBM developmental stages indicated that the number of differentially expressed genes (DEGs) were highest (1407) during the BM stage. Weighted gene coexpression network analysis (WGCNA) revealed that genes in one module (turquoise) are associated with the ldp1 phenotype and highly expressed during the BM stage, suggesting their roles in the identity transition and branch differentiation stages of rice inflorescences. Hub genes involved in auxin synthesis and transport pathways, such as OsAUX1, OsAUX4, and OsSAUR25, were identified. Moreover, GO and KEGG analysis of the DEGs in the turquoise module and the 1407 DEGs in the BM stage revealed that a majority of genes involved in tryptophan metabolism and auxin signaling pathway were differentially expressed between WYJ and ldp1. The genetic analysis indicated that the ldp1 phenotype is controlled by a recessive monogene (LDP1), which was mapped to a region between 16.9 and 18.1 Mb on chromosome seven. This study suggests that the ldp1 mutation may affect the expression of key genes in auxin synthesis and signal transduction, enhance the size of SAM, and thus affect panicle development. This study provides insights into the molecular regulatory network underlying rice panicle morphogenesis and lays an important foundation for further understanding the function and molecular mechanism of LDP1 during panicle development.
Collapse
Affiliation(s)
- Zhanglun Sun
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 239000, China; (Z.S.); (T.M.); (X.T.); (T.F.); (R.L.); (S.D.); (H.Z.)
| | - Tianrun Mei
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 239000, China; (Z.S.); (T.M.); (X.T.); (T.F.); (R.L.); (S.D.); (H.Z.)
| | - Xuan Tan
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 239000, China; (Z.S.); (T.M.); (X.T.); (T.F.); (R.L.); (S.D.); (H.Z.)
| | - Tingting Feng
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 239000, China; (Z.S.); (T.M.); (X.T.); (T.F.); (R.L.); (S.D.); (H.Z.)
| | - Ruining Li
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 239000, China; (Z.S.); (T.M.); (X.T.); (T.F.); (R.L.); (S.D.); (H.Z.)
| | - Sumei Duan
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 239000, China; (Z.S.); (T.M.); (X.T.); (T.F.); (R.L.); (S.D.); (H.Z.)
| | - Heming Zhao
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 239000, China; (Z.S.); (T.M.); (X.T.); (T.F.); (R.L.); (S.D.); (H.Z.)
| | - Yafeng Ye
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230001, China; (Y.Y.); (B.L.)
| | - Binmei Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230001, China; (Y.Y.); (B.L.)
| | - Aifeng Zhou
- Anhui Xin Fu Xiang Tian Ecological Agriculture Co., Ltd., Maanshan 238200, China;
| | - Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 239000, China; (Z.S.); (T.M.); (X.T.); (T.F.); (R.L.); (S.D.); (H.Z.)
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 239000, China; (Z.S.); (T.M.); (X.T.); (T.F.); (R.L.); (S.D.); (H.Z.)
| |
Collapse
|
4
|
Wang W, Chen W, Wang J. FRIZZLE PANICLE (FZP) regulates rice spikelets development through modulating cytokinin metabolism. BMC PLANT BIOLOGY 2023; 23:650. [PMID: 38102566 PMCID: PMC10724965 DOI: 10.1186/s12870-023-04671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The number of grains per panicle is an important factor in determining rice yield. The DST-OsCKX2 module has been demonstrated to regulate panicle development in rice by controlling cytokinin content. However, to date, how the function of DST-OsCKX2 module is regulated during panicle development remains obscure. RESULT In this study, the ABNORMAL PANICLE 1 (ABP1), a severely allele of FRIZZY PANICLE (FZP), exhibits abnormal spikelets morphology. We show that FZP can repress the expression of DST via directly binding to its promotor. Consistently, the expression level of OsCKX2 increased and the cytokinin content decreased in the fzp mutant, suggesting that the FZP acts upstream of the DST-OsCKX2 to maintain cytokinin homeostasis in the inflorescence meristem. CONCLUSIONS Our results indicate that FZP plays an important role in regulating spikelet development and grain number through mediating cytokinin metabolism.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wenqiang Chen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Junmin Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
5
|
Adam H, Gutiérrez A, Couderc M, Sabot F, Ntakirutimana F, Serret J, Orjuela J, Tregear J, Jouannic S, Lorieux M. Genomic introgressions from African rice (Oryza glaberrima) in Asian rice (O. sativa) lead to the identification of key QTLs for panicle architecture. BMC Genomics 2023; 24:587. [PMID: 37794325 PMCID: PMC10548634 DOI: 10.1186/s12864-023-09695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Developing high yielding varieties is a major challenge for breeders tackling the challenges of climate change in agriculture. The panicle (inflorescence) architecture of rice is one of the key components of yield potential and displays high inter- and intra-specific variability. The genus Oryza features two different crop species: Asian rice (Oryza sativa L.) and the African rice (O. glaberrima Steud.). One of the main morphological differences between the two independently domesticated species is the structure (or complexity) of the panicle, with O. sativa displaying a highly branched panicle, which in turn produces a larger number of grains than that of O. glaberrima. The gene regulatory network that governs intra- and interspecific panicle diversity is still under-studied. RESULTS To identify genetic factors linked to panicle architecture diversity in the two species, we used a set of 60 Chromosome Segment Substitution Lines (CSSLs) issued from third generation backcross (BC3DH) and carrying genomic segments from O. glaberrima cv. MG12 in the genetic background of O. sativa Tropical Japonica cv. Caiapó. Phenotypic data were collected for rachis and primary branch length, primary, secondary and tertiary branch number and spikelet number. A total of 15 QTLs were localized on chromosomes 1, 2, 3, 7, 11 and 12, QTLs associated with enhanced secondary and tertiary branch numbers were detected in two CSSLs. Furthermore, BC4F3:5 lines carrying different combinations of substituted segments were produced to decipher the effects of the identified QTL regions on variations in panicle architecture. A detailed analysis of phenotypes versus genotypes was carried out between the two parental genomes within these regions in order to understand how O. glaberrima introgression events may lead to alterations in panicle traits. CONCLUSION Our analysis led to the detection of genomic variations between O. sativa cv. Caiapó and O. glaberrima cv. MG12 in regions associated with enhanced panicle traits in specific CSSLs. These regions contain a number of key genes that regulate panicle development in O. sativa and their interspecific genomic variations may explain the phenotypic effects observed.
Collapse
Affiliation(s)
- Hélène Adam
- UMR DIADE, University of Montpellier, IRD, Cirad, Montpellier, France.
| | | | - Marie Couderc
- UMR DIADE, University of Montpellier, IRD, Cirad, Montpellier, France
| | - François Sabot
- UMR DIADE, University of Montpellier, IRD, Cirad, Montpellier, France
| | | | - Julien Serret
- UMR DIADE, University of Montpellier, IRD, Cirad, Montpellier, France
| | - Julie Orjuela
- UMR DIADE, University of Montpellier, IRD, Cirad, Montpellier, France
| | - James Tregear
- UMR DIADE, University of Montpellier, IRD, Cirad, Montpellier, France
| | - Stefan Jouannic
- UMR DIADE, University of Montpellier, IRD, Cirad, Montpellier, France.
| | - Mathias Lorieux
- UMR DIADE, University of Montpellier, IRD, Cirad, Montpellier, France.
- Agrobiodiversity Unit, Alliance Bioversity-CIAT, Cali, Colombia.
| |
Collapse
|
6
|
Beretta VM, Franchini E, Ud Din I, Lacchini E, Van den Broeck L, Sozzani R, Orozco-Arroyo G, Caporali E, Adam H, Jouannic S, Gregis V, Kater MM. The ALOG family members OsG1L1 and OsG1L2 regulate inflorescence branching in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37009647 DOI: 10.1111/tpj.16229] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The architecture of the rice inflorescence is an important determinant of crop yield. The length of the inflorescence and the number of branches are among the key factors determining the number of spikelets, and thus grains, that a plant will develop. In particular, the timing of the identity transition from indeterminate branch meristem to determinate spikelet meristem governs the complexity of the inflorescence. In this context, the ALOG gene TAWAWA1 (TAW1) has been shown to delay the transition to determinate spikelet development in Oryza sativa (rice). Recently, by combining precise laser microdissection of inflorescence meristems with RNA-seq, we observed that two ALOG genes, OsG1-like 1 (OsG1L1) and OsG1L2, have expression profiles similar to that of TAW1. Here, we report that osg1l1 and osg1l2 loss-of-function CRISPR mutants have similar phenotypes to the phenotype of the previously published taw1 mutant, suggesting that these genes might act on related pathways during inflorescence development. Transcriptome analysis of the osg1l2 mutant suggested interactions of OsG1L2 with other known inflorescence architecture regulators and the data sets were used for the construction of a gene regulatory network (GRN), proposing interactions among genes potentially involved in controlling inflorescence development in rice. In this GRN, we selected the homeodomain-leucine zipper transcription factor encoding the gene OsHOX14 for further characterization. The spatiotemporal expression profiling and phenotypical analysis of CRISPR loss-of-function mutants of OsHOX14 suggests that the proposed GRN indeed serves as a valuable resource for the identification of new proteins involved in rice inflorescence development.
Collapse
Affiliation(s)
- Veronica M Beretta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Emanuela Franchini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Israr Ud Din
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Elia Lacchini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Lisa Van den Broeck
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Rosangela Sozzani
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gregorio Orozco-Arroyo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Elisabetta Caporali
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Hélène Adam
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - Stefan Jouannic
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Martin M Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| |
Collapse
|
7
|
Luo X, Wei Y, Zheng Y, Wei L, Wu F, Cai Q, Xie H, Zhang J. Analysis of co-expression and gene regulatory networks associated with sterile lemma development in rice. BMC PLANT BIOLOGY 2023; 23:11. [PMID: 36604645 PMCID: PMC9817312 DOI: 10.1186/s12870-022-04012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The sterile lemma is a unique organ of the rice (Oryza sativa L.) spikelet. However, the characteristics and origin of the rice sterile lemma have not been determined unequivocally, so it is important to elucidate the molecular mechanism of the development of the sterile lemma. RESULTS In the paper, we outline the regulatory mechanism of sterile lemma development by LONG STERILE LEMMA1 (G1), which has been identified as the gene controlling sterile lemma development. Based on the comprehensive analyses of transcriptome dynamics during sterile lemma development with G1 alleles between wild-type (WT) and mutant (MT) in rice, we obtained co-expression data and regulatory networks related to sterile lemma development. Co-transfection assays of rice protoplasts confirmed that G1 affects the expression of various phytohormone-related genes by regulating a number of critical transcription factors, such as OsLBD37 and OSH1. The hormone levels in sterile lemmas from WT and MT of rice supports the hypotheses that lower auxin, lower gibberellin, and higher cytokinin concentrations are required to maintain a normal phenotype of sterile lemmas. CONCLUSION The regulatory networks have considerable reference value, and some of the regulatory relationships exhibiting strong correlations are worthy of further study. Taken together, these work provided a detailed guide for further studies into the molecular mechanism of sterile lemma development.
Collapse
Affiliation(s)
- Xi Luo
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Linyan Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Fangxi Wu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| |
Collapse
|
8
|
Du Y, Wu B, Xing Y, Zhang Z. Conservation and divergence: Regulatory networks underlying reproductive branching in rice and maize. J Adv Res 2022; 41:179-190. [PMID: 36328747 PMCID: PMC9637487 DOI: 10.1016/j.jare.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cereal crops are a major source of raw food and nutrition for humans worldwide. Inflorescence of cereal crops is their reproductive organ, which also contributes to crop productivity. The branching pattern in flowering plant species not only determines inflorescence architecture but also determines the grain yield. There are good reviews describing the grass inflorescence architecture contributing to the final grain yield. However, very few discuss the aspects of inflorescence branching. AIM OF REVIEW This review aimed at systematically and comprehensively summarizing the latest progress in the field of conservation and divergence of genetic regulatory network that controls inflorescence branching in maize and rice, provide strategies to efficiently utilize the achievements in reproductive branching for crop yield improvement, and suggest a potential regulatory network underlying the inflorescence branching and vegetative branching system. KEY SCIENTIFIC CONCEPTS OF REVIEW Inflorescence branching is the consequence of a series of developmental events including the initiation, outgrowth, determinacy, and identity of reproductive axillary meristems, and it is controlled by a complex functional hierarchy of genetic networks. Initially, we compared the inflorescence architecture of maize and rice; then, we reviewed the genetic regulatory pathways controlling the inflorescence meristem size, bud initiation, and outgrowth, and the key transition steps that shape the inflorescence branching in maize and rice; additionally, we summarized strategies to effectively apply the recent advances in inflorescence branching for crop yield improvement. Finally, we discussed how the newly discovered hormones coordinate the regulation of inflorescence branching and yield traits. Furthermore, we discussed the possible reason behind distinct regulatory pathways for vegetative and inflorescence branching.
Collapse
Affiliation(s)
- Yanfang Du
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Bi Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Chun Y, Kumar A, Li X. Genetic and molecular pathways controlling rice inflorescence architecture. FRONTIERS IN PLANT SCIENCE 2022; 13:1010138. [PMID: 36247571 PMCID: PMC9554555 DOI: 10.3389/fpls.2022.1010138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Rice inflorescence is one of the major organs in determining grain yield. The genetic and molecular regulation on rice inflorescence architecture has been well investigated over the past years. In the present review, we described genes regulating rice inflorescence architecture based on their roles in meristem activity maintenance, meristem identity conversion and branch elongation. We also introduced the emerging regulatory pathways of phytohormones involved in rice inflorescence development. These studies show the intricacies and challenges of manipulating inflorescence architecture for rice yield improvement.
Collapse
Affiliation(s)
- Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ashmit Kumar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fisheries and Forestry, Fiji National University, Nausori, Fiji
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
GLW7.1, a Strong Functional Allele of Ghd7, Enhances Grain Size in Rice. Int J Mol Sci 2022; 23:ijms23158715. [PMID: 35955848 PMCID: PMC9369204 DOI: 10.3390/ijms23158715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Grain size is a key determinant of both grain weight and grain quality. Here, we report the map-based cloning of a novel quantitative trait locus (QTL), GLW7.1 (Grain Length, Width and Weight 7.1), which encodes the CCT motif family protein, GHD7. The QTL is located in a 53 kb deletion fragment in the cultivar Jin23B, compared with the cultivar CR071. Scanning electron microscopy analysis and expression analysis revealed that GLW7.1 promotes the transcription of several cell division and expansion genes, further resulting in a larger cell size and increased cell number, and finally enhancing the grain size as well as grain weight. GLW7.1 could also increase endogenous GA content by up-regulating the expression of GA biosynthesis genes. Yeast two-hybrid assays and split firefly luciferase complementation assays revealed the interactions of GHD7 with seven grain-size-related proteins and the rice DELLA protein SLR1. Haplotype analysis and transcription activation assay revealed the effect of six amino acid substitutions on GHD7 activation activity. Additionally, the NIL with GLW7.1 showed reduced chalkiness and improved cooking and eating quality. These findings provide a new insight into the role of Ghd7 and confirm the great potential of the GLW7.1 allele in simultaneously improving grain yield and quality.
Collapse
|
11
|
Lu Y, Chuan M, Wang H, Chen R, Tao T, Zhou Y, Xu Y, Li P, Yao Y, Xu C, Yang Z. Genetic and molecular factors in determining grain number per panicle of rice. FRONTIERS IN PLANT SCIENCE 2022; 13:964246. [PMID: 35991390 PMCID: PMC9386260 DOI: 10.3389/fpls.2022.964246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
It was suggested that the most effective way to improve rice grain yield is to increase the grain number per panicle (GN) through the breeding practice in recent decades. GN is a representative quantitative trait affected by multiple genetic and environmental factors. Understanding the mechanisms controlling GN has become an important research field in rice biotechnology and breeding. The regulation of rice GN is coordinately controlled by panicle architecture and branch differentiation, and many GN-associated genes showed pleiotropic effect in regulating tillering, grain size, flowering time, and other domestication-related traits. It is also revealed that GN determination is closely related to vascular development and the metabolism of some phytohormones. In this review, we summarize the recent findings in rice GN determination and discuss the genetic and molecular mechanisms of GN regulators.
Collapse
Affiliation(s)
- Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Mingli Chuan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hanyao Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Rujia Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Tianyun Tao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yong Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yang Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Youli Yao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zefeng Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Miao Y, Xun Q, Taji T, Tanaka K, Yasuno N, Ding C, Kyozuka J. ABERRANT PANICLE ORGANIZATION2 controls multiple steps in panicle formation through common direct-target genes. PLANT PHYSIOLOGY 2022; 189:2210-2226. [PMID: 35556145 PMCID: PMC9342985 DOI: 10.1093/plphys/kiac216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/18/2022] [Indexed: 05/15/2023]
Abstract
At the transition from vegetative to reproductive growth in rice (Oryza sativa), a developmental program change occurs, resulting in panicle (rice inflorescence) formation. The initial event of the transition is the change of the shoot apical meristem to an inflorescence meristem (IM), accompanied by a rapid increase in the meristem size. Suppression of leaf growth also occurs, resulting in the formation of bracts. The IM generates branch meristems (BMs), indeterminate meristems that reiteratively generate next-order meristems. All meristems eventually acquire a determinate spikelet meristem identity and terminate after producing a floret. ABERRANT PANICLE ORGANIZATION2 (APO2) is the rice ortholog of Arabidopsis (Arabidopsis thaliana) LEAFY (LFY), a plant-specific transcription factor (TF). APO2 is a positive regulator of panicle branch formation. Here, we show that APO2 is also required to increase the meristem size of the IM and suppress bract outgrowth. We identified genes directly and indirectly regulated by APO2 and identified APO2-binding sites. These analyses showed that APO2 directly controls known regulators of panicle development, including SQUAMOSA PROMOTER BINDING PROTEIN LIKE14 and NECK LEAF1. Furthermore, we revealed that a set of genes act as downstream regulators of APO2 in controlling meristem cell proliferation during reproductive transition, bract suppression, and panicle branch formation. Our findings indicate that APO2 acts as a master regulator of rice panicle development by regulating multiple steps in the reproductive transition through directly controlling a set of genes.
Collapse
Affiliation(s)
- Yiling Miao
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Qian Xun
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Naoko Yasuno
- Graduate School of Life Sciences, University of Tokyo, Tokyo 113-8654, Japan
| | | | | |
Collapse
|
13
|
Zhang L, Fang W, Chen F, Song A. The Role of Transcription Factors in the Regulation of Plant Shoot Branching. PLANTS (BASEL, SWITZERLAND) 2022; 11:1997. [PMID: 35956475 PMCID: PMC9370718 DOI: 10.3390/plants11151997] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022]
Abstract
Transcription factors, also known as trans-acting factors, balance development and stress responses in plants. Branching plays an important role in plant morphogenesis and is closely related to plant biomass and crop yield. The apical meristem produced during plant embryonic development repeatedly produces the body of the plant, and the final aerial structure is regulated by the branching mode generated by axillary meristem (AM) activities. These branching patterns are regulated by two processes: AM formation and axillary bud growth. In recent years, transcription factors involved in regulating these processes have been identified. In addition, these transcription factors play an important role in various plant hormone pathways and photoresponses regulating plant branching. In this review, we start from the formation and growth of axillary meristems, including the regulation of hormones, light and other internal and external factors, and focus on the transcription factors involved in regulating plant branching and development to provide candidate genes for improving crop architecture through gene editing or directed breeding.
Collapse
Affiliation(s)
| | | | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Z.); (W.F.)
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.Z.); (W.F.)
| |
Collapse
|
14
|
Ouyang X, Zhong X, Chang S, Qian Q, Zhang Y, Zhu X. Partially functional NARROW LEAF1 balances leaf photosynthesis and plant architecture for greater rice yield. PLANT PHYSIOLOGY 2022; 189:772-789. [PMID: 35377451 PMCID: PMC9157069 DOI: 10.1093/plphys/kiac135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
NARROW LEAF1 (NAL1) is an elite gene in rice (Oryza sativa), given its close connection to leaf photosynthesis, hybrid vigor, and yield-related agronomic traits; however, the underlying mechanism by which this gene affects these traits remains elusive. In this study, we systematically measured leaf photosynthetic parameters, leaf anatomical parameters, architectural parameters, and agronomic traits in indica cultivar 9311, in 9311 with the native NAL1 replaced by the Nipponbare NAL1 (9311-NIL), and in 9311 with the NAL1 fully mutated (9311-nal1). Leaf length, width, and spikelet number gradually increased from lowest to highest in 9311-nal1, 9311, and 9311-NIL. In contrast, the leaf photosynthetic rate on a leaf area basis, leaf thickness, and panicle number gradually decreased from highest to lowest in 9311-nal1, 9311, and 9311-NIL. RNA-seq analysis showed that NAL1 negatively regulates the expression of photosynthesis-related genes; NAL1 also influenced expression of many genes related to phytohormone signaling, as also shown by different leaf contents of 3-Indoleacetic acid, jasmonic acid, Gibberellin A3, and isopentenyladenine among these genotypes. Furthermore, field experiments with different planting densities showed that 9311 had a larger biomass and yield advantage under low planting density compared to either 9311-NIL or 9311-nall. This study shows both direct and indirect effects of NAL1 on leaf photosynthesis; furthermore, we show that a partially functional NAL1 allele helps maintain a balanced leaf photosynthesis and plant architecture for increased biomass and grain yield in the field.
Collapse
Affiliation(s)
- Xiang Ouyang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyu Zhong
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha 410128, China
| | - Shuoqi Chang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Yuzhu Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
| | - Xinguang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
15
|
Zhu W, Yang L, Wu D, Meng Q, Deng X, Huang G, Zhang J, Chen X, Ferrándiz C, Liang W, Dreni L, Zhang D. Rice SEPALLATA genes OsMADS5 and OsMADS34 cooperate to limit inflorescence branching by repressing the TERMINAL FLOWER1-like gene RCN4. THE NEW PHYTOLOGIST 2022; 233:1682-1700. [PMID: 34767634 DOI: 10.1111/nph.17855] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
The spatiotemporal control of meristem identity is critical for determining inflorescence architecture, and thus yield, of cereal plants. However, the precise mechanisms underlying inflorescence and spikelet meristem determinacy in cereals are still largely unclear. We have generated loss-of-function and overexpression mutants of the paralogous OsMADS5 and OsMADS34 genes in rice (Oryza sativa), and analysed their panicle phenotypes. Using chromatin immunoprecipitation, electrophoretic mobility-shift and dual-luciferase assays, we have also identified RICE CENTRORADIALIS 4 (RCN4), a TFL1-like gene, as a direct downstream target of both OsMADS proteins, and have analysed RCN4 mutants. The osmads5 osmads34 mutant lines had significantly enhanced panicle branching with increased secondary, and even tertiary and quaternary, branches, compared to wild-type (WT) and osmads34 plants. The osmads34 mutant phenotype could largely be rescued by also knocking out RCN4. Moreover, transgenic panicles overexpressing RCN4 had significantly increased branching, and initiated development of c. 7× more spikelets than WT. Our results reveal a role for OsMADS5 in panicle development, and show that OsMADS5 and OsMADS34 play similar functions in limiting branching and promoting the transition to spikelet meristem identity, in part by repressing RCN4 expression. These findings provide new insights to better understand the molecular regulation of rice inflorescence architecture.
Collapse
Affiliation(s)
- Wanwan Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liu Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Wu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingcai Meng
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao Deng
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiao Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, 46022, Spain
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ludovico Dreni
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, 46022, Spain
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| |
Collapse
|
16
|
Kim SH, Ji SD, Lee HS, Jeon YA, Shim KC, Adeva C, Luong NH, Yuan P, Kim HJ, Tai TH, Ahn SN. A Novel Embryo Phenotype Associated With Interspecific Hybrid Weakness in Rice Is Controlled by the MADS-Domain Transcription Factor OsMADS8. FRONTIERS IN PLANT SCIENCE 2022; 12:778008. [PMID: 35069634 PMCID: PMC8769243 DOI: 10.3389/fpls.2021.778008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/03/2021] [Indexed: 05/27/2023]
Abstract
A novel hybrid weakness gene, DTE9, associated with a dark tip embryo (DTE) trait, was observed in CR6078, an introgression line derived from a cross between the Oryza sativa spp. japonica "Hwayeong" (HY) and the wild relative Oryza rufipogon. CR6078 seeds exhibit protruding embryos and flowers have altered inner floral organs. DTE9 was also associated with several hybrid weakness symptoms including decreased grain weight. Map-based cloning and transgenic approaches revealed that DTE9 is an allele of OsMADS8, a MADS-domain transcription factor. Genetic analysis indicated that two recessive complementary genes were responsible for the expression of the DTE trait. No sequence differences were observed between the two parental lines in the OsMADS8 coding region; however, numerous single nucleotide polymorphisms were detected in the promoter and intronic regions. We generated overexpression (OX) and RNA interference (RNAi) transgenic lines of OsMADS8 in HY and CR6078, respectively. The OsMADS8-OX lines showed the dark tip embryo phenotype, whereas OsMADS8-RNAi recovered the normal embryo phenotype. Changes in gene expression, including of ABCDE floral homeotic genes, were observed in the OsMADS8-OX and OsMADS8-RNAi lines. Overexpression of OsMADS8 led to decreased expression of OsEMF2b and ABA signaling-related genes including OsVP1/ABI3. HY seeds showed higher ABA content than CR6078 seeds, consistent with OsMADS8/DTE9 regulating the expression of genes related ABA catabolism in CR6078. Our results suggest that OsMADS8 is critical for floral organ determination and seed germination and that these effects are the result of regulation of the expression of OsEMF2b and its role in ABA signaling and catabolism.
Collapse
Affiliation(s)
- Sun Ha Kim
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Shi-Dong Ji
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Hyun-Sook Lee
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Yun-A Jeon
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Kyu-Chan Shim
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Cheryl Adeva
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Ngoc Ha Luong
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Pingrong Yuan
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | | | - Thomas H. Tai
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
17
|
Niu Y, Chen T, Wang C, Chen K, Shen C, Chen H, Zhu S, Wu Z, Zheng T, Zhang F, Xu J. Identification and allele mining of new candidate genes underlying rice grain weight and grain shape by genome-wide association study. BMC Genomics 2021; 22:602. [PMID: 34362301 PMCID: PMC8349016 DOI: 10.1186/s12864-021-07901-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Grain weight and grain shape are important agronomic traits that affect the grain yield potential and grain quality of rice. Both grain weight and grain shape are controlled by multiple genes. The 3,000 Rice Genomes Project (3 K RGP) greatly facilitates the discovery of agriculturally important genetic variants and germplasm resources for grain weight and grain shape. RESULTS Abundant natural variations and distinct phenotic differentiation among the subgroups in grain weight and grain shape were observed in a large population of 2,453 accessions from the 3 K RGP. A total of 21 stable quantitative trait nucleotides (QTNs) for the four traits were consistently identified in at least two of 3-year trials by genome-wide association study (GWAS), including six new QTNs (qTGW3.1, qTGW9, qTGW11, qGL4/qRLW4, qGL10, and qRLW1) for grain weight and grain shape. We further predicted seven candidate genes (Os03g0186600, Os09g0544400, Os11g0163600, Os04g0580700, Os10g0399700, Os10g0400100 and Os01g0171000) for the six new QTNs by high-density association and gene-based haplotype analyses. The favorable haplotypes of the seven candidate genes and five previously cloned genes in elite accessions with high TGW and RLW are also provided. CONCLUSIONS Our results deepen the understanding of the genetic basis of grain weight and grain shape in rice and provide valuable information for improving rice grain yield and grain quality through molecular breeding.
Collapse
Affiliation(s)
- Yanan Niu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Tasmanian Institute of Agriculture, University of Tasmania, 7250, Prospect, TAS, Australia
| | - Tianxiao Chen
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Tasmanian Institute of Agriculture, University of Tasmania, 7250, Prospect, TAS, Australia
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chunchao Wang
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Kai Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Congcong Shen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huizhen Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Pingxiang Institute of Agricultural Sciences, 337000, Pingxiang, China
| | - Shuangbing Zhu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Zhichao Wu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Tianqing Zheng
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Fan Zhang
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Jianlong Xu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
18
|
Pasion EA, Badoni S, Misra G, Anacleto R, Parween S, Kohli A, Sreenivasulu N. OsTPR boosts the superior grains through increase in upper secondary rachis branches without incurring a grain quality penalty. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1396-1411. [PMID: 33544455 PMCID: PMC8313136 DOI: 10.1111/pbi.13560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 06/02/2023]
Abstract
To address the future food security in Asia, we need to improve the genetic gain of grain yield while ensuring the consumer acceptance. This study aimed to identify novel genes influencing the number of upper secondary rachis branches (USRB) to elevate superior grains without compromising grain quality by studying the genetic variance of 310 diverse O. sativa var. indica panel using single- and multi-locus genome-wide association studies (GWAS), gene set analyses and gene regulatory network analysis. GWAS of USRB identified 230 significant (q-value < 0.05) SNPs from chromosomes 1 and 2. GWAS targets narrowed down using gene set analyses identified large effect association on an important locus LOC_Os02g50790/LOC_Os02g50799 encoding a nuclear-pore anchor protein (OsTPR). The superior haplotype derived from non-synonymous SNPs identified in OsTPR was specifically associated with increase in USRB with superior grains being low chalk. Through haplotype mining, we further demonstrated the synergy of offering added yield advantage due to superior allele of OsTPR in elite materials with low glycaemic index (GI) property. We further validated the importance of OsTPR using recombinant inbred lines (RILs) population by introgressing a superior allele of OsTPR into elite materials resulted in raise in productivity in high amylose background. This confirmed a critical role for OsTPR in influencing yield while maintaining grain and nutritional quality.
Collapse
Affiliation(s)
- Erstelle A. Pasion
- Applied Functional Genomics ClusterGrain Quality and Nutrition CentreStrategic Innovation PlatformInternational Rice Research InstituteLos BañosPhilippines
| | - Saurabh Badoni
- Applied Functional Genomics ClusterGrain Quality and Nutrition CentreStrategic Innovation PlatformInternational Rice Research InstituteLos BañosPhilippines
| | - Gopal Misra
- Applied Functional Genomics ClusterGrain Quality and Nutrition CentreStrategic Innovation PlatformInternational Rice Research InstituteLos BañosPhilippines
| | - Roslen Anacleto
- Applied Functional Genomics ClusterGrain Quality and Nutrition CentreStrategic Innovation PlatformInternational Rice Research InstituteLos BañosPhilippines
| | - Sabiha Parween
- Applied Functional Genomics ClusterGrain Quality and Nutrition CentreStrategic Innovation PlatformInternational Rice Research InstituteLos BañosPhilippines
| | - Ajay Kohli
- Applied Functional Genomics ClusterGrain Quality and Nutrition CentreStrategic Innovation PlatformInternational Rice Research InstituteLos BañosPhilippines
| | - Nese Sreenivasulu
- Applied Functional Genomics ClusterGrain Quality and Nutrition CentreStrategic Innovation PlatformInternational Rice Research InstituteLos BañosPhilippines
| |
Collapse
|
19
|
Khong GN, Le NT, Pham MT, Adam H, Gauron C, Le HQ, Pham DT, Colonges K, Pham XH, Do VN, Lebrun M, Jouannic S. A cluster of Ankyrin and Ankyrin-TPR repeat genes is associated with panicle branching diversity in rice. PLoS Genet 2021; 17:e1009594. [PMID: 34097698 PMCID: PMC8211194 DOI: 10.1371/journal.pgen.1009594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/17/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
The number of grains per panicle is an important yield-related trait in cereals which depends in part on panicle branching complexity. One component of this complexity is the number of secondary branches per panicle. Previously, a GWAS site associated with secondary branch and spikelet numbers per panicle in rice was identified. Here we combined gene capture, bi-parental genetic population analysis, expression profiling and transgenic approaches in order to investigate the functional significance of a cluster of 6 ANK and ANK-TPR genes within the QTL. Four of the ANK and ANK-TPR genes present a differential expression associated with panicle secondary branch number in contrasted accessions. These differential expression patterns correlate in the different alleles of these genes with specific deletions of potential cis-regulatory sequences in their promoters. Two of these genes were confirmed through functional analysis as playing a role in the control of panicle architecture. Our findings indicate that secondary branching diversity in the rice panicle is governed in part by differentially expressed genes within this cluster encoding ANK and ANK-TPR domain proteins that may act as positive or negative regulators of panicle meristem’s identity transition from indeterminate to determinate state. Grain yield is one of the most important indexes in rice breeding, which is controlled in part by panicle branching complexity. A new QTL with co-location of spikelet number (SpN) and secondary branch number (SBN) traits was identified by genome-wide association study in a Vietnamese rice landrace panel. A set of four Ankyrin and Tetratricopeptide repeat domain-encoding genes was identified from this QTL based on their difference of expression levels between two contrasted haplotypes for the SpN and SBN traits. The differential expression is correlated with deletions in the promoter regions of these genes. Two of the genes act as negative regulators of the panicle meristem’s identity transition from indeterminate to determinate state while the other two act as positive regulators of this meristem fate transition. Based on the different phenotypes between overexpressed and mutant plants, two of these genes were confirmed as playing a role in the control of panicle architecture. These findings can be directly used to assist selection for grain yield improvement.
Collapse
Affiliation(s)
- Giang Ngan Khong
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
- * E-mail: (GNK); (SJ)
| | - Nhu Thi Le
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Mai Thi Pham
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Helene Adam
- UMR DIADE, University of Montpellier, IRD, Montpellier, France
| | - Carole Gauron
- UMR DIADE, University of Montpellier, IRD, Montpellier, France
| | - Hoa Quang Le
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Dung Tien Pham
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Kelly Colonges
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Xuan Hoi Pham
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Vinh Nang Do
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Michel Lebrun
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
- UMR LSTM, University of Montpellier, IRD, CIRAD, INRAE, SupAgro, Montpellier, France
| | - Stefan Jouannic
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
- UMR DIADE, University of Montpellier, IRD, Montpellier, France
- * E-mail: (GNK); (SJ)
| |
Collapse
|
20
|
Rice RBH1 Encoding A Pectate Lyase is Critical for Apical Panicle Development. PLANTS 2021; 10:plants10020271. [PMID: 33573206 PMCID: PMC7912155 DOI: 10.3390/plants10020271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
Panicle morphology is one of the main determinants of the rice yield. Panicle abortion, a typical panicle morphological defect results in yield reduction due to defective spikelet development. To further elucidate the molecular mechanism of panicle abortion in rice, a rice panicle bald head 1 (rbh1) mutant with transfer DNA (T-DNA) insertion showing severely aborted apical spikelets during panicle development was identified and characterized. The rbh1-1 mutant showed obviously altered cell morphology and structure in the degenerated spikelet. Molecular genetic studies revealed that RBH1 encodes a pectate lyase protein. Pectate lyase-specific activity of Rice panicle Bald Head 1 (RBH1) protein assay using polygalacturonic acid (PGA) as substrates illustrated that the enzyme retained a significant capacity to degrade PGA. In addition, immunohistochemical analysis showed that the degradation of pectin is inhibited in the rbh1-1 mutant. Further analysis revealed that a significant increase in reactive oxygen species (ROS) level was found in degenerated rbh1-1 spikelets. Taken together, our findings suggest that RBH1 is required for the formation of panicle and for preventing panicle abortion.
Collapse
|
21
|
Molecular and Genetic Aspects of Grain Number Determination in Rice ( Oryza sativa L.). Int J Mol Sci 2021; 22:ijms22020728. [PMID: 33450933 PMCID: PMC7828406 DOI: 10.3390/ijms22020728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Rice grain yield is a complex trait determined by three components: panicle number, grain number per panicle (GNPP) and grain weight. GNPP is the major contributor to grain yield and is crucial for its improvement. GNPP is determined by a series of physiological and biochemical steps, including inflorescence development, formation of rachis branches such as primary rachis branches and secondary rachis branches, and spikelet specialisation (lateral and terminal spikelets). The molecular genetic basis of GNPP determination is complex, and it is regulated by numerous interlinked genes. In this review, panicle development and the determination of GNPP is described briefly, and GNPP-related genes that influence its determination are categorised according to their regulatory mechanisms. We introduce genes related to rachis branch development and their regulation of GNPP, genes related to phase transition (from rachis branch meristem to spikelet meristem) and their regulation of GNPP, and genes related to spikelet specialisation and their regulation of GNPP. In addition, we describe other GNPP-related genes and their regulation of GNPP. Research on GNPP determination suggests that it is possible to cultivate rice varieties with higher grain yield by modifying GNPP-related genes.
Collapse
|
22
|
Hu L, Chen W, Yang W, Li X, Zhang C, Zhang X, Zheng L, Zhu X, Yin J, Qin P, Wang Y, Ma B, Li S, Yuan H, Tu B. OsSPL9 Regulates Grain Number and Grain Yield in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:682018. [PMID: 34149783 PMCID: PMC8207197 DOI: 10.3389/fpls.2021.682018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/30/2021] [Indexed: 05/19/2023]
Abstract
Rice grain yield consists of several key components, including tiller number, grain number per panicle (GNP), and grain weight. Among them, GNP is mainly determined by panicle branches and spikelet formation. In this study, we identified a gene affecting GNP and grain yield, OsSPL9, which encodes SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family proteins. The mutation of OsSPL9 significantly reduced secondary branches and GNP. OsSPL9 was highly expressed in the early developing young panicles, consistent with its function of regulating panicle development. By combining expression analysis and dual-luciferase assays, we further confirmed that OsSPL9 directly activates the expression of RCN1 (rice TERMINAL FLOWER 1/CENTRORADIALIS homolog) in the early developing young panicle to regulate the panicle branches and GNP. Haplotype analysis showed that Hap3 and Hap4 of OsSPL9 might be favorable haplotypes contributing to high GNP in rice. These results provide new insights on high grain number breeding in rice.
Collapse
Affiliation(s)
- Li Hu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- College of Agriculture, Forestry and Health, The Open University of Sichuan, Chengdu, China
| | - Weilan Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wen Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Cheng Zhang
- Liaoning Rice Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xiaoyu Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ling Zheng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Peng Qin
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuping Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bingtian Ma
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Hua Yuan,
| | - Bin Tu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Bin Tu,
| |
Collapse
|
23
|
Deveshwar P, Prusty A, Sharma S, Tyagi AK. Phytohormone-Mediated Molecular Mechanisms Involving Multiple Genes and QTL Govern Grain Number in Rice. Front Genet 2020; 11:586462. [PMID: 33281879 PMCID: PMC7689023 DOI: 10.3389/fgene.2020.586462] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing the grain number is the most direct route toward enhancing the grain yield in cereals. In rice, grain number can be amplified through increasing the shoot branching (tillering), panicle branching, panicle length, and seed set percentage. Phytohormones have been conclusively shown to control the above characteristics by regulating molecular factors and their cross-interactions. The dynamic equilibrium of cytokinin levels in both shoot and inflorescence meristems, maintained by the regulation of its biosynthesis, activation, and degradation, determines the tillering and panicle branching, respectively. Auxins and gibberellins are known broadly to repress the axillary meristems, while jasmonic acid is implicated in the determination of reproductive meristem formation. The balance of auxin, gibberellin, and cytokinin determines meristematic activities in the inflorescence. Strigolactones have been shown to repress the shoot branching but seem to regulate panicle branching positively. Ethylene, brassinosteroids, and gibberellins regulate spikelet abortion and grain filling. Further studies on the optimization of endogenous hormonal levels can help in the expansion of the grain yield potential of rice. This review focuses on the molecular machinery, involving several genes and quantitative trait loci (QTL), operational in the plant that governs hormonal control and, in turn, gets governed by the hormones to regulate grain number and yield in rice.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
24
|
Crop reproductive meristems in the genomic era: a brief overview. Biochem Soc Trans 2020; 48:853-865. [PMID: 32573650 DOI: 10.1042/bst20190441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022]
Abstract
Modulation of traits beneficial for cultivation and yield is one of the main goals of crop improvement. One of the targets for enhancing productivity is changing the architecture of inflorescences since in many species it determines fruit and seed yield. Inflorescence shape and organization is genetically established during the early stages of reproductive development and depends on the number, arrangement, activities, and duration of meristems during the reproductive phase of the plant life cycle. Despite the variety of inflorescence architectures observable in nature, many key aspects of inflorescence development are conserved among different species. For instance, the genetic network in charge of specifying the identity of the different reproductive meristems, which can be indeterminate or determinate, seems to be similar among distantly related species. The availability of a large number of published transcriptomic datasets for plants with different inflorescence architectures, allowed us to identify transcription factor gene families that are differentially expressed in determinate and indeterminate reproductive meristems. The data that we review here for Arabidopsis, rice, barley, wheat, and maize, particularly deepens our knowledge of their involvement in meristem identity specification.
Collapse
|
25
|
Ma Z, Wu T, Huang K, Jin YM, Li Z, Chen M, Yun S, Zhang H, Yang X, Chen H, Bai H, Du L, Ju S, Guo L, Bian M, Hu L, Du X, Jiang W. A Novel AP2/ERF Transcription Factor, OsRPH1, Negatively Regulates Plant Height in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:709. [PMID: 32528516 PMCID: PMC7266880 DOI: 10.3389/fpls.2020.00709] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/05/2020] [Indexed: 05/24/2023]
Abstract
The APETALA 2/ethylene response factors (AP2/ERF) are widespread in the plant kingdom and play essential roles in regulating plant growth and development as well as defense responses. In this study, a novel rice AP2/ERF transcription factor gene, OsRPH1, was isolated and functionally characterized. OsRPH1 falls into group-IVa of the AP2/ERF family. OsRPH1 protein was found to be localized in the nucleus and possessed transcriptional activity. Overexpression of OsRPH1 resulted in a decrease in plant height and length of internode and leaf sheath as well as other abnormal characters in rice. The length of the second leaf sheath of OsRPH1-overexpressing (OE) plants recovered to that of Kitaake (non-transgenic recipient) in response to exogenous gibberellin A3 (GA3) application. The expression of GA biosynthesis genes (OsGA20ox1-OsGA20ox4, OsGA3ox1, and OsGA3ox2) was significantly downregulated, whereas that of GA inactivation genes (OsGA2ox7, OsGA2ox9, and OsGA2ox10) was significantly upregulated in OsRPH1-OE plants. Endogenous bioactive GA contents significantly decreased in OsRPH1-OE plants. OsRPH1 interacted with a blue light receptor, OsCRY1b, in a blue light-dependent manner. Taken together, our results demonstrate that OsRPH1 negatively regulates plant height and bioactive GA content by controlling the expression of GA metabolism genes in rice. OsRPH1 is involved in blue light inhibition of leaf sheath elongation by interacting with OsCRY1b.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Tao Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Kai Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Yong-Mei Jin
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhao Li
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Mojun Chen
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Sokyong Yun
- Kye Ung Sang College of Agriculture of Kim II Sung University, Pyongyang, North Korea
| | - Hongjia Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xue Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Haoyuan Chen
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Huijiao Bai
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Lin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Shanshan Ju
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Liping Guo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Mingdi Bian
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Lanjuan Hu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xinglin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Wenzhu Jiang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
26
|
Huang Y, Bai X, Cheng N, Xiao J, Li X, Xing Y. Wide Grain 7 increases grain width by enhancing H3K4me3 enrichment in the OsMADS1 promoter in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:517-528. [PMID: 31830332 DOI: 10.1111/tpj.14646] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/29/2019] [Indexed: 05/22/2023]
Abstract
Grain size is a major determinant of grain weight, a key component of grain yield of rice. Here, we identified the grain size gene WIDE GRAIN 7 (WG7) from a T-DNA insertion mutant. The grain size of WG7 knockout mutants and WG7 overexpression lines indicated that WG7 is a positive regulator of grain size. WG7 encodes a cysteine-tryptophan (CW) domain-containing transcriptional activator. EMSAs and ChIP-qPCR assay confirmed that WG7 directly bound to the promoter of OsMADS1, a grain size gene, and thereby significantly activated its expression. Point mutations showed that the cis-element CATTTC motif in the promoter was the binding site of WG7. Compared with the wild-type, deletion mutants of the cis-element motif exhibited lower expression of OsMADS1 and produced narrower grains, implicating the requirement of this motif for WG7 function. ChIP-qPCR assays showed that WG7 enhanced histone H3K4me3 enrichment in the promoter of OsMADS1. WG7 underwent directional selection due to the poor fertility of the non-functional mutant. These findings demonstrated that WG7 upregulated OsMADS1 expression by directly binding to its promoter, enhanced histone H3K4me3 enrichment in the promoter and ultimately increased grain width. This study will enrich the knowledge concerning the regulatory network of grain size formation in rice.
Collapse
Affiliation(s)
- Yong Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Niannian Cheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434100, China
| |
Collapse
|
27
|
Wang SS, Chung CL, Chen KY, Chen RK. A Novel Variation in the FRIZZLE PANICLE ( FZP) Gene Promoter Improves Grain Number and Yield in Rice. Genetics 2020; 215:243-252. [PMID: 32152046 PMCID: PMC7198282 DOI: 10.1534/genetics.119.302862] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
Secondary branch number per panicle plays a crucial role in regulating grain number and yield in rice. Here, we report the positional cloning and functional characterization for SECONDARY BRANCH NUMBER7 (qSBN7), a quantitative trait locus affecting secondary branch per panicle and grain number. Our research revealed that the causative variants of qSBN7 are located in the distal promoter region of FRIZZLE PANICLE (FZP), a gene previously associated with the repression of axillary meristem development in rice spikelets. qSBN7 is a novel allele of FZP that causes an ∼56% decrease in its transcriptional level, leading to increased secondary branch and grain number, and reduced grain length. Field evaluations showed that qSBN7 increased grain yield by 10.9% in a temperate japonica variety, TN13, likely due to its positive effect on sink capacity. Our findings suggest that incorporation of qSBN7 can increase yield potential and improve the breeding of elite rice varieties.
Collapse
Affiliation(s)
- Sheng-Shan Wang
- Crop Improvement Division, Tainan District Agricultural Research and Extension Station, Tainan 71246, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Yi Chen
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan
| | - Rong-Kuen Chen
- Chiayi Branch, Tainan District Agricultural Research and Extension Station, Tainan 71246, Taiwan
| |
Collapse
|
28
|
Ghaleb MAA, Li C, Shahid MQ, Yu H, Liang J, Chen R, Wu J, Liu X. Heterosis analysis and underlying molecular regulatory mechanism in a wide-compatible neo-tetraploid rice line with long panicles. BMC PLANT BIOLOGY 2020; 20:83. [PMID: 32085735 PMCID: PMC7035737 DOI: 10.1186/s12870-020-2291-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/14/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Neo-tetraploid rice, which is a new germplasm developed from autotetraploid rice, has a powerful biological and yield potential and could be used for commercial utilization. The length of panicle, as a part of rice panicle architecture, contributes greatly to high yield. However, little information about long panicle associated with heterosis or hybrid vigor is available in neo-tetraploid rice. RESULTS In the present study, we developed a neo-tetraploid rice line, Huaduo 8 (H8), with long panicles and harboring wide-compatibility genes for pollen and embryo sac fertility. All the hybrids generated by H8 produced significant high-parent yield heterosis and displayed long panicles similar to H8. RNA-seq analysis detected a total of 4013, 7050, 6787 and 6195 differentially expressed genes uniquely belonging to F1 and specifically (DEGFu-sp) associated with leaf, sheath, main panicle axis and spikelet in the two hybrids, respectively. Of these DEGFu-sp, 279 and 89 genes were involved in kinase and synthase, and 714 cloned genes, such as GW8, OsGA20ox1, Ghd8, GW6a, and LP1, were identified and validated by qRT-PCR. A total of 2925 known QTLs intervals, with an average of 1~100 genes per interval, were detected in both hybrids. Of these, 109 yield-related QTLs were associated with seven important traits in rice. Moreover, 1393 non-additive DEGs, including 766 up-regulated and 627 down-regulated, were detected in both hybrids. Importantly, eight up-regulated genes associated with panicle were detected in young panicles of the two hybrids compared to their parents by qRT-PCR. Re-sequencing analysis depicted that LP (a gene controlling long panicle) sequence of H8 was different from many other neo-tetraploid rice and most of the diploid and autotetraploid lines. The qRT-PCR results showed that LP was up-regulated in the hybrid compared to its parents at very young stage of panicle development. CONCLUSIONS These results suggested that H8 could overcome the intersubspecific autotetraploid hybrid rice sterility caused by embryo sac and pollen sterility loci. Notably, long panicles of H8 showed dominance phenomenon and played an important role in yield heterosis, which is a complex molecular mechanism. The neo-tetraploid rice is a useful germplasm to attain high yield of polyploid rice.
Collapse
Affiliation(s)
- Mohammed Abdullah Abdulraheem Ghaleb
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Cong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Junhong Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Ruoxin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
| |
Collapse
|
29
|
Zhu Y, Wagner D. Plant Inflorescence Architecture: The Formation, Activity, and Fate of Axillary Meristems. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034652. [PMID: 31308142 DOI: 10.1101/cshperspect.a034652] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The above-ground plant body in different plant species can have very distinct forms or architectures that arise by recurrent redeployment of a finite set of building blocks-leaves with axillary meristems, stems or branches, and flowers. The unique architectures of plant inflorescences in different plant families and species, on which this review focuses, determine the reproductive success and yield of wild and cultivated plants. Major contributors to the inflorescence architecture are the activity and developmental trajectories adopted by axillary meristems, which determine the degree of branching and the number of flowers formed. Recent advances in genetic and molecular analyses in diverse flowering plants have uncovered both common regulatory principles and unique players and/or regulatory interactions that underlie inflorescence architecture. Modulating activity of these regulators has already led to yield increases in the field. Additional insight into the underlying regulatory interactions and principles will not only uncover how their rewiring resulted in altered plant form, but will also enhance efforts at optimizing plant architecture in desirable ways in crop species.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
30
|
Harrop TWR, Mantegazza O, Luong AM, Béthune K, Lorieux M, Jouannic S, Adam H. A set of AP2-like genes is associated with inflorescence branching and architecture in domesticated rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5617-5629. [PMID: 31346594 PMCID: PMC6812710 DOI: 10.1093/jxb/erz340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/15/2019] [Indexed: 05/25/2023]
Abstract
Rice yield is influenced by inflorescence size and architecture, and inflorescences from domesticated rice accessions produce more branches and grains. Neither the molecular control of branching nor the developmental differences between wild and domesticated rice accessions are fully understood. We surveyed phenotypes related to branching, size, and grain yield across 91 wild and domesticated African and Asian accessions. Characteristics related to axillary meristem identity were the main phenotypic differences between inflorescences from wild and domesticated accessions. We used whole transcriptome sequencing in developing inflorescences to measure gene expression before and after the transition from branching axillary meristems to determinate spikelet meristems. We identified a core set of genes associated with axillary meristem identity in Asian and African rice, and another set associated with phenotypic variability between wild and domesticated accessions. AP2/EREBP-like genes were enriched in both sets, suggesting that they are key factors in inflorescence branching and rice domestication. Our work has identified new candidates in the molecular control of inflorescence development and grain yield, and provides a detailed description of the effects of domestication on phenotype and gene expression.
Collapse
Affiliation(s)
- Thomas W R Harrop
- Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, Dunedin, Aotearoa, New Zealand
| | | | - Ai My Luong
- University of Montpellier, DIADE, IRD, France
| | | | - Mathias Lorieux
- Rice genetics and Genomics Laboratory, International Center for Tropical Agriculture, Cali 6713, Colombia
| | | | - Hélène Adam
- University of Montpellier, DIADE, IRD, France
| |
Collapse
|
31
|
Chen K, Guo T, Li XM, Yang YB, Dong NQ, Shi CL, Ye WW, Shan JX, Lin HX. NAL8 encodes a prohibitin that contributes to leaf and spikelet development by regulating mitochondria and chloroplasts stability in rice. BMC PLANT BIOLOGY 2019; 19:395. [PMID: 31510917 PMCID: PMC6737680 DOI: 10.1186/s12870-019-2007-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/30/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Leaf morphology and spikelet number are two important traits associated with grain yield. To understand how genes coordinating with sink and sources of cereal crops is important for grain yield improvement guidance. Although many researches focus on leaf morphology or grain number in rice, the regulating molecular mechanisms are still unclear. RESULTS In this study, we identified a prohibitin complex 2α subunit, NAL8, that contributes to multiple developmental process and is required for normal leaf width and spikelet number at the reproductive stage in rice. These results were consistent with the ubiquitous expression pattern of NAL8 gene. We used genetic complementation, CRISPR/Cas9 gene editing system, RNAi gene silenced system and overexpressing system to generate transgenic plants for confirming the fuctions of NAL8. Mutation of NAL8 causes a reduction in the number of plastoglobules and shrunken thylakoids in chloroplasts, resulting in reduced cell division. In addition, the auxin levels in nal8 mutants are higher than in TQ, while the cytokinin levels are lower than in TQ. Moreover, RNA-sequencing and proteomics analysis shows that NAL8 is involved in multiple hormone signaling pathways as well as photosynthesis in chloroplasts and respiration in mitochondria. CONCLUSIONS Our findings provide new insights into the way that NAL8 functions as a molecular chaperone in regulating plant leaf morphology and spikelet number through its effects on mitochondria and chloroplasts associated with cell division.
Collapse
Affiliation(s)
- Ke Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, 200032, China
| | - Xin-Min Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, 200032, China
| | - Yi-Bing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, 200032, China
| | - Chuan-Lin Shi
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, 200032, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai, 200032, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
32
|
Huang Y, Bai X, Luo M, Xing Y. Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:987-999. [PMID: 30302902 DOI: 10.1111/jipb.12729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/07/2018] [Indexed: 05/20/2023]
Abstract
Inflorescence architecture is a major determinant of spikelet numbers per panicle, a key component of grain yield in rice. In this study, Short Panicle 3 (SP3) was identified from a short panicle 3 (sp3) mutant in which T-DNA was inserted in the promoter of SP3, resulting in a knockdown mutation. SP3 encodes a DNA binding with one finger (Dof) transcriptional activator. Quantitative real time (qRT)-PCR and RNA in situ hybridization assays confirmed that SP3 is preferentially expressed in the young rice inflorescence, specifically in the branch primordial regions. SP3 acts as a negative regulator of inflorescence meristem abortion by upregulating APO2/RFL. SP3 both up- and downregulates expression of genes involved in cytokinin biosynthesis and catabolism, respectively. Consequently, cytokinin concentrations are decreased in young sp3 panicles, thereby leading to small panicles having fewer branches and spikelets. Our findings support a model in which SP3 regulates panicle architecture by modulating cytokinin homeostasis. Potential applications to rice breeding, through gene-editing of the SP3 promoter are assessed.
Collapse
Affiliation(s)
- Yong Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Meifang Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
33
|
Ali Z, Raza Q, Atif RM, Aslam U, Ajmal M, Chung G. Genetic and Molecular Control of Floral Organ Identity in Cereals. Int J Mol Sci 2019; 20:E2743. [PMID: 31167420 PMCID: PMC6600504 DOI: 10.3390/ijms20112743] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Grasses represent a major family of monocots comprising mostly cereals. When compared to their eudicot counterparts, cereals show a remarkable morphological diversity. Understanding the molecular basis of floral organ identity and inflorescence development is crucial to gain insight into the grain development for yield improvement purposes in cereals, however, the exact genetic mechanism of floral organogenesis remains elusive due to their complex inflorescence architecture. Extensive molecular analyses of Arabidopsis and other plant genera and species have established the ABCDE floral organ identity model. According to this model, hierarchical combinatorial activities of A, B, C, D, and E classes of homeotic genes regulate the identity of different floral organs with partial conservation and partial diversification between eudicots and cereals. Here, we review the developmental role of A, B, C, D, and E gene classes and explore the recent advances in understanding the floral development and subsequent organ specification in major cereals with reference to model plants. Furthermore, we discuss the evolutionary relationships among known floral organ identity genes. This comparative overview of floral developmental genes and associated regulatory factors, within and between species, will provide a thorough understanding of underlying complex genetic and molecular control of flower development and floral organ identity, which can be helpful to devise innovative strategies for grain yield improvement in cereals.
Collapse
Affiliation(s)
- Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan 66000, Pakistan.
| | - Qasim Raza
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku 39020, Pakistan.
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Usman Aslam
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Ajmal
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea.
| |
Collapse
|
34
|
Chongloi GL, Prakash S, Vijayraghavan U. Regulation of meristem maintenance and organ identity during rice reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1719-1736. [PMID: 30753578 DOI: 10.1093/jxb/erz046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Grasses have evolved complex inflorescences, where the primary unit is the specialized short branch called a spikelet. Detailed studies of the cumulative action of the genetic regulators that direct the progressive change in axillary meristem identity and their terminal differentiation are crucial to understanding the complexities of the inflorescence and the development of a determinate floret. Grass florets also pose interesting questions concerning the morphologies and functions of organs as compared to other monocots and eudicots. In this review, we summarize our current knowledge of the regulation of the transitions that occur in grass inflorescence meristems, and of the specification of floret meristems and their determinate development. We primarily use rice as a model, with appropriate comparisons to other crop models and to the extensively studied eudicot Arabidopsis. The role of MADS-domain transcription factors in floral organ patterning is well documented in many eudicots and in grasses. However, there is evidence to suggest that some of these rice floral regulators have evolved distinctive functions and that other grass species-specific factors and regulatory pathways occur - for example the LOFSEP 'E' class genes OsMADS1 and OsMAD34, and ramosa genes. A better understanding of these systems and the epigenetic regulators and hormone signaling pathways that interact with them will provide new insights into the rice inflorescence meristem and the differentiation of its floret organs, and should indicate genetic tools that can be used to control yield-related traits in both rice and other cereal crops.
Collapse
Affiliation(s)
- Grace L Chongloi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sandhan Prakash
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
35
|
Eizenga GC, Jia MH, Jackson AK, Boykin DL, Ali ML, Shakiba E, Tran NT, McCouch SR, Edwards JD. Validation of Yield Component Traits Identified by Genome-Wide Association Mapping in a tropical japonica × tropical japonica Rice Biparental Mapping Population. THE PLANT GENOME 2019; 12:180021. [PMID: 30951093 DOI: 10.3835/plantgenome2018.04.0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Rice Diversity Panel 1 (RDP1) was developed for genome-wide association (GWA) studies to explore five rice ( L.) subpopulations (, , , , and ). The RDP1 was evaluated for over 30 traits, including agronomic, panicle architecture, seed, and disease traits and genotyped with 700,000 single nucleotide polymorphisms (SNPs). Most rice grown in the southern United States is and thus the diversity in this subpopulation is interesting to U.S. breeders. Among the RDP1 accessions, 'Estrela' and 'NSFTV199' are both phenotypically and genotypically diverse, thus making them excellent parents for a biparental mapping population. The objectives were to (i) ascertain the GWA QTLs from the RDP1 GWA studies that overlapped with the QTLs uncovered in an Estrela × NSFTV199 recombinant inbred line (RIL) population evaluated for 15 yield traits, and (ii) identify known or novel genes potentially controlling specific yield component traits. The 256 RILs were genotyped with 132 simple sequence repeat markers and 70 QTLs were found. Perl scripts were developed for automatic identification of the underlying candidate genes in the GWA QTL regions. Approximately 100 GWA QTLs overlapped with 41 Estrela × NSFTV199 QTL (RIL QTL) regions and 47 known genes were identified. Two seed trait RIL QTLs with overlapping GWA QTLs were not associated with a known gene. Segregating SNPs in the overlapping GWA QTLs for RIL QTLs with high values will be evaluated as potential DNA markers useful to breeding programs for the associated yield trait.
Collapse
|
36
|
OsSPL18 controls grain weight and grain number in rice. J Genet Genomics 2019; 46:41-51. [PMID: 30737149 DOI: 10.1016/j.jgg.2019.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/24/2018] [Accepted: 01/20/2019] [Indexed: 12/16/2022]
Abstract
Grain weight and grain number are two important traits directly determining grain yield in rice. To date, a lot of genes related to grain weight and grain number have been identified; however, the regulatory mechanism underlying these genes remains largely unknown. In this study, we studied the biological function of OsSPL18 during grain and panicle development in rice. Knockout (KO) mutants of OsSPL18 exhibited reduced grain width and thickness, panicle length and grain number, but increased tiller number. Cytological analysis showed that OsSPL18 regulates the development of spikelet hulls by affecting cell proliferation. qRT-PCR and GUS staining analyses showed that OsSPL18 was highly expressed in developing young panicles and young spikelet hulls, in agreement with its function in regulating grain and panicle development. Transcriptional activation experiments indicated that OsSPL18 is a functional transcription factor with activation domains in both the N-terminus and C-terminus, and both activation domains are indispensable for its biological functions. Quantitative expression analysis showed that DEP1, a major grain number regulator, was significantly down-regulated in OsSPL18 KO lines. Both yeast one-hybrid and dual-luciferase (LUC) assays showed that OsSPL18 could bind to the DEP1 promoter, suggesting that OsSPL18 regulates panicle development by positively regulating the expression of DEP1. Sequence analysis showed that OsSPL18 contains the OsmiR156k complementary sequence in the third exon; 5' RLM-RACE experiments indicated that OsSPL18 could be cleaved by OsmiR156k. Taken together, our results uncovered a new OsmiR156k-OsSPL18-DEP1 pathway regulating grain number in rice.
Collapse
|
37
|
Descalsota-Empleo GI, Noraziyah AAS, Navea IP, Chung C, Dwiyanti MS, Labios RJD, Ikmal AM, Juanillas VM, Inabangan-Asilo MA, Amparado A, Reinke R, Cruz CMV, Chin JH, Swamy BPM. Genetic Dissection of Grain Nutritional Traits and Leaf Blight Resistance in Rice. Genes (Basel) 2019; 10:E30. [PMID: 30626141 PMCID: PMC6356647 DOI: 10.3390/genes10010030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 11/16/2022] Open
Abstract
Colored rice is rich in nutrition and also a good source of valuable genes/quantitative trait loci (QTL) for nutrition, grain quality, and pest and disease resistance traits for use in rice breeding. Genome-wide association analysis using high-density single nucleotide polymorphism (SNP) is useful in precisely detecting QTLs and genes. We carried out genome-wide association analysis in 152 colored rice accessions, using 22,112 SNPs to map QTLs for nutritional, agronomic, and bacterial leaf blight (BLB) resistance traits. Wide variations and normal frequency distributions were observed for most of the traits except anthocyanin content and BLB resistance. The structural and principal component analysis revealed two subgroups. The linkage disequilibrium (LD) analysis showed 74.3% of the marker pairs in complete LD, with an average LD distance of 1000 kb and, interestingly, 36% of the LD pairs were less than 5 Kb, indicating high recombination in the panel. In total, 57 QTLs were identified for ten traits at p < 0.0001, and the phenotypic variance explained (PVE) by these QTLs varied from 9% to 18%. Interestingly, 30 (53%) QTLs were co-located with known or functionally-related genes. Some of the important candidate genes for grain Zinc (Zn) and BLB resistance were OsHMA9, OsMAPK6, OsNRAMP7, OsMADS13, and OsZFP252, and Xa1, Xa3, xa5, xa13 and xa26, respectively. Red rice genotype, Sayllebon, which is high in both Zn and anthocyanin content, could be a valuable material for a breeding program for nutritious rice. Overall, the QTLs identified in our study can be used for QTL pyramiding as well as genomic selection. Some of the novel QTLs can be further validated by fine mapping and functional characterization. The results show that pigmented rice is a valuable resource for mineral elements and antioxidant compounds; it can also provide novel alleles for disease resistance as well as for yield component traits. Therefore, large opportunities exist to further explore and exploit more colored rice accessions for use in breeding.
Collapse
Affiliation(s)
- Gwen Iris Descalsota-Empleo
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- University of the Southern Mindanao, Kabacan, Cotabato 9407, Philippines.
| | | | - Ian Paul Navea
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- Nousbo Corp. #4-107, 89 Seohoro, Gwonsun, Suwon 16614, Gyeonggi, Korea.
| | - Chongtae Chung
- Chungcheongnam-do Agricultural Research and Extension Services, 167, Chusa-ro, Shinam-myeon, Yesan-gun 32418, Chungcheongnam-do, Korea.
| | - Maria Stefanie Dwiyanti
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- Applied Plant Genome Laboratory, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan.
| | | | - Asmuni Mohd Ikmal
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | | | | | - Amery Amparado
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
| | - Russell Reinke
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
| | | | - Joong Hyoun Chin
- Department of Integrative Bio-Industrial Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea.
| | | |
Collapse
|
38
|
Li Y, Li X, Fu D, Wu C. Panicle Morphology Mutant 1 (PMM1) determines the inflorescence architecture of rice by controlling brassinosteroid biosynthesis. BMC PLANT BIOLOGY 2018; 18:348. [PMID: 30541444 PMCID: PMC6291947 DOI: 10.1186/s12870-018-1577-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/28/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Panicle architecture is one of the main important agronomical traits that determine branch number and grain number in rice. Although a large number of genes involved in panicle development have been identified in recent years, the complex processes of inflorescence patterning need to be further characterized in rice. Brassinosteroids (BRs) are a class of steroid phytohormones. A great understanding of how BRs contribute to plant height and leaf erectness have been reported, however, the molecular and genetic mechanisms of panicle architecture influenced by BRs remain unclear. RESULTS Here, we identified PMM1, encoding a cytochrome P450 protein involved in BRs biosynthesis, and characterized its role in panicle architecture in rice. Three alleles of pmm1 were identified from our T-DNA insertional mutant library. Map-based cloning revealed that a large fragment deletion from the 2nd to 9th exons of PMM1 was responsible for the clustered primary branch morphology in pmm1-1. PMM1 is a new allele of DWARF11 (D11) PMM1 transcripts are preferentially expressed in young panicles, particularly expressed in the primordia of branches and spikelets during inflorescence development. Furthermore, overexpression of OsDWARF4 (D4), another gene encoding cytochrome P450, completely rescued the abnormal panicle phenotype of pmm1-1. Overall, it can be concluded that PMM1 is an important gene involved in BRs biosynthesis and affecting the differentiation of spikelet primordia and patterns of panicle branches in rice. CONCLUSIONS PMM1 is a new allele of D11, which encodes a cytochrome P450 protein involved in BRs biosynthesis pathway. Overexpression of D4 could successfully rescue the abnormal panicle architecture of pmm1 plants, indicating that PMM1/D11 and D4 function redundantly in BRs biosynthesis. Thus, our results demonstrated that PMM1 determines the inflorescence architecture by controlling brassinosteroid biosynthesis in rice.
Collapse
Affiliation(s)
- Yan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Xuemei Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Debao Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
39
|
Li P, Chang T, Chang S, Ouyang X, Qu M, Song Q, Xiao L, Xia S, Deng Q, Zhu XG. Systems model-guided rice yield improvements based on genes controlling source, sink, and flow. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1154-1180. [PMID: 30415497 DOI: 10.1111/jipb.12738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
A large number of genes related to source, sink, and flow have been identified after decades of research in plant genetics. Unfortunately, these genes have not been effectively utilized in modern crop breeding. This perspective paper aims to examine the reasons behind such a phenomenon and propose a strategy to resolve this situation. Specifically, we first systematically survey the currently cloned genes related to source, sink, and flow; then we discuss three factors hindering effective application of these identified genes, which include the lack of effective methods to identify limiting or critical steps in a signaling network, the misplacement of emphasis on properties, at the leaf, instead of the whole canopy level, and the non-linear complex interaction between source, sink, and flow. Finally, we propose the development of systems models of source, sink and flow, together with a detailed simulation of interactions between them and their surrounding environments, to guide effective use of the identified elements in modern rice breeding. These systems models will contribute directly to the definition of crop ideotype and also identification of critical features and parameters that limit the yield potential in current cultivars.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Tiangen Chang
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Shuoqi Chang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Xiang Ouyang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Mingnan Qu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Qingfeng Song
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Langtao Xiao
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
| | - Shitou Xia
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
| | - Qiyun Deng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| |
Collapse
|
40
|
A Megabase-Scale Deletion is Associated with Phenotypic Variation of Multiple Traits in Maize. Genetics 2018; 211:305-316. [PMID: 30389804 PMCID: PMC6325712 DOI: 10.1534/genetics.118.301567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/26/2018] [Indexed: 11/18/2022] Open
Abstract
Genomic deletions are pervasive in the maize (Zea mays L.) genome, and play important roles in phenotypic variation and adaptive evolution. However, little is known about the biological functions of these genomic deletions. Here, we report the biological function of a megabase-scale deletion, which we identified by position-based cloning of the multi-trait weakened (muw) mutant, which is inherited as a single recessive locus. MUW was mapped to a 5.16-Mb region on chromosome 2. The 5.16-Mb deletion in the muw mutant led to the loss of 48 genes and was responsible for a set of phenotypic abnormities, including wilting leaves, poor yield performance, reduced plant height, increased stomatal density, and rapid water loss. While muw appears to have resulted from double-stranded break repair that was not dependent on intragenomic DNA homology, extensive duplication of maize genes may have mitigated its effects and facilitated its survival.
Collapse
|
41
|
Ren D, Hu J, Xu Q, Cui Y, Zhang Y, Zhou T, Rao Y, Xue D, Zeng D, Zhang G, Gao Z, Zhu L, Shen L, Chen G, Guo L, Qian Q. FZP determines grain size and sterile lemma fate in rice. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4853-4866. [PMID: 30032251 PMCID: PMC6137974 DOI: 10.1093/jxb/ery264] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/12/2018] [Indexed: 05/19/2023]
Abstract
In grass, the spikelet is a unique inflorescence structure that directly determines grain yield. Despite a great deal of research, the molecular mechanisms behind spikelet development are not fully understood. In the study, FZP encodes an ERF domain protein, and functions in grain size and sterile lemma identity. Mutation of FZP causes smaller grains and degenerated sterile lemmas. The small fzp-12 grains were caused by a reduction in cell number and size in the hulls. Interestingly, the sterile lemma underwent a homeotic transformation into a rudimentary glume in the fzp-12 and fzp-13 mutants, whereas the sterile lemma underwent a homeotic transformation into a lemma in FZP over-expressing plants, suggesting that FZP specifically determines the sterile lemma identity. We confirmed the function of FZP by complementation, CRISPR-Cas9 gene editing, and cytological and molecular tests. Additionally, FZP interacts specifically with the GCC-box and DRE motifs, and may be involved in regulation of the downstream genes. Our results revealed that FZP plays a vital role in the regulation of grain size, and first provides clear evidence in support of the hypothesis that the lemma, rudimentary glume, and sterile lemma are homologous organs.
Collapse
Affiliation(s)
- Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Qiankun Xu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Yuanjiang Cui
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Yu Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Tingting Zhou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, P. R. China
| | - Dali Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Guang Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Longbiao Guo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
- Correspondence:
| |
Collapse
|
42
|
Comprehensive panicle phenotyping reveals that qSrn7/FZP influences higher-order branching. Sci Rep 2018; 8:12511. [PMID: 30131566 PMCID: PMC6104091 DOI: 10.1038/s41598-018-30395-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/27/2018] [Indexed: 11/30/2022] Open
Abstract
Rice grain number directly affects crop yield. Identifying alleles that improve panicle architecture would greatly aid the development of high-yield varieties. Here, we show that the quantitative trait locus qSrn7 contains rice FRIZZY PANICLE (FZP), a previously reported gene encoding an ERF transcription factor that promotes floral transition. Reduced expression of FZP in the reproductive stage increases the extent of higher order branching of the panicle, resulting in increased grain number. Genotype analysis of this gene in cultivars from the publicly available National Institute of Agrobiological Sciences (NIAS) Core Collection demonstrated that the extent of higher order branching, especially in the upper panicle, was increased in those cultivars carrying the FZP allele associated with qSrn7. Furthermore, chromosome segment substitution lines resulting from a cross between Koshihikari and Kasalath, the latter of which carries qSrn7/FZP, also showed that upper panicle higher order branching and grain yield were increased by qSrn7/FZP. Our findings indicate that qSrn7/FZP influences panicle branching pattern and is thus useful in the breeding of high-yield rice varieties.
Collapse
|
43
|
Song S, Wang G, Hu Y, Liu H, Bai X, Qin R, Xing Y. OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4283-4293. [PMID: 30124949 PMCID: PMC6093437 DOI: 10.1093/jxb/ery232] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/13/2018] [Indexed: 05/04/2023]
Abstract
Heading date and panicle architecture are important agronomic traits in rice. Here, we identified a gene MOTHER OF FT AND TFL1 (OsMFT1) that regulates rice heading and panicle architecture. Overexpressing OsMFT1 delayed heading date by over 7 d and greatly increased spikelets per panicle and the number of branches. In contrast, OsMFT1 knockout mutants had an advanced heading date and reduced spikelets per panicle. Overexpression of OsMFT1 significantly suppressed Ehd1 expression, and Ghd7 up-regulated OsMFT1 expression. Double mutants showed that OsMFT1 acted downstream of Ghd7. In addition, transcription factor OsLFL1 was verified to directly bind to the promoter of OsMFT1 via an RY motif and activate the expression of OsMFT1 in vivo and in vitro. RNA-seq and RNA in situ hybridization analysis confirmed that OsMFT1 repressed expression of FZP and five SEPALLATA-like genes, indicating that the transition from branch meristem to spikelet meristem was delayed and thus more panicle branches were produced. Therefore, OsMFT1 is a suppressor of flowering acting downstream of Ghd7 and upstream of Ehd1, and a positive regulator of panicle architecture.
Collapse
Affiliation(s)
- Song Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guanfeng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yong Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Haiyang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Rui Qin
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Correspondence:
| |
Collapse
|
44
|
Yoon H, Yang J, Liang W, Zhang D, An G. OsVIL2 Regulates Spikelet Development by Controlling Regulatory Genes in Oryza sativa. FRONTIERS IN PLANT SCIENCE 2018; 9:102. [PMID: 29467779 PMCID: PMC5808121 DOI: 10.3389/fpls.2018.00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/18/2018] [Indexed: 05/08/2023]
Abstract
Flower organ patterning is accomplished by spatial and temporal functioning of various regulatory genes. We previously reported that Oryza sativa VIN3-LIKE 2 (OsVIL2) induces flowering by mediating the trimethylation of Histone H3 on LFL1 chromatin. In this study, we report that OsVIL2 also plays crucial roles during spikelet development. Two independent lines of T-DNA insertional mutants in the gene displayed altered organ numbers and abnormal morphology in all spikelet organs. Scanning electron microscopy showed that osvil2 affected organ primordia formation during early spikelet development. Expression analysis revealed that OsVIL2 is expressed in all stages of the spikelet developmental. Transcriptome analysis of developing spikelets revealed that several regulatory genes involved in that process and the formation of floral organs were down-regulated in osvil2. These results suggest that OsVIL2 is required for proper expression of the regulatory genes that control floral organ number and morphology.
Collapse
Affiliation(s)
- Hyeryung Yoon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jungil Yang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gynheung An
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
- *Correspondence: Gynheung An,
| |
Collapse
|
45
|
Dobrovolskaya OB, Amagai Y, Popova KI, Dresvyannikova AE, Martinek P, Krasnikov AA, Watanabe N. Genes WHEAT FRIZZY PANICLE and SHAM RAMIFICATION 2 independently regulate differentiation of floral meristems in wheat. BMC PLANT BIOLOGY 2017; 17:252. [PMID: 29297328 PMCID: PMC5751757 DOI: 10.1186/s12870-017-1191-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
BACKGROUND Inflorescences of wheat species, spikes, are characteristically unbranched and bear one sessile spikelet at a spike rachis node. Development of supernumerary spikelets (SSs) at rachis nodes or on the extended rachillas is abnormal. Various wheat morphotypes with altered spike morphology, associated with the development of SSs, present an important genetic resource for studies on genetic regulation of wheat inflorescence development. RESULTS Here we characterized diploid and tetraploid wheat lines of various non-standard spike morphotypes, which allowed for identification of a new mutant allele of the WHEAT FRIZZY PANICLE (WFZP) gene that determines spike branching in diploid wheat Ttiticum monococcum L. Moreover, we found that the development of SSs and spike branching in wheat T. durum Desf. was a result of a wfzp-A/TtBH-A1 mutation that originated from spontaneous hybridization with T. turgidum convar. сompositum (L.f.) Filat. Detailed characterization of the false-true ramification phenotype controlled by the recessive sham ramification 2 (shr2) gene in tetraploid wheat T. turgidum L. allowed us to suggest putative functions of the SHR2 gene that may be involved in the regulation of spikelet meristem fate and in specification of floret meristems. The results of a gene interaction test suggested that genes WFZP and SHR2 function independently in different processes during spikelet development, whereas another spike ramification gene(s) interact(s) with SHR2 and share(s) common functions. CONCLUSIONS SS mutants represent an important genetic tool for research on the development of the wheat spikelet and for identification of genes that control meristem activities. Further studies on different non-standard SS morphotypes and wheat lines with altered spike morphology will allow researchers to identify new genes that control meristem identity and determinacy, to elucidate the interaction between the genes, and to understand how these genes, acting in concert, regulate the development of the wheat spike.
Collapse
Affiliation(s)
- Oxana B. Dobrovolskaya
- Institute of Cytology and Genetics, SB RAS, Lavrenvieva ave. 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, Pirogova, 2, Novosibirsk, 630090 Russia
| | - Yumiko Amagai
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Karina I. Popova
- Institute of Cytology and Genetics, SB RAS, Lavrenvieva ave. 10, Novosibirsk, 630090 Russia
| | - Alina E. Dresvyannikova
- Institute of Cytology and Genetics, SB RAS, Lavrenvieva ave. 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, Pirogova, 2, Novosibirsk, 630090 Russia
| | | | | | | |
Collapse
|
46
|
Bai X, Huang Y, Hu Y, Liu H, Zhang B, Smaczniak C, Hu G, Han Z, Xing Y. Duplication of an upstream silencer of FZP increases grain yield in rice. NATURE PLANTS 2017; 3:885-893. [PMID: 29085070 DOI: 10.1038/s41477-017-0042-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/30/2017] [Indexed: 05/07/2023]
Abstract
Transcriptional silencer and copy number variants (CNVs) are associated with gene expression. However, their roles in generating phenotypes have not been well studied. Here we identified a rice quantitative trait locus, SGDP7 (Small Grain and Dense Panicle 7). SGDP7 is identical to FZP (FRIZZY PANICLE), which represses the formation of axillary meristems. The causal mutation of SGDP7 is an 18-bp fragment, named CNV-18bp, which was inserted ~5.3 kb upstream of FZP and resulted in a tandem duplication in the cultivar Chuan 7. The CNV-18bp duplication repressed FZP expression, prolonged the panicle branching period and increased grain yield by more than 15% through substantially increasing the number of spikelets per panicle (SPP) and slightly decreasing the 1,000-grain weight (TGW). The transcription repressor OsBZR1 binds the CGTG motifs in CNV-18bp and thereby represses FZP expression, indicating that CNV-18bp is the upstream silencer of FZP. These findings showed that the silencer CNVs coordinate a trade-off between SPP and TGW by fine-tuning FZP expression, and balancing the trade-off could enhance yield potential.
Collapse
Affiliation(s)
- Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434100, China
| | - Yong Huang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiyang Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Cezary Smaczniak
- Plant Cell and Molecular Biology Institute for Biology Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Gang Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongmin Han
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
47
|
Whipple CJ. Grass inflorescence architecture and evolution: the origin of novel signaling centers. THE NEW PHYTOLOGIST 2017; 216:367-372. [PMID: 28375574 DOI: 10.1111/nph.14538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/10/2017] [Indexed: 05/18/2023]
Abstract
Contents 367 I. 367 II. 368 III. 370 IV. 371 371 References 371 SUMMARY: A central goal of evo-devo is to understand how morphological diversity arises from existing developmental mechanisms, requiring a clear, predictive explanatory framework of the underlying developmental mechanisms. Despite an ever-increasing literature on genes regulating grass inflorescence development, an effective model of inflorescence patterning is lacking. I argue that the existing framework for grass inflorescence development, which invokes homeotic shifts in multiple distinct meristem identities, obscures a recurring theme emerging from developmental genetic studies in grass models, that is that inflorescence branching is regulated by novel localized signaling centers. Understanding the origin and function of these novel signaling centers will be key to future evo-devo work on the grass inflorescence.
Collapse
Affiliation(s)
- Clinton J Whipple
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT, 84602, USA
| |
Collapse
|
48
|
Chandler JW, Werr W. DORNRÖSCHEN, DORNRÖSCHEN-LIKE, and PUCHI redundantly control floral meristem identity and organ initiation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3457-3472. [PMID: 28859377 DOI: 10.1093/jxb/erx208] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/26/2017] [Indexed: 05/02/2023]
Abstract
The biphasic floral transition in Arabidopsis thaliana involves many redundant intersecting regulatory networks. The related AP2 transcription factors DORNRÖSCHEN (DRN), DORNRÖSCHEN-LIKE (DRNL), and PUCHI individually execute well-characterized functions in diverse developmental contexts, including floral development. Here, we show that their combined loss of function leads to synergistic floral phenotypes, including reduced floral merosity in all whorls, which reflects redundant functions of all three genes in organ initiation rather than outgrowth. Additional loss of BLADE-ON-PETIOLE1 (BOP1) and BOP2 functions results in the complete conversion of floral meristems into secondary inflorescence shoots, demonstrating that all five genes define an essential regulatory network for establishing floral meristem identity, and we show that their functions converge to regulate LEAFY expression. Thus, despite their largely discrete spatiotemporal expression domains in the inflorescence meristem and early floral meristem, PUCHI, DRN, and DRNL interdependently contribute to cellular fate decisions. Auxin might represent one potential non-cell-autonomous mediator of their gene functions, because PUCHI, DRN, and DRNL all interact with auxin transport and biosynthesis pathways.
Collapse
Affiliation(s)
- J W Chandler
- Institute of Developmental Biology, Cologne Biocenter, University of Cologne, Germany
| | - W Werr
- Institute of Developmental Biology, Cologne Biocenter, University of Cologne, Germany
| |
Collapse
|