1
|
Contreras L, García-Gaipo L, Casar B, Gandarillas A. DNA damage signalling histone H2AX is required for tumour growth. Cell Death Discov 2024; 10:99. [PMID: 38402225 PMCID: PMC10894207 DOI: 10.1038/s41420-024-01869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024] Open
Abstract
Cancer most frequently develops in self-renewal tissues that are the target of genetic alterations due to mutagens or intrinsic DNA replication errors. Histone γH2AX has a critical role in the cellular DNA repair pathway cascade and contributes to genomic stability. However, the role of γH2AX in the ontology of cancer is unclear. We have investigated this issue in the epidermis, a self-renewal epithelium continuously exposed to genetic hazard and replication stress. Silencing H2AX caused cell cycle hyperactivation, impaired DNA repair and epidermal hyperplasia in the skin. However, mutagen-induced carcinogenesis was strikingly reduced in the absence of H2AX. KO tumours appeared significantly later than controls and were fewer, smaller and more benign. The stem cell marker Δp63 drastically diminished in the KO epidermis. We conclude that H2AX is required for tissue-making during both homoeostasis and tumourigenesis, possibly by contributing to the control and repair of stem cells. Therefore, although H2AX is thought to act as a tumour suppressor and our results show that it contributes to homeostasis, they also indicate that it is required for the development of cancer.
Collapse
Affiliation(s)
- Lizbeth Contreras
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Lorena García-Gaipo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria (UC), 39011, Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alberto Gandarillas
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- Institut National de la Santé et de la Recherche Médicale, (INSERM), Délégation Occitanie, 34394, Montpellier, France.
| |
Collapse
|
2
|
An W, Feola M, Levy M, Aluri S, Ruiz-Martinez M, Sridharan A, Fibach E, Zhu X, Verma A, Ginzburg Y. Iron chelation improves ineffective erythropoiesis and iron overload in myelodysplastic syndrome mice. eLife 2023; 12:e83103. [PMID: 38153418 PMCID: PMC10754500 DOI: 10.7554/elife.83103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of bone marrow stem cell disorders characterized by ineffective hematopoiesis and cytopenias, most commonly anemia. Red cell transfusion therapy for anemia in MDS results in iron overload, correlating with reduced overall survival. Whether the treatment of iron overload benefits MDS patients remains controversial. We evaluate underlying iron-related pathophysiology and the effect of iron chelation using deferiprone on erythropoiesis in NUP98-HOXD13 transgenic mice, a highly penetrant well-established MDS mouse model. Our results characterize an iron overload phenotype with aberrant erythropoiesis in these mice which was reversed by deferiprone-treatment. Serum erythropoietin levels decreased while erythroblast erythropoietin receptor expression increased in deferiprone-treated MDS mice. We demonstrate, for the first time, normalized expression of the iron chaperones Pcbp1 and Ncoa4 and increased ferritin stores in late-stage erythroblasts from deferiprone-treated MDS mice, evidence of aberrant iron trafficking in MDS erythroblasts. Importantly, erythroblast ferritin is increased in response to deferiprone, correlating with decreased erythroblast ROS. Finally, we confirmed increased expression of genes involved in iron uptake, sensing, and trafficking in stem and progenitor cells from MDS patients. Taken together, our findings provide evidence that erythroblast-specific iron metabolism is a novel potential therapeutic target to reverse ineffective erythropoiesis in MDS.
Collapse
Affiliation(s)
- Wenbin An
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Maria Feola
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Maayan Levy
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Srinivas Aluri
- Division of Hematology and Medical Oncology, Albert Einstein College of MedicineBronxUnited States
| | - Marc Ruiz-Martinez
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ashwin Sridharan
- Division of Hematology and Medical Oncology, Albert Einstein College of MedicineBronxUnited States
| | - Eitan Fibach
- Department of Hematology, Hadassah Medical Center, Hebrew UniversityJerusalemIsrael
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Amit Verma
- Division of Hematology and Medical Oncology, Albert Einstein College of MedicineBronxUnited States
| | - Yelena Ginzburg
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
3
|
Jeffery NN, Davidson C, Peslak SA, Kingsley PD, Nakamura Y, Palis J, Bulger M. Histone H2A.X phosphorylation and Caspase-Initiated Chromatin Condensation in late-stage erythropoiesis. Epigenetics Chromatin 2021; 14:37. [PMID: 34330317 PMCID: PMC8325214 DOI: 10.1186/s13072-021-00408-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background Condensation of chromatin prior to enucleation is an essential component of terminal erythroid maturation, and defects in this process are associated with inefficient erythropoiesis and anemia. However, the mechanisms involved in this phenomenon are not well understood. Here, we describe a potential role for the histone variant H2A.X in erythropoiesis. Results We find in multiple model systems that this histone is essential for normal maturation, and that the loss of H2A.X in erythroid cells results in dysregulation in expression of erythroid-specific genes as well as a nuclear condensation defect. In addition, we demonstrate that erythroid maturation is characterized by phosphorylation at both S139 and Y142 on the C-terminal tail of H2A.X during late-stage erythropoiesis. Knockout of the kinase BAZ1B/WSTF results in loss of Y142 phosphorylation and a defect in nuclear condensation, but does not replicate extensive transcriptional changes to erythroid-specific genes observed in the absence of H2A.X. Conclusions We relate these findings to Caspase-Initiated Chromatin Condensation (CICC) in terminal erythroid maturation, where aspects of the apoptotic pathway are invoked while apoptosis is specifically suppressed. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00408-5.
Collapse
Affiliation(s)
- Nazish N Jeffery
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Christina Davidson
- Wilmot Cancer Institute, Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Scott A Peslak
- Department of Medicine, Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul D Kingsley
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - James Palis
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Michael Bulger
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
4
|
Liu Y, Mei Y, Han X, Korobova FV, Prado MA, Yang J, Peng Z, Paulo JA, Gygi SP, Finley D, Ji P. Membrane skeleton modulates erythroid proteome remodeling and organelle clearance. Blood 2021; 137:398-409. [PMID: 33036023 PMCID: PMC7819763 DOI: 10.1182/blood.2020006673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/22/2020] [Indexed: 01/26/2023] Open
Abstract
The final stages of mammalian erythropoiesis involve enucleation, membrane and proteome remodeling, and organelle clearance. Concomitantly, the erythroid membrane skeleton establishes a unique pseudohexagonal spectrin meshwork that is connected to the membrane through junctional complexes. The mechanism and signaling pathways involved in the coordination of these processes are unclear. The results of our study revealed an unexpected role of the membrane skeleton in the modulation of proteome remodeling and organelle clearance during the final stages of erythropoiesis. We found that diaphanous-related formin mDia2 is a master regulator of the integrity of the membrane skeleton through polymerization of actin protofilament in the junctional complex. The mDia2-deficient terminal erythroid cell contained a disorganized and rigid membrane skeleton that was ineffective in detaching the extruded nucleus. In addition, the disrupted skeleton failed to activate the endosomal sorting complex required for transport-III (ESCRT-III) complex, which led to a global defect in proteome remodeling, endolysosomal trafficking, and autophagic organelle clearance. Chmp5, a component of the ESCRT-III complex, is regulated by mDia2-dependent activation of the serum response factor and is essential for membrane remodeling and autophagosome-lysosome fusion. Mice with loss of Chmp5 in hematopoietic cells in vivo resembled the phenotypes in mDia2-knockout mice. Furthermore, overexpression of Chmp5 in mDia2-deficient hematopoietic stem and progenitor cells significantly restored terminal erythropoiesis in vivo. These findings reveal a formin-regulated signaling pathway that connects the membrane skeleton to proteome remodeling, enucleation, and organelle clearance during terminal erythropoiesis.
Collapse
Affiliation(s)
- Yijie Liu
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center, and
| | - Yang Mei
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center, and
| | - Xu Han
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center, and
| | - Farida V Korobova
- Center for Advanced Microscopy, Northwestern University, Chicago, IL
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA; and
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center, and
| | - Zhangli Peng
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA; and
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA; and
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA; and
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center, and
| |
Collapse
|
5
|
Oxidative DNA Damage, Inflammatory Signature, and Altered Erythrocytes Properties in Diamond-Blackfan Anemia. Int J Mol Sci 2020; 21:ijms21249652. [PMID: 33348919 PMCID: PMC7768356 DOI: 10.3390/ijms21249652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Molecular pathophysiology of Diamond-Blackfan anemia (DBA) involves disrupted erythroid-lineage proliferation, differentiation and apoptosis; with the activation of p53 considered as a key component. Recently, oxidative stress was proposed to play an important role in DBA pathophysiology as well. CRISPR/Cas9-created Rpl5- and Rps19-deficient murine erythroleukemia (MEL) cells and DBA patients' samples were used to evaluate proinflammatory cytokines, oxidative stress, DNA damage and DNA damage response. We demonstrated that the antioxidant defense capacity of Rp-mutant cells is insufficient to meet the greater reactive oxygen species (ROS) production which leads to oxidative DNA damage, cellular senescence and activation of DNA damage response signaling in the developing erythroblasts and altered characteristics of mature erythrocytes. We also showed that the disturbed balance between ROS formation and antioxidant defense is accompanied by the upregulation of proinflammatory cytokines. Finally, the alterations detected in the membrane of DBA erythrocytes may cause their enhanced recognition and destruction by reticuloendothelial macrophages, especially during infections. We propose that the extent of oxidative stress and the ability to activate antioxidant defense systems may contribute to high heterogeneity of clinical symptoms and response to therapy observed in DBA patients.
Collapse
|
6
|
Loss of mDia1 causes neutropenia via attenuated CD11b endocytosis and increased neutrophil adhesion to the endothelium. Blood Adv 2017; 1:1650-1656. [PMID: 29296812 DOI: 10.1182/bloodadvances.2017007906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022] Open
Abstract
Formin protein mDia1 is involved in actin polymerization and plays important roles in the migration and adhesion of hematopoietic cells. The mDia1 encoding gene is located on chromosome 5q, which is commonly deleted in patients with del(5q) myelodysplastic syndromes (MDSs). We previously reported that mice with mDia1 deficiency developed neutropenia that closely mimics MDS. However, the mechanism of neutropenia in these mice and patients with del(5q) MDS remains incompletely defined. Here, we reveal that mDia1 knockout mice show cell-autonomously increased CD11b expression on neutrophils in the peripheral blood and bone marrow. The level of CD11b was also higher in patients with del(5q) MDS compared with normal individuals. Mechanistically, loss of mDia1 significantly attenuated the endocytosis of CD11b on neutrophils, which led to an increased number of neutrophils adhering to the blood vessels in mDia1 knockout mice. Administration of CD11b antibody to mDia1 knockout mice reduced the adhesion of neutrophils to the vessels and rescued neutropenia. Our study reveals the role of mDia1 deficiency in the upregulation of CD11b on neutrophils, which leads to their increased binding to the blood vessels. These results may provide important clues for the pathogenesis of neutropenia in patients with del(5q) MDS.
Collapse
|