1
|
Wong B, Bergeron A, Maznyi G, Ng K, Jirovec A, Birdi HK, Serrano D, Spinelli M, Thomson M, Taha Z, Alwithenani A, Chen A, Lorimer I, Vanderhyden B, Arulanandam R, Diallo JS. Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, sensitizes cancer cells to VSVΔ51 oncolytic virotherapy. Mol Ther 2023; 31:3176-3192. [PMID: 37766429 PMCID: PMC10638453 DOI: 10.1016/j.ymthe.2023.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical efficacy of VSVΔ51 oncolytic virotherapy has been limited by tumor resistance to viral infection, so strategies to transiently repress antiviral defenses are warranted. Pevonedistat is a first-in-class NEDD8-activating enzyme (NAE) inhibitor currently being tested in clinical trials for its antitumor potential. In this study, we demonstrate that pevonedistat sensitizes human and murine cancer cells to increase oncolytic VSVΔ51 infection, increase tumor cell death, and improve therapeutic outcomes in resistant syngeneic murine cancer models. Increased VSVΔ51 infectivity was also observed in clinical human tumor samples. We further identify the mechanism of this effect to operate via blockade of the type 1 interferon (IFN-1) response through neddylation-dependent interferon-stimulated growth factor 3 (ISGF3) repression and neddylation-independent inhibition of NF-κB nuclear translocation. Together, our results identify a role for neddylation in regulating the innate immune response and demonstrate that pevonedistat can improve the therapeutic outcomes of strategies using oncolytic virotherapy.
Collapse
Affiliation(s)
- Boaz Wong
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Anabel Bergeron
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Glib Maznyi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kristy Ng
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Anna Jirovec
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Harsimrat K Birdi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Serrano
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marcus Spinelli
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Max Thomson
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Zaid Taha
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Akram Alwithenani
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Andrew Chen
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ian Lorimer
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Barbara Vanderhyden
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rozanne Arulanandam
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
2
|
Zhao N, Ho JSY, Meng F, Zheng S, Kurland AP, Tian L, Rea-Moreno M, Song X, Seo JS, Kaniskan HÜ, Te Velthuis AJW, Tortorella D, Chen YW, Johnson JR, Jin J, Marazzi I. Generation of host-directed and virus-specific antivirals using targeted protein degradation promoted by small molecules and viral RNA mimics. Cell Host Microbe 2023; 31:1154-1169.e10. [PMID: 37339625 PMCID: PMC10528416 DOI: 10.1016/j.chom.2023.05.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
Targeted protein degradation (TPD), as exemplified by proteolysis-targeting chimera (PROTAC), is an emerging drug discovery platform. PROTAC molecules, which typically contain a target protein ligand linked to an E3 ligase ligand, recruit a target protein to the E3 ligase to induce its ubiquitination and degradation. Here, we applied PROTAC approaches to develop broad-spectrum antivirals targeting key host factors for many viruses and virus-specific antivirals targeting unique viral proteins. For host-directed antivirals, we identified a small-molecule degrader, FM-74-103, that elicits selective degradation of human GSPT1, a translation termination factor. FM-74-103-mediated GSPT1 degradation inhibits both RNA and DNA viruses. Among virus-specific antivirals, we developed viral RNA oligonucleotide-based bifunctional molecules (Destroyers). As a proof of principle, RNA mimics of viral promoter sequences were used as heterobifunctional molecules to recruit and target influenza viral polymerase for degradation. This work highlights the broad utility of TPD to rationally design and develop next-generation antivirals.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Sook Yuin Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fanye Meng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simin Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew P Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lu Tian
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martha Rea-Moreno
- Department of Otolaryngology, Master of Science in Biomedical Science Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiangyang Song
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ji-Seon Seo
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aartjan J W Te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
3
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Lince KC, DeMario VK, Yang GT, Tran RT, Nguyen DT, Sanderson JN, Pittman R, Sanchez RL. A Systematic Review of Second-Line Treatments in Antiviral Resistant Strains of HSV-1, HSV-2, and VZV. Cureus 2023; 15:e35958. [PMID: 37041924 PMCID: PMC10082683 DOI: 10.7759/cureus.35958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
Drug-resistant variants of herpes simplex viruses (HSV) have been reported that are not effectively treated with first-line antiviral agents. The objective of this study was to evaluate available literature on the possible efficacy of second-line treatments in HSV and the use of second-line treatments in HSV strains that are resistant to first-line treatments. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a final search was conducted in six databases on November 5, 2021 for all relevant literature using terms related to antiviral resistance, herpes, and HSV. Eligible manuscripts were required to report the presence of an existing or proposed second-line treatment for HSV-1, HSV-2, or varicella zoster virus (VZV); have full-text English-language access; and potentially reduce the rate of antiviral resistance. Following screening, 137 articles were included in qualitative synthesis. Of the included studies, articles that examined the relationship between viral resistance to first-line treatments and potential second-line treatments in HSV were included. The Cochrane risk-of-bias tool for randomized trials was used to assess risk of bias. Due to the heterogeneity of study designs, a meta-analysis of the studies was not performed. The dates in which accepted studies were published spanned from 2015-2021. In terms of sample characteristics, the majority (72.26%) of studies used Vero cells. When looking at the viruses on which the interventions were tested, the majority (84.67%) used HSV-1, with (34.31%) of these studies reporting testing on resistant HSV strains. Regarding the effectiveness of the proposed interventions, 91.97% were effective as potential managements for resistant strains of HSV. Of the papers reviewed, nectin in 2.19% of the reviews had efficacy as a second-line treatments in HSV, amenamevir in 2.19%, methanol extract in 2.19%, monoclonal antibodies in 1.46%, arbidol in 1.46%, siRNA swarms in 1.46%, Cucumis melo sulfated pectin in 1.46%, and components from Olea europeae in 1.46%. In addition to this griffithsin in 1.46% was effective, Morus alba L. in 1.46%, using nucleosides in 1.46%, botryosphaeran in 1.46%, monoterpenes in 1.46%, almond skin extracts in 1.46%, bortezomib in 1.46%, flavonoid compounds in 1.46%, andessential oils were effective in 1.46%, but not effective in 0.73%. The available literature reviewed consistently supports the existence and potentiality of second-line treatments for HSV strains that are resistant to first-line treatments. Immunocompromised patients have been noted to be the population most often affected by drug-resistant variants of HSV. Subsequently, we found that HSV infections in this patient population are challenging to manage clinically effectively. The goal of this systematic review is to provide additional information to patients on the potentiality of second-line treatment in HSV strains resistant to first-line treatments, especially those who are immunocompromised. All patients, whether they are immunocompromised or not, deserve to have their infections clinically managed in a manner supported by comprehensive research. This review provides necessary information about treatment options for patients with resistant HSV infections and their providers.
Collapse
Affiliation(s)
- Kimberly C Lince
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Virgil K DeMario
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - George T Yang
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rita T Tran
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Daniel T Nguyen
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Jacob N Sanderson
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rachel Pittman
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rebecca L Sanchez
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| |
Collapse
|
5
|
Le‐Trilling VTK, Banchenko S, Paydar D, Leipe PM, Binting L, Lauer S, Graziadei A, Klingen R, Gotthold C, Bürger J, Bracht T, Sitek B, Jan Lebbink R, Malyshkina A, Mielke T, Rappsilber J, Spahn CMT, Voigt S, Trilling M, Schwefel D. Structural mechanism of CRL4-instructed STAT2 degradation via a novel cytomegaloviral DCAF receptor. EMBO J 2023; 42:e112351. [PMID: 36762436 PMCID: PMC9975947 DOI: 10.15252/embj.2022112351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
Human cytomegalovirus (CMV) is a ubiquitously distributed pathogen whose rodent counterparts such as mouse and rat CMV serve as common infection models. Here, we conducted global proteome profiling of rat CMV-infected cells and uncovered a pronounced loss of the transcription factor STAT2, which is crucial for antiviral interferon signalling. Via deletion mutagenesis, we found that the viral protein E27 is required for CMV-induced STAT2 depletion. Cellular and in vitro analyses showed that E27 exploits host-cell Cullin4-RING ubiquitin ligase (CRL4) complexes to induce poly-ubiquitylation and proteasomal degradation of STAT2. Cryo-electron microscopy revealed how E27 mimics molecular surface properties of cellular CRL4 substrate receptors called DCAFs (DDB1- and Cullin4-associated factors), thereby displacing them from the catalytic core of CRL4. Moreover, structural analyses showed that E27 recruits STAT2 through a bipartite binding interface, which partially overlaps with the IRF9 binding site. Structure-based mutations in M27, the murine CMV homologue of E27, impair the interferon-suppressing capacity and virus replication in mouse models, supporting the conserved importance of DCAF mimicry for CMV immune evasion.
Collapse
Affiliation(s)
| | - Sofia Banchenko
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Darius Paydar
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
- Zentrum für KinderpsychiatrieUniversitätsklinik ZürichZürichSwitzerland
| | - Pia Madeleine Leipe
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Lukas Binting
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Simon Lauer
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Andrea Graziadei
- Bioanalytics Unit, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Robin Klingen
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Christine Gotthold
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Jörg Bürger
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Microscopy and Cryo‐Electron Microscopy Service GroupMax‐Planck‐Institute for Molecular GeneticsBerlinGermany
| | - Thilo Bracht
- Medizinisches Proteom‐CenterRuhr‐University BochumBochumGermany
- Department of Anesthesia, Intensive Care Medicine and Pain TherapyUniversity Hospital Knappschaftskrankenhaus BochumBochumGermany
| | - Barbara Sitek
- Medizinisches Proteom‐CenterRuhr‐University BochumBochumGermany
- Department of Anesthesia, Intensive Care Medicine and Pain TherapyUniversity Hospital Knappschaftskrankenhaus BochumBochumGermany
| | - Robert Jan Lebbink
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Anna Malyshkina
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Thorsten Mielke
- Microscopy and Cryo‐Electron Microscopy Service GroupMax‐Planck‐Institute for Molecular GeneticsBerlinGermany
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Christian MT Spahn
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Sebastian Voigt
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Mirko Trilling
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - David Schwefel
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
6
|
Lee BH, Tebaldi G, Pritchard SM, Nicola AV. Host Cell Neddylation Facilitates Alphaherpesvirus Entry in a Virus-Specific and Cell-Dependent Manner. Microbiol Spectr 2022; 10:e0311422. [PMID: 36173301 PMCID: PMC9603186 DOI: 10.1128/spectrum.03114-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 01/04/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) commandeers the host cell proteasome at several steps of its replication cycle, including entry. Here we demonstrate that HSV-2, pseudorabies virus (PRV), and bovine herpesvirus 1 (BoHV-1) entry are blocked by bortezomib, a proteasome inhibitor that is an FDA-approved cancer drug. Proteasome-dependent entry of HSV-1 is thought to be ubiquitin-independent. To interrogate further the proteasomal mechanism of entry, we determined the involvement of the ubiquitin-like molecule NEDD8 and the neddylation cascade in alphaherpesvirus entry and infection. MLN4924 is a small-molecule inhibitor of neddylation that binds directly to the NEDD8-activating enzyme. Cell treatment with MLN4924 inhibited plaque formation and infectivity by HSV-1, PRV, and BoHV-1 at noncytotoxic concentrations. Thus, the neddylation pathway is broadly important for alphaherpesvirus infection. However, the neddylation inhibitor had little effect on entry of the veterinary viruses but had a significant inhibitory effect on entry of HSV-1 and HSV-2 into seven different cell types. Washout experiments indicated that MLN4924's effect on viral entry was reversible. A time-of-addition assay suggested that the drug was acting on an early step in the entry process. Small interfering RNA (siRNA) knockdown of NEDD8 significantly inhibited HSV entry. In probing the neddylation-dependent step in entry, we found that MLN4924 dramatically blocked endocytic uptake of HSV from the plasma membrane by >90%. In contrast, the rate of HSV entry into cells that support direct fusion of HSV with the cell surface was unaffected by MLN4924. Interestingly, proteasome activity was less important for the endocytic internalization of HSV from the cell surface. The results suggest that the NEDD8 cascade is critical for the internalization step of HSV entry. IMPORTANCE Alphaherpesviruses are ubiquitous pathogens of humans and veterinary species that cause lifelong latent infections and significant morbidity and mortality. Host cell neddylation is important for cell homeostasis and for the infection of many viruses, including HSV-1, HSV-2, PRV, and BoHV-1. Inhibition of neddylation by a pharmacologic inhibitor or siRNA blocked HSV infection at the entry step. Specifically, the NEDD8 pathway was critically important for HSV-1 internalization from the cell surface by an endocytosis mechanism. The results expand our limited understanding of cellular processes that mediate HSV internalization. To our knowledge, this is the first demonstration of a function for the neddylation cascade in virus entry.
Collapse
Affiliation(s)
- Becky H. Lee
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Giulia Tebaldi
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Suzanne M. Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V. Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
7
|
Strang BL. Toward inhibition of human cytomegalovirus replication with compounds targeting cellular proteins. J Gen Virol 2022; 103. [PMID: 36215160 DOI: 10.1099/jgv.0.001795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antiviral therapy for human cytomegalovirus (HCMV) currently relies upon direct-acting antiviral drugs. However, it is now well known that these drugs have shortcomings, which limit their use. Here I review the identification and investigation of compounds targeting cellular proteins that have anti-HCMV activity and could supersede those anti-HCMV drugs currently in use. This includes discussion of drug repurposing, for example the use of artemisinin compounds, and discussion of new directions to identify compounds that target cellular factors in HCMV-infected cells, for example screening of kinase inhibitors. In addition, I highlight developing areas such as the use of machine learning and emphasize how interaction with fields outside virology will be critical for development of anti-HCMV compounds.
Collapse
Affiliation(s)
- Blair L Strang
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
8
|
Shen R, Lü D, Cao Z, Huang J, Zhang Y, Shen Z, Tang X. Involvement of the neddylation modification system in Bombyx mori nucleopolyhedrovirus replication. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21907. [PMID: 35396759 DOI: 10.1002/arch.21907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Neddylation is a posttranslational modification that is similar to ubiquitination, and involved in some critical biological processes, such as DNA repair, transcription regulation, and ubiquitin-proteasome pathway. Recently, it was found that neddylation inhibitor MLN4924 has potent antiviral activity against human viruses including herpes simplex virus (HSV)-1, HSV-2, and influenza viruses. Here, we report that MLN4924 could dramatically and dose-dependently inhibits the propagation, formation of budding virus (BV) and occlusion body (OB) of a lepidopteran virus-Bombyx mori nucleopolyhedrovirus (BmNPV), impaired OB assembly. In addition, the neddylation modification protein NEDD8 is colocalized with aggresome and autophagosome. Our findings suggest that inhibiting neddylation could be an antibaculovirus strategy and MLN4924 may be used as candidate drug for that purpose.
Collapse
Affiliation(s)
- Rui Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Dingding Lü
- School of Nursing, Zhenjiang College, Zhenjiang, China
| | - Zhijun Cao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jinshan Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Yiling Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Zhongyuan Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xudong Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
9
|
Functional single-cell genomics of human cytomegalovirus infection. Nat Biotechnol 2022; 40:391-401. [PMID: 34697476 DOI: 10.1038/s41587-021-01059-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022]
Abstract
Understanding how viral and host factors interact and how perturbations impact infection is the basis for designing antiviral interventions. Here we define the functional contribution of each viral and host factor involved in human cytomegalovirus infection in primary human fibroblasts through pooled CRISPR interference and nuclease screening. To determine how genetic perturbation of critical host and viral factors alters the timing, course and progression of infection, we applied Perturb-seq to record the transcriptomes of tens of thousands of CRISPR-modified single cells and found that, normally, most cells follow a stereotypical transcriptional trajectory. Perturbing critical host factors does not change the stereotypical transcriptional trajectory per se but can stall, delay or accelerate progression along the trajectory, allowing one to pinpoint the stage of infection at which host factors act. Conversely, perturbation of viral factors can create distinct, abortive trajectories. Our results reveal the roles of host and viral factors and provide a roadmap for the dissection of host-pathogen interactions.
Collapse
|
10
|
He ZX, An Q, Wei B, Zhou WJ, Wei BF, Gong YP, Zhang X, Gao G, Dong GJ, Huo JL, Zhang XH, Yang FF, Liu HM, Ma LY, Zhao W. Discovery of Potent and Selective 2-(Benzylthio)pyrimidine-based DCN1-UBC12 Inhibitors for Anticardiac Fibrotic Effects. J Med Chem 2022; 65:163-190. [PMID: 34939411 DOI: 10.1021/acs.jmedchem.1c01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DCN1, a co-E3 ligase, interacts with UBC12 and activates cullin-RING ligases (CRLs) by catalyzing cullin neddylation. Although DCN1 has been recognized as an important therapeutic target for human diseases, its role in the cardiovascular area remains unknown. Here, we first found that DCN1 was upregulated in isolated cardiac fibroblasts (CFs) treated by angiotensin (Ang) II and in mouse hearts after pressure overload. Then, structure-based optimizations for DCN1-UBC12 inhibitors were performed based on our previous work, yielding compound DN-2. DN-2 specifically targeted DCN1 at molecular and cellular levels as shown by molecular modeling studies, HTRF, cellular thermal shift and co-immunoprecipitation assays. Importantly, DN-2 effectively reversed Ang II-induced cardiac fibroblast activation, which was associated with the inhibition of cullin 3 neddylation. Our findings indicate a potentially unrecognized role of DCN1 inhibition for anticardiac fibrotic effects. DN-2 may be used as a lead compound for further development.
Collapse
Affiliation(s)
- Zhang-Xu He
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Qi An
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Bo Wei
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wen-Juan Zhou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Bing-Fei Wei
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yun-Peng Gong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xin Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ge Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Guan-Jun Dong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jin-Ling Huo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Hui Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- China Meheco Topfond Pharmaceutical Co., Zhumadian 463000, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
11
|
Barik S. Mechanisms of Viral Degradation of Cellular Signal Transducer and Activator of Transcription 2. Int J Mol Sci 2022; 23:ijms23010489. [PMID: 35008916 PMCID: PMC8745392 DOI: 10.3390/ijms23010489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Virus infection of eukaryotes triggers cellular innate immune response, a major arm of which is the type I interferon (IFN) family of cytokines. Binding of IFN to cell surface receptors triggers a signaling cascade in which the signal transducer and activator of transcription 2 (STAT2) plays a key role, ultimately leading to an antiviral state of the cell. In retaliation, many viruses counteract the immune response, often by the destruction and/or inactivation of STAT2, promoted by specific viral proteins that do not possess protease activities of their own. This review offers a summary of viral mechanisms of STAT2 subversion with emphasis on degradation. Some viruses also destroy STAT1, another major member of the STAT family, but most viruses are selective in targeting either STAT2 or STAT1. Interestingly, degradation of STAT2 by a few viruses requires the presence of both STAT proteins. Available evidence suggests a mechanism in which multiple sites and domains of STAT2 are required for engagement and degradation by a multi-subunit degradative complex, comprising viral and cellular proteins, including the ubiquitin–proteasomal system. However, the exact molecular nature of this complex and the alternative degradation mechanisms remain largely unknown, as critically presented here with prospective directions of future study.
Collapse
Affiliation(s)
- Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| |
Collapse
|
12
|
Pavelin J, Jin YH, Gratacap RL, Taggart JB, Hamilton A, Verner-Jeffreys DW, Paley RK, Rubin CJ, Bishop SC, Bron JE, Robledo D, Houston RD. The nedd-8 activating enzyme gene underlies genetic resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genomics 2021; 113:3842-3850. [PMID: 34547402 PMCID: PMC8682971 DOI: 10.1016/j.ygeno.2021.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/17/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023]
Abstract
Genetic resistance to infectious pancreatic necrosis virus (IPNV) in Atlantic salmon is a rare example of a trait where a single locus (QTL) explains almost all of the genetic variation. Genetic marker tests based on this QTL on salmon chromosome 26 have been widely applied in selective breeding to markedly reduce the incidence of the disease. In the current study, whole genome sequencing and functional annotation approaches were applied to characterise genes and variants in the QTL region. This was complemented by an analysis of differential expression between salmon fry of homozygous resistant and homozygous susceptible genotypes challenged with IPNV. These analyses pointed to the NEDD-8 activating enzyme 1 (nae1) gene as a putative functional candidate underlying the QTL effect. The role of nae1 in IPN resistance was further assessed via CRISPR-Cas9 knockout of the nae1 gene and chemical inhibition of the nae1 protein activity in Atlantic salmon cell lines, both of which resulted in highly significant reduction in productive IPNV replication. In contrast, CRISPR-Cas9 knockout of a candidate gene previously purported to be a cellular receptor for the virus (cdh1) did not have a major impact on productive IPNV replication. These results suggest that nae1 is the causative gene underlying the major QTL affecting resistance to IPNV in salmon, provide further evidence for the critical role of neddylation in host-pathogen interactions, and highlight the value in combining high-throughput genomics approaches with targeted genome editing to understand the genetic basis of disease resistance.
Collapse
Affiliation(s)
- Jon Pavelin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Remi L Gratacap
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - John B Taggart
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, FK9 4LA, UK
| | - Alastair Hamilton
- Hendrix Genetics RTC, Villa 'de Körver', Spoorstraat, 695831 CK Boxmeer, the Netherlands
| | - David W Verner-Jeffreys
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Dorset DT4 8UB, UK
| | - Richard K Paley
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Dorset DT4 8UB, UK
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Stephen C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - James E Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, FK9 4LA, UK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK.
| |
Collapse
|
13
|
Flores-Martínez YA, Le-Trilling VTK, Trilling M. Nedd8-Activating Enzyme Is a Druggable Host Dependency Factor of Human and Mouse Cytomegalovirus. Viruses 2021; 13:v13081610. [PMID: 34452475 PMCID: PMC8402636 DOI: 10.3390/v13081610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Human cytomegalovirus causes diseases in individuals with insufficient immunity. Cytomegaloviruses exploit the ubiquitin proteasome pathway to manipulate the proteome of infected cells. The proteasome degrades ubiquitinated proteins. The family of cullin RING ubiquitin ligases (CRL) regulates the stability of numerous important proteins. If the cullin within the CRL is modified with Nedd8 ("neddylated"), the CRL is enzymatically active, while CRLs lacking Nedd8 modifications are inactive. The Nedd8-activating enzyme (NAE) is indispensable for neddylation. By binding to NAE and inhibiting neddylation, the drug MLN4924 (pevonedistat) causes CRL inactivation and stabilization of CRL target proteins. We showed that MLN4924 elicits potent antiviral activity against cytomegaloviruses, suggesting that NAE might be a druggable host dependency factor (HDF). However, MLN4924 is a nucleoside analog related to AMP, and the antiviral activity of MLN4924 may have been influenced by off-target effects in addition to NAE inhibition. To test if NAE is indeed an HDF, we assessed the novel NAE inhibitor TAS4464 and observed potent antiviral activity against mouse and human cytomegalovirus. Additionally, we raised an MLN4924-resistant cell clone and showed that MLN4924 as well as TAS4464 lose their antiviral activity in these cells. Our results indicate that NAE, the neddylation process, and CRLs are druggable HDFs of cytomegaloviruses.
Collapse
|
14
|
Targeting Cul3-scaffold E3 ligase complex via KLHL substrate adaptors for cancer therapy. Pharmacol Res 2021; 169:105616. [PMID: 33872809 DOI: 10.1016/j.phrs.2021.105616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/20/2022]
Abstract
Targeted therapy has become increasingly important and indispensable in cancer therapy. Cullin3-RING ligases (CRL3) serve as essential executors for regulating protein homeostasis in cancer development, highlighting that CRL3 might be promising targets in various cancer treatment. However, how to design new targeted therapies by disrupting the function of CRL3 is poorly understood. Here, we focus on the substrate adaptors of CRL3, and carry out a systematical research on the function of Kelch-like (KLHL) family proteins. We have identified twenty-four KLHL proteins with function of tumor promotion and thirteen KLHL proteins with high clinical significance on cancer therapy. Furthermore, we have clarified the novel biological function of KLHL13 as a vital factor that contributes to malignant progression in lung cancer. Taken together, our findings reveal multiple potential therapeutical targets and provide evidence for targeting CRL3 via KLHL substrate adaptors for cancer therapy.
Collapse
|
15
|
Le-Trilling VTK, Becker T, Nachshon A, Stern-Ginossar N, Schöler L, Voigt S, Hengel H, Trilling M. The Human Cytomegalovirus pUL145 Isoforms Act as Viral DDB1-Cullin-Associated Factors to Instruct Host Protein Degradation to Impede Innate Immunity. Cell Rep 2021; 30:2248-2260.e5. [PMID: 32075763 DOI: 10.1016/j.celrep.2020.01.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/10/2019] [Accepted: 01/21/2020] [Indexed: 01/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) causes diseases in individuals with immature or compromised immunity. To evade immune control, HCMV evolved numerous antagonists targeting the interferon system at multiple levels. By comparative analysis of naturally arising variants of the most widely studied HCMV strain, AD169, and a panel of targeted mutants, we uncover the UL145 gene as indispensable for STAT2 downregulation. Ribosome profiling confirms the translation of the canonical pUL145 protein (pUL145-Long) and newly identifies a shorter isoform (pUL145-Short). Both isoforms recruit DDB1-containing ubiquitin ligases to induce proteasomal degradation of STAT2. An alanine-scanning mutagenesis discloses the DDB1 interaction motif of pUL145 that resembles the DDB1-binding interface of cellular substrate receptors of DDB1-containing ubiquitin ligases. Thus, pUL145 constitutes a viral DDB1-cullin-associated factor (vDCAF), which mimics cellular DCAFs to exploit the ubiquitin-proteasome system to impede antiviral immunity. Notably, the viral exploitation of the cullins can be targeted to restore the efficacy of the host immune response.
Collapse
Affiliation(s)
| | - Tanja Becker
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Aharon Nachshon
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Stern-Ginossar
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Lara Schöler
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Voigt
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany; Department of Pediatric Oncology/Hematology/SCT, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
16
|
Lin KM, Nightingale K, Soday L, Antrobus R, Weekes MP. Rapid Degradation Pathways of Host Proteins During HCMV Infection Revealed by Quantitative Proteomics. Front Cell Infect Microbiol 2021; 10:578259. [PMID: 33585265 PMCID: PMC7873559 DOI: 10.3389/fcimb.2020.578259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an important pathogen in immunocompromised individuals and neonates, and a paradigm for viral immune evasion. We previously developed a quantitative proteomic approach that identified 133 proteins degraded during the early phase of HCMV infection, including known and novel antiviral factors. The majority were rescued from degradation by MG132, which is known to inhibit lysosomal cathepsins in addition to the proteasome. Global definition of the precise mechanisms of host protein degradation is important both to improve our understanding of viral biology, and to inform novel antiviral therapeutic strategies. We therefore developed and optimized a multiplexed comparative proteomic analysis using the selective proteasome inhibitor bortezomib in addition to MG132, to provide a global mechanistic view of protein degradation. Of proteins rescued from degradation by MG132, 34-47 proteins were also rescued by bortezomib, suggesting both that the predominant mechanism of protein degradation employed by HCMV is via the proteasome, and that alternative pathways for degradation are nevertheless important. Our approach and data will enable improved mechanistic understanding of HCMV and other viruses, and provide a shortlist of candidate restriction factors for further analysis.
Collapse
Affiliation(s)
| | | | | | | | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Xie M, Guo H, Lou G, Yao J, Liu Y, Sun Y, Yang Z, Zheng M. Neddylation inhibitor MLN4924 has anti-HBV activity via modulating the ERK-HNF1α-C/EBPα-HNF4α axis. J Cell Mol Med 2020; 25:840-854. [PMID: 33263949 PMCID: PMC7812279 DOI: 10.1111/jcmm.16137] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major public health problem. The high levels of HBV DNA and HBsAg are positively associated with the development of secondary liver diseases, including hepatocellular carcinoma (HCC). Current treatment with nucleos(t)ide analogues mainly reduces viral DNA, but has minimal, if any, inhibitory effect on the viral antigen. Although IFN reduces both HBV DNA and HBsAg, the serious associated side effects limit its use in clinic. Thus, there is an urgent demanding for novel anti‐HBV therapy. In our study, viral parameters were determined in the supernatant of HepG2.2.15 cells, HBV‐expressing Huh7 and HepG2 cells which transfected with HBV plasmids and in the serum of HBV mouse models with hydrodynamic injection of pAAV‐HBV1.2 plasmid. RT‐qPCR and Southern blot were performed to detect 35kb mRNA and cccDNA. RT‐qPCR, Luciferase assay and Western blot were used to determine anti‐HBV effects of MLN4924 and the underlying mechanisms. We found that treatment with MLN4924, the first‐in‐class neddylation inhibitor currently in several phase II clinical trials for anti‐cancer application, effectively suppressed production of HBV DNA, HBsAg, 3.5kb HBV RNA as well as cccDNA. Mechanistically, MLN4924 blocks cullin neddylation and activates ERK to suppress the expression of several transcription factors required for HBV replication, including HNF1α, C/EBPα and HNF4α, leading to an effective blockage in the production of cccDNA and HBV antigen. Our study revealed that neddylation inhibitor MLN4924 has impressive anti‐HBV activity by inhibiting HBV replication, thus providing sound rationale for future MLN4924 clinical trial as a novel anti‐HBV therapy.
Collapse
Affiliation(s)
- Mingjie Xie
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huiting Guo
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Guohua Lou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jiping Yao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yanning Liu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Zhenggang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
18
|
Zou T, Zhang J. Diverse and pivotal roles of neddylation in metabolism and immunity. FEBS J 2020; 288:3884-3912. [PMID: 33025631 DOI: 10.1111/febs.15584] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Neddylation is one type of protein post-translational modification by conjugating a ubiquitin-like protein neural precursor cell-expressed developmentally downregulated protein 8 to substrate proteins via a cascade involving E1, E2, and E3 enzymes. The best-characterized substrates of neddylation are cullins, essential components of cullin-RING E3 ubiquitin-ligase complexes. The discovery of noncullin neddylation targets indicates that neddylation may have diverse biological functions. Indeed, neddylation has been implicated in various cellular processes including cell cycle progression, metabolism, immunity, and tumorigenesis. Here, we summarized the reported neddylation substrates and also discuss the functions of neddylation in the immune system and metabolism.
Collapse
Affiliation(s)
- Tao Zou
- Beijing Institute of Brain Sciences, China
| | | |
Collapse
|
19
|
Hyeon S, Lee MK, Kim YE, Lee GM, Ahn JH. Degradation of SAMHD1 Restriction Factor Through Cullin-Ring E3 Ligase Complexes During Human Cytomegalovirus Infection. Front Cell Infect Microbiol 2020; 10:391. [PMID: 32850489 PMCID: PMC7406573 DOI: 10.3389/fcimb.2020.00391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Sterile alpha motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) acts as a restriction factor for several RNA and DNA viruses by limiting the intracellular pool of deoxynucleoside triphosphates. Here, we investigated the regulation of SAMHD1 expression during human cytomegalovirus (HCMV) infection. SAMHD1 knockdown using shRNA increased the activity of the viral UL99 late gene promoter in human fibroblasts by 7- to 9-fold, confirming its anti-HCMV activity. We also found that the level of SAMHD1 was initially increased by HCMV infection but decreased partly at the protein level at late stages of infection. SAMHD1 loss was not observed with UV-inactivated virus and required viral DNA replication. This reduction of SAMHD1 was effectively blocked by MLN4924, an inhibitor of the Cullin-RING-E3 ligase (CRL) complexes, but not by bafilomycin A1, an inhibitor of vacuolar-type H+-ATPase. Indirect immunofluorescence assays further supported the CRL-mediated SAMHD1 loss at late stages of virus infection. Knockdown of CUL2 and to a lesser extent CUL1 using siRNA stabilized SAMHD1 in normal fibroblasts and inhibited SAMHD1 loss during virus infection. Altogether, our results demonstrate that SAMHD1 inhibits the growth of HCMV, but HCMV causes degradation of SAMHD1 at late stages of viral infection through the CRL complexes.
Collapse
Affiliation(s)
- Seokhwan Hyeon
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon-si, South Korea
| | - Myoung Kyu Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon-si, South Korea
| | - Young-Eui Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon-si, South Korea
| | - Gwang Myeong Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon-si, South Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon-si, South Korea
| |
Collapse
|
20
|
Eilbrecht M, Le-Trilling VTK, Trilling M. Mouse Cytomegalovirus M34 Encodes a Non-essential, Nuclear, Early- Late Expressed Protein Required for Efficient Viral Replication. Front Cell Infect Microbiol 2020; 10:171. [PMID: 32432049 PMCID: PMC7214618 DOI: 10.3389/fcimb.2020.00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/31/2020] [Indexed: 11/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a prototypic betaherpesvirus which causes severe manifestations in individuals with impaired or immature immunity. To investigate cytomegalovirus-induced pathogenesis and virus-specific immune responses, mouse cytomegalovirus (MCMV) infections in mice are employed as accepted small animal model. MCMV and HCMV share co-linear genomes and encode several homologous proteins. Due to the size and complexity of CMV genomes, the molecular functions of numerous cytomegaloviral gene products remain to be elucidated. While the essential nature of viral genes highlights their biological relevance, it renders functional studies particularly cumbersome by precluding experiments in the infection context. The HCMV-encoded protein pUL34 binds the HCMV genome and regulates viral gene expression (e.g., of US3). Several groups provided compelling evidence that UL34 is essential for HCMV replication. MCMV encodes the homologous protein pM34 (34% identical and 55% similar). Based on unsuccessful attempts to reconstitute M34-deficient virus from a bacterial artificial chromosome (BAC), M34 was previously classified as essential for MCMV replication. To characterize pM34 during viral infection, we engineered and analyzed an MCMV mutant expressing an HA-epitope-tagged pM34 which was expressed with early-late kinetics and localized in the nucleus. Additionally, we generated an M34-deficient (“ΔM34”) MCMV-BAC by replacing the entire M34 coding sequence by a kanamycin resistance cassette. The deletion of M34 was confirmed by Southern blot and PCR. Unexpectedly, we could reconstitute replicating ΔM34-MCMV upon transfection of the BAC DNA into mouse embryonic fibroblasts. The absence of M34 from the genome of the replicating ΔM34-MCMV was also confirmed. Accordingly, a ΔM34-MCMV, in which the kanamycin cassette was excised by frt/Flp-mediated recombination, was also replication competent. In order to corroborate the absence of pM34 protein, the M34 deletion was recapitulated on the background of M34HA, which yielded replicating virus devoid of detectable pM34HA protein. The replication of MCMVs lacking M34 was found to be 10- to 100-fold reduced as compared to wt-MCMV which might explain previous unsuccessful reconstitution attempts conducted by others. Taken together, our findings reveal that MCMV remains replication competent despite the absence of M34, enabling functional studies in the infection context.
Collapse
Affiliation(s)
- Mareike Eilbrecht
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Le-Trilling VTK, Trilling M. Ub to no good: How cytomegaloviruses exploit the ubiquitin proteasome system. Virus Res 2020; 281:197938. [PMID: 32198076 DOI: 10.1016/j.virusres.2020.197938] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous member of the Betaherpesvirinae subfamily, causing life-threatening diseases in individuals with impaired, immature, or senescent immunity. Accordingly, HIV-infected AIDS patients, transplant recipients, and congenitally infected neonates frequently suffer from symptomatic episodes of HCMV replication. Like all viruses, HCMV has a split relationship with the host proteome. Efficient virus replication can only be achieved if proteins involved in intrinsic, innate, and adaptive immune responses are sufficiently antagonized. Simultaneously, the abundance and function of proteins involved in the synthesis of chemical building blocks required for virus production, such as nucleotides, amino acids, and fatty acids, must be preserved or even enriched. The ubiquitin (Ub) proteasome system (UPS) constitutes one of the most relevant protein decay systems of eukaryotic cells. In addition to the regulation of the turn-over and abundance of thousands of proteins, the UPS also generates the majority of peptides presented by major histocompatibility complex (MHC) molecules to allow surveillance by T lymphocytes. Cytomegaloviruses exploit the UPS to regulate the abundance of viral proteins and to manipulate the host proteome in favour of viral replication and immune evasion. After summarizing the current knowledge of CMV-mediated misuse of the UPS, we discuss the evolution of viral proteins utilizing the UPS for the degradation of defined target proteins. We propose two alternative routes of adapter protein development and their mechanistic consequences.
Collapse
Affiliation(s)
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
22
|
Kathawala RJ, Espitia CM, Jones TM, Islam S, Gupta P, Zhang YK, Chen ZS, Carew JS, Nawrocki ST. ABCG2 Overexpression Contributes to Pevonedistat Resistance. Cancers (Basel) 2020; 12:E429. [PMID: 32059437 PMCID: PMC7072604 DOI: 10.3390/cancers12020429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
MLN4924 (pevonedistat) is a first-in-class NEDD8-activating enzyme (NAE) inhibitor in clinical trials for the treatment of solid tumors and hematologic malignancies. Despite the promising activity of MLN4924 observed in early trials, drug resistance has been noted in some patients. Identifying the underlying cause of treatment failure may help to better stratify patients that are most likely to benefit from this novel agent. Early preclinical studies revealed that the development of NAE mutations promotes resistance to MLN4924. However, these mutations have not been detected in patients that are relapsed/refractory to MLN4924, suggesting that other mechanisms are driving clinical resistance. To better understand the potential mechanisms of MLN4924 resistance, we generated MLN4924-resistant ovarian cancer cells. Interestingly, these cells did not develop mutations in NAE. Transcriptome analyses revealed that one of the most upregulated genes in resistant cells was ABCG2. This result was validated by quantitative real-time PCR and immunoblotting. Importantly, the sensitivity of MLN4924-resistant cells was restored by lentiviral short hairpin RNA (shRNA) targeting ABCG2. Further investigation using ABCG2-overexpressing NCI-H460/MX20 cells determined that these cells are resistant to the anticancer effects of MLN4924 and can be sensitized by co-treatment with the ABCG2 inhibitors YHO-13351 and fumitremorgin C. Finally, HEK293 models with overexpression of wild-type ABCG2 (R482) and variants (R482G and R482T) all demonstrated significant resistance to MLN4924 compared to wild-type cells. Overall, these findings define an important molecular resistance mechanism to MLN4924 and demonstrate that ABCG2 may be a useful clinical biomarker that predicts resistance to MLN4924 treatment.
Collapse
Affiliation(s)
- Rishil J. Kathawala
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (R.J.K.); (C.M.E.); (T.M.J.); (S.I.); (J.S.C.)
| | - Claudia M. Espitia
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (R.J.K.); (C.M.E.); (T.M.J.); (S.I.); (J.S.C.)
| | - Trace M. Jones
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (R.J.K.); (C.M.E.); (T.M.J.); (S.I.); (J.S.C.)
| | - Shariful Islam
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (R.J.K.); (C.M.E.); (T.M.J.); (S.I.); (J.S.C.)
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (P.G.); (Y.-K.Z.); (Z.-S.C.)
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (P.G.); (Y.-K.Z.); (Z.-S.C.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (P.G.); (Y.-K.Z.); (Z.-S.C.)
| | - Jennifer S. Carew
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (R.J.K.); (C.M.E.); (T.M.J.); (S.I.); (J.S.C.)
| | - Steffan T. Nawrocki
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (R.J.K.); (C.M.E.); (T.M.J.); (S.I.); (J.S.C.)
| |
Collapse
|
23
|
Zhang S, Sun Y. Cullin RING Ligase 5 (CRL-5): Neddylation Activation and Biological Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:261-283. [DOI: 10.1007/978-981-15-1025-0_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Becker T, Le-Trilling VTK, Trilling M. Cellular Cullin RING Ubiquitin Ligases: Druggable Host Dependency Factors of Cytomegaloviruses. Int J Mol Sci 2019; 20:E1636. [PMID: 30986950 PMCID: PMC6479302 DOI: 10.3390/ijms20071636] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that frequently causes morbidity and mortality in individuals with insufficient immunity, such as transplant recipients, AIDS patients, and congenitally infected newborns. Several antiviral drugs are approved to treat HCMV infections. However, resistant HCMV mutants can arise in patients receiving long-term therapy. Additionally, side effects and the risk to cause birth defects limit the use of currently approved antivirals against HCMV. Therefore, the identification of new drug targets is of clinical relevance. Recent work identified DNA-damage binding protein 1 (DDB1) and the family of the cellular cullin (Cul) RING ubiquitin (Ub) ligases (CRLs) as host-derived factors that are relevant for the replication of human and mouse cytomegaloviruses. The first-in-class CRL inhibitory compound Pevonedistat (also called MLN4924) is currently under investigation as an anti-tumor drug in several clinical trials. Cytomegaloviruses exploit CRLs to regulate the abundance of viral proteins, and to induce the proteasomal degradation of host restriction factors involved in innate and intrinsic immunity. Accordingly, pharmacological blockade of CRL activity diminishes viral replication in cell culture. In this review, we summarize the current knowledge concerning the relevance of DDB1 and CRLs during cytomegalovirus replication and discuss chances and drawbacks of CRL inhibitory drugs as potential antiviral treatment against HCMV.
Collapse
Affiliation(s)
- Tanja Becker
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
25
|
Megger DA, Abou-Eid S, Zülch B, Sitek B. Systematic analysis of synergistic proteome modulations in a drug combination of cisplatin and MLN4924. Mol Omics 2019; 14:450-457. [PMID: 30255909 DOI: 10.1039/c8mo00115d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemotherapeutic treatment regimens often take advantage of synergistic effects of drug combinations. Anticipating that synergistic effects on the cell biological level likely manifest on the proteome level, the analysis of proteome modulations represents an appropriate strategy to study drug combinations on a molecular level. More specifically, the detection of single proteins exhibiting synergistic abundance changes could be helpful to shed light on key molecules, which contribute in mechanisms facilitating the synergistic interaction and therefore represent potential targets for specific therapeutic approaches. In the reported study we aimed to provide evidence for this assumption and investigated the drug combination of cisplatin and the neddylation inhibitor MLN4924 in HCT-116 cells via cell biological analyses and mass spectrometry-based quantitative proteomics. From 1789 proteins quantified with two unique peptides, activated RNA polymerase II transcriptional coactivator p15 (SUB1) was highlighted as the most synergistically regulated protein using a synergistic scoring approach. Western blotting and analyses of cellular processes associated with this protein (DNA damage, oxidative stress and apoptosis) revealed supporting evidence for the synergistic regulation. Whereas the distinct role of SUB1 in the investigated drug combination needs to be elucidated in future studies, the presented results demonstrated the benefit and feasibility of synergistic scoring of proteome alterations to highlight proteins that likely contribute to the underlying molecular mechanisms of synergistic effects. Data are available via ProteomeXchange with identifier PXD009185.
Collapse
Affiliation(s)
- Dominik Andre Megger
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | | | | | | |
Collapse
|
26
|
Landsberg CD, Megger DA, Hotter D, Rückborn MU, Eilbrecht M, Rashidi-Alavijeh J, Howe S, Heinrichs S, Sauter D, Sitek B, Le-Trilling VTK, Trilling M. A Mass Spectrometry-Based Profiling of Interactomes of Viral DDB1- and Cullin Ubiquitin Ligase-Binding Proteins Reveals NF-κB Inhibitory Activity of the HIV-2-Encoded Vpx. Front Immunol 2018; 9:2978. [PMID: 30619335 PMCID: PMC6305766 DOI: 10.3389/fimmu.2018.02978] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
Viruses and hosts are situated in a molecular arms race. To avoid morbidity and mortality, hosts evolved antiviral restriction factors. These restriction factors exert selection pressure on the viruses and drive viral evolution toward increasingly efficient immune antagonists. Numerous viruses exploit cellular DNA damage-binding protein 1 (DDB1)-containing Cullin RocA ubiquitin ligases (CRLs) to induce the ubiquitination and subsequent proteasomal degradation of antiviral factors expressed by their hosts. To establish a comprehensive understanding of the underlying protein interaction networks, we performed immuno-affinity precipitations for a panel of DDB1-interacting proteins derived from viruses such as mouse cytomegalovirus (MCMV, Murid herpesvirus [MuHV] 1), rat cytomegalovirus Maastricht MuHV2, rat cytomegalovirus English MuHV8, human cytomegalovirus (HCMV), hepatitis B virus (HBV), and human immunodeficiency virus (HIV). Cellular interaction partners were identified and quantified by mass spectrometry (MS) and validated by classical biochemistry. The comparative approach enabled us to separate unspecific interactions from specific binding partners and revealed remarkable differences in the strength of interaction with DDB1. Our analysis confirmed several previously described interactions like the interaction of the MCMV-encoded interferon antagonist pM27 with STAT2. We extended known interactions to paralogous proteins like the interaction of the HBV-encoded HBx with different Spindlin proteins and documented interactions for the first time, which explain functional data like the interaction of the HIV-2-encoded Vpr with Bax. Additionally, several novel interactions were identified, such as the association of the HIV-2-encoded Vpx with the transcription factor RelA (also called p65). For the latter interaction, we documented a functional relevance in antagonizing NF-κB-driven gene expression. The mutation of the DDB1 binding interface of Vpx significantly impaired NF-κB inhibition, indicating that Vpx counteracts NF-κB signaling by a DDB1- and CRL-dependent mechanism. In summary, our findings improve the understanding of how viral pathogens hijack cellular DDB1 and CRLs to ensure efficient replication despite the expression of host restriction factors.
Collapse
Affiliation(s)
- Christine D Landsberg
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dominik A Megger
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Medical Proteome-Center, Ruhr-University Bochum, Bochum, Germany
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Meike U Rückborn
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mareike Eilbrecht
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jassin Rashidi-Alavijeh
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Howe
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Barbara Sitek
- Medical Proteome-Center, Ruhr-University Bochum, Bochum, Germany
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
27
|
Dal Negro RW, Turco P, Povero M. Cost of influenza and influenza-like syndromes (I-LSs) in Italy: Results of a cross-sectional telephone survey on a representative sample of general population. Respir Med 2018; 141:144-149. [PMID: 30053960 DOI: 10.1016/j.rmed.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/21/2018] [Accepted: 07/02/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Influenza and Influenza-like syndromes (I-LSs) are very common events in general practice, and their relevance is frequently underestimated. Aim of the study was to assess the economic impact of influenza and Influenza-like syndromes (I-LSs) in the Italian general population by using real-world data from a retrospective database. METHODS A cross-sectional survey via Computer Assisted Telephone Interview (CATI) was carried out by using a specific questionnaire which is able to assess the rate of infectious episodes, together with subject's behavior in case of influenza or I-LSs, and prescribed therapy. Collected data were statistically analyzed to calculate the economic impact of influenza and I-LSs episodes according to both the National Health System Perspective (NHS-P) and the Italian Families Perspective (S-P). The components of cost were: influenza vaccination, used drugs, General Practitioner (GP) visits, Emergency Room (ER) visits, hospitalizations, and productivity loss. RESULTS According to the NHS-P, the annual cost for managing influenza or I-LSs amounted to € 60.24, corresponding to € 38.71 per episode. About 72% of the cost was due to GP/ER visits and hospitalization; 22% to drugs, and 6% to vaccination. In the IF-P, the annual cost increased to € 249.70 (€ 140.33 per episode) and almost 90% of the cost was related to workdays lost, while only 11% and 1.3% were due to drugs and vaccination, respectively. Annual cost was highly related to the mean duration of influenza or I-LSs episodes in both perspectives (€ 111─388 in IF-P and € 56─68 in NHS-P). Furthermore, the number of workdays lost due to these episodes showed a significant impact on the overall cost (€ 195─304) only in the NHS-P. CONCLUSIONS Influenza and I-LSs have a not negligible economic impact, both for the NHS and for the society. Resource consumption is considerable in the NHS-P, while the productivity loss due to people absenteeism causes the most relevant impact in the IF-P.
Collapse
Affiliation(s)
- R W Dal Negro
- National Centre for Respiratory Pharmacoeconomics and Pharmacoepidemiology, Verona, Italy
| | - P Turco
- Research & Clinical Governance, Verona, Italy
| | - M Povero
- AdRes Health Economics and Outcome Research, Torino, Italy.
| |
Collapse
|
28
|
STAT2-Dependent Immune Responses Ensure Host Survival despite the Presence of a Potent Viral Antagonist. J Virol 2018; 92:JVI.00296-18. [PMID: 29743368 PMCID: PMC6026732 DOI: 10.1128/jvi.00296-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/04/2018] [Indexed: 01/12/2023] Open
Abstract
A pathogen encounter induces interferons, which signal via Janus kinases and STAT transcription factors to establish an antiviral state. However, the host and pathogens are situated in a continuous arms race which shapes host evolution toward optimized immune responses and the pathogens toward enhanced immune-evasive properties. Mouse cytomegalovirus (MCMV) counteracts interferon responses by pM27-mediated degradation of STAT2, which directly affects the signaling of type I as well as type III interferons. Using MCMV mutants lacking M27 and mice lacking STAT2, we studied the opposing relationship between antiviral activities and viral antagonism in a natural host-pathogen pair in vitro and in vivo In contrast to wild-type (wt) MCMV, ΔM27 mutant MCMV was efficiently cleared from all organs within a few days in BALB/c, C57BL/6, and 129 mice, highlighting the general importance of STAT2 antagonism for MCMV replication. Despite this effective and relevant STAT2 antagonism, wt and STAT2-deficient mice exhibited fundamentally different susceptibilities to MCMV infections. MCMV replication was increased in all assessed organs (e.g., liver, spleen, lungs, and salivary glands) of STAT2-deficient mice, resulting in mortality during the first week after infection. Taken together, the results of our study reveal the importance of cytomegaloviral interferon antagonism for viral replication as well as a pivotal role of the remaining STAT2 activity for host survival. This mutual influence establishes a stable evolutionary standoff situation with fatal consequences when the equilibrium is disturbed.IMPORTANCE The host limits viral replication by the use of interferons (IFNs), which signal via STAT proteins. Several viruses evolved antagonists targeting STATs to antagonize IFNs (e.g., cytomegaloviruses, Zika virus, dengue virus, and several paramyxoviruses). We analyzed infections caused by MCMV expressing or lacking the STAT2 antagonist pM27 in STAT2-deficient and control mice to evaluate its importance for the host and the virus in vitro and in vivo The inability to counteract STAT2 directly translates into exaggerated IFN susceptibility in vitro and pronounced attenuation in vivo Thus, the antiviral activity mediated by IFNs via STAT2-dependent signaling drove the development of a potent MCMV-encoded STAT2 antagonist which became indispensable for efficient virus replication and spread to organs required for dissemination. Despite this clear impact of viral STAT2 antagonism, the host critically required the remaining STAT2 activity to prevent overt disease and mortality upon MCMV infection. Our findings highlight a remarkably delicate balance between host and virus.
Collapse
|
29
|
Dal Negro RW, Zanasi A, Turco P, Povero M. Influenza and influenza-like syndromes: the subjects' beliefs, the attitude to prevention and treatment, and the impact in Italian general population. Multidiscip Respir Med 2018. [PMID: 29527305 PMCID: PMC5838986 DOI: 10.1186/s40248-018-0119-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Influenza and influenza-like syndromes (I-LSs) are infectious diseases occurring on a seasonal basis which can lead to upper (URTI) and lower respiratory tract illness (LRTI) of different severity. The approach to these disorders is unfortunately not uniform. Aim of the study was to investigate real-life people beliefs, the attitude to their prevention and treatment, and their impact in general population. Methods A cross-sectional survey via Computer Assisted Telephone Interview (CATI) was carried out using a specific questionnaire investigating influenza episode rates, subjects behavior in case of influenza and I-LSs, and prescribed therapy. Results 1,202 subjects completed the questionnaire: median age was 46, 49% male, 20% active smokers. 57% of respondents experienced at least one episode of influenza or I-LS in the previous 12 months; episodes were usually home-managed, shorter than 2 weeks and more frequent in fall and winter (73% of the total). GP resulted the first health-care option (56%); almost 3% of respondents referred to the emergency room, and hospitalization occurred in 1%. Mucolytics resulted the most prescribed drugs (55%) followed by antibiotics and aerosol therapy (37-38%). Even if more than 70% of subjects considered vaccination essential, only 14% received influenza vaccination yearly and almost 60% had never received vaccination. Approximately 36% of respondents regarded homeopathy (namely Oscillococcinum) as an helpful alternative because of perceived as safer. Conclusions Seasonal prevalence of I-LSs and influenza partially overlap. As virus identification is not a common procedure in daily practice, only a clinical discrimination is possible. Antibiotic prescription is still too high and largely inappropriate. Influenza vaccination is strongly encouraged, but different strategies are also used. Other approaches are receiving increasing attention in general population, and subjects' willingness to spend out-of-pocket for effective remedies is also increasing. The discrepancy between subjects' beliefs and health care actions likely reflects the insufficiency of institutional preventive strategies. In general, the approach to influenza and I-LSs appear variable and highly dependent of subjects' and their GPs' cultural beliefs.
Collapse
Affiliation(s)
- Roberto W Dal Negro
- National Centre for Respiratory Pharmacoeconomics & Pharmacoepidemiology, CESFAR, Verona, Italy
| | | | - Paola Turco
- Research & Clinical Governance, Verona, Italy
| | | |
Collapse
|
30
|
Sun H, Yao W, Wang K, Qian Y, Chen H, Jung YS. Inhibition of neddylation pathway represses influenza virus replication and pro-inflammatory responses. Virology 2018; 514:230-239. [DOI: 10.1016/j.virol.2017.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023]
|
31
|
Han K, Zhang J. Roles of neddylation against viral infections. Cell Mol Immunol 2017; 15:292-294. [PMID: 29176748 DOI: 10.1038/cmi.2017.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Kun Han
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
32
|
Li M, Zhang D, Zhu M, Shen Y, Wei W, Ying S, Korner H, Li J. Roles of SAMHD1 in antiviral defense, autoimmunity and cancer. Rev Med Virol 2017; 27. [PMID: 28444859 DOI: 10.1002/rmv.1931] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/26/2017] [Accepted: 03/13/2017] [Indexed: 01/02/2023]
Abstract
The enzyme, sterile α motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1) diminishes infection of human immunodeficiency virus type 1 (HIV-1) by hydrolyzing intracellular deoxynucleotide triphosphates (dNTPs) in myeloid cells and resting CD4+ T cells. This dNTP degradation reduces the dNTP concentration to a level insufficient for viral cDNA synthesis, thereby inhibiting retroviral replication. This antiviral enzymatic activity can be inhibited by viral protein X (Vpx). The HIV-2/SIV Vpx causes degradation of SAMHD1, thus interfering with the SAMHD1-mediated restriction of retroviral replication. Recently, SAMHD1 has been suggested to restrict HIV-1 infection by directly digesting genomic HIV-1 RNA through a still controversial RNase activity. Here, we summarize the current knowledge about structure, antiviral mechanisms, intracellular localization, interferon-regulated expression of SAMHD1. We also describe SAMHD1-deficient animal models and an antiviral drug on the basis of disrupting proteasomal degradation of SAMHD1. In addition, the possible roles of SAMHD1 in regulating innate immune sensing, Aicardi-Goutières syndrome and cancer are discussed in this review.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Dong Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China.,School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Mengying Zhu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Yuxian Shen
- School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui Province, PR China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China.,School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Heinrich Korner
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui Province, PR China.,Menzies Institute for Medical Research Tasmania, Hobart, Tasmania, Australia
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, PR China
| |
Collapse
|
33
|
Le-Trilling VTK, Trilling M. Mouse newborn cells allow highly productive mouse cytomegalovirus replication, constituting a novel convenient primary cell culture system. PLoS One 2017; 12:e0174695. [PMID: 28339479 PMCID: PMC5365124 DOI: 10.1371/journal.pone.0174695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Mammalian cell culture is indispensable for most aspects of current biomedical research. Immortalized cell lines are very convenient, but transforming principles (e.g. oncogenic viruses or their oncogenes) can heavily influence the experimental outcome. Primary cells do not share this apparent disadvantage but are more laborious to generate. Certain viruses (e.g. mouse cytomegalovirus) do not replicate efficiently in most transformed cell lines. In the past, such viruses have been routinely propagated on primary mouse embryonic fibroblasts (MEF) established around day 17 (d17) of gestation. According to new regulations of the European Union, experiments using gravid mammals and/or their embryos in the last trimester (>d14 in the case of mice) of gestation do require explicit permission of the local authorities responsible for animal care and use. Applying for such permission is time-consuming and often inflexible. Embryonic fibroblasts could also be produced at earlier time points of pregnancy from younger and smaller embryos. Obviously, this approach consumes more pregnant mice and embryos. Newborn mice are larger thus yielding more cells per sacrificed animal and the new Directive (2010/63/EU) excludes the killing of animals solely for the use of their organs or tissues. We established a convenient protocol to generate adherent mouse newborn cells (MNC). A direct comparison of MNC with MEF revealed that MNC fully recapitulate all tested aspects of a broad panel of virological parameters (plaque size, final titers, viral replication kinetics, viral gene expression, drug and interferon susceptibility as well as species specificity). The herein described approach allows researchers the legal use of primary cells and contributes to the 3R (replace, reduce, refine) guiding principles-especially the 'reduce' aspect-for the use of animals in scientific research. Additionally, it offers the option to directly compare in vitro and in vivo experiments when MNC are generated from littermates of animals included in the in vivo experiments.
Collapse
Affiliation(s)
- Vu Thuy Khanh Le-Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail: (MT); (VTKL-T)
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail: (MT); (VTKL-T)
| |
Collapse
|
34
|
Megger DA, Rosowski K, Radunsky C, Kösters J, Sitek B, Müller J. Structurally related hydrazone-based metal complexes with different antitumor activities variably induce apoptotic cell death. Dalton Trans 2017; 46:4759-4767. [DOI: 10.1039/c6dt04613d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three new metal complexes bearing a tridentate hydrazone-based ligand were synthesized and structurally characterized. Depending on the metal ion, the complexes show remarkably different antitumor activities.
Collapse
Affiliation(s)
- Dominik A. Megger
- Medizinisches Proteom-Center
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Kristin Rosowski
- Medizinisches Proteom-Center
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Christian Radunsky
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|
35
|
ARID3B: a Novel Regulator of the Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycle. J Virol 2016; 90:9543-55. [PMID: 27512077 PMCID: PMC5044832 DOI: 10.1128/jvi.03262-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 07/18/2016] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of commonly fatal malignancies of immunocompromised individuals, including primary effusion lymphoma (PEL) and Kaposi's sarcoma (KS). A hallmark of all herpesviruses is their biphasic life cycle—viral latency and the productive lytic cycle—and it is well established that reactivation of the KSHV lytic cycle is associated with KS pathogenesis. Therefore, a thorough appreciation of the mechanisms that govern reactivation is required to better understand disease progression. The viral protein replication and transcription activator (RTA) is the KSHV lytic switch protein due to its ability to drive the expression of various lytic genes, leading to reactivation of the entire lytic cycle. While the mechanisms for activating lytic gene expression have received much attention, how RTA impacts cellular function is less well understood. To address this, we developed a cell line with doxycycline-inducible RTA expression and applied stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative proteomics. Using this methodology, we have identified a novel cellular protein (AT-rich interacting domain containing 3B [ARID3B]) whose expression was enhanced by RTA and that relocalized to replication compartments upon lytic reactivation. We also show that small interfering RNA (siRNA) knockdown or overexpression of ARID3B led to an enhancement or inhibition of lytic reactivation, respectively. Furthermore, DNA affinity and chromatin immunoprecipitation assays demonstrated that ARID3B specifically interacts with A/T-rich elements in the KSHV origin of lytic replication (oriLyt), and this was dependent on lytic cycle reactivation. Therefore, we have identified a novel cellular protein whose expression is enhanced by KSHV RTA with the ability to inhibit KSHV reactivation.
IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of fatal malignancies of immunocompromised individuals, including Kaposi's sarcoma (KS). Herpesviruses are able to establish a latent infection, in which they escape immune detection by restricting viral gene expression. Importantly, however, reactivation of productive viral replication (the lytic cycle) is necessary for the pathogenesis of KS. Therefore, it is important that we comprehensively understand the mechanisms that govern lytic reactivation, to better understand disease progression. In this study, we have identified a novel cellular protein (AT-rich interacting domain protein 3B [ARID3B]) that we show is able to temper lytic reactivation. We showed that the master lytic switch protein, RTA, enhanced ARID3B levels, which then interacted with viral DNA in a lytic cycle-dependent manner. Therefore, we have added a new factor to the list of cellular proteins that regulate the KSHV lytic cycle, which has implications for our understanding of KSHV biology.
Collapse
|