1
|
Yi Y, Zhang S, Dai J, Zheng H, Peng X, Cheng L, Chen H, Hu Y. MiR-23b-3p Improves Brain Damage after Status Epilepticus by Reducing the Formation of Pathological High-Frequency Oscillations via Inhibition of cx43 in Rat Hippocampus. ACS Chem Neurosci 2024; 15:2633-2642. [PMID: 38967483 DOI: 10.1021/acschemneuro.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
In order to investigate the effectiveness and safety of miR-23b-3p in anti-seizure activity and to elucidate the regulatory relationship between miR-23b-3p and Cx43 in the nervous system, we have established a lithium chloride-pilocarpine (PILO) status epilepticus (SE) model. Rats were randomly divided into the following groups: seizure control (PILO), valproate sodium (VPA+PILO), recombinant miR-23b-3p overexpression (miR+PILO), miR-23b-3p sponges (Sponges+PILO), and scramble sequence negative control (Scramble+PILO) (n = 6/group). After experiments, we got the following results. In the acute phase, the time required for rats to reach stage IV after PILO injection was significantly longer in VPA+PILO and miR+PILO. In the chronic phase after SE, the frequency of spontaneous recurrent seizures (SRSs) in VPA+PILO and miR+PILO was significantly reduced. At 10 min before seizure cessation, the average energy expression of fast ripples (FRs) in VPA+PILO and miR+PILO was significantly lower than in PILO. After 28 days of seizure, Cx43 expression in PILO was significantly increased, and Beclin1expression in all groups was significantly increased. After 28 days of SE,the number of synapses in the CA1 region of the hippocampus was significantly higher in the VPA+PILO and miR+PILO groups compared to that in the PILO group. After 28 days of SE ,hippocampal necrotic cells in the CA3 region were significantly lower in the VPA+PILO and miR+PILO groups compared to those in the PILO group. There were no significant differences in biochemical indicators among the experimental group rats 28 days after SE compared to the seizure control group. Based on the previous facts, we can reach the conclusion that MiR-23b-3p targets and blocks the expression of hippocampal Cx43 which can reduce the formation of pathological FRs, thereby alleviating the severity of seizures, improving seizure-induced brain damage.
Collapse
Affiliation(s)
- Yanjun Yi
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Shimin Zhang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jiali Dai
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hao Zheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaoling Peng
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai 519087, China
| | - Li Cheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hengsheng Chen
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yue Hu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
2
|
Yap XL, Chen JA. Elucidation of how the Mir-23-27-24 cluster regulates development and aging. Exp Mol Med 2024; 56:1263-1271. [PMID: 38871817 PMCID: PMC11263685 DOI: 10.1038/s12276-024-01266-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
MicroRNAs (miRNAs) are pivotal regulators of gene expression and are involved in biological processes spanning from early developmental stages to the intricate process of aging. Extensive research has underscored the fundamental role of miRNAs in orchestrating eukaryotic development, with disruptions in miRNA biogenesis resulting in early lethality. Moreover, perturbations in miRNA function have been implicated in the aging process, particularly in model organisms such as nematodes and flies. miRNAs tend to be clustered in vertebrate genomes, finely modulating an array of biological pathways through clustering within a single transcript. Although extensive research of their developmental roles has been conducted, the potential implications of miRNA clusters in regulating aging remain largely unclear. In this review, we use the Mir-23-27-24 cluster as a paradigm, shedding light on the nuanced physiological functions of miRNA clusters during embryonic development and exploring their potential involvement in the aging process. Moreover, we advocate further research into the intricate interplay among miRNA clusters, particularly the Mir-23-27-24 cluster, in shaping the regulatory landscape of aging.
Collapse
Affiliation(s)
- Xin Le Yap
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-An Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
4
|
Hanafy MS, Cui Z. Connexin-Containing Vesicles for Drug Delivery. AAPS J 2024; 26:20. [PMID: 38267725 DOI: 10.1208/s12248-024-00889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Connexin is a transmembrane protein present on the cell membrane of most cell types. Connexins assemble into a hexameric hemichannel known as connexon that pairs with another hemichannel present on a neighboring cell to form gap junction that acts as a channel or pore for the transport of ions and small molecules between the cytoplasm of the two cells. Extracellular vesicles released from connexin-expressing cells could carry connexin hemichannels on their surface and couple with another connexin hemichannel on a distant recipient cell to allow the transfer of the intravesicular content directly into the cytoplasm. Connexin-containing vesicles can be potentially utilized for intracellular drug delivery. In this review, we introduced cell-derived, connexin-containing extracellular vesicles and cell-free connexin-containing liposomes, methods of preparing them, procedures to load cargos in them, factors regulating the connexin hemichannel activity, (potential) applications of connexin-containing vesicles in drug delivery, and finally the challenges and future directions in realizing the promises of this platform delivery system for (intracellular) drug delivery.
Collapse
Affiliation(s)
- Mahmoud S Hanafy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
5
|
Kurup S, Tan C, Kume T. Cardiac and intestinal tissue conduct developmental and reparative processes in response to lymphangiocrine signaling. Front Cell Dev Biol 2023; 11:1329770. [PMID: 38178871 PMCID: PMC10764504 DOI: 10.3389/fcell.2023.1329770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Lymphatic vessels conduct a diverse range of activities to sustain the integrity of surrounding tissue. Besides facilitating the movement of lymph and its associated factors, lymphatic vessels are capable of producing tissue-specific responses to changes within their microenvironment. Lymphatic endothelial cells (LECs) secrete paracrine signals that bind to neighboring cell-receptors, commencing an intracellular signaling cascade that preludes modifications to the organ tissue's structure and function. While the lymphangiocrine factors and the molecular and cellular mechanisms themselves are specific to the organ tissue, the crosstalk action between LECs and adjacent cells has been highlighted as a commonality in augmenting tissue regeneration within animal models of cardiac and intestinal disease. Lymphangiocrine secretions have been owed for subsequent improvements in organ function by optimizing the clearance of excess tissue fluid and immune cells and stimulating favorable tissue growth, whereas perturbations in lymphatic performance bring about the opposite. Newly published landmark studies have filled gaps in our understanding of cardiac and intestinal maintenance by revealing key players for lymphangiocrine processes. Here, we will expand upon those findings and review the nature of lymphangiocrine factors in the heart and intestine, emphasizing its involvement within an interconnected network that supports daily homeostasis and self-renewal following injury.
Collapse
Affiliation(s)
- Shreya Kurup
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Honors College, University of Illinois at Chicago, Chicago, IL, United States
| | - Can Tan
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tsutomu Kume
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Wang YF, Shen ZF, Xiang FY, Wang H, Zhang P, Zhang Q. The direct transfer approach for transcellular drug delivery. Drug Deliv 2023; 30:2288799. [PMID: 38037327 PMCID: PMC10987047 DOI: 10.1080/10717544.2023.2288799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023] Open
Abstract
A promising paradigm for drug administration that has garnered increasing attention in recent years is the direct transfer (DT) of nanoparticles for transcellular drug delivery. DT requires direct cell-cell contact and facilitates unidirectional and bidirectional matter exchange between neighboring cells. Consequently, DT enables fast and deep penetration of drugs into the targeted tissues. This comprehensive review discusses the direct transfer concept, which can be delineated into the following three distinct modalities: membrane contact-direct transfer, gap junction-mediated direct transfer (GJ-DT), and tunneling nanotubes-mediated direct transfer (TNTs-DT). Further, the intercellular structures for each modality of direct transfer and their respective merits and demerits are summarized. The review also discusses the recent progress on the drugs or drug delivery systems that could activate DT.
Collapse
Affiliation(s)
- Yi-Fan Wang
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ze-Fan Shen
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fang-yue Xiang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Heng Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Lin CY, Chang YM, Tseng HY, Shih YL, Yeh HH, Liao YR, Tang HH, Hsu CL, Chen CC, Yan YT, Kao CF. Epigenetic regulator RNF20 underlies temporal hierarchy of gene expression to regulate postnatal cardiomyocyte polarization. Cell Rep 2023; 42:113416. [PMID: 37967007 DOI: 10.1016/j.celrep.2023.113416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/19/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023] Open
Abstract
Differentiated cardiomyocytes (CMs) must undergo diverse morphological and functional changes during postnatal development. However, the mechanisms underlying initiation and coordination of these changes remain unclear. Here, we delineate an integrated, time-ordered transcriptional network that begins with expression of genes for cell-cell connections and leads to a sequence of structural, cell-cycle, functional, and metabolic transitions in mouse postnatal hearts. Depletion of histone H2B ubiquitin ligase RNF20 disrupts this gene network and impairs CM polarization. Subsequently, assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis confirmed that RNF20 contributes to chromatin accessibility in this context. As such, RNF20 is likely to facilitate binding of transcription factors at the promoters of genes involved in cell-cell connections and actin organization, which are crucial for CM polarization and functional integration. These results suggest that CM polarization is one of the earliest events during postnatal heart development and provide insights into how RNF20 regulates CM polarity and the postnatal gene program.
Collapse
Affiliation(s)
- Chia-Yeh Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Hsin-Yi Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Yen-Ling Shih
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Hsiao-Hui Yeh
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - You-Rou Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Han-Hsuan Tang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Chia-Ling Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan.
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan.
| |
Collapse
|
8
|
Fang YM, Chen WC, Zheng WJ, Yang YS, Zhang Y, Chen XL, Pei MQ, Lin S, He HF. A cutting-edge strategy for spinal cord injury treatment: resident cellular transdifferentiation. Front Cell Neurosci 2023; 17:1237641. [PMID: 37711511 PMCID: PMC10498389 DOI: 10.3389/fncel.2023.1237641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Spinal cord injury causes varying degrees of motor and sensory function loss. However, there are no effective treatments for spinal cord repair following an injury. Moreover, significant preclinical advances in bioengineering and regenerative medicine have not yet been translated into effective clinical therapies. The spinal cord's poor regenerative capacity makes repairing damaged and lost neurons a critical treatment step. Reprogramming-based neuronal transdifferentiation has recently shown great potential in repair and plasticity, as it can convert mature somatic cells into functional neurons for spinal cord injury repair in vitro and in vivo, effectively halting the progression of spinal cord injury and promoting functional improvement. However, the mechanisms of the neuronal transdifferentiation and the induced neuronal subtypes are not yet well understood. This review analyzes the mechanisms of resident cellular transdifferentiation based on a review of the relevant recent literature, describes different molecular approaches to obtain different neuronal subtypes, discusses the current challenges and improvement methods, and provides new ideas for exploring therapeutic approaches for spinal cord injury.
Collapse
Affiliation(s)
- Yu-Ming Fang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei-Can Chen
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-Jing Zheng
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yu-Shen Yang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan Zhang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xin-Li Chen
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meng-Qin Pei
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Neuroendocrinology Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - He-Fan He
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
9
|
The Multifaceted Role of Connexins in Tumor Microenvironment Initiation and Maintenance. BIOLOGY 2023; 12:biology12020204. [PMID: 36829482 PMCID: PMC9953436 DOI: 10.3390/biology12020204] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Today's research on the processes of carcinogenesis and the vital activity of tumor tissues implies more attention be paid to constituents of the tumor microenvironment and their interactions. These interactions between cells in the tumor microenvironment can be mediated via different types of protein junctions. Connexins are one of the major contributors to intercellular communication. They form the gap junctions responsible for the transfer of ions, metabolites, peptides, miRNA, etc., between neighboring tumor cells as well as between tumor and stromal cells. Connexin hemichannels mediate purinergic signaling and bidirectional molecular transport with the extracellular environment. Additionally, connexins have been reported to localize in tumor-derived exosomes and facilitate the release of their cargo. A large body of evidence implies that the role of connexins in cancer is multifaceted. The pro- or anti-tumorigenic properties of connexins are determined by their abundance, localization, and functionality as well as their channel assembly and non-channel functions. In this review, we have summarized the data on the contribution of connexins to the formation of the tumor microenvironment and to cancer initiation and progression.
Collapse
|
10
|
Li H, Staxäng K, Hodik M, Melkersson KG, Rask-Andersen M, Rask-Andersen H. Regeneration in the Auditory Organ in Cuban and African Dwarf Crocodiles (Crocodylus rhombifer and Osteolaemus tetraspis) Can We Learn From the Crocodile How to Restore Our Hearing? Front Cell Dev Biol 2022; 10:934571. [PMID: 35859896 PMCID: PMC9289536 DOI: 10.3389/fcell.2022.934571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background: In several non-mammalian species, auditory receptors undergo cell renewal after damage. This has raised hope of finding new options to treat human sensorineural deafness. Uncertainty remains as to the triggering mechanisms and whether hair cells are regenerated even under normal conditions. In the present investigation, we explored the auditory organ in the crocodile to validate possible ongoing natural hair cell regeneration. Materials and Methods: Two male Cuban crocodiles (Crocodylus rhombifer) and an adult male African Dwarf crocodile (Osteolaemus tetraspis) were analyzed using transmission electron microscopy and immunohistochemistry using confocal microscopy. The crocodile ears were fixed in formaldehyde and glutaraldehyde and underwent micro-computed tomography (micro-CT) and 3D reconstruction. The temporal bones were drilled out and decalcified. Results: The crocodile papilla basilaris contained tall (inner) and short (outer) hair cells surrounded by a mosaic of tightly connected supporting cells coupled with gap junctions. Afferent neurons with and without ribbon synapses innervated both hair cell types. Supporting cells occasionally showed signs of trans-differentiation into hair cells. They expressed the MAFA and SOX2 transcription factors. Supporting cells contained organelles that may transfer genetic information between cells, including the efferent nerve fibers during the regeneration process. The tectorial membrane showed signs of being replenished and its architecture being sculpted by extracellular exosome-like proteolysis. Discussion: Crocodilians seem to produce new hair cells during their life span from a range of supporting cells. Imposing efferent nerve fibers may play a role in regeneration and re-innervation of the auditory receptors, possibly triggered by apoptotic signals from wasted hair cells. Intercellular signaling may be accomplished by elaborate gap junction and organelle systems, including neural emperipolesis. Crocodilians seem to restore and sculpt their tectorial membranes throughout their lives.
Collapse
Affiliation(s)
- Hao Li
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | - Karin Staxäng
- The Rudbeck TEM Laboratory, BioVis Platform, Uppsala University, Uppasala, Swedan
| | - Monika Hodik
- The Rudbeck TEM Laboratory, BioVis Platform, Uppsala University, Uppasala, Swedan
| | | | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
- *Correspondence: Helge Rask-Andersen,
| |
Collapse
|
11
|
Jang MW, Lim J, Park MG, Lee JH, Lee CJ. Active role of glia-like supporting cells in the organ of Corti: Membrane proteins and their roles in hearing. Glia 2022; 70:1799-1825. [PMID: 35713516 DOI: 10.1002/glia.24229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
The organ of Corti, located in the cochlea in the inner ear, is one of the major sensory organs involved in hearing. The organ of Corti consists of hair cells, glia-like supporting cells, and the cochlear nerve, which work in harmony to receive sound from the outer ear and transmit auditory signals to the cochlear nucleus in the auditory ascending pathway. In this process, maintenance of the endocochlear potential, with a high potassium gradient and clearance of electrolytes and biochemicals in the inner ear, is critical for normal sound transduction. There is an emerging need for a thorough understanding of each cell type involved in this process to understand the sophisticated mechanisms of the organ of Corti. Hair cells have long been thought to be active, playing a primary role in the cochlea in actively detecting and transmitting signals. In contrast, supporting cells are thought to be silent and function to support hair cells. However, growing lines of evidence regarding the membrane proteins that mediate ionic movement in supporting cells have demonstrated that supporting cells are not silent, but actively play important roles in normal signal transduction. In this review, we summarize studies that characterize diverse membrane proteins according to the supporting cell subtypes involved in cochlear physiology and hearing. This review contributes to a better understanding of supporting cell functions and facilitates the development of potential therapeutic tools for hearing loss.
Collapse
Affiliation(s)
- Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
12
|
Rios de los Rios J, Enciso J, Vilchis‐Ordoñez A, Vázquez‐Ramírez R, Ramirez‐Ramirez D, Balandrán JC, Rodríguez‐Martínez A, Ruiz‐Tachiquín M, Pompa‐Mera E, Mendoza L, Pedraza‐Alva G, Mayani H, Fabbri M, Pelayo R. Acute lymphoblastic leukemia‐secreted miRNAs induce a proinflammatory microenvironment and promote the activation of hematopoietic progenitors. J Leukoc Biol 2022; 112:31-45. [DOI: 10.1002/jlb.3ma0422-286r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jussara Rios de los Rios
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología Instituto Mexicano del Seguro Social Mexico City Mexico
- Centro de Investigación Biomedica de Oriente, Delegación Puebla Instituto Mexicano del Seguro Social Puebla Mexico
| | - Jennifer Enciso
- Centro de Investigación Biomedica de Oriente, Delegación Puebla Instituto Mexicano del Seguro Social Puebla Mexico
- Centro de Ciencias de la Complejidad Universidad Nacional Autónoma de México Mexico City Mexico
- Biochemistry Sciences Program Universidad Nacional Autónoma de México Mexico City Mexico
| | - Armando Vilchis‐Ordoñez
- Centro de Investigación Biomedica de Oriente, Delegación Puebla Instituto Mexicano del Seguro Social Puebla Mexico
- Hospital Infantil de México ‘Federico Gómez’ Secretaría de Salud Mexico City Mexico
- Medical Sciences Program Universidad Nacional Autónoma de México Mexico City Mexico
| | - Ricardo Vázquez‐Ramírez
- Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México Mexico City Mexico
| | - Dalia Ramirez‐Ramirez
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología Instituto Mexicano del Seguro Social Mexico City Mexico
- Centro de Investigación Biomedica de Oriente, Delegación Puebla Instituto Mexicano del Seguro Social Puebla Mexico
| | - Juan Carlos Balandrán
- Centro de Investigación Biomedica de Oriente, Delegación Puebla Instituto Mexicano del Seguro Social Puebla Mexico
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Cell Biology Albert Einstein College of Medicine New York New York USA
| | - Aurora Rodríguez‐Martínez
- Centro de Investigación Biomedica de Oriente, Delegación Puebla Instituto Mexicano del Seguro Social Puebla Mexico
| | - Martha Ruiz‐Tachiquín
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología Instituto Mexicano del Seguro Social Mexico City Mexico
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría Instituto Mexicano del Seguro Social Mexico City Mexico
| | - Ericka Pompa‐Mera
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría Instituto Mexicano del Seguro Social Mexico City Mexico
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México Mexico City Mexico
| | - Gustavo Pedraza‐Alva
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología Universidad Nacional Autónoma de México Morelos Mexico
| | - Hector Mayani
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología Instituto Mexicano del Seguro Social Mexico City Mexico
| | - Muller Fabbri
- Center for Cancer and Immunology Research Children's National Hospital Washington District of Columbia USA
| | - Rosana Pelayo
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología Instituto Mexicano del Seguro Social Mexico City Mexico
- Centro de Investigación Biomedica de Oriente, Delegación Puebla Instituto Mexicano del Seguro Social Puebla Mexico
| |
Collapse
|
13
|
Buonanno M, Gonon G, Pandey BN, Azzam EI. The intercellular communications mediating radiation-induced bystander effects and their relevance to environmental, occupational, and therapeutic exposures. Int J Radiat Biol 2022; 99:964-982. [PMID: 35559659 PMCID: PMC9809126 DOI: 10.1080/09553002.2022.2078006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE The assumption that traversal of the cell nucleus by ionizing radiation is a prerequisite to induce genetic damage, or other important biological responses, has been challenged by studies showing that oxidative alterations extend beyond the irradiated cells and occur also in neighboring bystander cells. Cells and tissues outside the radiation field experience significant biochemical and phenotypic changes that are often similar to those observed in the irradiated cells and tissues. With relevance to the assessment of long-term health risks of occupational, environmental and clinical exposures, measurable genetic, epigenetic, and metabolic changes have been also detected in the progeny of bystander cells. How the oxidative damage spreads from the irradiated cells to their neighboring bystander cells has been under intense investigation. Following a brief summary of the trends in radiobiology leading to this paradigm shift in the field, we review key findings of bystander effects induced by low and high doses of various types of radiation that differ in their biophysical characteristics. While notable mechanistic insights continue to emerge, here the focus is on the many means of intercellular communication that mediate these effects, namely junctional channels, secreted molecules and extracellular vesicles, and immune pathways. CONCLUSIONS The insights gained by studying radiation bystander effects are leading to a basic understanding of the intercellular communications that occur under mild and severe oxidative stress in both normal and cancerous tissues. Understanding the mechanisms underlying these communications will likely contribute to reducing the uncertainty of predicting adverse health effects following exposure to low dose/low fluence ionizing radiation, guide novel interventions that mitigate adverse out-of-field effects, and contribute to better outcomes of radiotherapeutic treatments of cancer. In this review, we highlight novel routes of intercellular communication for investigation, and raise the rationale for reconsidering classification of bystander responses, abscopal effects, and expression of genomic instability as non-targeted effects of radiation.
Collapse
Affiliation(s)
- Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - Géraldine Gonon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSESANTE/SERAMED/LRAcc, 92262, Fontenay-aux-Roses, France
| | - Badri N. Pandey
- Bhabha Atomic Research Centre, Radiation Biology and Health Sciences Division, Trombay, Mumbai 400 085, India
| | - Edouard I. Azzam
- Radiobiology and Health Branch, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
14
|
Waissbluth S, Maass JC, Sanchez HA, Martínez AD. Supporting Cells and Their Potential Roles in Cisplatin-Induced Ototoxicity. Front Neurosci 2022; 16:867034. [PMID: 35573297 PMCID: PMC9104564 DOI: 10.3389/fnins.2022.867034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cisplatin is a known ototoxic chemotherapy drug, causing irreversible hearing loss. Evidence has shown that cisplatin causes inner ear damage as a result of adduct formation, a proinflammatory environment and the generation of reactive oxygen species within the inner ear. The main cochlear targets for cisplatin are commonly known to be the outer hair cells, the stria vascularis and the spiral ganglion neurons. Further evidence has shown that certain transporters can mediate cisplatin influx into the inner ear cells including organic cation transporter 2 (OCT2) and the copper transporter Ctr1. However, the expression profiles for these transporters within inner ear cells are not consistent in the literature, and expression of OCT2 and Ctr1 has also been observed in supporting cells. Organ of Corti supporting cells are essential for hair cell activity and survival. Special interest has been devoted to gap junction expression by these cells as certain mutations have been linked to hearing loss. Interestingly, cisplatin appears to affect connexin expression in the inner ear. While investigations regarding cisplatin-induced hearing loss have been focused mainly on the known targets previously mentioned, the role of supporting cells for cisplatin-induced ototoxicity has been overlooked. In this mini review, we discuss the implications of supporting cells expressing OCT2 and Ctr1 as well as the potential role of gap junctions in cisplatin-induced cytotoxicity.
Collapse
Affiliation(s)
- Sofia Waissbluth
- Department of Otolaryngology, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Sofia Waissbluth, ;
| | - Juan Cristóbal Maass
- Department of Otolaryngology, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Helmuth A. Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
15
|
Trementozzi AN, Zhao C, Smyth H, Cui Z, Stachowiak JC. Gap Junction-Mediated Delivery of Polymeric Macromolecules. ACS Biomater Sci Eng 2022; 8:1566-1572. [PMID: 35263989 PMCID: PMC9157716 DOI: 10.1021/acsbiomaterials.1c01459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular delivery of therapeutic macromolecules such as proteins, peptides, and nucleic acids remains limited due to inefficient transport across the cellular plasma membrane. Gap junction channels, composed of connexin proteins, provide a mechanism for direct transfer of small molecules across membranes, and recent evidence suggests that the transfer of larger, polymer-like molecules such as microRNAs may be possible. Here, we report direct evidence of gap junction-mediated transfer of polymeric macromolecules. Specifically, we examined the transport of dextran chains with molecular weights ranging from 10 to 70 kDa. We found that dextran chains of up to 40 kDa can diffuse through at least five cell layers in a gap junction-dependent manner within a 30 min time frame. Further, we evaluated the ability of connectosomes, cell-derived vesicles containing functional connexin proteins, to be loaded with dextran chains. By opening connexon hemichannel pores within the membranes of connectosomes, we found that 10 kDa dextran was loaded into more than 90% of vesicles, with reduced levels of loading for dextran chains of larger molecular weight. Upon delivering 10 kDa dextran-loaded connectosomes to cells, we further found that connectosomes transferred these membrane-impermeable molecules to the cellular cytosol with dramatically improved efficiency in comparison to the delivery of free, unencapsulated dextran. Collectively, these results reveal that polymeric macromolecules can be delivered to cells via gap junctions, suggesting that the gap junction route may be useful for the delivery of polymeric therapeutic molecules, such as nucleic acids and peptides.
Collapse
Affiliation(s)
- Andrea N Trementozzi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi Zhao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hugh Smyth
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengrong Cui
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Cx43 hemichannels contribute to astrocyte-mediated toxicity in sporadic and familial ALS. Proc Natl Acad Sci U S A 2022; 119:e2107391119. [PMID: 35312356 PMCID: PMC9060483 DOI: 10.1073/pnas.2107391119] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our results demonstrate that connexin 43 hemichannels are the conduits for amyotrophic lateral sclerosis (ALS) astrocyte-mediated motor neuron toxicity and disease spread, acting as a common mechanism that can target both familial ALS and sporadic ALS populations. Furthermore, our present work provides proof of principle that tonabersat, as a drug already studied in clinical trials for other indications, could serve as a potential ALS therapeutic. Connexin 43 (Cx43) gap junctions and hemichannels mediate astrocyte intercellular communication in the central nervous system under normal conditions and contribute to astrocyte-mediated neurotoxicity in amyotrophic lateral sclerosis (ALS). Here, we show that astrocyte-specific knockout of Cx43 in a mouse model of ALS slows disease progression both spatially and temporally, provides motor neuron (MN) protection, and improves survival. In addition, Cx43 expression is up-regulated in human postmortem tissue and cerebrospinal fluid from ALS patients. Using human induced pluripotent stem cell–derived astrocytes (hiPSC-A) from both familial and sporadic ALS, we establish that Cx43 is up-regulated and that Cx43-hemichannels are enriched at the astrocyte membrane. We also demonstrate that the pharmacological blockade of Cx43-hemichannels in ALS astrocytes using GAP 19, a mimetic peptide blocker, and tonabersat, a clinically tested small molecule, provides neuroprotection of hiPSC-MN and reduces ALS astrocyte-mediated neuronal hyperexcitability. Extending the in vitro application of tonabersat with chronic administration to SOD1G93A mice results in MN protection with a reduction in reactive astrocytosis and microgliosis. Taking these data together, our studies identify Cx43 hemichannels as conduits of astrocyte-mediated disease progression and a pharmacological target for disease-modifying ALS therapies.
Collapse
|
17
|
Raue R, Frank AC, Fuhrmann DC, de la Cruz-Ojeda P, Rösser S, Bauer R, Cardamone G, Weigert A, Syed SN, Schmid T, Brüne B. MicroRNA-200c Attenuates the Tumor-Infiltrating Capacity of Macrophages. BIOLOGY 2022; 11:biology11030349. [PMID: 35336722 PMCID: PMC8945044 DOI: 10.3390/biology11030349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary The tumor microenvironment determines the prognosis and outcome for cancer patients. Herein, tumor-associated macrophages are not only highly abundant, but also play a crucial role in shaping a tumor-supporting microenvironment. Both their recruitment to the tumor as well as their functional polarization toward a pro-tumorigenic phenotype are mediated by tumor-derived factors including microRNAs. However, the impact of most microRNAs on the tumor cell-macrophage crosstalk remains to be elucidated. Thus, we reached out to investigate the role of hsa-miR-200c-3p (miR-200c) in tumor cell–macrophage interactions, as it was shown to be differentially expressed during cancer progression and metastasis. miR-200c was highly expressed in MCF7 breast tumor cells compared to macrophages. Furthermore, we identified a CD36-dependent uptake of miR-200c, derived from apoptotic tumor cells, into macrophages. In macrophages, elevated miR-200c levels reduced the expression of numerous migration-associated mRNAs, consequently reducing the capacity of macrophages to infiltrate into tumor spheroids. Finally, a distinct signature of miR-200c-repressed, predicted targets was identified, which strongly correlated with tumor infiltration. Targeting the miR-200c transfer from dying tumor cells to macrophages might therefore provide the opportunity to specifically modulate tumor-associated macrophage recruitment. Abstract Macrophages constitute a major part of the tumor-infiltrating immune cells. Within the tumor microenvironment, they acquire an alternatively activated, tumor-supporting phenotype. Factors released by tumor cells are crucial for the recruitment of tumor-associated macrophages. In the present project, we aimed to understand the role of hsa-miR-200c-3p (miR-200c) in the interplay between tumor cells and macrophages. To this end, we employed a coculture system of MCF7 breast tumor cells and primary human macrophages and observed the transfer of miR-200c from apoptotic tumor cells to macrophages, which required intact CD36 receptor in macrophages. We further comprehensively determined miR-200c targets in macrophages by mRNA-sequencing and identified numerous migration-associated mRNAs to be downregulated by miR-200c. Consequently, miR-200c attenuated macrophage infiltration into 3-dimensional tumor spheroids. miR-200c-mediated reduction in infiltration further correlated with a miR-200c migration signature comprised of the four miR-200c-repressed, predicted targets PPM1F, RAB11FIB2, RDX, and MSN.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Dominik C. Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, 41013 Seville, Spain;
| | - Silvia Rösser
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Giulia Cardamone
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
- Correspondence:
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| |
Collapse
|
18
|
Moros M, Fergola E, Marchesano V, Mutarelli M, Tommasini G, Miedziak B, Palumbo G, Ambrosone A, Tino A, Tortiglione C. The Aquatic Invertebrate Hydra vulgaris Releases Molecular Messages Through Extracellular Vesicles. Front Cell Dev Biol 2022; 9:788117. [PMID: 34988080 PMCID: PMC8721104 DOI: 10.3389/fcell.2021.788117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Recent body of evidence demonstrates that extracellular vesicles (EVs) represent the first language of cell-cell communication emerged during evolution. In aquatic environments, transferring signals between cells by EVs offers protection against degradation, allowing delivering of chemical information in high local concentrations to the target cells. The packaging of multiple signals, including those of hydrophobic nature, ensures target cells to receive the same EV-conveyed messages, and the coordination of a variety of physiological processes across cells of a single organisms, or at the population level, i.e., mediating the population’s response to changing environmental conditions. Here, we purified EVs from the medium of the freshwater invertebrate Hydra vulgaris, and the molecular profiling by proteomic and transcriptomic analyses revealed multiple markers of the exosome EV subtype, from structural proteins to stress induced messages promoting cell survival. Moreover, positive and negative regulators of the Wnt/β-catenin signaling pathway, the major developmental pathway acting in body axial patterning, were identified. Functional analysis on amputated polyps revealed EV ability to modulate both head and foot regeneration, suggesting bioactivity of the EV cargo and opening new perspectives on the mechanisms of developmental signalling. Our results open the path to unravel EV biogenesis and function in all cnidarian species, tracing back the origin of the cell-cell, cross-species or cross-kingdom communication in aquatic ecosystems.
Collapse
Affiliation(s)
- Maria Moros
- Instituto de Nanociencia y Materiales de Aragón(INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain.,Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Eugenio Fergola
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Valentina Marchesano
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Margherita Mutarelli
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Giuseppina Tommasini
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Beata Miedziak
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Giuliana Palumbo
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Alfredo Ambrosone
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| |
Collapse
|
19
|
The Impact of MicroRNAs during Inflammatory Bowel Disease: Effects on the Mucus Layer and Intercellular Junctions for Gut Permeability. Cells 2021; 10:cells10123358. [PMID: 34943865 PMCID: PMC8699384 DOI: 10.3390/cells10123358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Research on inflammatory bowel disease (IBD) has produced mounting evidence for the modulation of microRNAs (miRNAs) during pathogenesis. MiRNAs are small, non-coding RNAs that interfere with the translation of mRNAs. Their high stability in free circulation at various regions of the body allows researchers to utilise miRNAs as biomarkers and as a focus for potential treatments of IBD. Yet, their distinct regulatory roles at the gut epithelial barrier remain elusive due to the fact that there are several external and cellular factors contributing to gut permeability. This review focuses on how miRNAs may compromise two components of the gut epithelium that together form the initial physical barrier: the mucus layer and the intercellular epithelial junctions. Here, we summarise the impact of miRNAs on goblet cell secretion and mucin structure, along with the proper function of various junctional proteins involved in paracellular transport, cell adhesion and communication. Knowledge of how this elaborate network of cells at the gut epithelial barrier becomes compromised as a result of dysregulated miRNA expression, thereby contributing to the development of IBD, will support the generation of miRNA-associated biomarker panels and therapeutic strategies that detect and ameliorate gut permeability.
Collapse
|
20
|
Szarka G, Balogh M, Tengölics ÁJ, Ganczer A, Völgyi B, Kovács-Öller T. The role of gap junctions in cell death and neuromodulation in the retina. Neural Regen Res 2021; 16:1911-1920. [PMID: 33642359 PMCID: PMC8343308 DOI: 10.4103/1673-5374.308069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/14/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Vision altering diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, myopia, retinal vascular disease, traumatic brain injuries and others cripple many lives and are projected to continue to cause anguish in the foreseeable future. Gap junctions serve as an emerging target for neuromodulation and possible regeneration as they directly connect healthy and/or diseased cells, thereby playing a crucial role in pathophysiology. Since they are permeable for macromolecules, able to cross the cellular barriers, they show duality in illness as a cause and as a therapeutic target. In this review, we take recent advancements in gap junction neuromodulation (pharmacological blockade, gene therapy, electrical and light stimulation) into account, to show the gap junction's role in neuronal cell death and the possible routes of rescuing neuronal and glial cells in the retina succeeding illness or injury.
Collapse
Affiliation(s)
- Gergely Szarka
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Márton Balogh
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Ádám J. Tengölics
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Béla Völgyi
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
- Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Kovács-Öller
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
21
|
Sui S, Yu H, Wang X, Wang W, Yang X, Pan X, Zhou Q, Xin C, Du R, Wu S, Zhang J, Cao Q, Wang N, Kuehn MH, Zhu W. iPSC-Derived Trabecular Meshwork Cells Stimulate Endogenous TM Cell Division Through Gap Junction in a Mouse Model of Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:28. [PMID: 34427623 PMCID: PMC8399400 DOI: 10.1167/iovs.62.10.28] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose Decreased trabecular meshwork (TM) cellularity has been implicated as a major reason for TM dysfunction and aqueous humor (AH) outflow abnormalities in primary open angle glaucoma. We previously found that transplantation of induced pluripotent stem cell (iPSC)-derived TM cells can restore TM function and stimulate endogenous TM cell division. The goal of the present study is to investigate whether signaling via gap junctions is involved in this process. Methods Differentiated iPSCs were characterized morphologically, transcriptionally, and immunohistochemically. After purification, iPSC-TM were co-cultured with mouse TM (MTM) cells to mimic the transplantation procedure. Through the pharmacological antagonists and short hairpin RNA (shRNA) technique, the gap junction function in iPSC-based therapy was determined. Results In the co-culture system, iPSC-TM increase MTM cell division as well as transfer of Ca2+ to MTM. This effect was blocked by treatment with the gap junction inhibitors carbenoxolone (CBX) or flufenamic acid (FFA). The shRNA mediated knock down of connexin 43 (Cx43) expression in iPSC-TM also results in decreased Ca2+ transfer and lower MTM proliferation rates. In vivo, Cx43 downregulation in transplanted iPSC-TM weakened their regenerative role in an Ad5.myocilinY437H mouse model of glaucoma. Mice receiving these cells exhibited lower TM cellularity and higher intraocular pressure (IOP) than those receiving unmodified iPSC-TM. Conclusions Our findings reveal a crucial role of gap junction, especially Cx43, in iPSC-based TM regeneration, and provides insights to enhance the regenerative effect of iPSCs in glaucoma therapy.
Collapse
Affiliation(s)
- Shangru Sui
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hongxia Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.,Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangji Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Wenyan Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xuejiao Yang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojing Pan
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Chen Xin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Rong Du
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd., Qingdao, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing University & Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Mussbacher M, Pirabe A, Brunnthaler L, Schrottmaier WC, Assinger A. Horizontal MicroRNA Transfer by Platelets - Evidence and Implications. Front Physiol 2021; 12:678362. [PMID: 34149456 PMCID: PMC8209332 DOI: 10.3389/fphys.2021.678362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
For decades, platelets have been known for their central role in hemostasis and their ability to release bioactive molecules, allowing inter-platelet communication and crosstalk with the immune system and vascular cells. However, with the detection of microRNAs in platelets and platelet-derived microvesicles (MVs), a new level of inter-cellular regulation was revealed. By shedding MVs from their plasma membrane, platelets are able to release functional microRNA complexes that are protected from plasma RNases. Upon contact with macrophages, endothelial cells and smooth muscle cells platelet microRNAs are rapidly internalized and fine-tune the functionality of the recipient cell by post-transcriptional reprogramming. Moreover, microRNA transfer by platelet MVs allows infiltration into tissues with limited cellular access such as solid tumors, thereby they not only modulate tumor progression but also provide a potential route for drug delivery. Understanding the precise mechanisms of horizontal transfer of platelet microRNAs under physiological and pathological conditions allows to design side-specific therapeutic (micro)RNA delivery systems. This review summarizes the current knowledge and the scientific evidence of horizontal microRNA transfer by platelets and platelet-derived MVs into vascular and non-vascular cells and its physiological consequences.
Collapse
Affiliation(s)
- Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Anita Pirabe
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Laura Brunnthaler
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Alice Assinger
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Connexin 43 and Connexin 26 Involvement in the Ponatinib-Induced Cardiomyopathy: Sex-Related Differences in a Murine Model. Int J Mol Sci 2021; 22:ijms22115815. [PMID: 34071707 PMCID: PMC8199144 DOI: 10.3390/ijms22115815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiac connexins (Cxs) are proteins responsible for proper heart function. They form gap junctions that mediate electrical and chemical signalling throughout the cardiac system, and thus enable a synchronized contraction. Connexins can also individually participate in many signal transduction pathways, interacting with intracellular proteins at various cellular compartments. Altered connexin expression and localization have been described in diseased myocardium and the aim of this study is to assess the involvement of Cx43, Cx26, and some related molecules in ponatinib-induced cardiac toxicity. Ponatinib is a new multi-tyrosine kinase inhibitor that has been successfully used against human malignancies, but its cardiotoxicity remains worrisome. Therefore, understanding its signaling mechanism is important to adopt potential anti cardiac damage strategies. Our experiments were performed on hearts from male and female mice treated with ponatinib and with ponatinib plus siRNA-Notch1 by using immunofluorescence, Western blotting, and proteomic analyses. The altered cardiac function and the change in Cxs expression observed in mice after ponatinib treatment, were results dependent on the Notch1 pathway and sex. Females showed a lower susceptibility to ponatinib than males. The downmodulation of cardiac Cx43, Cx26 and miR-122, high pS368-Cx43 phosphorylation, cell viability and survival activation could represent some of the female adaptative/compensatory reactions to ponatinib cardiotoxicity.
Collapse
|
24
|
Trosko JE. On the potential origin and characteristics of cancer stem cells. Carcinogenesis 2021; 42:905-912. [PMID: 34014276 DOI: 10.1093/carcin/bgab042] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The 'cancer stem cell' hypothesis has pointed to a specific target for new cancer therapies. The hypothesis is based on the observation that only the 'cancer stem cell' among the other heterogeneous cancer cells can sustain the growth of the cancer. The goal is to identify biomarkers of 'cancer stem cells' to distinguish them from the 'cancer non-stem cells' and normal adult tissue-specific stem cells. This analyst posits a hypothesis that, although all cancers originated from a single cell, there exist two types of 'cancer stem cells' either by the 'Stem Cell hypothesis' or from the 'De-differentiation hypothesis'. It is proposed that there exist two different 'cancer stem cells'. Some 'cancer stem cells' (a) lack the expression of connexins or gap junction genes and lack any form of gap junctional intercellular communication (GJIC) or (b) they have the expressed connexin-coded proteins for functional GJIC but are dysfunctional by some expressed oncogene. This is consistent with the Loewenstein hypothesis that a universal characteristic of cancer cells is they do not have growth control, nor terminally differentiate. This review speculates the normal organ-specific adult stem cell, that is 'initiated', is the origin of the 'cancer stem cells' with expressed Oct4A gene and no expressed connexin genes; whereas the other cancer stem cell has no expressed Oct4A genes but expressed connexin gene, whose coded protein is dysfunctional. Hence. both types of 'cancer stem cells' lack GJIC, for two different reasons, the selective therapies have to be different for these different cell types.
Collapse
Affiliation(s)
- James E Trosko
- Department of Pediatrics/Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
25
|
Gingrich J, Pu Y, Veiga-Lopez A. A modified parachute assay for assessment of gap junction intercellular communication in placental trophoblast cells. Toxicol Mech Methods 2021; 31:393-399. [PMID: 33784946 DOI: 10.1080/15376516.2021.1904072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Gap junction intercellular communication (GJIC) is a necessary process for placental development. GJIC can be assessed with a parachute assay, where fluorescent dye-loaded donor cells are 'parachuted' onto acceptor cells and dye diffuses to adjacent cells with active GJIC. During co-culture, donor cells can attach, but the assay does not allow their distinction from acceptor cells, which presents as a major limitation. We have developed a modified parachute assay that permits distinction between donor and acceptor cells, using the extravillous trophoblast cell line HTR-8/SVneo and a lentiviral transduction technique. Using PKA activator CW008 as a positive control and 12-o-tetradecanoylphorbol-13-acetate as a negative control, this modified parachute assay reliably detects both enhanced and attenuated GJIC. Importantly, the ease and accuracy of quantification over currently available methods makes this modified assay optimal for automation and represents a useful tool for in vitro placental toxicological testing.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Yong Pu
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Chicago Center for Health and Environment, Chicago, IL, USA
| |
Collapse
|
26
|
Santos D, Remans S, Van den Brande S, Vanden Broeck J. RNAs on the Go: Extracellular Transfer in Insects with Promising Prospects for Pest Management. PLANTS (BASEL, SWITZERLAND) 2021; 10:484. [PMID: 33806650 PMCID: PMC8001424 DOI: 10.3390/plants10030484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023]
Abstract
RNA-mediated pathways form an important regulatory layer of myriad biological processes. In the last decade, the potential of RNA molecules to contribute to the control of agricultural pests has not been disregarded, specifically via the RNA interference (RNAi) mechanism. In fact, several proofs-of-concept have been made in this scope. Furthermore, a novel research field regarding extracellular RNAs and RNA-based intercellular/interorganismal communication is booming. In this article, we review key discoveries concerning extracellular RNAs in insects, insect RNA-based cell-to-cell communication, and plant-insect transfer of RNA. In addition, we overview the molecular mechanisms implicated in this form of communication and discuss future biotechnological prospects, namely from the insect pest-control perspective.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (S.R.); (S.V.d.B.); (J.V.B.)
| | | | | | | |
Collapse
|
27
|
Fukuda S, Akiyama M, Niki Y, Kawatsura R, Harada H, Nakahama KI. Inhibitory effects of miRNAs in astrocytes on C6 glioma progression via connexin 43. Mol Cell Biochem 2021; 476:2623-2632. [PMID: 33660186 DOI: 10.1007/s11010-021-04118-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/20/2021] [Indexed: 12/20/2022]
Abstract
In many types of tumor cells, cell communication via gap junction is decreased or missing. Therefore, cancer cells acquire unique cytosolic environments that differ from those of normal cells. This study assessed the differences in microRNA (miRNA) expression between cancer and normal cells. MicroRNA microarray analysis revealed five miRNAs that were highly expressed in normal astrocytes compared with that in C6 gliomas. To determine whether these miRNAs could pass through gap junctions, connexin 43 was expressed in C6 glioma cells and co-cultured with normal astrocytes. The co-culture experiment showed the possibility that miR-152-3p and miR-143-3p propagate from normal astrocytes to C6 glioma in connexin 43-dependent and -independent manners, respectively. Moreover, we established C6 glioma cells that expressed miR-152-3p or miR-143-3p. Although the proliferation of these miRNA-expressing C6 glioma cells did not differ from that of empty vectors introduced in C6 glioma cells, cell migration and invasion were significantly decreased in C6 glioma cells expressing miR-152-3p or miR-143-3p. These results suggest the possibility that miRNA produced by normal cells attenuates tumor progression through connexin 43-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Shuhei Fukuda
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Department of Oral and Maxillofacial Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masako Akiyama
- Research Administration Division, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yuki Niki
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Risa Kawatsura
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
28
|
Gingrich J, Pu Y, Upham BL, Hulse M, Pearl S, Martin D, Avery A, Veiga-Lopez A. Bisphenol S enhances gap junction intercellular communication in ovarian theca cells. CHEMOSPHERE 2021; 263:128304. [PMID: 33155548 PMCID: PMC7726030 DOI: 10.1016/j.chemosphere.2020.128304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 05/08/2023]
Abstract
Gap junction intercellular communication (GJIC) is necessary for ovarian function, and it is temporospatially regulated during follicular development and ovulation. At outermost layer of the antral follicle, theca cells provide structural, steroidogenic, and vascular support. Inter- and extra-thecal GJIC is required for intrafollicular trafficking of signaling molecules. Because GJIC can be altered by hormones and endocrine disrupting chemicals (EDCs), we tested if any of five common EDCs (bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), perfluorooctanesulfonic acid (PFOS), and triphenyltin chloride (TPT)) can interfere with theca cell GJIC. Since most chemicals are reported to repress GJIC, we hypothesized that all chemicals tested, within environmentally relevant human exposure concentrations, will inhibit theca cell GJICs. To evaluate this hypothesis, we used a scrape loading/dye transfer assay. BPS, but no other chemical tested, enhanced GJIC in a dose- and time-dependent manner in ovine primary theca cells. A signal-protein inhibitor approach was used to explore the GJIC-modulatory pathways involved. Phospholipase C and mitogen-activated protein kinase (MAPK) inhibitors significantly attenuated BPS-induced enhanced GJIC. Human theca cells were used to evaluate translational relevance of these findings. Human primary theca cells had a ∼40% increase in GJIC in response to BPS, which was attenuated with a MAPK inhibitor, suggestive of a conserved mechanism. Upregulation of GJIC could result in hyperplasia of the theca cell layer or prevent ovulation by holding the oocyte in meiotic arrest. Further studies are necessary to understand in vitro to in vivo translatability of these findings on follicle development and fertility outcomes.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yong Pu
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, 48824, USA
| | - Madeline Hulse
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Sarah Pearl
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Denny Martin
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Anita Avery
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
29
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
30
|
Mannino G, Vicario N, Parenti R, Giuffrida R, Lo Furno D. Connexin expression decreases during adipogenic differentiation of human adipose-derived mesenchymal stem cells. Mol Biol Rep 2020; 47:9951-9958. [PMID: 33141287 DOI: 10.1007/s11033-020-05950-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
Adipose-derived stem cells (ASCs) represent a valuable tool for regenerative medicine being able to differentiate toward several cell lines, such as adipocytes, chondrocytes and osteocytes. During ASC adipogenic differentiation, changes in connexin (Cx) expression were evaluated in the present study. Three different Cxs were investigated: Cx43, Cx32 and Cx31.9. Cx43 is the most abundant in human tissues, Cx32 is prevalently found in nervous tissue and Cx31.9 is found at the myocardial level. Human ASCs undergoing adipogenic differentiation were isolated from raw lipoaspirate and characterized as mesenchymal stem cells. After multiple days of culture (1, 7, 14, 21 and 28 days), adipogenic differentiation was assessed by Oil Red O staining and Acetyl-CoA carboxylase (ACC) levels by western blotting. Cx expression was evaluated by western blotting at the same time points. In treated ASCs, lipidic vacuoles were detected from day 7 of treatment. Their number and size progressively increased over the entire period of observation. A parallel increase of ACC expression was also found. Lower levels of Cx expression were detected during adipogenic differentiation. Such decreases were particularly evident for Cx32, already after the first day of treatment. Cx31.9 and Cx43 also decreased, but starting from day 7. Our results suggest that ASCs may initially be equipped with a variety of Cxs, which is not surprising assuming their multipotential differentiation ability. Although some Cxs may be selectively enhanced depending on specific induction strategies toward different tissues, they seem markedly downregulated during adipogenic differentiation.
Collapse
Affiliation(s)
- Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, via Santa Sofia 97, 95123, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, via Santa Sofia 97, 95123, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, via Santa Sofia 97, 95123, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, via Santa Sofia 97, 95123, Catania, Italy.
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, via Santa Sofia 97, 95123, Catania, Italy
| |
Collapse
|
31
|
Tittarelli A, Navarrete M, Lizana M, Hofmann-Vega F, Salazar-Onfray F. Hypoxic Melanoma Cells Deliver microRNAs to Dendritic Cells and Cytotoxic T Lymphocytes through Connexin-43 Channels. Int J Mol Sci 2020; 21:ijms21207567. [PMID: 33066331 PMCID: PMC7589225 DOI: 10.3390/ijms21207567] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Alterations in microRNA (miRNA) profiles, induced by tumor microenvironment stressors, like hypoxia, allow cancer cells to acquire immune-resistance phenotypes. Indeed, hypoxia-induced miRNAs have been implicated in cancer progression through numerous cancer cell non-autonomous mechanisms, including the direct transfer of hypoxia-responsive miRNA from cancer to immune cells via extracellular vesicles. Connexin-43 (Cx43)-constituted gap junctions (GJs) have also been involved in miRNA intercellular mobilization, in other biological processes. In this report, we aimed to evaluate the involvement of Cx43-GJs in the shift of miRNAs induced by hypoxia, from hypoxic melanoma cells to dendritic cells and melanoma-specific cytotoxic T lymphocytes (CTLs). Using qRT-PCR arrays, we identified that miR-192-5p was strongly induced in hypoxic melanoma cells. Immune cells acquired this miRNA after co-culture with hypoxic melanoma cells. The transfer of miR-192-5p was inhibited when hypoxic melanoma cells expressed a dominant negative Cx43 mutant or when Cx43 expression was silenced using specific short-hairpin RNAs. Interestingly, miR-192-5p levels on CTLs after co-culture with hypoxic melanoma cells were inversely correlated with the cytotoxic activity of T cells and with ZEB2 mRNA expression, a validated immune-related target of miR-192-5p, which is also observed in vivo. Altogether, our data suggest that hypoxic melanoma cells may suppress CTLs cytotoxic activity by transferring hypoxia-induced miR-192-5p through a Cx43-GJs driven mechanism, constituting a resistance strategy for immunological tumor escape.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana (UTEM), Santiago 8940577, Chile
- Correspondence: ; Tel.: +56-2-2787-7903
| | - Mariela Navarrete
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (M.N.); (M.L.); (F.H.-V.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Marcelo Lizana
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (M.N.); (M.L.); (F.H.-V.); (F.S.-O.)
| | - Francisca Hofmann-Vega
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (M.N.); (M.L.); (F.H.-V.); (F.S.-O.)
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (M.N.); (M.L.); (F.H.-V.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
32
|
Zhang L, Wu X, Lin X. Gene therapy for genetic mutations affecting non-sensory cells in the cochlea. Hear Res 2020; 394:107858. [PMID: 31791650 DOI: 10.1016/j.heares.2019.107858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Congenital hearing loss (HL) affects about 1 in every 500 infants. Among those affected more than half are caused by genetic mutations. According to the cellular sites affected by mutations in the cochlea, deafness genes could be classified into three major groups: those affecting the function of hair cells and synapses, cochlear supporting cells, and cells in the stria vascularis (SV) as well as in the lateral wall. The second and third groups account for more than half of all sensorineural hearing loss (SNHL) cases caused by genetic mutations. Current major treatment options for SNHL patients are hearing aids and cochlear implants (CIs). Hearing aids can only help patients with moderate to severe HL. Resolution of CIs is still improving and these devices are quite expensive especially when lifetime rehabilitation and maintenance costs are included. Tremendous efforts have been made to find novel treatments that are expected to restore hearing with higher-resolution and more natural quality, and to have a significantly lower cost over the lifetime of uses. Gene therapy studies have made impressive progresses in preclinical trials. This review focuses on deafness genes that affect supporting cells and cells in the SV of the cochlea. We will discuss recent progresses and remaining challenges for gene therapies targeting mutations in deafness genes belonging to this category.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xuewen Wu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA.
| |
Collapse
|
33
|
Liu W, Glueckert R, Schrott-Fischer A, Rask-Andersen H. Human cochlear microanatomy – an electron microscopy and super-resolution structured illumination study and review. HEARING BALANCE AND COMMUNICATION 2020. [DOI: 10.1080/21695717.2020.1807259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Head and Neck Surgery, section of Otolaryngology, Uppsala University Hospital, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, section of Otolaryngology, Uppsala University Hospital, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
34
|
Guglielmi L, Nardella M, Musa C, Cifola I, Porru M, Cardinali B, Iannetti I, Di Pietro C, Bolasco G, Palmieri V, Vilardo L, Panini N, Bonaventura F, Papi M, Scavizzi F, Raspa M, Leonetti C, Falcone G, Felsani A, D’Agnano I. Circulating miRNAs in Small Extracellular Vesicles Secreted by a Human Melanoma Xenograft in Mouse Brains. Cancers (Basel) 2020; 12:cancers12061635. [PMID: 32575666 PMCID: PMC7352810 DOI: 10.3390/cancers12061635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
The identification of liquid biomarkers remains a major challenge to improve the diagnosis of melanoma patients with brain metastases. Circulating miRNAs packaged into tumor-secreted small extracellular vesicles (sEVs) contribute to tumor progression. To investigate the release of tumor-secreted miRNAs by brain metastasis, we developed a xenograft model where human metastatic melanoma cells were injected intracranially in nude mice. The comprehensive profiles of both free miRNAs and those packaged in sEVs secreted by the melanoma cells in the plasma demonstrated that most (80%) of the sEV-associated miRNAs were also present in serum EVs from a cohort of metastatic melanomas, included in a publicly available dataset. Remarkably, among them, we found three miRNAs (miR-224-5p, miR-130a-3p and miR-21-5p) in sEVs showing a trend of upregulation during melanoma progression. Our model is proven to be valuable for identifying miRNAs in EVs that are unequivocally secreted by melanoma cells in the brain and could be associated to disease progression.
Collapse
Affiliation(s)
- Loredana Guglielmi
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Marta Nardella
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Carla Musa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Manuela Porru
- UOSD SAFU–IRCCS-Regina Elena Cancer Institute, 00168 Rome, Italy; (M.P.); (C.L.)
| | - Beatrice Cardinali
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Ilaria Iannetti
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | | | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (V.P.); (M.P.)
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Vilardo
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Nicolò Panini
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Fabrizio Bonaventura
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (V.P.); (M.P.)
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Carlo Leonetti
- UOSD SAFU–IRCCS-Regina Elena Cancer Institute, 00168 Rome, Italy; (M.P.); (C.L.)
| | - Germana Falcone
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | | | - Igea D’Agnano
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
- Correspondence:
| |
Collapse
|
35
|
Abstract
Intercalated discs (ICDs) are highly orchestrated structures that connect neighboring cardiomyocytes in the heart. Three major complexes are distinguished in ICD: desmosome, adherens junction (AJ), and gap junction (GJ). Desmosomes are major cell adhesion junctions that anchor cell membrane to the intermediate filament network; AJs connect the actin cytoskeleton of adjacent cells; and gap junctions metabolically and electrically connect the cytoplasm of adjacent cardiomyocytes. All these complexes work as a single unit, the so-called area composita, interdependently rather than individually. Mutation or altered expression of ICD proteins results in various cardiac diseases, such as ARVC (arrhythmogenic right ventricular cardiomyopathy), dilated cardiomyopathy, and hypotrophy cardiomyopathy, eventually leading to heart failure. In this article, we first review the recent findings on the structural organization of ICD and their functions and then focus on the recent advances in molecular pathogenesis of the ICD-related heart diseases, which include two major areas: i) the ICD gene mutations in cardiac diseases, and ii) the involvement of ICD proteins in signal transduction pathways leading to myocardium remodeling and eventual heart failure. These major ICD-related signaling pathways include Wnt/β-catenin pathway, p38 MAPK cascade, Rho-dependent serum response factor (SRF) signaling, calcineurin/NFAT signaling, Hippo kinase cascade, etc., which are differentially regulated in pathological conditions.
Collapse
|
36
|
Tipanee J, Di Matteo M, Tulalamba W, Samara-Kuko E, Keirsse J, Van Ginderachter JA, Chuah MK, VandenDriessche T. Validation of miR-20a as a Tumor Suppressor Gene in Liver Carcinoma Using Hepatocyte-Specific Hyperactive piggyBac Transposons. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1309-1329. [PMID: 32160703 PMCID: PMC7036702 DOI: 10.1016/j.omtn.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
We established a semi-high-throughput in vivo screening platform using hyperactive piggyBac (hyPB) transposons (designated as PB-miR) to identify microRNAs (miRs) that inhibit hepatocellular carcinoma (HCC) development in vivo, following miR overexpression in hepatocytes. PB-miRs encoding six different miRs from the miR-17-92 cluster and nine miRs from outside this cluster were transfected into mouse livers that were chemically induced to develop HCC. In this slow-onset HCC model, miR-20a significantly inhibited HCC. Next, we developed a more aggressive HCC model by overexpression of oncogenic Harvey rat sarcoma viral oncogene homolog (HRASG12V) and c-MYC oncogenes that accelerated HCC development after only 6 weeks. The tumor suppressor effect of miR-20a could be demonstrated even in this rapid-onset HRASG12V/c-MYC HCC model, consistent with significantly prolonged survival and decreased HCC tumor burden. Comprehensive RNA expression profiling of 95 selected genes typically associated with HCC development revealed differentially expressed genes and functional pathways that were associated with miR-20a-mediated HCC suppression. To our knowledge, this is the first study establishing a direct causal relationship between miR-20a overexpression and liver cancer inhibition in vivo. Moreover, these results demonstrate that hepatocyte-specific hyPB transposons are an efficient platform to screen and identify miRs that affect overall survival and HCC tumor regression.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mario Di Matteo
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee Khim Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
37
|
Connexin Signaling Is Involved in the Reactivation of a Latent Stem Cell Niche after Spinal Cord Injury. J Neurosci 2020; 40:2246-2258. [PMID: 32001613 DOI: 10.1523/jneurosci.2056-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/26/2022] Open
Abstract
The ependyma of the adult spinal cord is a latent stem cell niche that is reactivated by spinal cord injury contributing new cells to the glial scar. The cellular events taking place in the early stages of the reaction of the ependyma to injury remain little understood. Ependymal cells are functionally heterogeneous with a mitotically active subpopulation lining the lateral domains of the central canal (CC) that are coupled via gap junctions. Gap junctions and connexin hemichannels are key regulators of the biology of neural progenitors during development and in adult neurogenic niches. Thus, we hypothesized that communication via connexins in the CC is developmentally regulated and may play a part in the reactivation of this latent stem cell niche after injury. To test these possibilities, we combined patch-clamp recordings of ependymal cells with immunohistochemistry for various connexins in the neonatal and the adult (P > 90) normal and injured spinal cord of male and female mice. We find that coupling among ependymal cells is downregulated as postnatal development proceeds but increases after injury, resembling the immature CC. The increase in gap junction coupling in the adult CC was paralleled by upregulation of connexin 26, which correlated with the resumption of proliferation and a reduction of connexin hemichannel activity. Connexin blockade reduced the injury-induced proliferation of ependymal cells. Our findings suggest that connexins are involved in the early reaction of ependymal cells to injury, representing a potential target to improve the contribution of the CC stem cell niche to repair.SIGNIFICANCE STATEMENT Ependymal cells in the adult spinal cord are latent progenitors that react to injury to support some degree of endogenous repair. Understanding the mechanisms by which these progenitor-like cells are regulated in the aftermath of spinal cord injury is critical to design future manipulations aimed at improving healing and functional recovery. Gap junctions and connexin hemichannels are key regulators of the biology of neural progenitors during development and in adult neurogenic niches. We find here that connexin signaling in the ependyma changes after injury of the adult spinal cord, functionally resembling the immature active-stem cell niche of neonatal animals. Our findings suggest that connexins in ependymal cells are potential targets to improve self-repair of the spinal cord.
Collapse
|
38
|
Wu X, Zhang W, Li Y, Lin X. Structure and Function of Cochlear Gap Junctions and Implications for the Translation of Cochlear Gene Therapies. Front Cell Neurosci 2019; 13:529. [PMID: 31827424 PMCID: PMC6892400 DOI: 10.3389/fncel.2019.00529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022] Open
Abstract
Connexins (Cxs) are ubiquitous membrane proteins that are found throughout vertebrate organs, acting as building blocks of the gap junctions (GJs) known to play vital roles in the normal function of many organs. Mutations in Cx genes (particularly GJB2, which encodes Cx26) cause approximately half of all cases of congenital hearing loss in newborns. Great progress has been made in understanding GJ function and the molecular mechanisms for the role of Cxs in the cochlea. Data reveal that multiple types of Cxs work together to ensure normal development and function of the cochlea. These findings include many aspects not proposed in the classic K+ recycling theory, such as the formation of normal cochlear morphology (e.g., the opening of the tunnel of Corti), the fine-tuning of the innervation of nerve fibers to the hair cells (HCs), the maturation of the ribbon synapses, and the initiation of the endocochlear potential (EP). New data, especially those collected from targeted modification of major Cx genes in the mouse cochlea, have demonstrated that Cx26 plays an essential role in the postnatal maturation of the cochlea. Studies also show that Cx26 and Cx30 assume very different roles in the EP generation, given that only Cx26 is required for normal hearing. This article will review our current understanding of the molecular structure, cellular distribution, and major functions of cochlear GJs. Potential implications of the knowledge of cochlear GJs on the design and implementation of translational studies of cochlear gene therapies for Cx mutations are also discussed.
Collapse
Affiliation(s)
- Xuewen Wu
- Department of Otolaryngology, Head-Neck and Surgery, Xiangya Hospital of Central South University, Changsha, China
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| | - Wenjuan Zhang
- Department of Otolaryngology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihui Li
- Department of Pharmacy, Changsha Hospital of Traditional Medicine, Changsha, China
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
39
|
Syed SN, Frank AC, Raue R, Brüne B. MicroRNA-A Tumor Trojan Horse for Tumor-Associated Macrophages. Cells 2019; 8:E1482. [PMID: 31766495 PMCID: PMC6953083 DOI: 10.3390/cells8121482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRs) significantly contribute to the regulation of gene expression, by virtue of their ability to interact with a broad, yet specific set of target genes. MiRs are produced and released by almost every cell type and play an important role in horizontal gene regulation in the tumor microenvironment (TME). In the TME, both tumor and stroma cells cross-communicate via diverse factors including miRs, which are taking central stage as a therapeutic target of anti-tumor therapy. One of the immune escape strategies adopted by tumor cells is to release miRs as a Trojan horse to hijack circulating or tumor-localized monocytes/macrophages to tune them for pro-tumoral functions. On the other hand, macrophage-derived miRs exert anti-tumor functions. The transfer of miRs from host to recipient cells depends on the supramolecular structure and composition of miR carriers, which determine the distinct uptake mechanism by recipient cells. In this review, we provide a recent update on the miR-mediated crosstalk between tumor cells and macrophages and their mode of uptake in the TME.
Collapse
Affiliation(s)
- Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| |
Collapse
|
40
|
Wang J, Yang ZY, Guo YF, Kuang JY, Bian XW, Yu SC. Targeting different domains of gap junction protein to control malignant glioma. Neuro Oncol 2019; 20:885-896. [PMID: 29106645 DOI: 10.1093/neuonc/nox207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A rational treatment strategy for glioma, the most common primary central nervous system tumor, should focus on early invasive growth and resistance to current therapeutics. Connexin 43 (Cx43), a gap junction protein, plays important roles not only in the development of the central nervous system and but also in the progression of glioma. The different structural domains of Cx43, including extracellular loops, transmembrane domains, and an intracellular carboxyl terminal, have distinct functions in the invasion and proliferation of gliomas. Targeting these domains of Cx43, which is expressed in distinct patterns in the heterogeneous glioma cell population, can inhibit tumor cell invasion and new tumor formation. Thus, this review summarizes the structural characteristics of Cx43, the effects of regulating different Cx43 domains on the biological characteristics of glioma cells, intervention strategies targeting different domains of Cx43, and future research directions.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Ze-Yu Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Yu-Feng Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Jing-Ya Kuang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| |
Collapse
|
41
|
Lu M, Zhao X, Xing H, Liu H, Lang L, Yang T, Xun Z, Wang D, Ding P. Cell-free synthesis of connexin 43-integrated exosome-mimetic nanoparticles for siRNA delivery. Acta Biomater 2019; 96:517-536. [PMID: 31284098 DOI: 10.1016/j.actbio.2019.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are naturally secreted nanovesicles that have emerged as a promising therapeutic nanodelivery platform, due to their specific composition and biological properties. However, challenges like considerable complexity, low isolation yield, drug payload, and potential safety concerns substantially reduce their pharmaceutical acceptability. Given that the nano-bio-interface is a crucial factor for nanocarrier behavior and function, modification of synthetic nanoparticles with the intrinsic hallmarks of exosomes' membrane to create exosome mimetics could allow for siRNA delivery in a safer and more efficient manner. Herein, connexin 43 (Cx43)-embedded, exosome-mimicking lipid bilayers coated chitosan nanoparticles (Cx43/L/CS NPs) were constructed by using cell-free (CF) synthesis systems with plasmids encoding Cx43 in the presence of lipid-coated CS NPs (L/CS NPs). The integration of de novo synthesized Cx43 into the lipid bilayers of L/CS NPs occurred cotranslationally during one-pot reaction and, more importantly, the integrated Cx43 was functionally active in transport. In addition to considerably lower cytotoxicity (<four-fold) than cationic Lipo 2000, the obtained Cx43/L/CS-siRNA NPs showed feasible cellular uptake and silencing efficacy that was significantly higher than free siRNA and CS-siRNA NPs. By using a gap junction (GJ) inhibitor, 18β-glycyrrhetinic acid, we demonstrated that Cx43 facilitated the delivery of siRNA into Cx43-expressing U87 MG cells. Additionally, the cellular entry of Cx43/L/CS-siRNA NPs may rely on different endocytic mechanisms, depending on the types of recipient cells. However, Cx43/L/CS-siRNA NPs still exhibited far from adequate delivery efficiency compared with transfection reagent Lipo 2000. Taken together, our study provides a brand new strategy to construct Cx43-functionalized, exosome-mimetic nanoparticles, which may further encourage the establishment of more biomimetic nanocarriers with higher biocompatibility and delivery efficiency. SIGNIFICANCE OF STATEMENT: The major issue to move RNA interference (RNAi) therapy from bench to bedside is the lack of safe and efficient delivery vehicles. Given the certain advantages and limitations of exosomes and synthetic nanocarriers, a promising strategy is to facilitate positive feedbacks between the two fields, in which the superiority of exosomes regarding special membrane composition beneficial for cytoplasmic delivery and the better pharmaceutical acceptance of synthetic nanocarriers could be combined. In this study, we reported to construct Cx43-integrated, exosome-mimetic lipid bilayers coated nanoparticles by using CF synthesis technique. The obtained Cx43/L/CS-siRNA NPs were characterized by desirable cytotoxicity profile and feasible delivery efficiency. This study provides a new avenue and insights for the synthesis of more biocompatible and effective bio-mimetic siRNA delivery platforms.
Collapse
|
42
|
Mammano F. Inner Ear Connexin Channels: Roles in Development and Maintenance of Cochlear Function. Cold Spring Harb Perspect Med 2019; 9:a033233. [PMID: 30181354 PMCID: PMC6601451 DOI: 10.1101/cshperspect.a033233] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Connexin 26 and connexin 30 are the prevailing isoforms in the epithelial and connective tissue gap junction systems of the developing and mature cochlea. The most frequently encountered variants of the genes that encode these connexins, which are transcriptionally coregulated, determine complete loss of protein function and are the predominant cause of prelingual hereditary deafness. Reducing connexin 26 expression by Cre/loxP recombination in the inner ear of adult mice results in a decreased endocochlear potential, increased hearing thresholds, and loss of >90% of outer hair cells, indicating that this connexin is essential for maintenance of cochlear function. In the developing cochlea, connexins are necessary for intercellular calcium signaling activity. Ribbon synapses and basolateral membrane currents fail to mature in inner hair cells of mice that are born with reduced connexin expression, even though hair cells do not express any connexin. In contrast, pannexin 1, an alternative mediator of intercellular signaling, is dispensable for hearing acquisition and auditory function.
Collapse
Affiliation(s)
- Fabio Mammano
- University of Padova, Department of Physics and Astronomy "G. Galilei," Padova 35129, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
43
|
Inhibition of Gap Junctions Sensitizes Primary Glioblastoma Cells for Temozolomide. Cancers (Basel) 2019; 11:cancers11060858. [PMID: 31226836 PMCID: PMC6628126 DOI: 10.3390/cancers11060858] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Gap junctions have recently been shown to interconnect glioblastoma cells to a multicellular syncytial network, thereby allowing intercellular communication over long distances as well as enabling glioblastoma cells to form routes for brain microinvasion. Against this backdrop gap junction-targeted therapies might provide for an essential contribution to isolate cancer cells within the brain, thus increasing the tumor cells’ vulnerability to the standard chemotherapeutic agent temozolomide. By utilizing INI-0602—a novel gap junction inhibitor optimized for crossing the blood brain barrier—in an oncological setting, the present study was aimed at evaluating the potential of gap junction-targeted therapy on primary human glioblastoma cell populations. Pharmacological inhibition of gap junctions profoundly sensitized primary glioblastoma cells to temozolomide-mediated cell death. On the molecular level, gap junction inhibition was associated with elevated activity of the JNK signaling pathway. With the use of a novel gap junction inhibitor capable of crossing the blood–brain barrier—thus constituting an auspicious drug for clinical applicability—these results may constitute a promising new therapeutic strategy in the field of current translational glioblastoma research.
Collapse
|
44
|
Peng Y, Wang X, Guo Y, Peng F, Zheng N, He B, Ge H, Tao L, Wang Q. Pattern of cell-to-cell transfer of microRNA by gap junction and its effect on the proliferation of glioma cells. Cancer Sci 2019; 110:1947-1958. [PMID: 31012516 PMCID: PMC6549926 DOI: 10.1111/cas.14029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/26/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNA is expected to be a novel therapeutic tool for tumors. Gap junctions facilitate the transfer of microRNA, which exerts biological effects on tumor cells. However, the length of microRNA that can pass through certain gap junctions composed of specific connexin remains unknown. To address this question, the present study investigated the permeability of gap junctions composed of various connexins, including connexin 43, connexin 32 or connexin 37, to microRNAs consisting of 18-27 nucleotides in glioma cells and cervical cancer cells. Results indicated that all of the microRNAs were able to be transferred from donor glioma cells to neighboring cells through the connexin 43 composed gap junction, but not the gap junctions composed of connexin 32 or connexin 37, in cervical cancer cells. Downregulation of the function of gap junctions comprising connexin 43 by pharmacological inhibition and shRNA significantly decreased the transfer of these microRNAs. In contrast, gap junction enhancers and overexpression of connexin 43 effectively increased these transfers. In glioma cells, cell proliferation was inhibited by microRNA-34a. Additionally, these effects of microRNA-34a were significantly enhanced by overexpression of connexin 43 in U251 cells, indicating that gap junctions play an important role in the antitumor effect of microRNA by transfer of microRNA to neighboring cells. Our data are the first to clarify the pattern of microRNA transmission through gap junctions and provide novel insights to show that antitumor microRNAs should be combined with connexin 43 or a connexin 43 enhancer, not connexin 32 or connexin 37, in order to improve the therapeutic effect.
Collapse
Affiliation(s)
- Yuexia Peng
- Department of PharmacologyZhongshan School of Medicine, Sun Yat‐Sen UniversityGuangzhouChina
| | - Xiyan Wang
- Tumor Research InstituteXinjiang Medical University Affiliated Tumor HospitalUrumqiChina
| | - Yunquan Guo
- Tumor Research InstituteXinjiang Medical University Affiliated Tumor HospitalUrumqiChina
| | - Fuhua Peng
- Department of PharmacologyZhongshan School of Medicine, Sun Yat‐Sen UniversityGuangzhouChina
| | - Ningze Zheng
- Department of PharmacologyZhongshan School of Medicine, Sun Yat‐Sen UniversityGuangzhouChina
| | - Bo He
- Department of AnesthesiologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Hui Ge
- Tumor Research InstituteXinjiang Medical University Affiliated Tumor HospitalUrumqiChina
| | - Liang Tao
- Department of PharmacologyZhongshan School of Medicine, Sun Yat‐Sen UniversityGuangzhouChina
| | - Qin Wang
- Department of PharmacologyZhongshan School of Medicine, Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
45
|
Hewel C, Kaiser J, Wierczeiko A, Linke J, Reinhardt C, Endres K, Gerber S. Common miRNA Patterns of Alzheimer's Disease and Parkinson's Disease and Their Putative Impact on Commensal Gut Microbiota. Front Neurosci 2019; 13:113. [PMID: 30890906 PMCID: PMC6411762 DOI: 10.3389/fnins.2019.00113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
With the rise of Next-Generation-Sequencing (NGS) methods, Micro-RNAs (miRNAs) have achieved an important position in the research landscape and have been found to present valuable diagnostic tools in various diseases such as multiple sclerosis or lung cancer. There is also emerging evidence that miRNAs play an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD) or Parkinson's disease (PD). Apparently, these diseases come along with changes in miRNA expression patterns which led to attempts from researchers to use these small RNA species from several body fluids for a better diagnosis and in order to observe disease progression. Additionally, it became evident that microbial commensals might play an important role for pathology development and were shown to have a significantly different composition in patients suffering from neurodegeneration compared with healthy controls. As it could recently be shown that secreted miRNAs are able to enter microbial organisms, it is conceivable that the host's miRNA might affect the gut microbial ecosystem. As such, miRNAs may inherit a central role in shaping the "diseased microbiome" and thereby mutually act on the characteristics of these neurodegenerative diseases. We have therefore (1) compiled a list of miRNAs known to be associated with AD and/or PD, (2) performed an in silico target screen for binding sites of these miRNA on human gut metagenome sequences and (3) evaluated the hit list for interesting matches potentially relevant to the etiology of AD and or PD. The examination of protein identifiers connected to bacterial secretion system, lipopolysaccharide biosynthesis and biofilm formation revealed an overlap of 37 bacterial proteins that were targeted by human miRNAs. The identified links of miRNAs to the biological processes of bacteria connected to AD and PD have yet to be validated via in vivo experiments. However, our results show a promising new approach for understanding aspects of these neurodegenerative diseases in light of the regulation of the microbiome.
Collapse
Affiliation(s)
- Charlotte Hewel
- Faculty of Biology, Institute for Developmental Biology and Neurobiology, Center of Computational Sciences Mainz (CSM), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia Kaiser
- Faculty of Biology, Institute for Developmental Biology and Neurobiology, Center of Computational Sciences Mainz (CSM), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anna Wierczeiko
- Faculty of Biology, Institute for Developmental Biology and Neurobiology, Center of Computational Sciences Mainz (CSM), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jan Linke
- Faculty of Biology, Institute for Developmental Biology and Neurobiology, Center of Computational Sciences Mainz (CSM), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Faculty of Biology, Institute for Developmental Biology and Neurobiology, Center of Computational Sciences Mainz (CSM), Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
46
|
Micrornas at the Interface between Osteogenesis and Angiogenesis as Targets for Bone Regeneration. Cells 2019; 8:cells8020121. [PMID: 30717449 PMCID: PMC6406308 DOI: 10.3390/cells8020121] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Bone formation and regeneration is a multistep complex process crucially determined by the formation of blood vessels in the growth plate region. This is preceded by the expression of growth factors, notably the vascular endothelial growth factor (VEGF), secreted by osteogenic cells, as well as the corresponding response of endothelial cells, although the exact mechanisms remain to be clarified. Thereby, coordinated coupling between osteogenesis and angiogenesis is initiated and sustained. The precise interplay of these two fundamental processes is crucial during times of rapid bone growth or fracture repair in adults. Deviations in this balance might lead to pathologic conditions such as osteoarthritis and ectopic bone formation. Besides VEGF, the recently discovered important regulatory and modifying functions of microRNAs also support this key mechanism. These comprise two principal categories of microRNAs that were identified with specific functions in bone formation (osteomiRs) and/or angiogenesis (angiomiRs). However, as hypoxia is a major driving force behind bone angiogenesis, a third group involved in this process is represented by hypoxia-inducible microRNAs (hypoxamiRs). This review was focused on the identification of microRNAs that were found to have an active role in osteogenesis as well as angiogenesis to date that were termed "CouplingmiRs (CPLGmiRs)". Outlined representatives therefore represent microRNAs that already have been associated with an active role in osteogenic-angiogenic coupling or are presumed to have its potential. Elucidation of the molecular mechanisms governing bone angiogenesis are of great relevance for improving therapeutic options in bone regeneration, tissue-engineering, and the treatment of bone-related diseases.
Collapse
|
47
|
Cervera J, Manzanares JA, Mafe S. Cell-cell bioelectrical interactions and local heterogeneities in genetic networks: a model for the stabilization of single-cell states and multicellular oscillations. Phys Chem Chem Phys 2019; 20:9343-9354. [PMID: 29564429 DOI: 10.1039/c8cp00648b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic networks operate in the presence of local heterogeneities in single-cell transcription and translation rates. Bioelectrical networks and spatio-temporal maps of cell electric potentials can influence multicellular ensembles. Could cell-cell bioelectrical interactions mediated by intercellular gap junctions contribute to the stabilization of multicellular states against local genetic heterogeneities? We theoretically analyze this question on the basis of two well-established experimental facts: (i) the membrane potential is a reliable read-out of the single-cell electrical state and (ii) when the cells are coupled together, their individual cell potentials can be influenced by ensemble-averaged electrical potentials. We propose a minimal biophysical model for the coupling between genetic and bioelectrical networks that associates the local changes occurring in the transcription and translation rates of an ion channel protein with abnormally low (depolarized) cell potentials. We then analyze the conditions under which the depolarization of a small region (patch) in a multicellular ensemble can be reverted by its bioelectrical coupling with the (normally polarized) neighboring cells. We show also that the coupling between genetic and bioelectric networks of non-excitable cells, modulated by average electric potentials at the multicellular ensemble level, can produce oscillatory phenomena. The simulations show the importance of single-cell potentials characteristic of polarized and depolarized states, the relative sizes of the abnormally polarized patch and the rest of the normally polarized ensemble, and intercellular coupling.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| | - José A Manzanares
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| | - Salvador Mafe
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| |
Collapse
|
48
|
Trincot CE, Xu W, Zhang H, Kulikauskas MR, Caranasos TG, Jensen BC, Sabine A, Petrova TV, Caron KM. Adrenomedullin Induces Cardiac Lymphangiogenesis After Myocardial Infarction and Regulates Cardiac Edema Via Connexin 43. Circ Res 2019; 124:101-113. [PMID: 30582443 PMCID: PMC6318063 DOI: 10.1161/circresaha.118.313835] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Cardiac lymphangiogenesis contributes to the reparative process post-myocardial infarction, but the factors and mechanisms regulating it are not well understood. OBJECTIVE To determine if epicardial-secreted factor AM (adrenomedullin; Adm=gene) improves cardiac lymphangiogenesis post-myocardial infarction via lateralization of Cx43 (connexin 43) in cardiac lymphatic vasculature. METHODS AND RESULTS Firstly, we identified sex-dependent differences in cardiac lymphatic numbers in uninjured mice using light-sheet microscopy. Using a mouse model of Adm hi/hi ( Adm overexpression) and permanent left anterior descending ligation to induce myocardial infarction, we investigated cardiac lymphatic structure, growth, and function in injured murine hearts. Overexpression of Adm increased lymphangiogenesis and cardiac function post-myocardial infarction while suppressing cardiac edema and correlated with changes in Cx43 localization. Lymphatic function in response to AM treatment was attenuated in mice with a lymphatic-specific Cx43 deletion. In vitro experiments in cultured human lymphatic endothelial cells identified a novel mechanism to improve gap junction coupling by pharmaceutically targeting Cx43 with verapamil. Finally, we show that connexin protein expression in cardiac lymphatics is conserved between mouse and human. CONCLUSIONS AM is an endogenous, epicardial-derived factor that drives reparative cardiac lymphangiogenesis and function via Cx43, and this represents a new therapeutic pathway for improving myocardial edema after injury.
Collapse
Affiliation(s)
- Claire E. Trincot
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
| | - Wenjing Xu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Molly R. Kulikauskas
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Thomas G. Caranasos
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill
| | - Brian C. Jensen
- Division of Cardiology, University of North Carolina at Chapel Hill
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill
- McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Amelie Sabine
- Department of Oncology, University of Lausanne and Lausanne University Hospital and Ludwig Institute for Cancer Research Lausanne, Chemin de Boveresses 155, CH-1066, Switzerland
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and Lausanne University Hospital and Ludwig Institute for Cancer Research Lausanne, Chemin de Boveresses 155, CH-1066, Switzerland
- Division of Experimental Pathlogy, Lausanne University Hospital
| | - Kathleen M. Caron
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
- McAllister Heart Institute, University of North Carolina at Chapel Hill
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill , 111 Mason Farm Rd, MBRB 6312B, CB 7545, Chapel Hill, NC 27599
| |
Collapse
|
49
|
Bioelectrical coupling in multicellular domains regulated by gap junctions: A conceptual approach. Bioelectrochemistry 2018; 123:45-61. [DOI: 10.1016/j.bioelechem.2018.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
|
50
|
Abstract
SIGNIFICANCE Platelets are anucleate blood cells that are involved in hemostasis and thrombosis. Although no longer able to generate ribonucleic acid (RNA) de novo, platelets contain messenger RNA (mRNA), YRNA fragments, and premature microRNAs (miRNAs) that they inherit from megakaryocytes. Recent Advances: Novel sequencing techniques have helped identify the unexpectedly large number of RNA species present in platelets. Throughout their life time, platelets can process the pre-existing pool of premature miRNA to give the fully functional miRNA that can regulate platelet protein expression and function. CRITICAL ISSUES Platelets make a major contribution to the circulating miRNA pool but platelet activation can have major consequences on Dicer levels and thus miRNA maturation, which has implications for studies that are focused on screening-stored platelets. FUTURE DIRECTIONS It will be important to determine the importance of platelets as donors for miRNA-containing microvesicles that can be taken up and processed by other (particularly vascular) cells, thus contributing to homeostasis as well as disease progression. Antioxid. Redox Signal. 29, 902-921.
Collapse
Affiliation(s)
- Amro Elgheznawy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|