1
|
Ma X, Lin N, Yang Q, Liu P, Ding H, Xu M, Ren F, Shen Z, Hu K, Meng S, Chen H. Biodegradable copper-iodide clusters modulate mitochondrial function and suppress tumor growth under ultralow-dose X-ray irradiation. Nat Commun 2024; 15:8092. [PMID: 39285181 PMCID: PMC11405764 DOI: 10.1038/s41467-024-52278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Both copper (Cu2+/+) and iodine (I-) are essential elements in all living organisms. Increasing the intracellular concentrations of Cu or I ions may efficiently inhibit tumor growth. However, efficient delivery of Cu and I ions into tumor cells is still a challenge, as Cu chelation and iodide salts are highly water-soluble and can release in untargeted tissue. Here we report mitochondria-targeted Cu-I cluster nanoparticles using the reaction of Cu+ and I- to form stable bovine serum albumin (BSA) radiation-induced phosphors (Cu-I@BSA). These solve the stability issues of Cu+ and I- ions. Cu-I@BSA exhibit bright radioluminescence, and easily conjugate with the emission-matched photosensitizer and targeting molecule using functional groups on the surface of BSA. Investigations in vitro and in vivo demonstrate that radioluminescence under low-dose X-ray irradiation excites the conjugated photosensitizer to generate singlet oxygen, and combines with the radiosensitization mechanism of the heavy atom of iodine, resulting in efficient tumor inhibition in female mice. Furthermore, our study reveals that BSA protection causes the biodegradable Cu-I clusters to release free Cu and I ions and induce cell death by modulating mitochondrial function, damaging DNA, disrupting the tricarboxylic acid cycle, decreasing ATP generation, amplifying oxidative stress, and boosting the Bcl-2 pathway.
Collapse
Affiliation(s)
- Xiaoqian Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 361102, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, 361102, Xiamen, China
| | - Nuo Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 361102, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, 361102, Xiamen, China
| | - Qing Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 361102, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, 361102, Xiamen, China
| | - Peifei Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 361102, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, 361102, Xiamen, China
| | - Haizhen Ding
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 361102, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, 361102, Xiamen, China
| | - Mengjiao Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 361102, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, 361102, Xiamen, China
| | - Fangfang Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 361102, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, 361102, Xiamen, China
| | - Zhiyang Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 361102, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, 361102, Xiamen, China
| | - Ke Hu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 361102, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, 361102, Xiamen, China
| | - Shanshan Meng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 361102, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, 361102, Xiamen, China
| | - Hongmin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 361102, Xiamen, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
2
|
Kang M, Quintana J, Hu H, Teixeira VC, Olberg S, Banla LI, Rodriguez V, Hwang WL, Schuemann J, Parangi S, Weissleder R, Miller MA. Sustained and Localized Drug Depot Release Using Radiation-Activated Scintillating Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312326. [PMID: 38389502 PMCID: PMC11161319 DOI: 10.1002/adma.202312326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Indexed: 02/24/2024]
Abstract
Clinical treatment of cancer commonly incorporates X-ray radiation therapy (XRT), and developing spatially precise radiation-activatable drug delivery strategies may improve XRT efficacy while limiting off-target toxicities associated with systemically administered drugs. Nevertheless, achieving this has been challenging thus far because strategies typically rely on radical species with short lifespans, and the inherent nature of hypoxic and acidic tumor microenvironments may encourage spatially heterogeneous effects. It is hypothesized that the challenge could be bypassed by using scintillating nanoparticles that emit light upon X-ray absorption, locally forming therapeutic drug depots in tumor tissues. Thus a nanoparticle platform (Scintillating nanoparticle Drug Depot; SciDD) that enables the local release of cytotoxic payloads only after activation by XRT is developed, thereby limiting off-target toxicity. As a proof-of-principle, SciDD is used to deliver a microtubule-destabilizing payload MMAE (monomethyl auristatin E). With as little as a 2 Gy local irradiation to tumors, MMAE payloads are released effectively to kill tumor cells. XRT-mediated drug release is demonstrated in multiple mouse cancer models and showed efficacy over XRT alone (p < 0.0001). This work shows that SciDD can act as a local drug depot with spatiotemporally controlled release of cancer therapeutics.
Collapse
Affiliation(s)
- Mikyung Kang
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- School of Health and Environmental Science, College of Health Science, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Jeremy Quintana
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
| | - Huiyu Hu
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, White 506, Boston, MA, 02114, USA
| | - Verônica C Teixeira
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Sven Olberg
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Leou Ismael Banla
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Harvard Radiation Oncology Program, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Victoria Rodriguez
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
| | - William L Hwang
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, White 506, Boston, MA, 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
| |
Collapse
|
3
|
Robinette FN, Valentine NP, Sehler KM, Medeck AM, Reynolds KE, Lane SN, Price AN, Cavanaugh IG, Shell SM, Ashford DL. Modulating Excited State Properties and Ligand Ejection Kinetics in Ruthenium Polypyridyl Complexes Designed to Mimic Photochemotherapeutics. Inorg Chem 2024; 63:8426-8439. [PMID: 38662617 DOI: 10.1021/acs.inorgchem.4c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Ruthenium(II) polypyridyl complexes have gained significant interest as photochemotherapeutics (PCTs) due to their synthetic viability, strong light absorption, well understood excited state properties, and high phototoxicity indexes. Herein, we report the synthesis, characterization, electrochemical, spectrochemical, and preliminary cytotoxicity analyses of three series of ruthenium(II) polypyridyl complexes designed to mimic PCTs. The three series have the general structure of [Ru(bpy)2(N-N)]2+ (Series 1), [Ru(bpy)(dmb)(N-N)]2+ (Series 2), and [Ru(dmb)2(N-N)]2+ (Series 3, where N-N is a bidentate polypyridyl ligand, bpy = 2,2'-bipyridine, and dmb = 6,6'-dimethyl-2,2'-bipyridine). In the three series, the N-N ligand was systematically modified to incorporate increased conjugation and/or electronegative heteroatoms to increase dπ-π* backbonding, red-shifting the lowest energy metal-to-ligand charge transfer (MLCT) absorptions from λmax = 454 to λmax = 580 nm, nearing the therapeutic window for PCTs (600-1100 nm). In addition, steric bulk was systematically introduced through the series, distorting the Ru(II) octahedra, making the dissociative 3dd* state thermally accessible at room and body temperatures. This resulted in a 4 orders of magnitude increase in photoinduced ligand ejection kinetics, and demonstrates the ability to modulate both the MLCT* and dd* manifolds in the complexes, which is critical in PCT drug design. Preliminary cell viability assays suggest that the increased steric bulk to lower the 3dd* states may interfere with the cytotoxicity mechanism, limiting photoinitiated toxicity of the complexes. This work demonstrates the importance of understanding both the MLCT* and dd* manifolds and how they impact the ability of a complex to act as a PCT agent.
Collapse
Affiliation(s)
- Faith N Robinette
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Nathaniel P Valentine
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Konrad M Sehler
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Andrew M Medeck
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Keylon E Reynolds
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Skylar N Lane
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Averie N Price
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Ireland G Cavanaugh
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Steven M Shell
- Department of Natural Sciences, University of Virginia College at Wise, Wise, Virginia 24293, United States
| | - Dennis L Ashford
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| |
Collapse
|
4
|
Carlson DL, Kowalewski M, Bodoor K, Lietzan AD, Hughes PF, Gooden D, Loiselle DR, Alcorta D, Dingman Z, Mueller EA, Irnov I, Modla S, Chaya T, Caplan J, Embers M, Miller JC, Jacobs-Wagner C, Redinbo MR, Spector N, Haystead TAJ. Targeting Borrelia burgdorferi HtpG with a berserker molecule, a strategy for anti-microbial development. Cell Chem Biol 2024; 31:465-476.e12. [PMID: 37918401 DOI: 10.1016/j.chembiol.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/14/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Conventional antimicrobial discovery relies on targeting essential enzymes in pathogenic organisms, contributing to a paucity of new antibiotics to address resistant strains. Here, by targeting a non-essential enzyme, Borrelia burgdorferi HtpG, to deliver lethal payloads, we expand what can be considered druggable within any pathogen. We synthesized HS-291, an HtpG inhibitor tethered to the photoactive toxin verteporfin. Reactive oxygen species, generated by light, enables HS-291 to sterilize Borrelia cultures by causing oxidation of HtpG, and a discrete subset of proteins in proximity to the chaperone. This caused irreversible nucleoid collapse and membrane blebbing. Tethering verteporfin to the HtpG inhibitor was essential, since free verteporfin was not retained by Borrelia in contrast to HS-291. For this reason, we liken HS-291 to a berserker, wreaking havoc upon the pathogen's biology once selectively absorbed and activated. This strategy expands the druggable pathogenic genome and offsets antibiotic resistance by targeting non-essential proteins.
Collapse
Affiliation(s)
- Dave L Carlson
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Mark Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 3(rd) Floor, Genetic Medicine Building, Chapel Hill, NC 27599, USA
| | - Khaldon Bodoor
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Adam D Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, 385 South Columbia Street, Chapel Hill, NC 27599, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David Gooden
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - David Alcorta
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Zoey Dingman
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Elizabeth A Mueller
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Irnov Irnov
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Shannon Modla
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Tim Chaya
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Jeffrey Caplan
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Monica Embers
- Department of Microbiology and Immunology, 18703 Three Rivers Road, Covington, LA 70433, USA
| | - Jennifer C Miller
- Galaxy Diagnostics, Inc, P.O. Box 14346 7020 Kit Creek Road, Ste 130, Research Triangle Park, Raliegh, NC 27709, USA
| | - Christine Jacobs-Wagner
- Sarafan ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA; Biology Department, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA; Howard Hughes Medical Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94035, USA
| | - Matthew R Redinbo
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 3(rd) Floor, Genetic Medicine Building, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina at Chapel Hill, 4350 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599-3290, USA.
| | - Neil Spector
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, C119 LSRC, Research Drive, Durham NC 27701, USA.
| |
Collapse
|
5
|
Tsang CY, Zhang Y. Nanomaterials for light-mediated therapeutics in deep tissue. Chem Soc Rev 2024; 53:2898-2931. [PMID: 38265834 DOI: 10.1039/d3cs00862b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Light-mediated therapeutics, including photodynamic therapy, photothermal therapy and light-triggered drug delivery, have been widely studied due to their high specificity and effective therapy. However, conventional light-mediated therapies usually depend on the activation of light-sensitive molecules with UV or visible light, which have poor penetration in biological tissues. Over the past decade, efforts have been made to engineer nanosystems that can generate luminescence through excitation with near-infrared (NIR) light, ultrasound or X-ray. Certain nanosystems can even carry out light-mediated therapy through chemiluminescence, eliminating the need for external activation. Compared to UV or visible light, these 4 excitation modes penetrate more deeply into biological tissues, triggering light-mediated therapy in deeper tissues. In this review, we systematically report the design and mechanisms of different luminescent nanosystems excited by the 4 excitation sources, methods to enhance the generated luminescence, and recent applications of such nanosystems in deep tissue light-mediated therapeutics.
Collapse
Affiliation(s)
- Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
6
|
Gendron LN, Sheveland CG, Gunn JR, Pogue BW, Shell TA, Shell JR. Radiation-Activated Cobalamin-Kinase Inhibitors for Treatment of Pancreatic Ductal Adenocarcinoma. Mol Pharm 2024; 21:137-142. [PMID: 37989273 PMCID: PMC11228961 DOI: 10.1021/acs.molpharmaceut.3c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most dismal diagnoses that a patient can receive. PDAC is extremely difficult to treat, as drug delivery is challenging in part due to the lack of vascularization, high stromal content, and high collagen content of these tumors. We have previously demonstrated that attaching drugs to the cobalamin scaffold provides selectivity for tumors over benign cells due to a high vitamin demand in these rapidly growing cells and an overexpression of transcobalamin receptors in a variety of cancer types. Importantly, we have shown the ability to deliver cobalamin derivatives to orthotopic pancreas tumors. Tyrosine kinase inhibitors have shown promise in treating PDAC as well as other cancer types. However, some of these inhibitors suffer from drug resistance, and as such, their success has been diminished. With this in mind, we synthesized the tyrosine kinase inhibitors erlotinib (EGFR) and dasatinib (Src) that are attached to this cobalamin platform. Both of these cobalamin-drug conjugates cause visible light-induced apoptosis, and the cobalamin-erlotinib conjugate (2) causes X-ray-induced apoptosis in MIA PaCa-2 cells. Both visible light and X-rays provide spatial control of drug release; however, utilizing X-ray irradiation offers the advantage of deeper tissue penetration. Therefore, we explored the utilization of 2 as a synergistic therapy with radiation in athymic nude mice implanted with MIA PaCa-2 tumors. We discovered that the addition of 2 caused an enhanced reduction in tumor margins in comparison with radiation therapy alone. In addition, treatment with 2 in the absence of radiation caused no significant reduction in tumor size in comparison with the controls. The cobalamin technology presented here allows for the spatial release of drugs in conjunction with external beam radiation therapy, potentially allowing for more effective treatment of deep-seated tumors with less systemic side effects.
Collapse
Affiliation(s)
- Liberty N Gendron
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Colter G Sheveland
- Department of Chemistry and Biochemistry, Norwich University, Northfield, Vermont 05663, United States
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Thomas A Shell
- Department of Chemistry and Physics, Lincoln Memorial University, Harrogate, Tennessee 37752, United States
| | - Jennifer R Shell
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
- Eos Pharmaceuticals LLC, Tazewell, Tennessee 37879, United States
| |
Collapse
|
7
|
Chukavin NN, Filippova KO, Ermakov AM, Karmanova EE, Popova NR, Anikina VA, Ivanova OS, Ivanov VK, Popov AL. Redox-Active Cerium Fluoride Nanoparticles Selectively Modulate Cellular Response against X-ray Irradiation In Vitro. Biomedicines 2023; 12:11. [PMID: 38275372 PMCID: PMC10813610 DOI: 10.3390/biomedicines12010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Ionizing radiation-induced damage in cancer and normal cells leads to apoptosis and cell death, through the intracellular oxidative stress, DNA damage and disorders of their metabolism. Irradiation doses that do not lead to the death of tumor cells can result in the emergence of radioresistant clones of these cells due to the rearrangement of metabolism and the emergence of new mutations, including those in the genes responsible for DNA repair. The search for the substances capable of modulating the functioning of the tumor cell repair system is an urgent task. Here we analyzed the effect of cerium(III) fluoride nanoparticles (CeF3 NPs) on normal (human mesenchymal stem cells-hMSC) and cancer (MCF-7 line) human cells after X-ray radiation. CeF3 NPs effectively prevent the formation of hydrogen peroxide and hydroxyl radicals in an irradiated aqueous solution, showing pronounced antioxidant properties. CeF3 NPs are able to protect hMSC from radiation-induced proliferation arrest, increasing their viability and mitochondrial membrane potential, and, conversely, inducing the cell death of MCF-7 cancer cells, causing radiation-induced mitochondrial hyperpolarization. CeF3 NPs provided a significant decrease in the number of double-strand breaks (DSBs) in hMSC, while in MCF-7 cells the number of γ-H2AX foci dramatically increased in the presence of CeF3 4 h after irradiation. In the presence of CeF3 NPs, there was a tendency to modulate the expression of most analyzed genes associated with the development of intracellular oxidative stress, cell redox status and the DNA-repair system after X-ray irradiation. Cerium-containing nanoparticles are capable of providing selective protection of hMSC from radiation-induced injuries and are considered as a platform for the development of promising clinical radioprotectors.
Collapse
Affiliation(s)
- Nikita N. Chukavin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
- Scientific and Educational Center, State University of Education, Moscow 105005, Russia
| | - Kristina O. Filippova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| | - Artem M. Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
- Scientific and Educational Center, State University of Education, Moscow 105005, Russia
| | - Ekaterina E. Karmanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| | - Nelli R. Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| | - Viktoriia A. Anikina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| | - Olga S. Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia;
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| |
Collapse
|
8
|
Babu B, Stoltz SA, Mittal A, Pawar S, Kolanthai E, Coathup M, Seal S. Inorganic Nanoparticles as Radiosensitizers for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2873. [PMID: 37947718 PMCID: PMC10647410 DOI: 10.3390/nano13212873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Nanotechnology has expanded what can be achieved in our approach to cancer treatment. The ability to produce and engineer functional nanoparticle formulations to elicit higher incidences of tumor cell radiolysis has resulted in substantial improvements in cancer cell eradication while also permitting multi-modal biomedical functionalities. These radiosensitive nanomaterials utilize material characteristics, such as radio-blocking/absorbing high-Z atomic number elements, to mediate localized effects from therapeutic irradiation. These materials thereby allow subsequent scattered or emitted radiation to produce direct (e.g., damage to genetic materials) or indirect (e.g., protein oxidation, reactive oxygen species formation) damage to tumor cells. Using nanomaterials that activate under certain physiologic conditions, such as the tumor microenvironment, can selectively target tumor cells. These characteristics, combined with biological interactions that can target the tumor environment, allow for localized radio-sensitization while mitigating damage to healthy cells. This review explores the various nanomaterial formulations utilized in cancer radiosensitivity research. Emphasis on inorganic nanomaterials showcases the specific material characteristics that enable higher incidences of radiation while ensuring localized cancer targeting based on tumor microenvironment activation. The aim of this review is to guide future research in cancer radiosensitization using nanomaterial formulations and to detail common approaches to its treatment, as well as their relations to commonly implemented radiotherapy techniques.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Samantha Archer Stoltz
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Melanie Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA;
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
9
|
Hosseini FS, Naghavi N, Sazgarnia A. A physicochemical model of X-ray induced photodynamic therapy (X-PDT) with an emphasis on tissue oxygen concentration and oxygenation. Sci Rep 2023; 13:17882. [PMID: 37857727 PMCID: PMC10587104 DOI: 10.1038/s41598-023-44734-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
X-PDT is one of the novel cancer treatment approaches that uses high penetration X-ray radiation to activate photosensitizers (PSs) placed in deep seated tumors. After PS activation, some reactive oxygen species (ROS) like singlet oxygen (1O2) are produced that are very toxic for adjacent cells. Efficiency of X-PDT depends on 1O2 quantum yield as well as X-ray mortality rate. Despite many studies have been modeled X-PDT, little is known about the investigation of tissue oxygen content in treatment outcome. In the present study, we predicted X-PDT efficiency through a feedback of physiological parameters of tumor microenvironment includes tissue oxygen and oxygenation properties. The introduced physicochemical model of X-PDT estimates 1O2 production in a vascularized and non-vascularized tumor under different tissue oxygen levels to predict cell death probability in tumor and adjacent normal tissue. The results emphasized the importance of molecular oxygen and the presence of a vascular network in predicting X-PDT efficiency.
Collapse
Affiliation(s)
- Farideh S Hosseini
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nadia Naghavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Yao B, Liu X, Zhang W, Lu H. X-ray excited luminescent nanoparticles for deep photodynamic therapy. RSC Adv 2023; 13:30133-30150. [PMID: 37849702 PMCID: PMC10577683 DOI: 10.1039/d3ra04984a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Photodynamic therapy (PDT), as a non-invasive treatment, has received wide attention because of its high selectivity and low side effects. However, traditional PDT is influenced by the excitation light source and the light penetration depth is limited, which can only be used for superficial epidermal tumor treatment, and it is still a great challenge for deep tumor treatment. In recent years, X-ray excitation photodynamic therapy (X-PDT) using penetrating X-rays as an external excitation source and X-ray excited luminescent nanoparticles (XLNP) as an energy transfer medium to indirectly excite photosensitizer (PS) has solved the problem of insufficient penetration depth in tissues and become a research hotspot in the field of deep tumor treatment. In this review, the recent research progress of nanoparticles for efficient X-PDT, listing different types of XLNP and luminescence enhancement strategies. The loading method of PS is highlighted to achieve efficient energy transfer by regulating the intermolecular distance between both XLNP/PS. In addition, the water-soluble modification of XLNP surface is discussed and different hydrophilic modification methods are proposed to provide reference ideas for improving the dispersibility and biocompatibility of XLNP in aqueous solution. Finally, the therapeutic effects about X-PDT are discussed, and the current challenges and future perspectives for its clinical applications are presented.
Collapse
Affiliation(s)
- Bang Yao
- School of Materials Science and Engineering, Shaanxi University of Science and Technology Xian 710021 China
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, The Fourth Military Medical University 169th Changle West Road Xi'an Shaanxi 710032 China
| | - Xiaoxu Liu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology Xian 710021 China
| | - Wenli Zhang
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, The Fourth Military Medical University 169th Changle West Road Xi'an Shaanxi 710032 China
| | - Hongbing Lu
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, The Fourth Military Medical University 169th Changle West Road Xi'an Shaanxi 710032 China
| |
Collapse
|
11
|
Dinakaran D, Wilson BC. The use of nanomaterials in advancing photodynamic therapy (PDT) for deep-seated tumors and synergy with radiotherapy. Front Bioeng Biotechnol 2023; 11:1250804. [PMID: 37849983 PMCID: PMC10577272 DOI: 10.3389/fbioe.2023.1250804] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Photodynamic therapy (PDT) has been under development for at least 40 years. Multiple studies have demonstrated significant anti-tumor efficacy with limited toxicity concerns. PDT was expected to become a major new therapeutic option in treating localized cancer. However, despite a shifting focus in oncology to aggressive local therapies, PDT has not to date gained widespread acceptance as a standard-of-care option. A major factor is the technical challenge of treating deep-seated and large tumors, due to the limited penetration and variability of the activating light in tissue. Poor tumor selectivity of PDT sensitizers has been problematic for many applications. Attempts to mitigate these limitations with the use of multiple interstitial fiberoptic catheters to deliver the light, new generations of photosensitizer with longer-wavelength activation, oxygen independence and better tumor specificity, as well as improved dosimetry and treatment planning are starting to show encouraging results. Nanomaterials used either as photosensitizers per se or to improve delivery of molecular photosensitizers is an emerging area of research. PDT can also benefit radiotherapy patients due to its complementary and potentially synergistic mechanisms-of-action, ability to treat radioresistant tumors and upregulation of anti-tumoral immune effects. Furthermore, recent advances may allow ionizing radiation energy, including high-energy X-rays, to replace external light sources, opening a novel therapeutic strategy (radioPDT), which is facilitated by novel nanomaterials. This may provide the best of both worlds by combining the precise targeting and treatment depth/volume capabilities of radiation therapy with the high therapeutic index and biological advantages of PDT, without increasing toxicities. Achieving this, however, will require novel agents, primarily developed with nanomaterials. This is under active investigation by many research groups using different approaches.
Collapse
Affiliation(s)
- Deepak Dinakaran
- National Cancer Institute, National Institute of Health, Bethesda, MD, United States
- Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Mandl GA, Vettier F, Tessitore G, Maurizio SL, Bietar K, Stochaj U, Capobianco JA. Combining Pr 3+-Doped Nanoradiosensitizers and Endogenous Protoporphyrin IX for X-ray-Mediated Photodynamic Therapy of Glioblastoma Cells. ACS APPLIED BIO MATERIALS 2023. [PMID: 37267436 DOI: 10.1021/acsabm.3c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Glioblastoma multiforme is an aggressive type of brain cancer with high recurrence rates due to the presence of radioresistant cells remaining after tumor resection. Here, we report the development of an X-ray-mediated photodynamic therapy (X-PDT) system using NaLuF4:25% Pr3+ radioluminescent nanoparticles in conjunction with protoporphyrin IX (PPIX), an endogenous photosensitizer that accumulates selectively in cancer cells. Conveniently, 5-aminolevulinic acid (5-ALA), the prodrug that is administered for PDT, is the only drug approved for fluorescence-guided resection of glioblastoma, enabling dual detection and treatment of malignant cells. NaLuF4:Pr3+ nanoparticles were synthesized and spectroscopically evaluated at a range of Pr3+ concentrations. This generated radioluminescent nanoparticles with strong emissions from the 1S0 excited state of Pr3+, which overlaps with the Soret band of PPIX to perform photodynamic therapy. The spectral overlap between the nanoparticles and PPIX improved treatment outcomes for U251 cells, which were used as a model for the thin tumor margin. In addition to sensitizing PPIX to induce X-PDT, our nanoparticles exhibit strong radiosensitizing properties through a radiation dose-enhancement effect. We evaluate the effects of the nanoparticles alone and in combination with PPIX on viability, death, stress, senescence, and proliferation. Collectively, our results demonstrate this as a strong proof of concept for nanomedicine.
Collapse
Affiliation(s)
- Gabrielle A Mandl
- Department of Chemistry and Biochemistry & Centre for Nanoscience Research, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec H4B 1R6, Canada
| | - Freesia Vettier
- Department of Chemistry and Biochemistry & Centre for Nanoscience Research, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec H4B 1R6, Canada
| | - Gabriella Tessitore
- Department of Chemistry and Biochemistry & Centre for Nanoscience Research, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec H4B 1R6, Canada
| | - Steven L Maurizio
- Department of Chemistry and Biochemistry & Centre for Nanoscience Research, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec H4B 1R6, Canada
| | - Kais Bietar
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - John A Capobianco
- Department of Chemistry and Biochemistry & Centre for Nanoscience Research, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
13
|
Zhang G, Guo M, Ma H, Wang J, Zhang XD. Catalytic nanotechnology of X-ray photodynamics for cancer treatments. Biomater Sci 2023; 11:1153-1181. [PMID: 36602259 DOI: 10.1039/d2bm01698b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) has been applied in cancer treatment because of its high selectivity, low toxicity, and non-invasiveness. However, the limited penetration depth of the light still hampers from reaching deep-seated tumors. Considering the penetrating ability of high-energy radiotherapy, X-ray-induced photodynamic therapy (X-PDT) has evolved as an alternative to overcome tissue blocks. As the basic principle of X-PDT, X-rays stimulate the nanoparticles to emit scintillating or persistent luminescence and further activate the photosensitizers to generate reactive oxygen species (ROS), which would cause a series of molecular and cellular damages, immune response, and eventually break down the tumor tissue. In recent years, catalytic nanosystems with unique structures and functions have emerged that can enhance X-PDT therapeutic effects via an immune response. The anti-cancer effect of X-PDT is closely related to the following factors: energy conversion efficiency of the material, the radiation dose of X-rays, quantum yield of the material, tumor resistance, and biocompatibility. Based on the latest research in this field and the classical theories of nanoscience, this paper systematically elucidates the current development of the X-PDT and related immunotherapy, and highlights its broad prospects in medical applications, discussing the connection between fundamental science and clinical translation.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
| | - Junying Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China. .,Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Souris JS, Leoni L, Zhang HJ, Pan A, Tanios E, Tsai HM, Balyasnikova IV, Bissonnette M, Chen CT. X-ray Activated Nanoplatforms for Deep Tissue Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:673. [PMID: 36839041 PMCID: PMC9962876 DOI: 10.3390/nano13040673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy (PDT), the use of light to excite photosensitive molecules whose electronic relaxation drives the production of highly cytotoxic reactive oxygen species (ROS), has proven an effective means of oncotherapy. However, its application has been severely constrained to superficial tissues and those readily accessed either endoscopically or laparoscopically, due to the intrinsic scattering and absorption of photons by intervening tissues. Recent advances in the design of nanoparticle-based X-ray scintillators and photosensitizers have enabled hybridization of these moieties into single nanocomposite particles. These nanoplatforms, when irradiated with diagnostic doses and energies of X-rays, produce large quantities of ROS and permit, for the first time, non-invasive deep tissue PDT of tumors with few of the therapeutic limitations or side effects of conventional PDT. In this review we examine the underlying principles and evolution of PDT: from its initial and still dominant use of light-activated, small molecule photosensitizers that passively accumulate in tumors, to its latest development of X-ray-activated, scintillator-photosensitizer hybrid nanoplatforms that actively target cancer biomarkers. Challenges and potential remedies for the clinical translation of these hybrid nanoplatforms and X-ray PDT are also presented.
Collapse
Affiliation(s)
- Jeffrey S. Souris
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Lara Leoni
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Hannah J. Zhang
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Ariel Pan
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Eve Tanios
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| | - Hsiu-Ming Tsai
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | | | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Sun W, Chu C, Li S, Ma X, Liu P, Chen S, Chen H. Nanosensitizer-mediated unique dynamic therapy tactics for effective inhibition of deep tumors. Adv Drug Deliv Rev 2023; 192:114643. [PMID: 36493905 DOI: 10.1016/j.addr.2022.114643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
X-ray and ultrasound waves are widely employed for diagnostic and therapeutic purposes in clinic. Recently, they have been demonstrated to be ideal excitation sources that activate sensitizers for the dynamic therapy of deep-seated tumors due to their excellent tissue penetration. Here, we focused on the recent progress in five years in the unique dynamic therapy strategies for the effective inhibition of deep tumors that activated by X-ray and ultrasound waves. The concepts, mechanisms, and typical nanosensitizers used as energy transducers are described as well as their applications in oncology. The future developments and potential challenges are also discussed. These unique therapeutic methods are expected to be developed as depth-independent, minimally invasive, and multifunctional strategies for the clinic treatment of various deep malignancies.
Collapse
Affiliation(s)
- Wenjing Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengchao Chu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shi Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoqian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Peifei Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shileng Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
16
|
He L, Yu X, Li W. Recent Progress and Trends in X-ray-Induced Photodynamic Therapy with Low Radiation Doses. ACS NANO 2022; 16:19691-19721. [PMID: 36378555 DOI: 10.1021/acsnano.2c07286] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The prominence of photodynamic therapy (PDT) in treating superficial skin cancer inspires innovative solutions for its congenitally deficient shadow penetration of the visible-light excitation. X-ray-induced photodynamic therapy (X-PDT) has been proven to be a successful technique in reforming the conventional PDT for deep-seated tumors by creatively utilizing penetrating X-rays as external excitation sources and has witnessed rapid developments over the past several years. Beyond the proof-of-concept demonstration, recent advances in X-PDT have exhibited a trend of minimizing X-ray radiation doses to quite low values. As such, scintillating materials used to bridge X-rays and photosensitizers play a significant role, as do diverse well-designed irradiation modes and smart strategies for improving the tumor microenvironment. Here in this review, we provide a comprehensive summary of recent achievements in X-PDT and highlight trending efforts using low doses of X-ray radiation. We first describe the concept of X-PDT and its relationships with radiodynamic therapy and radiotherapy and then dissect the mechanism of X-ray absorption and conversion by scintillating materials, reactive oxygen species evaluation for X-PDT, and radiation side effects and clinical concerns on X-ray radiation. Finally, we discuss a detailed overview of recent progress regarding low-dose X-PDT and present perspectives on possible clinical translation. It is expected that the pursuit of low-dose X-PDT will facilitate significant breakthroughs, both fundamentally and clinically, for effective deep-seated cancer treatment in the near future.
Collapse
|
17
|
Enhanced Photodynamic Therapy: A Review of Combined Energy Sources. Cells 2022; 11:cells11243995. [PMID: 36552759 PMCID: PMC9776440 DOI: 10.3390/cells11243995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) has been used in recent years as a non-invasive treatment for cancer, due to the side effects of traditional treatments such as surgery, radiotherapy, and chemotherapy. This therapeutic technique requires a photosensitizer, light energy, and oxygen to produce reactive oxygen species (ROS) which mediate cellular toxicity. PDT is a useful non-invasive therapy for cancer treatment, but it has some limitations that need to be overcome, such as low-light-penetration depths, non-targeting photosensitizers, and tumor hypoxia. This review focuses on the latest innovative strategies based on the synergistic use of other energy sources, such as non-visible radiation of the electromagnetic spectrum (microwaves, infrared, and X-rays), ultrasound, and electric/magnetic fields, to overcome PDT limitations and enhance the therapeutic effect of PDT. The main principles, mechanisms, and crucial elements of PDT are also addressed.
Collapse
|
18
|
McCullough AB, Chen J, Valentine NP, Franklin TM, Cantrell AP, Darnell VM, Qureshi Q, Hanson K, Shell SM, Ashford DL. Balancing the interplay between ligand ejection and therapeutic window light absorption in ruthenium polypyridyl complexes. Dalton Trans 2022; 51:10186-10197. [PMID: 35735218 DOI: 10.1039/d2dt01237e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ruthenium polypyridyl complexes have gained significant interest as photochemotherapies (PCTs) where their excited-state properties play a critical role in the photo-cytotoxicity mechanism and efficacy. Herein we report a systematic electrochemical, spectrochemical, and photophysical analysis of a series of ruthenium(II) polypyridyl complexes of the type [Ru(bpy)2(N-N)]2+ (where bpy = 2,2'-bipyridine; N-N is a bidentate polypyridyl ligand) designed to mimic PCTs. In this series, the N-N ligand was modified through increased conjugation and/or incorporation of electronegative heteroatoms to shift the metal-to-ligand charge-transfer (MLCT) absorptions near the therapeutic window for PCTs (600-1100 nm) while incorporating steric bulk to trigger photoinduced ligand dissociation. The lowest energy MLCT absorptions were red-shifted from λmax = 454 nm to 564 nm, with emission energies decreasing from λmax = 620 nm to 850 nm. Photoinduced ligand ejection and temperature-dependent emission studies revealed an important interplay between red-shifting MLCT absorptions and accessing the dissociative 3dd* states, with energy barriers between the 3MLCT* and 3dd* states ranging from 850 cm-1 to 2580 cm-1 for the complexes measured. This work demonstrates the importance of understanding both the MLCT manifold and 3dd* state energy levels in the future design of ligands and complexes for PCT.
Collapse
Affiliation(s)
- Annie B McCullough
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Jiaqi Chen
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Nathaniel P Valentine
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Toney M Franklin
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Andrew P Cantrell
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Vayda M Darnell
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Qasim Qureshi
- Department of Natural Sciences, University of Virginia's College at Wise, Wise, Virginia, 24293, USA
| | - Kenneth Hanson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Steven M Shell
- Department of Natural Sciences, University of Virginia's College at Wise, Wise, Virginia, 24293, USA
| | - Dennis L Ashford
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| |
Collapse
|
19
|
Yabaş E, Kölemen S, Biçer E, Almammadov T, Başer P, Kul M. Organo-soluble dendritic zinc phthalocyanine: photoluminescence and fluorescence properties. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2078360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ebru Yabaş
- Sivas Cumhuriyet University, Advanced Technology Application and Research Center, Sivas, Turkey
| | - Safacan Kölemen
- Faculty of Science, Department of Chemistry, Koç University, İstanbul, Turkey
| | - Emre Biçer
- Faculty of Engineering and Natural Sciences, Sivas University of Science and Technology, Sivas, Turkey
| | - Toghrul Almammadov
- Faculty of Science, Department of Chemistry, Koç University, İstanbul, Turkey
| | - Pınar Başer
- Faculty of Science, Department of Physics, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mehmet Kul
- Faculty of Engineering and Natural Sciences, Sivas University of Science and Technology, Sivas, Turkey
| |
Collapse
|
20
|
Zhang B, Xue R, Sun C. Rational design of ROS-responsive nanocarriers for targeted X-ray-induced photodynamic therapy and cascaded chemotherapy of intracranial glioblastoma. NANOSCALE 2022; 14:5054-5067. [PMID: 35293920 DOI: 10.1039/d2nr00436d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glioblastoma (GBM) is the most lethal primary intracranial tumor because of its high invasiveness and recurrence. Therefore, nanocarriers with blood-brain barrier (BBB) penetration and transcranial-controlled drug release and activation are rather attractive options for glioblastoma treatment. Herein, we designed a multifunctional nanocarrier (T-TKNPVP) that combined targeted X-ray-induced photodynamic therapy (X-PDT) and cascaded reactive oxygen species (ROS)-boosted chemotherapy. The T-TKNPVP loaded with verteporfin (VP) and paclitaxel (PTX) was self-assembled from an angiopep-2 (Ang) peptide, functionalized Ang-PEG-DSPE and ROS-sensitive PEG-TK-PTX conjugate. After systemic injection, the T-TKNPVP efficiently crossed the BBB and targeted the GBM cells via receptor-mediated transcytosis. Upon X-ray irradiation, they can generate a certain amount of ROS, which not only induces X-PDT but also locoregionally activates PTX release and action by cleaving the TK bridged bonds. As evidenced by 9.4 T MRI and other experiments, such nanocarriers offer significant growth inhibition of GBM in situ and prolong the survival times of U87-MG tumor-bearing mice. Taken together, the designed T-TKNPVP provided an alternative avenue for realizing transcranial X-PDT and X-ray-activated chemotherapy for targeted and locoregional GBM treatment in vivo.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Rui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chunyang Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Multimodality Preclinical Molecular Imaging Center, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.
| |
Collapse
|
21
|
Abstract
Photodynamic therapy (PDT) is an emerging treatment option for cancer. In PDT, photosensitizers are delivered to tumors and stimulated by light to generate reactive oxygen species (ROS)-most importantly singlet oxygen (1O2)-to damage tumor cells or induce tissue ischemia. PDT is associated with a low level of systemic toxicity because photosensitizers are usually pharmaceutically inactive in the dark and photoirradiation is applied only to tumor areas in the procedure. Additionally, PDT can be applied repeatedly without cumulative toxicity or incurring resistance, and may stimulate systemic anti-tumor immunity. However, PDT's clinical use has been restricted due to the limited penetration of visible light through tissues. X-rays possess superior tissue penetration capability and are exploited in X-ray-induced photodynamic therapy to overcome this limitation. Herein we have demonstrated this principle with a novel LiGa5O8:Cr (LGO:Cr)-based nanoscintillator which emits near-infrared X-ray luminescence to both guide external beam therapy and induce PDT with the photosensitizer (2,3-naphthalocyanine) encapsulated in a mesoporous silica shell of the nanoscintillator.
Collapse
Affiliation(s)
- Benjamin Cline
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA, USA.
| |
Collapse
|
22
|
Liu W, Chen B, Zheng H, Xing Y, Chen G, Zhou P, Qian L, Min Y. Advances of Nanomedicine in Radiotherapy. Pharmaceutics 2021; 13:pharmaceutics13111757. [PMID: 34834172 PMCID: PMC8622383 DOI: 10.3390/pharmaceutics13111757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) remains one of the current main treatment strategies for many types of cancer. However, how to improve RT efficiency while reducing its side effects is still a large challenge to be overcome. Advancements in nanomedicine have provided many effective approaches for radiosensitization. Metal nanoparticles (NPs) such as platinum-based or hafnium-based NPs are proved to be ideal radiosensitizers because of their unique physicochemical properties and high X-ray absorption efficiency. With nanoparticles, such as liposomes, bovine serum albumin, and polymers, the radiosensitizing drugs can be promoted to reach the tumor sites, thereby enhancing anti-tumor responses. Nowadays, the combination of some NPs and RT have been applied to clinical treatment for many types of cancer, including breast cancer. Here, as well as reviewing recent studies on radiotherapy combined with inorganic, organic, and biomimetic nanomaterials for oncology, we analyzed the underlying mechanisms of NPs radiosensitization, which may contribute to exploring new directions for the clinical translation of nanoparticle-based radiosensitizers.
Collapse
Affiliation(s)
- Wei Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
| | - Bo Chen
- Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China; (B.C.); (Y.M.)
| | - Haocheng Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yun Xing
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Guiyuan Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Peijie Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
| | - Liting Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
- Correspondence:
| | - Yuanzeng Min
- Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China; (B.C.); (Y.M.)
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers (Basel) 2021; 13:3484. [PMID: 34298707 PMCID: PMC8307713 DOI: 10.3390/cancers13143484] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment with strong potential over well-established standard therapies in certain cases. Non-ionising radiation, localisation, possible repeated treatments, and stimulation of immunological response are some of the main beneficial features of PDT. Despite the great potential, its application remains challenging. Limited light penetration depth, non-ideal photosensitisers, complex dosimetry, and complicated implementations in the clinic are some limiting factors hindering the extended use of PDT. To surpass actual technological paradigms, radically new sources, light-based devices, advanced photosensitisers, measurement devices, and innovative application strategies are under extensive investigation. The main aim of this review is to highlight the advantages/pitfalls, technical challenges and opportunities of PDT, with a focus on technologies for light activation of photosensitisers, such as light sources, delivery devices, and systems. In this vein, a broad overview of the current status of superficial, interstitial, and deep PDT modalities-and a critical review of light sources and their effects on the PDT process-are presented. Insight into the technical advancements and remaining challenges of optical sources and light devices is provided from a physical and bioengineering perspective.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
24
|
Kirsanova DY, Gadzhimagomedova ZM, Maksimov AY, Soldatov AV. Nanomaterials for Deep Tumor Treatment. Mini Rev Med Chem 2021; 21:677-688. [PMID: 33176645 DOI: 10.2174/1389557520666201111161705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/25/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
According to statistics, cancer is the second leading cause of death in the world. Thus, it is important to solve this medical and social problem by developing new effective methods for cancer treatment. An alternative to more well-known approaches, such as radiotherapy and chemotherapy, is photodynamic therapy (PDT), which is limited to the shallow tissue penetration (< 1 cm) of visible light. Since the PDT process can be initiated in deep tissues by X-ray irradiation (X-ray induced PDT, or XPDT), it has a great potential to treat tumors in internal organs. The article discusses the principles of therapies. The main focus is on various nanoparticles used with or without photosensitizers, which allow the conversion of X-ray irradiation into UV-visible light. Much attention is given to the synthesis of nanoparticles and analysis of their characteristics, such as size and spectral features. The results of in vitro and in vivo experiments are also discussed.
Collapse
Affiliation(s)
- Daria Yu Kirsanova
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russian Federation
| | - Zaira M Gadzhimagomedova
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russian Federation
| | - Aleksey Yu Maksimov
- National Medical Research Centre for Oncology, 14 liniya str. 63, 344037, Rostov-on-Don, Russian Federation
| | - Alexander V Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russian Federation
| |
Collapse
|
25
|
Clement S, Anwer AG, Pires L, Campbell J, Wilson BC, Goldys EM. Radiodynamic Therapy Using TAT Peptide-Targeted Verteporfin-Encapsulated PLGA Nanoparticles. Int J Mol Sci 2021; 22:ijms22126425. [PMID: 34204001 PMCID: PMC8232618 DOI: 10.3390/ijms22126425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Radiodynamic therapy (RDT) is a recent extension of conventional photodynamic therapy, in which visible/near infrared light irradiation is replaced by a well-tolerated dose of high-energy X-rays. This enables greater tissue penetration to allow non-invasive treatment of large, deep-seated tumors. We report here the design and testing of a drug delivery system for RDT that is intended to enhance intra- or peri-nuclear localization of the photosensitizer, leading to DNA damage and resulting clonogenic cell kill. This comprises a photosensitizer (Verteporfin, VP) incorporated into poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) that are surface-functionalized with a cell-penetrating HIV trans-activator of transcription (TAT) peptide. In addition to a series of physical and photophysical characterization studies, cytotoxicity tests in pancreatic (PANC-1) cancer cells in vitro under 4 Gy X-ray exposure from a clinical 6 MV linear accelerator (LINAC) showed that TAT targeting of the nanoparticles markedly enhances the effectiveness of RDT treatment, particularly when assessed by a clonogenic, i.e., DNA damage-mediated, cell kill.
Collapse
Affiliation(s)
- Sandhya Clement
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (A.G.A.); (J.C.); (E.M.G.)
- ARC Centre of Excellence in Nanoscale Biophotonics, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
- Correspondence:
| | - Ayad G. Anwer
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (A.G.A.); (J.C.); (E.M.G.)
- ARC Centre of Excellence in Nanoscale Biophotonics, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
| | - Layla Pires
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (L.P.); (B.C.W.)
| | - Jared Campbell
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (A.G.A.); (J.C.); (E.M.G.)
- ARC Centre of Excellence in Nanoscale Biophotonics, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (L.P.); (B.C.W.)
| | - Ewa M. Goldys
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (A.G.A.); (J.C.); (E.M.G.)
- ARC Centre of Excellence in Nanoscale Biophotonics, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
26
|
Nath P, Hamadna SS, Karamchand L, Foster J, Kopelman R, Amar JG, Ray A. Intracellular detection of singlet oxygen using fluorescent nanosensors. Analyst 2021; 146:3933-3941. [PMID: 33982697 PMCID: PMC8210662 DOI: 10.1039/d1an00456e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Detection of singlet oxygen is of great importance for a range of therapeutic applications, particularly photodynamic therapy, plasma therapy and also during photo-endosomolytic activity. Here we present a novel method of intracellular detection of singlet oxygen using biocompatible polymeric nanosensors, encapsulating the organic fluorescent dye, Singlet Oxygen Sensor Green (SOSG) within its hydrophobic core. The singlet oxygen detection efficiency of the nanosensors was quantified experimentally by treating them with a plasma source and these results were further validated by using Monte Carlo simulations. The change in fluorescence intensity of the nanosensors serves as a metric to detect singlet oxygen in the local micro-environment inside mammalian cancer cells. We used these nanosensors for monitoring singlet oxygen inside endosomes and lysosomes of cancer cells, during cold plasma therapy, using a room-temperature Helium plasma jet.
Collapse
Affiliation(s)
- Peuli Nath
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, USA.
| | | | | | - John Foster
- Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jacques G Amar
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, USA.
| | - Aniruddha Ray
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
27
|
Multitherapeutic nanoplatform based on scintillating anthracene, silver@anthracene, and gold@anthracene nanoparticles for combined radiation and photodynamic cancer therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112122. [PMID: 34082939 DOI: 10.1016/j.msec.2021.112122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/29/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022]
Abstract
We have synthesized anthracene and metal@anthracene core-shell nanoparticles to combine radiation (RT) and photodynamic (PDT) therapies. Synthesis of anthracene nanoparticles in the presence of colloidal silver or gold reduced the nanoparticles hydrodynamic radius, caused core-shell nanostructures to grow, and led to plasmon-enhanced fluorescence. Singlet oxygen (1O2) generation was investigated by electron spin resonance (ESR) and fluorescence spectroscopies. In the presence of a porphyrin, anthracene nanoparticles and the core-shell nanoparticles acted as energy mediators and increased 1O2 generation under exposure to light, as evidenced by the ESR results. Fluorescence suppression experiments showed that the core-shell nanoparticles captured 1O2 at rates higher than anthracene nanoparticles, suggesting that overall production of 1O2 (1O2 captured by spin-trap + 1O2 captured by surface anthracene molecules) was higher for the core-shell nanoparticles. Moreover, the Ag@anthracene nanoparticles stood out as a new and more sensitive fluorescent probe for 1O2. During irradiation with X-rays, both anthracene and Ag@anthracene nanoparticles trapped 1O2; subsequently, they afforded sustained release of the trapped 1O2 for up 12 days after irradiation. This could be an interesting strategy to extend the radiation therapy treatment after the irradiation sessions. Furthermore, the presence of the metallic nanoparticle in the core of the core-shell nanostructure increased interaction with X-rays, raising the radiation dose around the nanoparticle. Therefore, metal@anthracene nanostructures may allow combination of cancer treatments by different approaches depending on the adopted nanoparticle configuration.
Collapse
|
28
|
Daouk J, Iltis M, Dhaini B, Béchet D, Arnoux P, Rocchi P, Delconte A, Habermeyer B, Lux F, Frochot C, Tillement O, Barberi-Heyob M, Schohn H. Terbium-Based AGuIX-Design Nanoparticle to Mediate X-ray-Induced Photodynamic Therapy. Pharmaceuticals (Basel) 2021; 14:ph14050396. [PMID: 33922073 PMCID: PMC8143523 DOI: 10.3390/ph14050396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/10/2023] Open
Abstract
X-ray-induced photodynamic therapy is based on the energy transfer from a nanoscintillator to a photosensitizer molecule, whose activation leads to singlet oxygen and radical species generation, triggering cancer cells to cell death. Herein, we synthesized ultra-small nanoparticle chelated with Terbium (Tb) as a nanoscintillator and 5-(4-carboxyphenyl succinimide ester)-10,15,20-triphenyl porphyrin (P1) as a photosensitizer (AGuIX@Tb-P1). The synthesis was based on the AGuIX@ platform design. AGuIX@Tb-P1 was characterised for its photo-physical and physico-chemical properties. The effect of the nanoparticles was studied using human glioblastoma U-251 MG cells and was compared to treatment with AGuIX@ nanoparticles doped with Gadolinium (Gd) and P1 (AGuIX@Gd-P1). We demonstrated that the AGuIX@Tb-P1 design was consistent with X-ray photon energy transfer from Terbium to P1. Both nanoparticles had similar dark cytotoxicity and they were absorbed in a similar rate within the cells. Pre-treated cells exposure to X-rays was related to reactive species production. Using clonogenic assays, establishment of survival curves allowed discrimination of the impact of radiation treatment from X-ray-induced photodynamic effect. We showed that cell growth arrest was increased (35%-increase) when cells were treated with AGuIX@Tb-P1 compared to the nanoparticle doped with Gd.
Collapse
Affiliation(s)
- Joël Daouk
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | - Mathilde Iltis
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | - Batoul Dhaini
- Reactions and Chemical Engineering Laboratory (LRGP), UMR 7274, Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (B.D.); (P.A.); (C.F.)
| | - Denise Béchet
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | - Philippe Arnoux
- Reactions and Chemical Engineering Laboratory (LRGP), UMR 7274, Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (B.D.); (P.A.); (C.F.)
| | - Paul Rocchi
- Light Matter Institute, UMR-5306, Université de Lyon–French National Scientific Research Center (CNRS), F-69000 Lyon, France; (P.R.); (F.L.); (O.T.)
| | - Alain Delconte
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | | | - François Lux
- Light Matter Institute, UMR-5306, Université de Lyon–French National Scientific Research Center (CNRS), F-69000 Lyon, France; (P.R.); (F.L.); (O.T.)
| | - Céline Frochot
- Reactions and Chemical Engineering Laboratory (LRGP), UMR 7274, Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (B.D.); (P.A.); (C.F.)
| | - Olivier Tillement
- Light Matter Institute, UMR-5306, Université de Lyon–French National Scientific Research Center (CNRS), F-69000 Lyon, France; (P.R.); (F.L.); (O.T.)
| | - Muriel Barberi-Heyob
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
- Correspondence: ; Tel.: +33-(0)3-72-74-61-14
| | - Hervé Schohn
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| |
Collapse
|
29
|
Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles. Sci Rep 2021; 11:6721. [PMID: 33762596 PMCID: PMC7990972 DOI: 10.1038/s41598-021-85964-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for future experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au.
Collapse
|
30
|
Clement S, Guller A, Mahbub SB, Goldys EM. Oxygen-Carrying Polymer Nanoconstructs for Radiodynamic Therapy of Deep Hypoxic Malignant Tumors. Biomedicines 2021; 9:322. [PMID: 33810115 PMCID: PMC8005177 DOI: 10.3390/biomedicines9030322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
Radiodynamic therapy (RDT) is an emerging non-invasive anti-cancer treatment based on the generation of the reactive oxygen species (ROS) at the lesion site following the interaction between X-rays and a photosensitizer drug (PS). The broader application of RDT is impeded by the tumor-associated hypoxia that results in low availability of oxygen for the generation of sufficient amounts of ROS. Herein, a novel nanoparticle drug formulation for RDT, which addresses the problem of low oxygen availability, is reported. It consists of poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) co-loaded with a PS drug verteporfin (VP), and the clinically approved oxygen-carrying molecule, perfluorooctylbromide (PFOB). When triggered by X-rays (4 Gy), under both normoxic and hypoxic conditions, PLGA-VP-PFOB nanoconstructs (NCs) induced a significant increase of the ROS production compared with matching PLGA-VP nanoparticles. The RDT with NCs effectively killed ~60% of human pancreatic cancer cells in monolayer cultures, and almost completely suppressed the outgrowth of tumor cells in 2-weeks clonogenic assay. In a 3D engineered model of pancreatic cancer metastasis to the liver, RDT with NCs destroyed ~35% of tumor cells, demonstrating an exceptional efficiency at a tissue level. These results show that PLGA-VP-PFOB is a promising agent for RDT of deep-seated hypoxic tumors.
Collapse
Affiliation(s)
- Sandhya Clement
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (E.M.G.)
| | - Anna Guller
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (E.M.G.)
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Saabah B. Mahbub
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (E.M.G.)
| | - Ewa M. Goldys
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (E.M.G.)
| |
Collapse
|
31
|
Li W, Wang C, Yao Y, Wu C, Luo W, Zou Z. Photocatalytic Materials: An Apollo’s Arrow to Tumor Cells. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Clement S, Campbell JM, Deng W, Guller A, Nisar S, Liu G, Wilson BC, Goldys EM. Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2003584. [PMID: 33344143 PMCID: PMC7740107 DOI: 10.1002/advs.202003584] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Indexed: 05/12/2023]
Abstract
Engineered nanomaterials that produce reactive oxygen species on exposure to X- and gamma-rays used in radiation therapy offer promise of novel cancer treatment strategies. Similar to photodynamic therapy but suitable for large and deep tumors, this new approach where nanomaterials acting as sensitizing agents are combined with clinical radiation can be effective at well-tolerated low radiation doses. Suitably engineered nanomaterials can enhance cancer radiotherapy by increasing the tumor selectivity and decreasing side effects. Additionally, the nanomaterial platform offers therapeutically valuable functionalities, including molecular targeting, drug/gene delivery, and adaptive responses to trigger drug release. The potential of such nanomaterials to be combined with radiotherapy is widely recognized. In order for further breakthroughs to be made, and to facilitate clinical translation, the applicable principles and fundamentals should be articulated. This review focuses on mechanisms underpinning rational nanomaterial design to enhance radiation therapy, the understanding of which will enable novel ways to optimize its therapeutic efficacy. A roadmap for designing nanomaterials with optimized anticancer performance is also shown and the potential clinical significance and future translation are discussed.
Collapse
Affiliation(s)
- Sandhya Clement
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Jared M. Campbell
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Wei Deng
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Anna Guller
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
- Institute for Regenerative MedicineSechenov First Moscow State Medical University (Sechenov University)Trubetskaya StreetMoscow119991Russia
| | - Saadia Nisar
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Guozhen Liu
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| | - Brian C. Wilson
- Department of Medical BiophysicsUniversity of Toronto/Princess Margaret Cancer CentreUniversity Health NetworkColledge StreetTorontoOntarioON M5G 2C1Canada
| | - Ewa M. Goldys
- ARC Centre of Excellence for Nanoscale BiophotonicsThe Graduate School of Biomedical EngineeringUniversity of New South WalesHigh StreetKensingtonNew South Wales2052Australia
| |
Collapse
|
33
|
Abstract
Photodynamic therapy (PDT) is a promising therapeutic strategy for cancers where surgery and radiotherapy cannot be effective. PDT relies on the photoactivation of photosensitizers, most of the time by lasers to produced reactive oxygen species and notably singlet oxygen. The major drawback of this strategy is the weak light penetration in the tissues. To overcome this issue, recent studies proposed to generate visible light in situ with radioactive isotopes emitting charged particles able to produce Cerenkov radiation. In vitro and preclinical results are appealing, but the existence of a true, lethal phototherapeutic effect is still controversial. In this article, we have reviewed previous original works dealing with Cerenkov-induced PDT (CR-PDT). Moreover, we propose a simple analytical equation resolution to demonstrate that Cerenkov light can potentially generate a photo-therapeutic effect, although most of the Cerenkov photons are emitted in the UV-B and UV-C domains. We suggest that CR-PDT and direct UV-tissue interaction act synergistically to yield the therapeutic effect observed in the literature. Moreover, adding a nanoscintillator in the photosensitizer vicinity would increase the PDT efficacy, as it will convert Cerenkov UV photons to light absorbed by the photosensitizer.
Collapse
|
34
|
Dinakaran D, Sengupta J, Pink D, Raturi A, Chen H, Usmani N, Kumar P, Lewis JD, Narain R, Moore RB. PEG-PLGA nanospheres loaded with nanoscintillators and photosensitizers for radiation-activated photodynamic therapy. Acta Biomater 2020; 117:335-348. [PMID: 32956872 DOI: 10.1016/j.actbio.2020.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Photodynamic Therapy (PDT) is an effective treatment modality for cancers, with Protoporphyrin IX (PPIX)-based PDT being the most widely used to treat cancers in patients. However, PDT is limited to superficial, thin (few mm in depth) lesions that can be accessed by visible wavelength light. Interstitial light-delivery strategies have been developed to treat deep-seated lesions (i.e. prostate cancer). The most promising of these are X-ray-induced scintillation nanoparticles, which have shown potential benefits for PDT of deep-seated tumors. Herein, the design and use of a new nanoscintillator-based radiation-activated PDT (radioPDT) system is investigated in the treatment of deep-seated tumors. Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG-PLGA) nanospheres were loaded with a scintillator (LaF3:Ce3+) and photosensitizer (PPIX) to effect radioPDT. UV-Vis spectroscopy and electron microscopy studies demonstrated efficient encapsulation of nanoscintillators and PPIX (>90% efficiency) into the PEG-PLGA nanospheres. The nanoparticles were uniform in size and approximately 100 nm in diameter. They were highly stable and functional for up to 24 h under physiological conditions and demonstrated slow release kinetics. In vitro and in vivo toxicity studies showed no appreciable drug toxicity to human skin fibroblast (GM38), prostate cancer cells (PC3), and to C57/BL mice. Cell uptake studies demonstrated accumulation of the nanoparticles in the cytoplasm of PC3 cells. When activated, fluorescent resonant energy transfer (FRET) was evident via fluorescent spectroscopy and singlet oxygen yield. Determination of stability revealed that the nanoparticles were stable for up to 4 weeks. The nanoparticle production was scaled-up with no change in properties. This nanoparticle represents a unique, optimally designed therapeutic and diagnostic agent (theranostic) agent for radioPDT with characteristics capable of potentially augmenting radiotherapy for deep-seated tumors and integrating into current cancer radiotherapy.
Collapse
Affiliation(s)
- Deepak Dinakaran
- Department of Oncology, University of Alberta, 11560 University Avenue NW, Edmonton, AB T6G 1Z2, Canada.
| | - Jayeeta Sengupta
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 2G6, Canada
| | - Desmond Pink
- Department of Oncology, University of Alberta, 11560 University Avenue NW, Edmonton, AB T6G 1Z2, Canada; Nanostics Precision Health, Edmonton, AB, Canada
| | - Arun Raturi
- Department of Oncology, University of Alberta, 11560 University Avenue NW, Edmonton, AB T6G 1Z2, Canada; Entos Pharmaceuticals, Edmonton, AB. Canada
| | - Hua Chen
- Department of Oncology, University of Alberta, 11560 University Avenue NW, Edmonton, AB T6G 1Z2, Canada
| | - Nawaid Usmani
- Department of Oncology, University of Alberta, 11560 University Avenue NW, Edmonton, AB T6G 1Z2, Canada
| | - Piyush Kumar
- Department of Oncology, University of Alberta, 11560 University Avenue NW, Edmonton, AB T6G 1Z2, Canada
| | - John D Lewis
- Department of Oncology, University of Alberta, 11560 University Avenue NW, Edmonton, AB T6G 1Z2, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 2G6, Canada.
| | - Ronald B Moore
- Department of Oncology, University of Alberta, 11560 University Avenue NW, Edmonton, AB T6G 1Z2, Canada; Department of Surgery, University of Alberta, 8440 - 112 Street NW, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
35
|
Bulin A, Broekgaarden M, Chaput F, Baisamy V, Garrevoet J, Busser B, Brueckner D, Youssef A, Ravanat J, Dujardin C, Motto‐Ros V, Lerouge F, Bohic S, Sancey L, Elleaume H. Radiation Dose-Enhancement Is a Potent Radiotherapeutic Effect of Rare-Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001675. [PMID: 33101867 PMCID: PMC7578894 DOI: 10.1002/advs.202001675] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/16/2020] [Indexed: 05/20/2023]
Abstract
To improve the prognosis of glioblastoma, innovative radiotherapy regimens are required to augment the effect of tolerable radiation doses while sparing surrounding tissues. In this context, nanoscintillators are emerging radiotherapeutics that down-convert X-rays into photons with energies ranging from UV to near-infrared. During radiotherapy, these scintillating properties amplify radiation-induced damage by UV-C emission or photodynamic effects. Additionally, nanoscintillators that contain high-Z elements are likely to induce another, currently unexplored effect: radiation dose-enhancement. This phenomenon stems from a higher photoelectric absorption of orthovoltage X-rays by high-Z elements compared to tissues, resulting in increased production of tissue-damaging photo- and Auger electrons. In this study, Geant4 simulations reveal that rare-earth composite LaF3:Ce nanoscintillators effectively generate photo- and Auger-electrons upon orthovoltage X-rays. 3D spatially resolved X-ray fluorescence microtomography shows that LaF3:Ce highly concentrates in microtumors and enhances radiotherapy in an X-ray energy-dependent manner. In an aggressive syngeneic model of orthotopic glioblastoma, intracerebral injection of LaF3:Ce is well tolerated and achieves complete tumor remission in 15% of the subjects receiving monochromatic synchrotron radiotherapy. This study provides unequivocal evidence for radiation dose-enhancement by nanoscintillators, eliciting a prominent radiotherapeutic effect. Altogether, nanoscintillators have invaluable properties for enhancing the focal damage of radiotherapy in glioblastoma and other radioresistant cancers.
Collapse
Affiliation(s)
- Anne‐Laure Bulin
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
| | - Mans Broekgaarden
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
| | - Frédéric Chaput
- Université de LyonÉcole Normale Supérieure de LyonCNRS UMR 5182Université Claude Bernard Lyon 1Laboratoire de ChimieLyonF69342France
| | - Victor Baisamy
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
| | - Jan Garrevoet
- Deutsches Elektronen‐Synchrotron DESYNotkestrasse 85HamburgDE‐22607Germany
| | - Benoît Busser
- Cancer Targets and Experimental TherapeuticsInstitute for Advanced BiosciencesUniversité Grenoble AlpesINSERM U1209CNRS UMR5309Allée des AlpesLa Tronche38700France
- Cancer Clinical LaboratoryGrenoble University HospitalGrenoble38700France
| | - Dennis Brueckner
- Deutsches Elektronen‐Synchrotron DESYNotkestrasse 85HamburgDE‐22607Germany
- Department PhysikUniversität HamburgLuruper Chaussee 149Hamburg22761Germany
| | - Antonia Youssef
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
- Université Grenoble AlpesCEACNRSIRIGSyMMES UMR 5819GrenobleF‐38000France
| | - Jean‐Luc Ravanat
- Université Grenoble AlpesCEACNRSIRIGSyMMES UMR 5819GrenobleF‐38000France
| | - Christophe Dujardin
- Institut Lumière MatièreUMR5306Université Claude Bernard Lyon 1CNRSVilleurbanne Cedex69622France
| | - Vincent Motto‐Ros
- Institut Lumière MatièreUMR5306Université Claude Bernard Lyon 1CNRSVilleurbanne Cedex69622France
| | - Frédéric Lerouge
- Université de LyonÉcole Normale Supérieure de LyonCNRS UMR 5182Université Claude Bernard Lyon 1Laboratoire de ChimieLyonF69342France
| | - Sylvain Bohic
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
| | - Lucie Sancey
- Cancer Targets and Experimental TherapeuticsInstitute for Advanced BiosciencesUniversité Grenoble AlpesINSERM U1209CNRS UMR5309Allée des AlpesLa Tronche38700France
| | - Hélène Elleaume
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
| |
Collapse
|
36
|
Belanova A, Chmykhalo V, Beseda D, Belousova M, Butova V, Soldatov A, Makarenko Y, Zolotukhin P. A mini-review of X-ray photodynamic therapy (XPDT) nonoagent constituents' safety and relevant design considerations. Photochem Photobiol Sci 2020; 19:1134-1144. [PMID: 32776036 DOI: 10.1039/c9pp00456d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conventional photodynamic therapy (PDT) has proved effective in the management of primary tumors and individual metastases. However, most cancer mortality arises from wide-spread multiple metastases. The latter has thus become the principal target in oncology, and X-ray induced photodynamic therapy (XPDT or PDTX) offers a great solution for adapting the PDT principle to deep tumors and scattered metastases. Developing agents capable of being excited by X-rays and emitting visible light to excite photosensitizers is based on challenging physical and chemical technologies, but there are fundamental biological limitations that are to be accounted for as well. In the present review, we have established eight major groups of safety determinants of NPs encompassing 22 parameters of clinical applicability of XPDT nanoparticulate formulations. Most, if not all, of these parameters can be accounted for and optimized during the design and development of novel XPDT nanoparticles.
Collapse
Affiliation(s)
- A Belanova
- Biomedical Innovations LLC, Russian Federation
| | - V Chmykhalo
- Southern Federal University, Russian Federation
| | - D Beseda
- Biomedical Innovations LLC, Russian Federation
| | - M Belousova
- Southern Federal University, Russian Federation
| | - V Butova
- Southern Federal University, Russian Federation
| | - A Soldatov
- Southern Federal University, Russian Federation
| | - Y Makarenko
- Rostov-on-Don Pathological-anatomical bureau No. 1, Russian Federation
| | - P Zolotukhin
- Southern Federal University, Russian Federation.
| |
Collapse
|
37
|
Gupta SK, Mao Y. Recent advances, challenges, and opportunities of inorganic nanoscintillators. FRONTIERS OF OPTOELECTRONICS 2020; 13:156-187. [PMID: 36641550 PMCID: PMC9743955 DOI: 10.1007/s12200-020-1003-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/19/2020] [Indexed: 05/11/2023]
Abstract
This review article highlights the exploration of inorganic nanoscintillators for various scientific and technological applications in the fields of radiation detection, bioimaging, and medical theranostics. Various aspects of nanoscintillators pertaining to their fundamental principles, mechanism, structure, applications are briefly discussed. The mechanisms of inorganic nanoscintillators are explained based on the fundamental principles, instrumentation involved, and associated physical and chemical phenomena, etc. Subsequently, the promise of nanoscintillators over the existing single-crystal scintillators and other types of scintillators is presented, enabling their development for multifunctional applications. The processes governing the scintillation mechanisms in nanodomains, such as surface, structure, quantum, and dielectric confinement, are explained to reveal the underlying nanoscale scintillation phenomena. Additionally, suitable examples are provided to explain these processes based on the published data. Furthermore, we attempt to explain the different types of inorganic nanoscintillators in terms of the powder nanoparticles, thin films, nanoceramics, and glasses to ensure that the effect of nanoscience in different nanoscintillator domains can be appreciated. The limitations of nanoscintillators are also highlighted in this review article. The advantages of nanostructured scintillators, including their property-driven applications, are also explained. This review article presents the considerable application potential of nanostructured scintillators with respect to important aspects as well as their physical and application significance in a concise manner.
Collapse
Affiliation(s)
- Santosh K Gupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
38
|
Chuang YC, Chu CH, Cheng SH, Liao LD, Chu TS, Chen NT, Paldino A, Hsia Y, Chen CT, Lo LW. Annealing-modulated nanoscintillators for nonconventional X-ray activation of comprehensive photodynamic effects in deep cancer theranostics. Theranostics 2020; 10:6758-6773. [PMID: 32550902 PMCID: PMC7295068 DOI: 10.7150/thno.41752] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/04/2020] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT), which involves the generation of reactive oxygen species (ROS) through interactions of a photosensitizer (PS) with light and oxygen, has been applied in oncology. Over the years, PDT techniques have been developed for the treatment of deep-seated cancers. However, (1) the tissue penetration limitation of excitation photon, (2) suppressed efficiency of PS due to multiple energy transfers, and (3) insufficient oxygen source in hypoxic tumor microenvironment still constitute major challenges facing the clinical application of PDT for achieving effective treatment. We present herein a PS-independent, ionizing radiation-induced PDT agent composed of yttrium oxide nanoscintillators core and silica shell (Y2O3:Eu@SiO2) with an annealing process. Our results revealed that annealed Y2O3:Eu@SiO2 could directly induce comprehensive photodynamic effects under X-ray irradiation without the presence of PS molecules. The crystallinity of Y2O3:Eu@SiO2 was demonstrated to enable the generation of electron-hole (e--h+) pairs in Y2O3 under ionizing irradiation, giving rise to the formation of ROS including superoxide, hydroxyl radical and singlet oxygen. In particular, combining Y2O3:Eu@SiO2 with fractionated radiation therapy increased radio-resistant tumor cell damage. Furthermore, photoacoustic imaging of tumors showed re-distribution of oxygen saturation (SO2) and reoxygenation of the hypoxia region. The results of this study support applicability of the integration of fractionated radiation therapy with Y2O3:Eu@SiO2, achieving synchronously in-depth and oxygen-insensitive X-ray PDT. Furthermore, we demonstrate Y2O3:Eu@SiO2 exhibited radioluminescence (RL) under X-ray irradiation and observed the virtually linear correlation between X-ray-induced radioluminescence (X-RL) and the Y2O3:Eu@SiO2 concentration in vivo. With the pronounced X-RL for in-vivo imaging and dosimetry, it possesses significant potential for utilization as a precision theranostics producing highly efficient X-ray PDT for deep-seated tumors.
Collapse
|
39
|
Tumor targeting vitamin B12 derivatives for X-ray induced treatment of pancreatic adenocarcinoma. Photodiagnosis Photodyn Ther 2019; 30:101637. [PMID: 31899377 DOI: 10.1016/j.pdpdt.2019.101637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND X-Ray induced phototherapy is highly sought after as it provides a deep tissue, synergistic method of treating cancers via standard-of-care radiotherapy. When this is combined with releasable chemotherapy agents, it can provide high target selectivity, with reduced off-target organ effects that limit current systemic therapies. We have recently developed a unique light-activated drug delivery system whereby the drug is conjugated to an alkylcobalamin scaffold. Alkylcobalamins are actively transported into cells by transcobalamin receptors (TCblR), which are overexpressed in a variety of cancer types. We hope to utilize this cobalamin scaffold technology for drug delivery in pancreatic adenocarcinoma (PDAC) cancer. METHODS The ability of the cobalamin scaffold to selectively target PDAC was investigated by treating mice that had MIA PaCa-2 xenografts with an alkylcobalamin labeled with the fluorophore Bodipy650 (Bodipy650-cobalamin). The mice were imaged alive and organs as well as tumors were subsequently imaged ex vivo. In addition, we examined the potential of the cobalamin scaffold to deliver drugs to orthotopic pancreas MIA PaCa-2 tumors with Bodipy650-cobalamin. We determined the light dose required for release of cargo from the cobalamin scaffold by examining the fluorescence increase of Bodipy650-cobalamin in response to red light (650 nm). Finally, we probed the ability of the cobalamin scaffold to release cargo with increasing X-ray doses from a clinical linear accelerator. RESULTS We have found that Bodipy650-cobalamin was shown to localize in MIA PaCa-2 tumors, both in flank and orthotopic models. We quantified a light dose for red light release from the cobalamin scaffold that is within normal clinical doses required for photodynamic therapy. This derivative was also activated with clinical X-ray doses from a linear accelerator. CONCLUSIONS Tumor selectivity combined with fluorescence detection demonstrates the effectiveness of the vitamin B12 scaffold as a theranostic targeting agent. The activation of this scaffold with radiation from a linear accelerator shows potential for action as radiation-induced chemotherapy.
Collapse
|
40
|
Nagi JS, Skorenko K, Bernier W, Jones WE, Doiron AL. Near Infrared-Activated Dye-Linked ZnO Nanoparticles Release Reactive Oxygen Species for Potential Use in Photodynamic Therapy. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E17. [PMID: 31861462 PMCID: PMC6982235 DOI: 10.3390/ma13010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022]
Abstract
Novel dye-linked zinc oxide nanoparticles (NPs) hold potential as photosensitizers for biomedical applications due to their excellent thermal- and photo-stability. The particles produced reactive oxygen species (ROS) upon irradiation with 850 nm near infrared (NIR) light in a concentration- and time-dependent manner. Upon irradiation, ROS detected in vitro in human umbilical vein endothelial cells (HUVEC) and human carcinoma MCF7 cells positively correlated with particle concentration and interestingly, ROS detected in MCF7 was higher than in HUVEC. Preferential cytotoxicity was also exhibited by the NPs as cell killing was higher in MCF7 than in HUVEC. In the absence of irradiation, dye-linked ZnO particles minimally affected the viability of cell (HUVEC) at low concentrations (<30 μg/mL), but viability significantly decreased at higher particle concentrations, suggesting a need for particle surface modification with poly (ethylene glycol) (PEG) for improved biocompatibility. The presence of PEG on particles after dialysis was indicated by an increase in size, an increase in zeta potential towards neutral, and spectroscopy results. Cell viability was improved in the absence of irradiation when cells were exposed to PEG-coated, dye-linked ZnO particles compared to non-surface modified particles. The present study shows that there is potential for biological application of dye-linked ZnO particles in photodynamic therapy.
Collapse
Affiliation(s)
- Jaspreet Singh Nagi
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT 05405, USA;
| | | | - William Bernier
- ChromaNanoTech LLC, Binghamton, NY 13902, USA; (K.S.); (W.B.)
- Department of Chemistry, Binghamton University (SUNY), Binghamton, NY 13902, USA;
| | - Wayne E. Jones
- Department of Chemistry, Binghamton University (SUNY), Binghamton, NY 13902, USA;
- Provost and Vice President for Academic Affairs, University of New Hampshire, Durham, NH 03824, USA
| | - Amber L. Doiron
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT 05405, USA;
| |
Collapse
|
41
|
Chaput F, Lerouge F, Bulin AL, Amans D, Odziomek M, Faure AC, Monteil M, Dozov I, Parola S, Bouquet F, Lecouvey M, Davidson P, Dujardin C. Liquid-Crystalline Suspensions of Photosensitive Paramagnetic CeF 3 Nanodiscs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16256-16265. [PMID: 31696717 DOI: 10.1021/acs.langmuir.9b02335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The design of high-performance energy-converting materials is an essential step for the development of sensors, but the production of the bulk materials currently used remains costly and difficult. Therefore, a different approach based on the self-assembly of nanoparticles has been explored. We report on the preparation by solvothermal synthesis of highly crystalline CeF3 nanodiscs. Their surface modification by bisphosphonate ligands led to stable, highly concentrated, colloidal suspensions in water. Despite the low aspect ratio of the nanodiscs (∼6), a liquid-crystalline nematic phase spontaneously appeared in these colloidal suspensions. Thanks to the paramagnetic character of the nanodiscs, the nematic phase was easily aligned by a weak (0.5 T) magnetic field, which provides a simple and convenient way of orienting all of the nanodiscs in suspension in the same direction. Moreover, the more dilute, isotropic, suspensions displayed strong (electric and magnetic) field-induced orientation of the nanodiscs (Kerr and Cotton-Mouton effects), with fast enough response times to make them suitable for use in electro-optic devices. Furthermore, an emission study showed a direct relation between the luminescence intensity and magnetic-field-induced orientation of the colloids. Finally, with their fast radiative recombination decay rates, the nanodiscs show luminescence properties that compare quite favorably with those of bulk CeF3. Therefore, these CeF3 nanodiscs are very promising building blocks for the development and processing of photosensitive materials for sensor applications.
Collapse
Affiliation(s)
- Frédéric Chaput
- Laboratoire de Chimie, CNRS UMR 5182 , Université Claude Bernard Lyon 1, Université de Lyon, Ens de Lyon , F69342 Lyon , France
| | - Frédéric Lerouge
- Laboratoire de Chimie, CNRS UMR 5182 , Université Claude Bernard Lyon 1, Université de Lyon, Ens de Lyon , F69342 Lyon , France
| | - Anne-Laure Bulin
- CNRS UMR 5306, Institut Lumière Matière , Univ Lyon, Université Claude Bernard Lyon 1 , F-69622 Villeurbanne , France
| | - David Amans
- CNRS UMR 5306, Institut Lumière Matière , Univ Lyon, Université Claude Bernard Lyon 1 , F-69622 Villeurbanne , France
| | - Mateusz Odziomek
- Laboratoire de Chimie, CNRS UMR 5182 , Université Claude Bernard Lyon 1, Université de Lyon, Ens de Lyon , F69342 Lyon , France
| | - Anne-Charlotte Faure
- Laboratoire de Chimie, CNRS UMR 5182 , Université Claude Bernard Lyon 1, Université de Lyon, Ens de Lyon , F69342 Lyon , France
| | - Maelle Monteil
- Laboratoire CSPBAT, UMR 7244, CNRS , Université Paris 13 , 74 Rue Marcel Cachin , 93017 Bobigny , France
| | - Ivan Dozov
- Laboratoire de Physique des Solides, CNRS , Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Stéphane Parola
- Laboratoire de Chimie, CNRS UMR 5182 , Université Claude Bernard Lyon 1, Université de Lyon, Ens de Lyon , F69342 Lyon , France
| | - Frédéric Bouquet
- Laboratoire de Physique des Solides, CNRS , Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Marc Lecouvey
- Laboratoire CSPBAT, UMR 7244, CNRS , Université Paris 13 , 74 Rue Marcel Cachin , 93017 Bobigny , France
| | - Patrick Davidson
- Laboratoire de Physique des Solides, CNRS , Univ. Paris-Sud, Université Paris-Saclay , 91405 Orsay Cedex, France
| | - Christophe Dujardin
- CNRS UMR 5306, Institut Lumière Matière , Univ Lyon, Université Claude Bernard Lyon 1 , F-69622 Villeurbanne , France
| |
Collapse
|
42
|
Ahmad F, Wang X, Jiang Z, Yu X, Liu X, Mao R, Chen X, Li W. Codoping Enhanced Radioluminescence of Nanoscintillators for X-ray-Activated Synergistic Cancer Therapy and Prognosis Using Metabolomics. ACS NANO 2019; 13:10419-10433. [PMID: 31430127 DOI: 10.1021/acsnano.9b04213] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Radio- and photodynamic therapies are the first line of cancer treatments but suffer from poor light penetration and less radiation accumulation in soft tissues with high radiation toxicity. Therefore, a multifunctional nanoplatform with diagnosis-assisted synergistic radio- and photodynamic therapy and tools facilitating early prognosis are urgently needed to fight the war against cancer. Further, integrating cancer therapy with untargeted metabolomic analysis would collectively offer clinical pertinence through facilitating early diagnosis and prognosis. Here, we enriched scintillation of CeF3 nanoparticles (NPs) through codoping Tb3+ and Gd3+ (CeF3:Gd3+,Tb3+) for viable clinical approach in the treatment of deep-seated tumors. The codoped CeF3:Gd3+,Tb3+ scintillating theranostic NPs were then coated with mesoporous silica, followed by loading with rose bengal (CGTS-RB) for later computed tomography (CT)- and magnetic resonance image (MRI)-guided X-ray stimulated synergistic radio- and photodynamic therapy (RT+XPDT) using low-dose, one-time X-ray irradiation. The results corroborated an efficient tumor regression with synergistic RT+XPDT relative to single RT. Global untargeted metabolome shifts highlighted the mechanism behind this efficient tumor regression using RT, and synergistic RT+XPDT treatment is due to the starvation of nonessential amino acids involved in protein and DNA synthesis and energy regulation pathways necessary for growth and progression. Our study also concluded that tumor and serum metabolites shift during disease progression and regression and serve as robust biomarkers for early assessment of disease state and prognosis. From our results, we propose that codoping is an effective and extendable technique to other materials for gaining high optical yield and multifunctionality and for use in diagnostic and therapeutic applications. Critically, the integration of multifunctional theranostic nanomedicines with metabolomics has excellent potential for the discovery of early metabolic biomarkers to aid in better clinical disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Farooq Ahmad
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Xiaoyan Wang
- Shanghai Center for Systems Biomedicine , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Zhao Jiang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Xujiang Yu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Rihua Mao
- Laboratory for Advanced Scintillation Materials & Performance , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai , 201800 , P.R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| |
Collapse
|
43
|
Zhang X, Lan B, Wang S, Gao P, Liu T, Rong J, Xiao F, Wei L, Lu H, Pang C, Fan L, Zhang W, Lu H. Low-Dose X-ray Excited Photodynamic Therapy Based on NaLuF 4:Tb 3+-Rose Bengal Nanocomposite. Bioconjug Chem 2019; 30:2191-2200. [PMID: 31344330 DOI: 10.1021/acs.bioconjchem.9b00429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
X-ray excited photodynamic therapy (X-PDT), which utilizes X-rays as the energy source and X-ray luminescent nanoparticles (XLNPs) as the transducer to excite photosensitizers (PS), resolves the penetration problem of light in traditional PDT to enable the treatment of deep-seated tumors. Nevertheless, the high X-ray dosage used in X-PDT hampers its potential applications in clinics. In this study, to alleviate the dose problem, β-NaLuF4:Tb3+ spherical nanoparticles (NPs) with ultrastrong green X-ray excited optical luminescence (XEOL) due to the less nonradiative relaxation probability and high X-ray absorption mass coefficient, which perfectly matches the absorption spectrum of a photosensitizer named rose bengal (RB), were synthesized and employed as the energy transducer for X-PDT. After covalent conjugation of NPs with RB, high Förster resonant energy transfer (FRET) efficiency up to 94.29% was achieved, leading to high production of singlet oxygen. In vivo X-PDT efficacy was evaluated by nude mice with a HepG2 tumor xenograft. With excellent biocompatibility, the synthesized NPs-RB nanocomposite showed significant antitumor efficiency up to 80 ± 12.3% with a total X-ray dose of only 0.19 Gy, demonstrating the feasibility of low-dose X-PDT in vivo for the first time. The present work provides a promising platform for X-PDT in deep-seated tumors.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- School of Biomedical Engineering , The Fourth Military Medical University , 169th Changle West Road , Xi'an , Shaanxi 710032 , China
| | - Bin Lan
- School of Biomedical Engineering , The Fourth Military Medical University , 169th Changle West Road , Xi'an , Shaanxi 710032 , China
| | - Sicheng Wang
- Department of Biomedical Engineering , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Peng Gao
- School of Biomedical Engineering , The Fourth Military Medical University , 169th Changle West Road , Xi'an , Shaanxi 710032 , China
| | - Tianshuai Liu
- School of Biomedical Engineering , The Fourth Military Medical University , 169th Changle West Road , Xi'an , Shaanxi 710032 , China
| | - Junyan Rong
- School of Biomedical Engineering , The Fourth Military Medical University , 169th Changle West Road , Xi'an , Shaanxi 710032 , China
| | - Feng Xiao
- Department of Radiation Oncology, Xijing Hospital , The Fourth Military Medical University , 127th Changle West Road , Xi'an , Shaanxi 710032 , China
| | - Lichun Wei
- Department of Radiation Oncology, Xijing Hospital , The Fourth Military Medical University , 127th Changle West Road , Xi'an , Shaanxi 710032 , China
| | - Huanyu Lu
- School of Public Health , The Fourth Military Medical University , 169th Changle West Road , Xi'an , Shaanxi 710032 , China
| | - Cui Pang
- School of Public Health , The Fourth Military Medical University , 169th Changle West Road , Xi'an , Shaanxi 710032 , China
| | - Li Fan
- School of Pharmacy , The Fourth Military Medical University , 169th Changle West Road , Xi'an , Shaanxi 710032 , China
| | - Wenli Zhang
- School of Biomedical Engineering , The Fourth Military Medical University , 169th Changle West Road , Xi'an , Shaanxi 710032 , China
| | - Hongbing Lu
- School of Biomedical Engineering , The Fourth Military Medical University , 169th Changle West Road , Xi'an , Shaanxi 710032 , China
| |
Collapse
|
44
|
Sivasubramanian M, Chuang YC, Chen NT, Lo LW. Seeing Better and Going Deeper in Cancer Nanotheranostics. Int J Mol Sci 2019; 20:E3490. [PMID: 31315232 PMCID: PMC6678689 DOI: 10.3390/ijms20143490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Biomedical imaging modalities in clinical practice have revolutionized oncology for several decades. State-of-the-art biomedical techniques allow visualizing both normal physiological and pathological architectures of the human body. The use of nanoparticles (NP) as contrast agents enabled visualization of refined contrast images with superior resolution, which assists clinicians in more accurate diagnoses and in planning appropriate therapy. These desirable features are due to the ability of NPs to carry high payloads (contrast agents or drugs), increased in vivo half-life, and disease-specific accumulation. We review the various NP-based interventions for treatments of deep-seated tumors, involving "seeing better" to precisely visualize early diagnosis and "going deeper" to activate selective therapeutics in situ.
Collapse
Affiliation(s)
- Maharajan Sivasubramanian
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Yao Chen Chuang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Nai-Tzu Chen
- Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan.
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| |
Collapse
|
45
|
Liu H, Carter PJH, Laan AC, Eelkema R, Denkova AG. Singlet Oxygen Sensor Green is not a Suitable Probe for 1O 2 in the Presence of Ionizing Radiation. Sci Rep 2019; 9:8393. [PMID: 31182744 PMCID: PMC6557857 DOI: 10.1038/s41598-019-44880-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
A great number of fluorescent probes have been developed for detecting singlet oxygen (1O2), which is considered to be one of the most effective reactive oxygen species (ROS), especially in clinical applications. The commercially available fluorescent probe Singlet Oxygen Sensor Green (SOSG) is widely used due to its reported high selectivity to 1O2. In this study, we carried out systemic experiments to determine the activation of SOSG in the presence of ionizing radiation. The results show that the SOSG probe exhibits a pronounced fluorescence increase as a function of radiation dose delivered by gamma-rays as well as X-rays, in conditions where the formation of singlet oxygen is not expected. Furthermore, scavenger tests indicate that hydroxyl radicals may be involved directly or indirectly in the activation process of SOSG although the exact mechanism remains unknown.
Collapse
Affiliation(s)
- Huanhuan Liu
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629, JB, Delft, The Netherlands.,Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Philippe J H Carter
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629, JB, Delft, The Netherlands
| | - Adrianus C Laan
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629, JB, Delft, The Netherlands
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
| | - Antonia G Denkova
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629, JB, Delft, The Netherlands.
| |
Collapse
|
46
|
Carbon-Doped TiO 2 Activated by X-Ray Irradiation for the Generation of Reactive Oxygen Species to Enhance Photodynamic Therapy in Tumor Treatment. Int J Mol Sci 2019; 20:ijms20092072. [PMID: 31035468 PMCID: PMC6540153 DOI: 10.3390/ijms20092072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Traditional photodynamic therapy (PDT) is limited by the penetration depth of visible light. Although the light source has been changed to near infrared, infrared light is unable to overcome the penetration barrier and it is only effective at the surface of the tumors. In this study, we used X-ray as a light source for deep-seated tumor treatment. A particle with a narrow band gap when exposed to soft X-rays would produce reactive oxygen species (ROS) to kill tumor cell, with less damage to the normal tissues. Anatase TiO2 has been studied as a photosensitizer in PDT. In the experiment, C was doped into the anatase lattice at an optimum atomic ratio to make the band gap narrower, which would be activated by X-ray to produce more ROS and kill tumor cells under stress. The results showed that the synthesized TiO2:C particles were identified as crystal structures of anatase. The synthesized particles could be activated effectively by soft X-rays to produce ROS, to degrade methylene blue by up to 30.4%. Once TiO2:C was activated by X-ray irradiation, the death rate of A549 cells in in vitro testing was as high as 16.57%, on day 2. In the animal study, the tumor size gradually decreased after treatment with TiO2:C and exposure to X-rays on day 0 and day 8. On day 14, the tumor declined to nearly half of its initial volume, while the tumor in the control group was twice its initial volume. After the animal was sacrificed, blood, and major organs were harvested for further analysis and examination, with data fully supporting the safety of the treatment. Based on the results of the study, we believe that TiO2:C when exposed to X-rays could overcome the limitation of penetration depth and could improve PDT effects by inhibiting tumor growth effectively and safely, in vivo.
Collapse
|
47
|
Low dose photodynamic therapy harmonizes with radiation therapy to induce beneficial effects on pancreatic heterocellular spheroids. Oncotarget 2019; 10:2625-2643. [PMID: 31080554 PMCID: PMC6499000 DOI: 10.18632/oncotarget.26780] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) has seen long standing interest as a therapy for resistant cancers, but the main Achilles’ heel for its successful clinical exploitation is the use of poorly penetrating visible light. This limitation could be overcome by using radioluminescent nanoparticles, which can be excited during radiation therapy (RT) with penetrating X-rays. When infused in tumors, X-ray activated-nanoscintillators act as internal light sources and excite nearby photosensitizers. Recent studies demonstrated that it is realistic to achieve low dose PDT with current nanoscintillators. However, as the origin of enhanced RT efficacy with nanoscintillators may have varying origins, we aimed to answer the basic question: Is a combination of low-dose PDT beneficial to the RT efficacy in clinically relevant models of cancer? Pancreatic cancer (PanCa) remains a lethal disease for which RT is part of the palliative care and for which PDT demonstrated promising results in clinical trial. We thus evaluated the combination of low-dose PDT and RT delivered in absence of nanoscintillators on various heterocellular spheroid models that recapitulate the clinical heterogeneity of PanCa. Although therapeutic effects emerged at different timepoints in each model, the RT/PDT combination uniformly achieved favorable outcomes. With RT providing stunted tumor growth while PDT drove adjuvant apoptotic and necrotic cell death, the combination produced significantly smaller and less viable PanCa spheroids. In conclusion, the beneficial RT/PDT treatment outcomes encourage the further development of nanoscinitillators for X-ray-activated PDT. Assessment of such combination treatments should encompass multiparametric and temporally-spaced assessment of treatment effects in preclinical cancer models.
Collapse
|
48
|
Rare-Earth-Doped Calcium Carbonate Exposed to X-ray Irradiation to Induce Reactive Oxygen Species for Tumor Treatment. Int J Mol Sci 2019; 20:ijms20051148. [PMID: 30845750 PMCID: PMC6429163 DOI: 10.3390/ijms20051148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022] Open
Abstract
Conventional photodynamic therapy (PDT) is limited by its penetration depth due to the photosensitizer and light source. In this study, we developed X-ray induced photodynamic therapy that applied X-ray as the light source to activate Ce-doped CaCO₃ (CaCO₃:Ce) to generate an intracellular reactive oxygen species (ROS) for killing cancer cells. The A549 cell line was used as the in vitro and in vivo model to evaluate the efficacy of X-ray-induced CaCO₃:Ce. The cell viability significantly decreased and cell cytotoxicity obviously increased with CaCO₃:Ce exposure under X-ray irradiation, which is less harmful than radiotherapy in tumor treatment. CaCO₃:Ce produced significant ROS under X-ray irradiation and promoted A549 cancer cell death. CaCO₃:Ce can enhance the efficacy of X-ray induced PDT, and tumor growth was inhibited in vivo. The blood analysis and hematoxylin and eosin stain (H & E) stain fully supported the safety of the treatment. The mechanisms underlying ROS and CO₂ generation by CaCO₃:Ce activated by X-ray irradiation to induce cell toxicity, thereby inhibiting tumor growth, is discussed. These findings and advances are of great importance in providing a novel therapeutic approach as an alternative tumor treatment.
Collapse
|
49
|
Cline B, Delahunty I, Xie J. Nanoparticles to mediate X-ray-induced photodynamic therapy and Cherenkov radiation photodynamic therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1541. [PMID: 30063116 PMCID: PMC6355363 DOI: 10.1002/wnan.1541] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) has emerged as an attractive option for cancer treatment. However, conventional PDT is activated by light that has poor tissue penetration depths, limiting its applicability in the clinic. Recently the idea of using X-ray sources to activate PDT and overcome the shallow penetration issue has garnered significant interest. This can be achieved by external beam irradiation and using a nanoparticle scintillator as transducer. Alternatively, research on exploiting Cherenkov radiation from radioisotopes to activate PDT has also begun to flourish. In either approach, the most auspicious success is achieved using nanoparticles as either a scintillator or a photosensitizer to mediate energy transfer and radical production. Both X-ray induced PDT (X-PDT) and Cherenkov radiation PDT (CR-PDT) contain a significant radiation therapy (RT) component and are essentially PDT and RT combination. Unlike the conventional combination, however, in X-PDT and CR-PDT, one energy source simultaneously activates both processes, making the combination always in synchronism and the synergy potential maximized. While still in early stage of development, X-PDT and CR-PDT address important issues in the clinic and hold great potential in translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Benjamin Cline
- Department of Chemistry, University of Georgia, Athens, Georgia
| | - Ian Delahunty
- Department of Chemistry, University of Georgia, Athens, Georgia
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| |
Collapse
|
50
|
Fan W, Tang W, Lau J, Shen Z, Xie J, Shi J, Chen X. Breaking the Depth Dependence by Nanotechnology-Enhanced X-Ray-Excited Deep Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806381. [PMID: 30698854 DOI: 10.1002/adma.201806381] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/26/2018] [Indexed: 05/12/2023]
Abstract
The advancements in nanotechnology have created multifunctional nanomaterials aimed at enhancing diagnostic accuracy and treatment efficacy for cancer. However, the ability to target deep-seated tumors remains one of the most critical challenges for certain nanomedicine applications. To this end, X-ray-excited theranostic techniques provide a means of overcoming the limits of light penetration and tissue attenuation. Herein, a comprehensive overview of the recent advances in nanotechnology-enhanced X-ray-excited imaging and therapeutic methodologies is presented, with an emphasis on the design of multifunctional nanomaterials for contrast-enhanced computed tomography (CT) imaging, X-ray-excited optical luminescence (XEOL) imaging, and X-ray-excited multimodal synchronous/synergistic therapy. The latter is based on the concurrent use of radiotherapy with chemotherapy, gas therapy, photodynamic therapy, or immunotherapy. Moreover, the featured biomedical applications of X-ray-excited deep theranostics are discussed to highlight the advantages of X-ray in high-sensitivity detection and efficient elimination of malignant tumors. Finally, key issues and technical challenges associated with this deep theranostic technology are identified, with the intention of advancing its translation into the clinic.
Collapse
Affiliation(s)
- Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|