1
|
Pala F, Notarangelo LD, Lionakis MS. Thymic inborn errors of immunity. J Allergy Clin Immunol 2024:S0091-6749(24)01066-2. [PMID: 39428079 DOI: 10.1016/j.jaci.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
The thymus is crucial for optimal T-cell development by facilitating the generation and selection of a diverse repertoire of T cells that can recognize foreign antigens while promoting tolerance to self-antigens. A number of inborn errors of immunity causing complete or partial defects in thymic development (athymia) and/or impaired thymic function have been increasingly recognized that manifest clinically with a combination of life-threatening infections, severe multiorgan autoimmunity, and/or cardiac, craniofacial, ectodermal, and endocrine abnormalities. The introduction of newborn screening programs and the advent of thymic transplantation show promise for early detection and improving the outcomes of patients with certain thymic inborn errors of immunity. We discuss our current understanding of the genetics, immunopathogenesis, diagnosis, and treatment of inborn errors of immunity that impair thymic development and/or function.
Collapse
Affiliation(s)
- Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
2
|
Arango-Franco CA, Ogishi M, Unger S, Delmonte OM, Orrego JC, Yatim A, Velasquez-Lopera MM, Zea-Vera AF, Bohlen J, Chbihi M, Fayand A, Sánchez JP, Rojas J, Seeleuthner Y, Le Voyer T, Philippot Q, Payne KJ, Gervais A, Erazo-Borrás LV, Correa-Londoño LA, Cederholm A, Gallón-Duque A, Goncalves P, Doisne JM, Horev L, Charmeteau-de Muylder B, Álvarez JÁ, Arboleda DM, Pérez-Zapata L, Vásquez-Echeverri E, Moncada-Vélez M, López JA, Caicedo Y, Palterer B, Patiño PJ, Montoya CJ, Chaldebas M, Zhang P, Nguyen T, Ma CS, Jeljeli M, Alzate JF, Cabarcas F, Khan T, Rinchai D, Prétet JL, Boisson B, Marr N, Ibrahim R, Molho-Pessach V, Boisson-Dupuis S, Kiritsi D, Barata JT, Landegren N, Neven B, Abel L, Lisco A, Béziat V, Jouanguy E, Bustamante J, Di Santo JP, Tangye SG, Notarangelo LD, Cheynier R, Natsuga K, Arias AA, Franco JL, Warnatz K, Casanova JL, Puel A. IL-7-dependent and -independent lineages of IL-7R-dependent human T cells. J Clin Invest 2024; 134:e180251. [PMID: 39352394 PMCID: PMC11444196 DOI: 10.1172/jci180251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
Infants with biallelic IL7R loss-of-function variants have severe combined immune deficiency (SCID) characterized by the absence of autologous T lymphocytes, but normal counts of circulating B and NK cells (T-B+NK+ SCID). We report 6 adults (aged 22 to 59 years) from 4 kindreds and 3 ancestries (Colombian, Israeli Arab, Japanese) carrying homozygous IL7 loss-of-function variants resulting in combined immunodeficiency (CID). Deep immunophenotyping revealed relatively normal counts and/or proportions of myeloid, B, NK, and innate lymphoid cells. By contrast, the patients had profound T cell lymphopenia, with low proportions of innate-like adaptive mucosal-associated invariant T and invariant NK T cells. They also had low blood counts of T cell receptor (TCR) excision circles, recent thymic emigrant T cells and naive CD4+ T cells, and low overall TCR repertoire diversity, collectively indicating impaired thymic output. The proportions of effector memory CD4+ and CD8+ T cells were high, indicating IL-7-independent homeostatic T cell proliferation in the periphery. Intriguingly, the proportions of other T cell subsets, including TCRγδ+ T cells and some TCRαβ+ T cell subsets (including Th1, Tfh, and Treg) were little affected. Peripheral CD4+ T cells displayed poor proliferation, but normal cytokine production upon stimulation with mitogens in vitro. Thus, inherited IL-7 deficiency impairs T cell development less severely and in a more subset-specific manner than IL-7R deficiency. These findings suggest that another IL-7R-binding cytokine, possibly thymic stromal lymphopoietin, governs an IL-7-independent pathway of human T cell development.
Collapse
Affiliation(s)
- Carlos A Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Susanne Unger
- Department of Rheumatology and Clinical Immunology and
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Julio César Orrego
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Ahmad Yatim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Margarita M Velasquez-Lopera
- Sección de Dermatología, Facultad de Medicina, Universidad de Antioquia, Centro de Investigaciones Dermatológicas (CIDERM), Medellín, Antioquia, Colombia
| | - Andrés F Zea-Vera
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
- Clinical Immunology Clinic, Hospital Universitario del Valle, Cali, Colombia
- Microbiology Department, Universidad del Valle, Cali, Colombia
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Marwa Chbihi
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Immunology, Hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Fayand
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Juan Pablo Sánchez
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Microbiology School, University of Antioquia UdeA, Medellín, Colombia
| | - Julian Rojas
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Microbiology School, University of Antioquia UdeA, Medellín, Colombia
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Kathryn J Payne
- Department of Rheumatology and Clinical Immunology and
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Lucia V Erazo-Borrás
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Luis A Correa-Londoño
- Sección de Dermatología, Facultad de Medicina, Universidad de Antioquia, Centro de Investigaciones Dermatológicas (CIDERM), Medellín, Antioquia, Colombia
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alejandro Gallón-Duque
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Pedro Goncalves
- Innate Immunity Unit, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - Liran Horev
- Faculty of Medicine, Hebrew University of Jerusalem, Pediatric Dermatology Service, Department of Dermatology, Hadassah Medical Center, Jerusalem, Israel
- Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
| | | | - Jesús Á Álvarez
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Diana M Arboleda
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Lizet Pérez-Zapata
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Estefanía Vásquez-Echeverri
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Marcela Moncada-Vélez
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Juan A López
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Microbiology School, University of Antioquia UdeA, Medellín, Colombia
| | | | - Boaz Palterer
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Pablo J Patiño
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Carlos J Montoya
- School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Matthieu Chaldebas
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Peng Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Mohamed Jeljeli
- Cochin University Hospital, Biological Immunology Unit, AP-HP, Paris, France
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica CNSG, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Felipe Cabarcas
- Centro Nacional de Secuenciación Genómica CNSG, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Taushif Khan
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Jean-Luc Prétet
- Université de Franche-Comté, CNRS, Chrono-environnement & CHU Besançon, Centre National de Référence Papillomavirus, F-25000 Besançon, France
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ruba Ibrahim
- Faculty of Medicine, Hebrew University of Jerusalem, Pediatric Dermatology Service, Department of Dermatology, Hadassah Medical Center, Jerusalem, Israel
| | - Vered Molho-Pessach
- Faculty of Medicine, Hebrew University of Jerusalem, Pediatric Dermatology Service, Department of Dermatology, Hadassah Medical Center, Jerusalem, Israel
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Dimitra Kiritsi
- Department of Dermatology, University Medical Center of Freiburg, Freiburg, Germany
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Centre for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Bénédicte Neven
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Immunology, Hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Rémi Cheynier
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate of Medicine, Hokkaido University, Sapporo, Japan
| | - Andrés A Arias
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Microbiology School, University of Antioquia UdeA, Medellín, Colombia
| | - José Luis Franco
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology and
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| |
Collapse
|
3
|
Fernandes SG, Ferreira LGA, Benham AM, Avellar MCW. Epididymal mRNA expression profiles for the protein disulfide isomerase gene family: Modulation by development and androgens. Andrology 2024. [PMID: 39087751 DOI: 10.1111/andr.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The endoplasmic reticulum (ER) is the central hub for protein quality control, where the protein disulfide isomerases (PDIs), encoded by at least 21 genes, play a pivotal role. These multifunctional proteins contribute to disulfide bond formation, proper folding, and protein modifications, and may act as hormone-binding proteins (e.g., steroids), influencing hormone biology. The interplay between ER proteostasis, PDIs, and epididymis-a crucial site for sperm maturation-remains largely understudied. OBJECTIVES This study characterizes transcriptional signatures of Pdi genes in the epididymis. MATERIAL AND METHODS Transcriptional profiles of selected Pdi genes were assessed in adult Wistar rat tissues, and epididymis under different experimental conditions (developmental stages, surgical castration, and efferent ductules ligation [EDL]). In silico bioinformatic analyses identified expression trends of this gene family in human epididymal segments. RESULTS P4hb, Pdia3, Pdia5, Pdia6, Erp44, Erp29, and Casq1 transcripts were detected in both reproductive and non-reproductive tissues, while Casq2 exhibited higher abundance in vas deferens, prostate, and heart. Pdilt, highly expressed in testis, and Pdia2, highly expressed in heart, showed minimal mRNA levels in the epididymis. In the mesonephric duct, epididymal embryonic precursor, P4hb, Pdia3, Pdia5, Pdia6, and Erp29 mRNAs were found at gestational day (GD) 17.5. Except for Erp29, which remained stable, these Pdi transcript levels increased from GD17.5 to GD20.5, when epididymal morphogenesis occurs, and were maintained to varying degrees in the epididymis during postnatal development. Surgical castration downregulated P4hb, Pdia3, Pdia5, Pdia6, Pdilt and Erp29 transcripts, an effect reversed by testosterone replacement. Conversely, transcript levels remained unaffected by EDL, except P4hb, which was reduced in caput epididymis. All 21 PDI genes exhibited diverse transcriptional profiles across the human epididymis. DISCUSSION AND CONCLUSION The findings lay the foundations to explore Pdi genes in epididymal biology. As a considerable proportion of male infertility cases are idiopathic, targeting hormonal regulation of protein quality control in epididymis represents a route to address male infertility and advance therapeutic interventions in this domain.
Collapse
Affiliation(s)
- Samuel G Fernandes
- Laboratory of Molecular, Endocrine and Reproductive Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | - Lucas G A Ferreira
- Laboratory of Molecular, Endocrine and Reproductive Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | - Adam M Benham
- Department of Biosciences, Durham University, Durham, UK
| | - Maria Christina W Avellar
- Laboratory of Molecular, Endocrine and Reproductive Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| |
Collapse
|
4
|
Miller CN, Waterfield MR, Gardner JM, Anderson MS. Aire in Autoimmunity. Annu Rev Immunol 2024; 42:427-53. [PMID: 38360547 DOI: 10.1146/annurev-immunol-090222-101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.
Collapse
Affiliation(s)
- Corey N Miller
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| | - Michael R Waterfield
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - James M Gardner
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Surgery, University of California, San Francisco, California, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
5
|
Hetemäki I, Sarkkinen J, Heikkilä N, Drechsel K, Mäyränpää MI, Färkkilä A, Laakso S, Mäkitie O, Arstila TP, Kekäläinen E. Dysregulated germinal center reaction with expanded T follicular helper cells in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy lymph nodes. J Allergy Clin Immunol 2024; 153:1445-1455. [PMID: 38128835 DOI: 10.1016/j.jaci.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, also called APS-1) is an inborn error of immunity with clear signs of B-cell autoimmunity such as neutralizing anti-IFN antibodies. In APECED, mutations in the AIRE gene impair thymic negative selection of T cells. The resulting T-cell alterations may then cause dysregulation of B-cell responses. However, no analysis of interactions of T and B cells in the germinal centers (GCs) in patients' secondary lymphatic tissues has been reported. OBJECTIVE This study examined the relationship between B cells and follicular T helper cells (TfH) in peripheral blood and lymph node (LN) GCs in patients with APECED. METHODS Immunophenotyping of peripheral blood B cells and TfH was performed for 24 patients with APECED. Highly multiplexed fluorescent immunohistochemical staining was performed on 7 LN biopsy samples from the patients to study spatial interactions of lymphocytes in the GCs at the single-cell level. RESULTS The patients' peripheral B-cell phenotype revealed skewing toward a mature B-cell phenotype with marked loss of transitional and naive B cells. The frequency of circulating TfH cells was diminished in the patients, while in the LNs the TfH population was expanded. In LNs the overall frequency of Treg cells and interactions of Treg cells with nonfollicular T cells were reduced, suggesting that aberrant Treg cell function might fail to restrain TfH differentiation. CONCLUSIONS GC reactions are disrupted in APECED as a result of defective T-cell control.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Joona Sarkkinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nelli Heikkilä
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Karen Drechsel
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anniina Färkkilä
- Research Program in Systems Oncology, FIMM & HiLIFE University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine, Helsinki, Finland; Department of Obstetrics and Gynecology, University Hospital, Helsinki, Finland
| | - Saila Laakso
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Molecular Medicine, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Stockholm, Sweden
| | - T Petteri Arstila
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
6
|
Bastard P, Gervais A, Le Voyer T, Philippot Q, Cobat A, Rosain J, Jouanguy E, Abel L, Zhang SY, Zhang Q, Puel A, Casanova JL. Human autoantibodies neutralizing type I IFNs: From 1981 to 2023. Immunol Rev 2024; 322:98-112. [PMID: 38193358 PMCID: PMC10950543 DOI: 10.1111/imr.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Human autoantibodies (auto-Abs) neutralizing type I IFNs were first discovered in a woman with disseminated shingles and were described by Ion Gresser from 1981 to 1984. They have since been found in patients with diverse conditions and are even used as a diagnostic criterion in patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1). However, their apparent lack of association with viral diseases, including shingles, led to wide acceptance of the conclusion that they had no pathological consequences. This perception began to change in 2020, when they were found to underlie about 15% of cases of critical COVID-19 pneumonia. They have since been shown to underlie other severe viral diseases, including 5%, 20%, and 40% of cases of critical influenza pneumonia, critical MERS pneumonia, and West Nile virus encephalitis, respectively. They also seem to be associated with shingles in various settings. These auto-Abs are present in all age groups of the general population, but their frequency increases with age to reach at least 5% in the elderly. We estimate that at least 100 million people worldwide carry auto-Abs neutralizing type I IFNs. Here, we briefly review the history of the study of these auto-Abs, focusing particularly on their known causes and consequences.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France, EU
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, APHP, Paris, France, EU
| |
Collapse
|
7
|
Le Voyer T, Parent AV, Liu X, Cederholm A, Gervais A, Rosain J, Nguyen T, Perez Lorenzo M, Rackaityte E, Rinchai D, Zhang P, Bizien L, Hancioglu G, Ghillani-Dalbin P, Charuel JL, Philippot Q, Gueye MS, Maglorius Renkilaraj MRL, Ogishi M, Soudée C, Migaud M, Rozenberg F, Momenilandi M, Riller Q, Imberti L, Delmonte OM, Müller G, Keller B, Orrego J, Franco Gallego WA, Rubin T, Emiroglu M, Parvaneh N, Eriksson D, Aranda-Guillen M, Berrios DI, Vong L, Katelaris CH, Mustillo P, Raedler J, Bohlen J, Bengi Celik J, Astudillo C, Winter S, McLean C, Guffroy A, DeRisi JL, Yu D, Miller C, Feng Y, Guichard A, Béziat V, Bustamante J, Pan-Hammarström Q, Zhang Y, Rosen LB, Holland SM, Bosticardo M, Kenney H, Castagnoli R, Slade CA, Boztuğ K, Mahlaoui N, Latour S, Abraham RS, Lougaris V, Hauck F, Sediva A, Atschekzei F, Sogkas G, Poli MC, Slatter MA, Palterer B, Keller MD, Pinzon-Charry A, Sullivan A, Droney L, Suan D, Wong M, Kane A, Hu H, Ma C, Grombiříková H, Ciznar P, Dalal I, Aladjidi N, Hie M, Lazaro E, Franco J, Keles S, Malphettes M, Pasquet M, Maccari ME, Meinhardt A, Ikinciogullari A, Shahrooei M, Celmeli F, Frosk P, Goodnow CC, Gray PE, Belot A, Kuehn HS, Rosenzweig SD, Miyara M, Licciardi F, Servettaz A, Barlogis V, Le Guenno G, Herrmann VM, Kuijpers T, Ducoux G, Sarrot-Reynauld F, Schuetz C, Cunningham-Rundles C, Rieux-Laucat F, Tangye SG, Sobacchi C, Doffinger R, Warnatz K, Grimbacher B, Fieschi C, Berteloot L, Bryant VL, Trouillet Assant S, Su H, Neven B, Abel L, Zhang Q, Boisson B, Cobat A, Jouanguy E, Kampe O, Bastard P, Roifman CM, Landegren N, Notarangelo LD, Anderson MS, Casanova JL, Puel A. Autoantibodies against type I IFNs in humans with alternative NF-κB pathway deficiency. Nature 2023; 623:803-813. [PMID: 37938781 PMCID: PMC10665196 DOI: 10.1038/s41586-023-06717-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.
Collapse
Affiliation(s)
- Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
| | - Audrey V Parent
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Xian Liu
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Tina Nguyen
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, Darlinghurst, New South Wales, Australia
| | - Malena Perez Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Elze Rackaityte
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Gonca Hancioglu
- Division of Pediatric Allergy and Immunology, Ondokuz Mayıs University Faculty of Medicine, Samsun, Turkey
| | | | - Jean-Luc Charuel
- Department of Immunology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Mame Sokhna Gueye
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | | | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Flore Rozenberg
- Virology, Cochin-Saint-Vincent de Paul Hospital, University of Paris, Paris, France
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Paris Cité University, Imagine Institute, INSERM UMR1163, Paris, France
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, Brescia, Italy
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gabriele Müller
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center-University Hospital Freiburg, and Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julio Orrego
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - William Alexander Franco Gallego
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Tamar Rubin
- Division of Pediatric Clinical Immunology and Allergy, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Melike Emiroglu
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Daniel Eriksson
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Section of Clinical Genetics, Uppsala University and University Hospital, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Maribel Aranda-Guillen
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - David I Berrios
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Linda Vong
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Constance H Katelaris
- Immunology and Allergy, University of Western Sydney and Campbelltown Hospital, Campbelltown, New South Wales, Australia
| | - Peter Mustillo
- Division of Allergy and Immunology, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Johannes Raedler
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jale Bengi Celik
- Department of Anesthesiology and Reanimation, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Camila Astudillo
- Hospital de Niños Roberto del Río, Santiago, Chile
- Department of Pediatrics, Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, Paris Cité University, Imagine Institute, Inserm UMR1163, Paris, France
| | - Catriona McLean
- Department of Anatomical Pathology, The Alfred Hospital, Prahran, Victoria, Australia
| | - Aurélien Guffroy
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Autoimmune Diseases, Strasbourg University Hospital, Strasbourg, France
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - David Yu
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Corey Miller
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yi Feng
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | | | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steve M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Charlotte A Slade
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
- Dept Medical Biology, University of Melbourne, Victoria, Parkville, Australia
- Dept Clinical Immunology and Allergy, The Royal Melbourne Hospital, Parkville, Australia
| | - Kaan Boztuğ
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Anna Children's Cancer Research Institute, Vienna, Austria
- Anna Children's Hospital, Vienna, Austria
| | - Nizar Mahlaoui
- French National Reference Center for Primary Immunodeficiencies (CEREDIH), Necker-Enfants University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, Paris Cité University, Imagine Institute, Inserm UMR1163, Paris, France
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Sediva
- Department of Immunology, Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czech Republic
| | - Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - M Cecilia Poli
- Hospital de Niños Roberto del Río, Santiago, Chile
- Department of Pediatrics, Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Mary A Slatter
- Children's Haemopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle-upon-Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Boaz Palterer
- Allergy and Clinical Immunology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michael D Keller
- Division of Allergy and Immunology, Children's National Medical Center, Washington, DC, USA
| | - Alberto Pinzon-Charry
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, New South Wales, Australia
- Immunology and Allergy, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Anna Sullivan
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, New South Wales, Australia
- Immunology and Allergy, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Luke Droney
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, New South Wales, Australia
- Immunology and Allergy, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Daniel Suan
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Melanie Wong
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Alisa Kane
- School of Clinical Medicine, UNSW Medicine & Health, Darlinghurst, New South Wales, Australia
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, New South Wales, Australia
- South Western Sydney Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Immunology, Allergy and HIV, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Hannah Hu
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, New South Wales, Australia
- South Western Sydney Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Immunology, Allergy and HIV, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Cindy Ma
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, Darlinghurst, New South Wales, Australia
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, New South Wales, Australia
| | - Hana Grombiříková
- Centre for Cardiovascular Surgery and Transplantation, Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Peter Ciznar
- Department of Paediatrics, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Ilan Dalal
- Pediatric Department, E. Wolfson Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Nathalie Aladjidi
- Pediatric Oncology Hematology Unit, University Hospital, Plurithématique CIC (CICP), Centre d'Investigation Clinique (CIC) 1401, Bordeaux, France
| | - Miguel Hie
- Internal Medicine Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Estibaliz Lazaro
- Department of Internal Medicine & Infectious Diseases, Bordeaux Hospital University, Bordeaux, France
| | - Jose Franco
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | | | - Marlene Pasquet
- Department of Pediatric Hematology, Toulouse University Hospital, Toulouse, France
| | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center-University Hospital Freiburg, and Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Meinhardt
- Department of Pediatric Hematology, Oncology and Immunodeficiencies, University Children's Hospital Gießen, Giessen, Germany
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Mohammad Shahrooei
- Dr. Shahrooei Lab, Tehran, Iran
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Fatih Celmeli
- Department of Allergy and Immunology, University of Medical Science, Antalya Education and Research Hospital, Antalya, Turkey
| | - Patrick Frosk
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, Darlinghurst, New South Wales, Australia
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, New South Wales, Australia
| | - Paul E Gray
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, New South Wales, Australia
- Immunology and Infectious Diseases, Sydney Children's Hospital Randwick, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Alexandre Belot
- CNRS UMR 5308, ENS, UCBL, Lyon, France
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Lyon, France
- Immunopathology Federation LIFE, Hospices Civils de Lyon, Lyon, France
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Makoto Miyara
- Department of Immunology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Sorbonne Université, INSERM U1135, Paris, France
| | - Francesco Licciardi
- Department of Pediatrics and Public Health, Università degli Studi di Torino, Turin, Italy
| | - Amélie Servettaz
- Internal Medicine, Clinical Immunology and Infectious Diseases Department, University Hospital Center, Reims, France
- IRMAIC EA 7509, URCA, Reims, France
| | - Vincent Barlogis
- CHU Marseille, Hôpital La Timone, Service d'Hémato-oncologie Pédiatrique, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | | | - Vera-Maria Herrmann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Grégoire Ducoux
- Department of Internal Medicine, Edouard Herriot Hospital, Lyon, France
| | | | - Catharina Schuetz
- Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Paris Cité University, Imagine Institute, INSERM UMR1163, Paris, France
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, Darlinghurst, New South Wales, Australia
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, New South Wales, Australia
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- CNR-IRGB, Milan Unit, Milan, Italy
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center-University Hospital Freiburg, and Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, Paris, France
- Paris Cité University, Paris, France
| | - Laureline Berteloot
- Pediatric Radiology Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France
| | - Vanessa L Bryant
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
- Dept Medical Biology, University of Melbourne, Victoria, Parkville, Australia
- Dept Clinical Immunology and Allergy, The Royal Melbourne Hospital, Parkville, Australia
| | - Sophie Trouillet Assant
- Joint Unit Hospices Civils de Lyon-BioMérieux, Lyon, France
- CIRI (Centre International de Recherche en Infectiologie), Université de Lyon, Université Claude Bernard Lyon 1, INSERM U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Helen Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Benedicte Neven
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Olle Kampe
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France.
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
8
|
Brodin P. Immune responses to SARS-CoV-2 infection and vaccination in children. Semin Immunol 2023; 69:101794. [PMID: 37536147 PMCID: PMC10281229 DOI: 10.1016/j.smim.2023.101794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 08/05/2023]
Abstract
During the three years since SARS-CoV-2 infections were first described a wealth of information has been gathered about viral variants and their changing properties, the disease presentations they elicit and how the many vaccines developed in record time protect from COVID-19 severe disease in different populations. A general theme throughout the pandemic has been the observation that children and young people in general fare well, with mild symptoms during acute infection and full recovery thereafter. It has also become clear that this is not universally true, as some children develop severe COVID-19 hypoxic pneumonia and even succumb to the infection, while another group of children develop a rare but serious multisystem inflammatory syndrome (MIS-C) and some other children experience prolonged illness following acute infection, post-COVID. Here I will discuss some of the findings made to explain these diverse disease manifestations in children and young people infected by SARS-CoV-2. I will also discuss the vaccines developed at record speed and their efficacy in protecting children from disease.
Collapse
Affiliation(s)
- Petter Brodin
- Unit for Clinical Pediatrics, Dept. of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden; Department of Immunology and Inflammation, Imperial College London, W12 0NN London, UK.
| |
Collapse
|
9
|
Carlton LH, McGregor R, Moreland NJ. Human antibody profiling technologies for autoimmune disease. Immunol Res 2023; 71:516-527. [PMID: 36690876 PMCID: PMC9870766 DOI: 10.1007/s12026-023-09362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Autoimmune diseases are caused by the break-down in self-tolerance mechanisms and can result in the generation of autoantibodies specific to human antigens. Human autoantigen profiling technologies such as solid surface arrays and display technologies are powerful high-throughput technologies utilised to discover and map novel autoantigens associated with disease. This review compares human autoantigen profiling technologies including the application of these approaches in chronic and post-infectious autoimmune disease. Each technology has advantages and limitations that should be considered when designing new projects to profile autoantibodies. Recent studies that have utilised these technologies across a range of diseases have highlighted marked heterogeneity in autoantibody specificity between individuals as a frequent feature. This individual heterogeneity suggests that epitope spreading maybe an important mechanism in the pathogenesis of autoimmune disease in general and likely contributes to inflammatory tissue damage and symptoms. Studies focused on identifying autoantibody biomarkers for diagnosis should use targeted data analysis to identify the rarer public epitopes and antigens, common between individuals. Thus, utilisation of human autoantigen profiling technology, combined with different analysis approaches, can illuminate both pathogenesis and biomarker discovery.
Collapse
Affiliation(s)
- Lauren H Carlton
- School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
- Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
| | - Reuben McGregor
- School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Nicole J Moreland
- School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
- Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
10
|
Clarke T, Du P, Kumar S, Okitsu SL, Schuette M, An Q, Zhang J, Tzvetkov E, Jensen MA, Niewold TB, Ferre EMN, Nardone J, Lionakis MS, Vlach J, DeMartino J, Bender AT. Autoantibody repertoire characterization provides insight into the pathogenesis of monogenic and polygenic autoimmune diseases. Front Immunol 2023; 14:1106537. [PMID: 36845162 PMCID: PMC9955420 DOI: 10.3389/fimmu.2023.1106537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Autoimmune diseases vary in the magnitude and diversity of autoantibody profiles, and these differences may be a consequence of different types of breaks in tolerance. Here, we compared the disparate autoimmune diseases autoimmune polyendocrinopathy-candidiasis-ecto-dermal dystrophy (APECED), systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS) to gain insight into the etiology of breaks in tolerance triggering autoimmunity. APECED was chosen as a prototypical monogenic disease with organ-specific pathology while SjS and SLE represent polygenic autoimmunity with focal or systemic disease. Using protein microarrays for autoantibody profiling, we found that APECED patients develop a focused but highly reactive set of shared mostly anti-cytokine antibodies, while SLE patients develop broad and less expanded autoantibody repertoires against mostly intracellular autoantigens. SjS patients had few autoantibody specificities with the highest shared reactivities observed against Ro-52 and La. RNA-seq B-cell receptor analysis revealed that APECED samples have fewer, but highly expanded, clonotypes compared with SLE samples containing a diverse, but less clonally expanded, B-cell receptor repertoire. Based on these data, we propose a model whereby the presence of autoreactive T-cells in APECED allows T-dependent B-cell responses against autoantigens, while SLE is driven by breaks in peripheral B-cell tolerance and extrafollicular B-cell activation. These results highlight differences in the autoimmunity observed in several monogenic and polygenic disorders and may be generalizable to other autoimmune diseases.
Collapse
Affiliation(s)
- Thomas Clarke
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | - Pan Du
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | | | | | - Mark Schuette
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Qi An
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | - Jinyang Zhang
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | | | - Mark A. Jensen
- Department of Immunology, Division of Rheumatology, Mayo Clinic, Rochester, MN, United States
| | - Timothy B. Niewold
- Department of Immunology, Division of Rheumatology, Mayo Clinic, Rochester, MN, United States
| | - Elise M. N. Ferre
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Julie Nardone
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Jaromir Vlach
- TIP Immunology, EMD Serono, Billerica, MA, United States
| | | | | |
Collapse
|
11
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Vazquez SE, Mann SA, Bodansky A, Kung AF, Quandt Z, Ferré EMN, Landegren N, Eriksson D, Bastard P, Zhang SY, Liu J, Mitchell A, Proekt I, Yu D, Mandel-Brehm C, Wang CY, Miao B, Sowa G, Zorn K, Chan AY, Tagi VM, Shimizu C, Tremoulet A, Lynch K, Wilson MR, Kämpe O, Dobbs K, Delmonte OM, Bacchetta R, Notarangelo LD, Burns JC, Casanova JL, Lionakis MS, Torgerson TR, Anderson MS, DeRisi JL. Autoantibody discovery across monogenic, acquired, and COVID-19-associated autoimmunity with scalable PhIP-seq. eLife 2022; 11:e78550. [PMID: 36300623 PMCID: PMC9711525 DOI: 10.7554/elife.78550] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Phage immunoprecipitation sequencing (PhIP-seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-seq for autoantigen discovery, including our previous work (Vazquez et al., 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls. Here, we develop and validate a high throughput extension of PhIP-seq in various etiologies of autoimmune and inflammatory diseases, including APS1, IPEX, RAG1/2 deficiency, Kawasaki disease (KD), multisystem inflammatory syndrome in children (MIS-C), and finally, mild and severe forms of COVID-19. We demonstrate that these scaled datasets enable machine-learning approaches that result in robust prediction of disease status, as well as the ability to detect both known and novel autoantigens, such as prodynorphin (PDYN) in APS1 patients, and intestinally expressed proteins BEST4 and BTNL8 in IPEX patients. Remarkably, BEST4 antibodies were also found in two patients with RAG1/2 deficiency, one of whom had very early onset IBD. Scaled PhIP-seq examination of both MIS-C and KD demonstrated rare, overlapping antigens, including CGNL1, as well as several strongly enriched putative pneumonia-associated antigens in severe COVID-19, including the endosomal protein EEA1. Together, scaled PhIP-seq provides a valuable tool for broadly assessing both rare and common autoantigen overlap between autoimmune diseases of varying origins and etiologies.
Collapse
Affiliation(s)
- Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- School of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Sabrina A Mann
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Aaron Bodansky
- Department of Pediatric Critical Care Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Andrew F Kung
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Zoe Quandt
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Elise MN Ferré
- Fungal Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Nils Landegren
- Department of Medicine, Karolinska University Hospital, Karolinska InstituteStockholmSweden
- Science for life Laboratory, Department of Medical Sciences, Uppsala UniversityUppsalaSweden
| | - Daniel Eriksson
- Department of Medical Biochemistry and Microbiology, Uppsala UniversityUppsalaSweden
- Centre for Molecular Medicine, Department of Medicine, Karolinska InstitutetStockholmSweden
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller UniversityNew YorkUnited States
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick ChildrenParisFrance
- Imagine Institute, University of ParisParisFrance
- Department of Pediatrics, Necker Hospital for Sick ChildrenParisFrance
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller UniversityNew YorkUnited States
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick ChildrenParisFrance
- Imagine Institute, University of ParisParisFrance
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, San FranciscoSan FranciscoUnited States
| | - Anthea Mitchell
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Irina Proekt
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - David Yu
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Chung-Yu Wang
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Brenda Miao
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Gavin Sowa
- School of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Kelsey Zorn
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Alice Y Chan
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, Bone and Marrow Transplantation, Division of Pediatric Rheumatology, University of California, San FranciscoSan FranciscoUnited States
| | - Veronica M Tagi
- Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Chisato Shimizu
- Kawasaki Disease Research Center, Rady Children’s Hospital and Department of Pediatrics, University of California, San DiegoLa JollaUnited States
| | - Adriana Tremoulet
- Kawasaki Disease Research Center, Rady Children’s Hospital and Department of Pediatrics, University of California, San DiegoLa JollaUnited States
| | - Kara Lynch
- Department of Laboratory Medicine, University of California, San FranciscoSan FranciscoUnited States
- Zuckerberg San Francisco GeneralSan FranciscoUnited States
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Olle Kämpe
- Department of Medicine, Karolinska University Hospital, Karolinska InstituteStockholmSweden
- Department of Clinical Science and KG Jebsen Center for Autoimmune Disorders, University of BergenBergenNorway
- Center of Molecular Medicine, and Department of Endocrinology, Metabolism and Diabetes, Karolinska University HospitalStockholmSweden
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Rosa Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Jane C Burns
- Kawasaki Disease Research Center, Rady Children’s Hospital and Department of Pediatrics, University of California, San DiegoLa JollaUnited States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller UniversityNew YorkUnited States
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick ChildrenParisFrance
- Imagine Institute, University of ParisParisFrance
- Department of Pediatrics, Necker Hospital for Sick ChildrenParisFrance
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Troy R Torgerson
- Seattle Children's Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Mark S Anderson
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
13
|
Targets of autoantibodies in acquired hemophilia A are not restricted to factor VIII: data from the GTH-AH 01/2010 study. Blood Adv 2022; 7:122-130. [PMID: 35947142 PMCID: PMC9830154 DOI: 10.1182/bloodadvances.2022008071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
The root cause of autoantibody formation against factor VIII (FVIII) in acquired hemophilia A (AHA) remains unclear. We aimed to assess whether AHA is exclusively associated with autoantibodies toward FVIII or whether patients also produce increased levels of autoantibodies against other targets. A case-control study was performed enrolling patients with AHA and age-matched controls. Human epithelial cell (HEp-2) immunofluorescence was applied to screen for antinuclear (ANA) and anticytoplasmic autoantibodies. Screening for autoantibodies against extractable nuclear antigens was performed by enzyme immunoassay detecting SS-A/Ro, SS-B/La, U1RNP, Scl-70, Jo-1, centromere B, Sm, double-stranded DNA, and α-fodrin (AF). Patients with AHA were more often positive for ANA than control patients (64% vs 30%; odds ratio [OR] 4.02, 1.98-8.18) and had higher ANA titers detected than controls. Cytoplasmic autoantibodies and anti-AF immunoglobulin A autoantibodies were also more frequent in patients with AHA compared with controls. Autoantibodies against any target other than FVIII were found in 78% of patients with AHA compared with 46% of controls (OR 4.16, 1.98-8.39). Results were similar preforming sensitivity analyses (excluding either subjects with autoimmune disorders, cancer, pregnancy, or immunosuppressive medication at baseline) and in multivariable binary logistic regression. To exclude that autoantibody staining was merely a result of cross-reactivity of anti-FVIII autoantibodies, we tested a mix of 7 well-characterized monoclonal anti-FVIII antibodies. These antibodies did not stain HEp-2 cells used for ANA detection. In conclusion, a diverse pattern of autoantibodies is associated with AHA, suggesting that a more general breakdown of immune tolerance might be involved in its pathology.
Collapse
|
14
|
Damoiseaux J, Dotan A, Fritzler MJ, Bogdanos DP, Meroni PL, Roggenbuck D, Goldman M, Landegren N, Bastard P, Shoenfeld Y, Conrad K. Autoantibodies and SARS-CoV2 infection: The spectrum from association to clinical implication: Report of the 15th Dresden Symposium on Autoantibodies. Clin Exp Rheumatol 2022; 21:103012. [PMID: 34896650 PMCID: PMC8656211 DOI: 10.1016/j.autrev.2021.103012] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022]
Abstract
The relation between infections and autoimmune diseases has been extensively investigated. Multiple studies suggest a causal relation between these two entities with molecular mimicry, hyperstimulation and dysregulation of the immune system as plausible mechanisms. The recent pandemic with a new virus, i.e., SARS-CoV-2, has resulted in numerous studies addressing the potential of this virus to induce autoimmunity and, eventually, autoimmune disease. In addition, it has also revealed that pre-existing auto-immunity (auto-Abs neutralizing type I IFNs) could cause life-threatening disease. Therefore, the topic of the 15th Dresden Symposium on Autoantibodies was focused on autoimmunity in the SARS-CoV-2 era. This report is a collection and distillation of the topics presented at this meeting.
Collapse
Affiliation(s)
- Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Arad Dotan
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marvin J. Fritzler
- Department of Medicine, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | - Dirk Roggenbuck
- Faculty Environment and Natural Sciences and Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Michel Goldman
- Institute for interdisciplinary innovation in healthcare, Université libre de Bruxelles, Belgium
| | - Nils Landegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden,Department of Medicine (Solna), Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France,Imagine Institute, University of Paris, Paris, France,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Ariel University, Israel,Laboratory of the Mosaics of Autoimmunity, Saint Peterburg University, 199034, Russia
| | - Karsten Conrad
- Institute of Immunology, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
15
|
Wang EY, Dai Y, Rosen CE, Schmitt MM, Dong MX, Ferré EM, Liu F, Yang Y, González-Hernández JA, Meffre E, Hinchcliff M, Koumpouras F, Lionakis MS, Ring AM. High-throughput identification of autoantibodies that target the human exoproteome. CELL REPORTS METHODS 2022; 2:100172. [PMID: 35360706 PMCID: PMC8967185 DOI: 10.1016/j.crmeth.2022.100172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Autoantibodies that recognize extracellular proteins (the exoproteome) exert potent biological effects but are challenging to detect. Here, we developed rapid extracellular antigen profiling (REAP), a high-throughput technique for the comprehensive discovery of exoproteome-targeting autoantibodies. Patient samples are applied to a genetically barcoded yeast surface display library containing 2,688 human extracellular proteins. Antibody-coated yeast are isolated, and sequencing of barcodes is used to identify displayed antigens. To benchmark REAP's performance, we screened 77 patients with autoimmune polyglandular syndrome type 1 (APS-1). REAP sensitively and specifically detected both known and previously unidentified autoantibodies in APS-1. We further screened 106 patients with systemic lupus erythematosus (SLE) and identified numerous autoantibodies, several of which were associated with disease severity or specific clinical manifestations and exerted functional effects on cell signaling ex vivo. These findings demonstrate the utility of REAP to atlas the expansive landscape of exoproteome-targeting autoantibodies and their impacts on patient health outcomes.
Collapse
Affiliation(s)
- Eric Y. Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Connor E. Rosen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Monica M. Schmitt
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mei X. Dong
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Elise M.N. Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yi Yang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Eric Meffre
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Monique Hinchcliff
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fotios Koumpouras
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
16
|
Abolhassani H, Landegren N, Bastard P, Materna M, Modaresi M, Du L, Aranda-Guillén M, Sardh F, Zuo F, Zhang P, Marcotte H, Marr N, Khan T, Ata M, Al-Ali F, Pescarmona R, Belot A, Béziat V, Zhang Q, Casanova JL, Kämpe O, Zhang SY, Hammarström L, Pan-Hammarström Q. Inherited IFNAR1 Deficiency in a Child with Both Critical COVID-19 Pneumonia and Multisystem Inflammatory Syndrome. J Clin Immunol 2022; 42:471-483. [PMID: 35091979 PMCID: PMC8798309 DOI: 10.1007/s10875-022-01215-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/16/2022] [Indexed: 02/08/2023]
Abstract
Background Inborn errors of immunity (IEI) and autoantibodies to type I interferons (IFNs) underlie critical COVID-19 pneumonia in at least 15% of the patients, while the causes of multisystem inflammatory syndrome in children (MIS-C) remain elusive. Objectives To detect causal genetic variants in very rare cases with concomitant critical COVID-19 pneumonia and MIS-C. Methods Whole exome sequencing was performed, and the impact of candidate gene variants was investigated. Plasma levels of cytokines, specific antibodies against the virus, and autoantibodies against type I IFNs were also measured. Results We report a 3-year-old child who died on day 56 of SARS-CoV-2 infection with an unusual clinical presentation, combining both critical COVID-19 pneumonia and MIS-C. We identified a large, homozygous loss-of-function deletion in IFNAR1, underlying autosomal recessive IFNAR1 deficiency. Conclusions Our findings confirm that impaired type I IFN immunity can underlie critical COVID-19 pneumonia, while suggesting that it can also unexpectedly underlie concomitant MIS-C. Our report further raises the possibility that inherited or acquired dysregulation of type I IFN immunity might contribute to MIS-C in other patients. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-022-01215-7.
Collapse
|
17
|
Ferré EMN, Schmitt MM, Lionakis MS. Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. Front Pediatr 2021; 9:723532. [PMID: 34790633 PMCID: PMC8591095 DOI: 10.3389/fped.2021.723532] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), also known as autoimmune polyglandular syndrome type-1 (APS-1), is a rare monogenic autoimmune disease caused by loss-of-function mutations in the autoimmune regulator (AIRE) gene. AIRE deficiency impairs immune tolerance in the thymus and results in the peripheral escape of self-reactive T lymphocytes and the generation of several cytokine- and tissue antigen-targeted autoantibodies. APECED features a classic triad of characteristic clinical manifestations consisting of chronic mucocutaneous candidiasis (CMC), hypoparathyroidism, and primary adrenal insufficiency (Addison's disease). In addition, APECED patients develop several non-endocrine autoimmune manifestations with variable frequencies, whose recognition by pediatricians should facilitate an earlier diagnosis and allow for the prompt implementation of targeted screening, preventive, and therapeutic strategies. This review summarizes our current understanding of the genetic, immunological, clinical, diagnostic, and treatment features of APECED.
Collapse
Affiliation(s)
| | | | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
18
|
Oikonomou V, Break TJ, Gaffen SL, Moutsopoulos NM, Lionakis MS. Infections in the monogenic autoimmune syndrome APECED. Curr Opin Immunol 2021; 72:286-297. [PMID: 34418591 PMCID: PMC8578378 DOI: 10.1016/j.coi.2021.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by mutations in the Autoimmune Regulator (AIRE) gene, which impair the thymic negative selection of self-reactive T-cells and underlie the development of autoimmunity that targets multiple endocrine and non-endocrine tissues. Beyond autoimmunity, APECED features heightened susceptibility to certain specific infections, which is mediated by anti-cytokine autoantibodies and/or T-cell driven autoimmune tissue injury. These include the 'signature' APECED infection chronic mucocutaneous candidiasis (CMC), but also life-threatening coronavirus disease 2019 (COVID-19) pneumonia, bronchiectasis-associated bacterial pneumonia, and sepsis by encapsulated bacteria. Here we discuss the expanding understanding of the immunological mechanisms that contribute to infection susceptibility in this prototypic syndrome of impaired central tolerance, which provide the foundation for devising improved diagnostic and therapeutic strategies for affected patients.
Collapse
Affiliation(s)
- Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Timothy J Break
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah L Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh PA, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
19
|
Wolff ASB, Braun S, Husebye ES, Oftedal BE. B Cells and Autoantibodies in AIRE Deficiency. Biomedicines 2021; 9:1274. [PMID: 34572460 PMCID: PMC8466229 DOI: 10.3390/biomedicines9091274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Autoimmune polyendocrine syndrome type 1 (APS-1) is a rare but severe monogenetic autoimmune endocrine disease caused by failure of the Autoimmune Regulator (AIRE). AIRE regulates the negative selection of T cells in the thymus, and the main pathogenic mechanisms are believed to be T cell-mediated, but little is known about the role of B cells. Here, we give an overview of the role of B cells in thymic and peripheral tolerance in APS-1 patients and different AIRE-deficient mouse models. We also look closely into which autoantibodies have been described for this disorder, and their implications. Based on what is known about B cell therapy in other autoimmune disorders, we outline the potential of B cell therapies in APS-1 and highlight the unresolved research questions to be answered.
Collapse
Affiliation(s)
- Anette S. B. Wolff
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (A.S.B.W.); (S.B.); (E.S.H.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- KG Jebsen Center for Autoimmune Disorders, University of Bergen, 5021 Bergen, Norway
| | - Sarah Braun
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (A.S.B.W.); (S.B.); (E.S.H.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | - Eystein S. Husebye
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (A.S.B.W.); (S.B.); (E.S.H.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- KG Jebsen Center for Autoimmune Disorders, University of Bergen, 5021 Bergen, Norway
| | - Bergithe E. Oftedal
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (A.S.B.W.); (S.B.); (E.S.H.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- KG Jebsen Center for Autoimmune Disorders, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
20
|
Peterson P, Kisand K, Kluger N, Ranki A. Loss of AIRE-Mediated Immune Tolerance and the Skin. J Invest Dermatol 2021; 142:760-767. [PMID: 34535292 DOI: 10.1016/j.jid.2021.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
The core function of the immune response is to distinguish between self and foreign. The multiorgan human autoimmune disease, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED/autoimmune polyendocrine syndrome type 1) is an example of what happens in the body when central immune tolerance goes astray. APECED revealed the existence and function of the autoimmune regulator gene, which has a central role in the development of tolerance. The discovery of autoimmune regulator was the start of a new period in immunology and in understanding the role of central and peripheral tolerance, also very relevant to many skin diseases as we highlight in this review.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Clinicum, University of Helsinki, and Inflammation Center, Helsinki University Hospital, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, Clinicum, University of Helsinki, and Inflammation Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
21
|
Hetemäki I, Laakso S, Välimaa H, Kleino I, Kekäläinen E, Mäkitie O, Arstila TP. Patients with autoimmune polyendocrine syndrome type 1 have an increased susceptibility to severe herpesvirus infections. Clin Immunol 2021; 231:108851. [PMID: 34508889 PMCID: PMC8425955 DOI: 10.1016/j.clim.2021.108851] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022]
Abstract
Almost all patients with autoimmune polyendocrine syndrome type 1 (APS-1) have neutralizing antibodies against type 1 interferons (IFN), important mediators of antiviral defense. Recently, neutralizing anti-IFN antibodies were shown to be a risk factor of severe COVID-19. Here we show in a cohort of 44 patients with APS-1 that higher titers of neutralizing anti-IFNα4 antibodies are associated with a higher and earlier incidence of VZV reactivation (herpes zoster). The patients also present with uncommonly severe clinical sequelae of herpetic infections. APS-1 patients had decreased humoral immune responses to varicella zoster virus, but cellular responses were comparable to healthy controls. These results suggest that blocking the type I interferon pathway in patients with APS-1 patients leads to a clinically significant immune deficiency, and susceptibility to herpesviruses should be taken into account when treating patients with APS-1.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Saila Laakso
- Folkhälsan Institute of Genetics, Helsinki, Finland; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannamari Välimaa
- Department of Virology, University of Helsinki, Helsinki, Finland; Department of Oral and Maxillofacial Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Iivari Kleino
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Molecular Medicine, Karolinska Institutet, Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - T Petteri Arstila
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
22
|
Fatal autoimmune pneumonitis requiring bilobectomy and omental flap repair in a patient with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Respir Med Case Rep 2021; 33:101476. [PMID: 34401309 PMCID: PMC8349050 DOI: 10.1016/j.rmcr.2021.101476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
We present a severe case of progressive autoimmune pneumonitis requiring surgical intervention in a patient with the monogenic syndrome, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). APECED is caused by loss-of-function mutations in the autoimmune regulator (AIRE) gene, which lead to impaired central immune tolerance and autoimmune organ destruction including pneumonitis, an underrecognized, life-threatening complication. When clinicians evaluate patients with pneumonitis, recurrent mucosal candidiasis, and autoimmunity, APECED should be considered in the differential. Additionally, in patients with established APECED, a chest computed tomography is preferred to identify pneumonitis early on and to promptly initiate lymphocyte-directed immunomodulatory treatment, which can prevent irreversible lung destruction.
Collapse
|
23
|
Savvateeva EN, Yukina MY, Nuralieva NF, Filippova MA, Gryadunov DA, Troshina EA. Multiplex Autoantibody Detection in Patients with Autoimmune Polyglandular Syndromes. Int J Mol Sci 2021; 22:5502. [PMID: 34071130 PMCID: PMC8197071 DOI: 10.3390/ijms22115502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The diagnosis of autoimmune polyglandular syndrome (APS) types 1/2 is difficult due to their rarity and nonspecific clinical manifestations. APS-1 development can be identified with assays for autoantibodies against cytokines, and APS-2 development with organ-specific antibodies. In this study, a microarray-based multiplex assay was proposed for simultaneous detection of both organ-specific (anti-21-OH, anti-GAD-65, anti-IA2, anti-ICA, anti-TG, and anti-TPO) and APS-1-specific (anti-IFN-ω, anti-IFN-α-2a, and anti-IL-22) autoantibodies. Herein, 206 serum samples from adult patients with APS-1, APS-2, isolated autoimmune endocrine pathologies or non-autoimmune endocrine pathologies and from healthy donors were analyzed. The prevalence of autoantibodies differed among the groups of healthy donors and patients with non-, mono- and multi-endocrine diseases. APS-1 patients were characterized by the presence of at least two specific autoantibodies (specificity 99.5%, sensitivity 100%). Furthermore, in 16 of the 18 patients, the APS-1 assay revealed triple positivity for autoantibodies against IFN-ω, IFN-α-2a and IL-22 (specificity 100%, sensitivity 88.9%). No anti-cytokine autoantibodies were found in the group of patients with non-APS-1 polyendocrine autoimmunity. The accuracy of the microarray-based assay compared to ELISA for organ-specific autoantibodies was 88.8-97.6%. This multiplex assay can be part of the strategy for diagnosing and predicting the development of APS.
Collapse
Affiliation(s)
- Elena N. Savvateeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.A.F.); (D.A.G.)
| | - Marina Yu. Yukina
- Endocrinology Research Centre, Ministry of Health of Russia, 117036 Moscow, Russia; (M.Y.Y.); (N.F.N.); (E.A.T.)
| | - Nurana F. Nuralieva
- Endocrinology Research Centre, Ministry of Health of Russia, 117036 Moscow, Russia; (M.Y.Y.); (N.F.N.); (E.A.T.)
| | - Marina A. Filippova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.A.F.); (D.A.G.)
| | - Dmitry A. Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.A.F.); (D.A.G.)
| | - Ekaterina A. Troshina
- Endocrinology Research Centre, Ministry of Health of Russia, 117036 Moscow, Russia; (M.Y.Y.); (N.F.N.); (E.A.T.)
| |
Collapse
|
24
|
Wolff AB, Breivik L, Hufthammer KO, Grytaas MA, Bratland E, Husebye ES, Oftedal BE. The natural history of 21-hydroxylase autoantibodies in autoimmune Addison's disease. Eur J Endocrinol 2021; 184:607-615. [PMID: 34665570 PMCID: PMC8052519 DOI: 10.1530/eje-20-1268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The most common cause of primary adrenal failure (Addison's disease) in the Western world is autoimmunity characterized by autoantibodies against the steroidogenic enzyme 21-hydroxylase (CYP21A2, 21OH). Detection of 21OH-autoantibodies is currently used for aetiological diagnosis, but how levels of 21OH-autoantibodies vary over time is not known. SETTING Samples from the national Norwegian Addison's Registry and Biobank established in 1996 (n = 711). Multi-parameter modelling of the course of 21OH-autoantibody indices over time. RESULTS 21OH-autoantibody positivity is remarkably stable, and >90% of the patients are still positive 30 years after diagnosis. Even though the antibody levels decline with disease duration, it is only rarely that this downturn reaches negativity. 21OH-autoantibody indices are affected by age at diagnosis, sex, type of Addison's disease (isolated vs autoimmune polyendocrine syndrome type I or II) and HLA genotype. CONCLUSION 21OH-autoantibodies are reliable and robust markers for autoimmune Addison's disease, linked to HLA risk genotype. However, a negative test in patients with long disease duration does not exclude autoimmune aetiology.
Collapse
Affiliation(s)
- Anette Boe Wolff
- Department of Clinical Science, University of Bergen, Norway
- K.G. Jebsen Center for autoimmune disorders, University of Bergen, Norway
- Department of Medicine, University of Bergen, Norway
| | - Lars Breivik
- Department of Clinical Science, University of Bergen, Norway
- K.G. Jebsen Center for autoimmune disorders, University of Bergen, Norway
- Department of Medicine, University of Bergen, Norway
| | | | - Marianne Aardal Grytaas
- K.G. Jebsen Center for autoimmune disorders, University of Bergen, Norway
- Department of Medicine, University of Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Norway
- K.G. Jebsen Center for autoimmune disorders, University of Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Eystein Sverre Husebye
- Department of Clinical Science, University of Bergen, Norway
- K.G. Jebsen Center for autoimmune disorders, University of Bergen, Norway
- Department of Medicine, University of Bergen, Norway
- Correspondence should be addressed to E S Husebye;
| | - Bergithe Eikeland Oftedal
- Department of Clinical Science, University of Bergen, Norway
- K.G. Jebsen Center for autoimmune disorders, University of Bergen, Norway
| |
Collapse
|
25
|
Perniola R, Fierabracci A, Falorni A. Autoimmune Addison's Disease as Part of the Autoimmune Polyglandular Syndrome Type 1: Historical Overview and Current Evidence. Front Immunol 2021; 12:606860. [PMID: 33717087 PMCID: PMC7953157 DOI: 10.3389/fimmu.2021.606860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
The autoimmune polyglandular syndrome type 1 (APS1) is caused by pathogenic variants of the autoimmune regulator (AIRE) gene, located in the chromosomal region 21q22.3. The related protein, AIRE, enhances thymic self-representation and immune self-tolerance by localization to chromatin and anchorage to multimolecular complexes involved in the initiation and post-initiation events of tissue-specific antigen-encoding gene transcription. Once synthesized, the self-antigens are presented to, and cause deletion of, the self-reactive thymocyte clones. The clinical diagnosis of APS1 is based on the classic triad idiopathic hypoparathyroidism (HPT)—chronic mucocutaneous candidiasis—autoimmune Addison's disease (AAD), though new criteria based on early non-endocrine manifestations have been proposed. HPT is in most cases the first endocrine component of the syndrome; however, APS1-associated AAD has received the most accurate biochemical, clinical, and immunological characterization. Here is a comprehensive review of the studies on APS1-associated AAD from initial case reports to the most recent scientific findings.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics-Neonatal Intensive Care, V. Fazzi Hospital, ASL LE, Lecce, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alberto Falorni
- Section of Internal Medicine and Endocrinological and Metabolic Sciences, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
26
|
Ferré EMN, Lionakis MS. An AIREless Breath: Pneumonitis Caused by Impaired Central Immune Tolerance. Front Immunol 2021; 11:609253. [PMID: 33584685 PMCID: PMC7873437 DOI: 10.3389/fimmu.2020.609253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a monogenic disorder caused by biallelic mutations in the AIRE gene, has historically been defined by the development of chronic mucocutaneous candidiasis together with autoimmune endocrinopathies, primarily hypoparathyroidism and adrenal insufficiency. Recent work has drawn attention to the development of life-threatening non-endocrine manifestations such as autoimmune pneumonitis, which has previously been poorly recognized and under-reported. In this review, we present the clinical, radiographic, autoantibody, and pulmonary function abnormalities associated with APECED pneumonitis, we highlight the cellular and molecular basis of the autoimmune attack in the AIRE-deficient lung, and we provide a diagnostic and a therapeutic roadmap for patients with APECED pneumonitis. Beyond APECED, we discuss the relevance and potential broader applicability of these findings to other interstitial lung diseases seen in secondary AIRE deficiency states such as thymoma and RAG deficiency or in common polygenic autoimmune disorders such as idiopathic Sjögren's syndrome.
Collapse
Affiliation(s)
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
27
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
28
|
Consiglio CR, Cotugno N, Sardh F, Pou C, Amodio D, Rodriguez L, Tan Z, Zicari S, Ruggiero A, Pascucci GR, Santilli V, Campbell T, Bryceson Y, Eriksson D, Wang J, Marchesi A, Lakshmikanth T, Campana A, Villani A, Rossi P, Landegren N, Palma P, Brodin P. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19. Cell 2020; 183:968-981.e7. [PMID: 32966765 PMCID: PMC7474869 DOI: 10.1016/j.cell.2020.09.016] [Citation(s) in RCA: 630] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is typically very mild and often asymptomatic in children. A complication is the rare multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19, presenting 4-6 weeks after infection as high fever, organ dysfunction, and strongly elevated markers of inflammation. The pathogenesis is unclear but has overlapping features with Kawasaki disease suggestive of vasculitis and a likely autoimmune etiology. We apply systems-level analyses of blood immune cells, cytokines, and autoantibodies in healthy children, children with Kawasaki disease enrolled prior to COVID-19, children infected with SARS-CoV-2, and children presenting with MIS-C. We find that the inflammatory response in MIS-C differs from the cytokine storm of severe acute COVID-19, shares several features with Kawasaki disease, but also differs from this condition with respect to T cell subsets, interleukin (IL)-17A, and biomarkers associated with arterial damage. Finally, autoantibody profiling suggests multiple autoantibodies that could be involved in the pathogenesis of MIS-C.
Collapse
Affiliation(s)
- Camila Rosat Consiglio
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, Stockholm 17165, Sweden
| | - Nicola Cotugno
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome 00165, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Fabian Sardh
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm 17176, Sweden
| | - Christian Pou
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, Stockholm 17165, Sweden
| | - Donato Amodio
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome 00165, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Lucie Rodriguez
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, Stockholm 17165, Sweden
| | - Ziyang Tan
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, Stockholm 17165, Sweden
| | - Sonia Zicari
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome 00165, Italy
| | - Alessandra Ruggiero
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome 00165, Italy
| | - Giuseppe Rubens Pascucci
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome 00165, Italy
| | - Veronica Santilli
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome 00165, Italy; Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Tessa Campbell
- Center for Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm 14186, Sweden
| | - Yenan Bryceson
- Center for Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm 14186, Sweden
| | - Daniel Eriksson
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm 17176, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University and Department of Clinical Genetics, Uppsala University Hospital, Uppsala 75185, Sweden
| | - Jun Wang
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, Stockholm 17165, Sweden
| | - Alessandra Marchesi
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Tadepally Lakshmikanth
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, Stockholm 17165, Sweden
| | - Andrea Campana
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Alberto Villani
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Paolo Rossi
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome 00133, Italy; Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Nils Landegren
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm 17176, Sweden; Science for life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala 75237, Sweden.
| | - Paolo Palma
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome 00165, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome 00133, Italy.
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, Stockholm 17165, Sweden; Pediatric Rheumatology, Karolinska University Hospital, Stockholm 17164, Sweden.
| |
Collapse
|
29
|
Leiter A, Gnjatic S, Fowkes M, Kim-Schulze S, Laface I, Galsky MD, Gallagher EJ. A COMMON PITUITARY AUTOANTIBODY IN TWO PATIENTS WITH IMMUNE CHECKPOINT INHIBITOR-MEDIATED HYPOPHYSITIS: ZCCHC8. AACE Clin Case Rep 2020; 6:e151-e160. [PMID: 32671216 PMCID: PMC7357610 DOI: 10.4158/accr-2019-0585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Hypophysitis is an increasingly recognized adverse effect of immune checkpoint inhibitor (ICI) therapy for malignancy. However, the mechanisms through which ICIs induce hypophysitis are largely unknown. We aim to describe 2 cases of ICI-mediated hypophysitis and perform autoantibody profiling on serial samples from these patients to determine if common autoantibodies could be identified. METHODS We describe 2 cases of patients with metastatic urothelial cancer who received ICI therapy and subsequently developed severe fatigue, prompting a hormonal workup consistent with hypopituitarism. Patient 1 received the ICI ipilimumab (anti-cytotoxic T-lymphocyte-associated protein 4) and patient 2 received the ICI pembrolizumab (anti-programmed cell death protein 1). Both patients had serial seromic immune biomarker profiling using high-density protein arrays before and after developing hypophysitis. Once a common autoantibody was found, zinc finger CCHC-type containing 8 (ZCCHC8), we used immunohistochemistry to assess its presence in pituitary tissue. RESULTS Of a limited number of increased autoantibodies detected, those to ZCCHC8 were the only common antibodies to increase at least 3-fold post-hypophysitis in both patients. Using immunohistochemistry staining, we show for the first time that ZCCHC8 is expressed in pituitary gland tissue. CONCLUSION Seromic profiling identified a common autoantibody, ZCCHC8, in 2 patients who developed hypophysitis on ICI therapy, and other serial autoantibody increases in each patient. These findings warrant validation in other cohorts to determine if the response is to self or tumor antigen, and may reveal novel insights into pituitary gland physiology and the pathogenesis of ICI-mediated hypophysitis.
Collapse
|
30
|
Vazquez SE, Ferré EMN, Scheel DW, Sunshine S, Miao B, Mandel-Brehm C, Quandt Z, Chan AY, Cheng M, German M, Lionakis M, DeRisi JL, Anderson MS. Identification of novel, clinically correlated autoantigens in the monogenic autoimmune syndrome APS1 by proteome-wide PhIP-Seq. eLife 2020; 9:e55053. [PMID: 32410729 PMCID: PMC7228772 DOI: 10.7554/elife.55053] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The identification of autoantigens remains a critical challenge for understanding and treating autoimmune diseases. Autoimmune polyendocrine syndrome type 1 (APS1), a rare monogenic form of autoimmunity, presents as widespread autoimmunity with T and B cell responses to multiple organs. Importantly, autoantibody discovery in APS1 can illuminate fundamental disease pathogenesis, and many of the antigens found in APS1 extend to more common autoimmune diseases. Here, we performed proteome-wide programmable phage-display (PhIP-Seq) on sera from a cohort of people with APS1 and discovered multiple common antibody targets. These novel APS1 autoantigens exhibit tissue-restricted expression, including expression in enteroendocrine cells, pineal gland, and dental enamel. Using detailed clinical phenotyping, we find novel associations between autoantibodies and organ-restricted autoimmunity, including a link between anti-KHDC3L autoantibodies and premature ovarian insufficiency, and between anti-RFX6 autoantibodies and diarrheal-type intestinal dysfunction. Our study highlights the utility of PhIP-Seq for extensively interrogating antigenic repertoires in human autoimmunity and the importance of antigen discovery for improved understanding of disease mechanisms.
Collapse
Affiliation(s)
- Sara E Vazquez
- Medical Scientist Training Program, University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Elise MN Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - David W Scheel
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Biomedical Sciences Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Brenda Miao
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Zoe Quandt
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Alice Y Chan
- Department of Pediatrics, University of California, San FranciscoSan FranciscoUnited States
| | - Mickie Cheng
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Michael German
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Michail Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Mark S Anderson
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
31
|
Lind A, Eriksson D, Akel O, Ramelius A, Palm L, Lernmark Å, Kämpe O, Elding Larsson H, Landegren N. Screening for autoantibody targets in post-vaccination narcolepsy using proteome arrays. Scand J Immunol 2020; 91:e12864. [PMID: 32056243 DOI: 10.1111/sji.12864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
Abstract
Narcolepsy type 1 (NT1) is a chronic sleep disorder caused by a specific loss of hypocretin-producing neurons. The incidence of NT1 increased in Sweden, Finland and Norway following Pandemrix®-vaccination, initiated to prevent the 2009 influenza pandemic. The pathogenesis of NT1 is poorly understood, and causal links to vaccination are yet to be clarified. The strong association with Human leukocyte antigen (HLA) DQB1*06:02 suggests an autoimmune pathogenesis, but proposed autoantigens remain controversial. We used a two-step approach to identify autoantigens in patients that acquired NT1 after Pandemrix®-vaccination. Using arrays of more than 9000 full-length human proteins, we screened the sera of 10 patients and 24 healthy subjects for autoantibodies. Identified candidate antigens were expressed in vitro to enable validation studies with radiobinding assays (RBA). The validation cohort included NT1 patients (n = 39), their first-degree relatives (FDR) (n = 66), population controls (n = 188), and disease controls representing multiple sclerosis (n = 100) and FDR to type 1 diabetes patients (n = 41). Reactivity towards previously suggested NT1 autoantigen candidates including Tribbles homolog 2, Prostaglandin D2 receptor, Hypocretin receptor 2 and α-MSH/proopiomelanocortin was not replicated in the protein array screen. By comparing case to control signals, three novel candidate autoantigens were identified in the protein array screen; LOC401464, PARP3 and FAM63B. However, the RBA did not confirm elevated reactivity towards either of these proteins. In summary, three putative autoantigens in NT1 were identified by protein array screening. Autoantibodies against these candidates could not be verified with independent methods. Further studies are warranted to identify hypothetical autoantigens related to the pathogenesis of Pandemrix®-induced NT1.
Collapse
Affiliation(s)
- Alexander Lind
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Daniel Eriksson
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Omar Akel
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Anita Ramelius
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Lars Palm
- Section for Paediatric Neurology, Department of Paediatrics, Skåne University Hospital SUS, Malmö, Sweden
| | - Åke Lernmark
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Olle Kämpe
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Nils Landegren
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| |
Collapse
|
32
|
Frommer L, Kahaly GJ. Autoimmune Polyendocrinopathy. J Clin Endocrinol Metab 2019; 104:4769-4782. [PMID: 31127843 DOI: 10.1210/jc.2019-00602] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
CONTEXT This mini-review offers an update on the rare autoimmune polyendocrinopathy (AP) syndrome with a synopsis of recent developments. DESIGN AND RESULTS Systematic search for studies related to pathogenesis, immunogenetics, screening, diagnosis, clinical spectrum, and epidemiology of AP. AP (orphan code ORPHA 282196) is defined as the autoimmune-induced failure of at least two glands. AP is divided into the rare juvenile type I and the adult types II to IV. The prevalence is 1:100,000 and 1:20,000 for types I and types II to IV, respectively. Whereas type I (ORPHA 3453) is a monogenetic syndrome with an autosomal recessive transmission related to mutations in the autoimmune regulator (AIRE) gene, types II to IV are genetically complex multifactorial syndromes that are strongly associated with certain alleles of HLA genes within the major histocompatibility complex located on chromosome 6, as well as the cytotoxic T lymphocyte antigen 4 and the protein tyrosine phosphatase nonreceptor type 22 genes. Addison disease is the major endocrine component of type II (ORPHA 3143), whereas the coexistence of type 1 diabetes and autoimmune thyroid disease is characteristic for type III (ORPHA 227982). Genetic screening for the AIRE gene is useful in patients with suspected type I, whereas serological screening (i.e., diabetes/adrenal antibodies) is required in patients with monoglandular autoimmunity and suspected AP. If positive, functional endocrine testing of the antibody-positive patients as well as serological screening of their first-degree relatives is recommended. CONCLUSION Timely diagnosis, genetic counseling, and optimal long-term management of AP is best offered in specialized centers.
Collapse
Affiliation(s)
- Lara Frommer
- Orphan Disease Center for Autoimmune Polyendocrinopathy, Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - George J Kahaly
- Orphan Disease Center for Autoimmune Polyendocrinopathy, Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
33
|
Hertel C, Fishman D, Lorenc A, Ranki A, Krohn K, Peterson P, Kisand K, Hayday A. Response to comment on 'AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies'. eLife 2019; 8:45826. [PMID: 31244472 PMCID: PMC6597236 DOI: 10.7554/elife.45826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/13/2019] [Indexed: 12/31/2022] Open
Abstract
In 2016, we reported four substantial observations of APECED/APS1 patients, who are deficient in AIRE, a major regulator of central T cell tolerance (Meyer et al., 2016). Two of those observations have been challenged. Specifically, ‘private’ autoantibody reactivities shared by only a few patients but collectively targeting >1000 autoantigens have been attributed to false positives (Landegren, 2019). While acknowledging this risk, our study-design included follow-up validation, permitting us to adopt statistical approaches to also limit false negatives. Importantly, many such private specificities have now been validated by multiple, independent means including the autoantibodies’ molecular cloning and expression. Second, a significant correlation of antibody-mediated IFNα neutralization with an absence of disease in patients highly disposed to Type I diabetes has been challenged because of a claimed failure to replicate our findings (Landegren, 2019). However, flaws in design and implementation invalidate this challenge. Thus, our results present robust, insightful, independently validated depictions of APECED/APS1, that have spawned productive follow-up studies.
Collapse
Affiliation(s)
| | - Dmytro Fishman
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Anna Lorenc
- Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Helsinki, Finland
| | - Kai Krohn
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Helsinki, Finland
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,Francis Crick Institute, London, United Kingdom
| |
Collapse
|
34
|
Landegren N, Rosen LB, Freyhult E, Eriksson D, Fall T, Smith G, Ferre EMN, Brodin P, Sharon D, Snyder M, Lionakis M, Anderson M, Kämpe O. Comment on 'AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies'. eLife 2019; 8:43578. [PMID: 31244471 PMCID: PMC6597240 DOI: 10.7554/elife.43578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/13/2019] [Indexed: 01/13/2023] Open
Abstract
The AIRE gene plays a key role in the development of central immune tolerance by promoting thymic presentation of tissue-specific molecules. Patients with AIRE-deficiency develop multiple autoimmune manifestations and display autoantibodies against the affected tissues. In 2016 it was reported that: i) the spectrum of autoantibodies in patients with AIRE-deficiency is much broader than previously appreciated; ii) neutralizing autoantibodies to type I interferons (IFNs) could provide protection against type 1 diabetes in these patients (Meyer et al., 2016). We attempted to replicate these new findings using a similar experimental approach in an independent patient cohort, and found no evidence for either conclusion.
Collapse
Affiliation(s)
- Nils Landegren
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Eva Freyhult
- Department of Medical Sciences, National Bioinformatics Infrastructure, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Daniel Eriksson
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Program in Medical and Population Genetics, Broad Institute of Harvard, Massachusetts Institute of Technology, Cambridge, United States.,Wallenberg Center for Molecular Medicine, Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Elise M N Ferre
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Petter Brodin
- Department of Cardiology, Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Women's and Children's Health, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Department of Newborn Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Donald Sharon
- Department of Genetics, School of Medicine, Stanford University, Stanford, United States
| | - Michael Snyder
- Wallenberg Center for Molecular Medicine, Lund University Diabetes Center, Lund University, Lund, Sweden.,Department of Genetics, School of Medicine, Stanford University, Stanford, United States
| | - Michail Lionakis
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Mark Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, United States
| | - Olle Kämpe
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| |
Collapse
|
35
|
Eriksson D, Bacchetta R, Gunnarsson HI, Chan A, Barzaghi F, Ehl S, Hallgren Å, van Gool F, Sardh F, Lundqvist C, Laakso SM, Rönnblom A, Ekwall O, Mäkitie O, Bensing S, Husebye ES, Anderson M, Kämpe O, Landegren N. The autoimmune targets in IPEX are dominated by gut epithelial proteins. J Allergy Clin Immunol 2019; 144:327-330.e8. [PMID: 31027649 DOI: 10.1016/j.jaci.2019.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Daniel Eriksson
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Hörður Ingi Gunnarsson
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Alice Chan
- Department of Pediatrics, University of California San Francisco, San Francisco, Calif
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy, Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Freiburg University Hospital, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Åsa Hallgren
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Frederic van Gool
- Diabetes Center, University of California San Francisco, San Francisco, Calif
| | - Fabian Sardh
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Christina Lundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Saila M Laakso
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anders Rönnblom
- Department of Medical Sciences, Gastroenterology, Uppsala University, Uppsala, Sweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
| | - Sophie Bensing
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Eystein S Husebye
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| | - Mark Anderson
- Diabetes Center, University of California San Francisco, San Francisco, Calif
| | - Olle Kämpe
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden; K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| | - Nils Landegren
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
Constantine GM, Lionakis MS. Lessons from primary immunodeficiencies: Autoimmune regulator and autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Immunol Rev 2019; 287:103-120. [PMID: 30565240 PMCID: PMC6309421 DOI: 10.1111/imr.12714] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022]
Abstract
The discovery of the autoimmune regulator (AIRE) protein and the delineation of its critical contributions in the establishment of central immune tolerance has significantly expanded our understanding of the immunological mechanisms that protect from the development of autoimmune disease. The parallel identification and characterization of patient cohorts with the monogenic disorder autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), which is typically caused by biallelic AIRE mutations, has underscored the critical contribution of AIRE in fungal immune surveillance at mucosal surfaces and in prevention of multiorgan autoimmunity in humans. In this review, we synthesize the current clinical, genetic, molecular and immunological knowledge derived from basic studies in Aire-deficient animals and from APECED patient cohorts. We also outline major advances and research endeavors that show promise for informing improved diagnostic and therapeutic approaches for patients with APECED.
Collapse
Affiliation(s)
- Gregory M Constantine
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
37
|
Fierabracci A, Pellegrino M, Frasca F, Kilic SS, Betterle C. APECED in Turkey: A case report and insights on genetic and phenotypic variability. Clin Immunol 2018; 194:60-66. [PMID: 30018023 DOI: 10.1016/j.clim.2018.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 01/06/2023]
Abstract
APECED is a rare monogenic recessive disorder caused by mutations in the AIRE gene. In this manuscript, we report a male Turkish patient with APECED syndrome who presented with chronic mucocutaneous candidiasis associated with other autoimmune manifestations developed over the years. The presence of the homozygous R257X mutation of the AIRE gene confirmed the diagnosis of APECED syndrome. We further performed literature review in 23 published Turkish APECED patients and noted that Finnish major mutation R257X is common in Turks. In particular, we assessed retrospectively how often the Ferre/Lionakis criteria would have resulted in earlier diagnosis in Finns, Sardinians and Turks in respect to the classic criteria. Since an earlier diagnosis could have been possible in 18.8% of Turkish, in 23.8% of Sardinian and 38.55% of Finnish patients we reviewed from literature, Ferre/Lionakis criteria could indeed allow in future earlier initiation of immunomodulatory treatments, if found effective in future studies.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Viale S. Paolo 15, 00146 Rome, Italy.
| | - Marsha Pellegrino
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Viale S. Paolo 15, 00146 Rome, Italy.
| | - Federica Frasca
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Viale S. Paolo 15, 00146 Rome, Italy.
| | - Sara Sebnem Kilic
- Pediatric Immunology -Rheumatology, Uludag University, Medical Faculty Department of Pediatrics, Gorukle-Bursa 16059, Turkey.
| | - Corrado Betterle
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, Via Ospedale Civile 105, 35128 Padua, Italy.
| |
Collapse
|
38
|
Cheng M, Anderson MS. Thymic tolerance as a key brake on autoimmunity. Nat Immunol 2018; 19:659-664. [PMID: 29925986 PMCID: PMC6370479 DOI: 10.1038/s41590-018-0128-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
Although the thymus has long been recognized as a key organ for T cell selection, the intricate details linking these selection events to human autoimmunity have been challenging to decipher. Over the last two decades, there has been rapid progress in understanding the role of thymic tolerance mechanisms in autoimmunity through genetics. Here we review some of the recent progress in understanding key thymic tolerance processes that are critical for preventing autoimmune disease.
Collapse
Affiliation(s)
- Mickie Cheng
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Eriksson D, Bianchi M, Landegren N, Dalin F, Skov J, Hultin-Rosenberg L, Mathioudaki A, Nordin J, Hallgren Å, Andersson G, Tandre K, Rantapää Dahlqvist S, Söderkvist P, Rönnblom L, Hulting AL, Wahlberg J, Dahlqvist P, Ekwall O, Meadows JRS, Lindblad-Toh K, Bensing S, Rosengren Pielberg G, Kämpe O. Common genetic variation in the autoimmune regulator (AIRE) locus is associated with autoimmune Addison's disease in Sweden. Sci Rep 2018; 8:8395. [PMID: 29849176 PMCID: PMC5976627 DOI: 10.1038/s41598-018-26842-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/18/2018] [Indexed: 12/23/2022] Open
Abstract
Autoimmune Addison's disease (AAD) is the predominating cause of primary adrenal failure. Despite its high heritability, the rarity of disease has long made candidate-gene studies the only feasible methodology for genetic studies. Here we conducted a comprehensive reinvestigation of suggested AAD risk loci and more than 1800 candidate genes with associated regulatory elements in 479 patients with AAD and 2394 controls. Our analysis enabled us to replicate many risk variants, but several other previously suggested risk variants failed confirmation. By exploring the full set of 1800 candidate genes, we further identified common variation in the autoimmune regulator (AIRE) as a novel risk locus associated to sporadic AAD in our study. Our findings not only confirm that multiple loci are associated with disease risk, but also show to what extent the multiple risk loci jointly associate to AAD. In total, risk loci discovered to date only explain about 7% of variance in liability to AAD in our study population.
Collapse
Affiliation(s)
- Daniel Eriksson
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Endocrinology, Metabolism and Diabetes Karolinska University Hospital, Stockholm, Sweden.
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Nils Landegren
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Frida Dalin
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jakob Skov
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lina Hultin-Rosenberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Argyri Mathioudaki
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jessika Nordin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Hallgren
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karolina Tandre
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Peter Söderkvist
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lars Rönnblom
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anna-Lena Hulting
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jeanette Wahlberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Endocrinology, Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sophie Bensing
- Department of Endocrinology, Metabolism and Diabetes Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Gerli Rosengren Pielberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Olle Kämpe
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes Karolinska University Hospital, Stockholm, Sweden
- K.G. Jebsen Center for Autoimmune Diseases, Bergen, Norway
| |
Collapse
|
40
|
Rosenberg JM, Maccari ME, Barzaghi F, Allenspach EJ, Pignata C, Weber G, Torgerson TR, Utz PJ, Bacchetta R. Neutralizing Anti-Cytokine Autoantibodies Against Interferon-α in Immunodysregulation Polyendocrinopathy Enteropathy X-Linked. Front Immunol 2018; 9:544. [PMID: 29651287 PMCID: PMC5885158 DOI: 10.3389/fimmu.2018.00544] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Anti-cytokine autoantibodies (ACAAs) have been described in a growing number of primary immunodeficiencies with autoimmune features, including autoimmune polyendocrine syndrome type I (APS-1), a prototypical disease of defective T cell-mediated central tolerance. Whether defects in peripheral tolerance lead to similar ACAAs is unknown. Immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) is caused by mutations in FOXP3, a master regulator of T regulatory cells (Treg), and consequently results in defective T cell-mediated peripheral tolerance. Unique autoantibodies have previously been described in IPEX. To test the hypothesis that ACAAs are present in IPEX, we designed and fabricated antigen microarrays. We discovered elevated levels of IgG ACAAs against interferon-α (IFN-α) in a cohort of IPEX patients. Serum from IPEX patients blocked IFN-α signaling in vitro and blocking activity was tightly correlated with ACAA titer. To show that blocking activity was mediated by IgG and not other serum factors, we purified IgG and showed that blocking activity was contained entirely in the immunoglobulin fraction. We also screened for ACAAs against IFN-α in a second geographically distinct cohort. In these samples, ACAAs against IFN-α were elevated in a post hoc analysis. In summary, we report the discovery of ACAAs against IFN-α in IPEX, an experiment of nature demonstrating the important role of peripheral T cell tolerance.
Collapse
Affiliation(s)
- Jacob M Rosenberg
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Maria E Maccari
- Center for Chronic Immunodeficiency, Faculty of Medicine, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Eric J Allenspach
- University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA, United States
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giovanna Weber
- Department of Pediatrics, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Troy R Torgerson
- University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA, United States
| | - Paul J Utz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, United States
| | - Rosa Bacchetta
- Department of Pediatric Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
41
|
ILF2 and ILF3 are autoantigens in canine systemic autoimmune disease. Sci Rep 2018; 8:4852. [PMID: 29556082 PMCID: PMC5859008 DOI: 10.1038/s41598-018-23034-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/05/2018] [Indexed: 12/12/2022] Open
Abstract
Dogs can spontaneously develop complex systemic autoimmune disorders, with similarities to human autoimmune disease. Autoantibodies directed at self-antigens are a key feature of these autoimmune diseases. Here we report the identification of interleukin enhancer-binding factors 2 and 3 (ILF2 and ILF3) as autoantigens in canine immune-mediated rheumatic disease. The ILF2 autoantibodies were discovered in a small, selected canine cohort through the use of human protein arrays; a method not previously described in dogs. Subsequently, ILF3 autoantibodies were also identified in the same cohort. The results were validated with an independent method in a larger cohort of dogs. ILF2 and ILF3 autoantibodies were found exclusively, and at a high frequency, in dogs that showed a speckled pattern of antinuclear antibodies on immunofluorescence. ILF2 and ILF3 autoantibodies were also found at low frequency in human patients with SLE and Sjögren's syndrome. These autoantibodies have the potential to be used as diagnostic biomarkers for canine, and possibly also human, autoimmune disease.
Collapse
|
42
|
Li H, Yang K, Wang W, Niu Y, Li J, Dong Y, Liu Y, Wang CC, Wang L, Liang H. Crystal and solution structures of human protein-disulfide isomerase-like protein of the testis (PDILT) provide insight into its chaperone activity. J Biol Chem 2018; 293:1192-1202. [PMID: 29203529 PMCID: PMC5787798 DOI: 10.1074/jbc.m117.797290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 12/01/2017] [Indexed: 01/07/2023] Open
Abstract
Protein-disulfide isomerase-like protein of the testis (PDILT), a member of the protein-disulfide isomerase family, is a chaperone essential for the folding of spermatogenesis-specific proteins in male postmeiotic germ cells. However, the structural mechanisms that regulate the chaperone function of PDILTs are unknown. Here, we report the structures of human PDILT (hPDILT) determined by X-ray crystallography to 2.4 Å resolution and small-angle X-ray scattering (SAXS). Distinct from previously reported U-like structures of related PDI family proteins, our structures revealed that hPDILT folds into a compact L-like structure in crystals and into an extended chain-like structure in solution. The hydrophobic regions and the hydrophobic pockets in hPDILT, which are important for substrate recognition, were clearly delineated in the crystal structure. Moreover, our results of the SAXS analysis and of structure-based substitutions and truncations indicated that the C-terminal tail in hPDILT is required for suppression of aggregation of denatured proteins, suggesting that the tail is crucial for the chaperone activity of PDILT. Taken together, our findings have identified the critical regions and conformational changes of PDILT that enable and control its activity. These results advance our understanding of the structural mechanisms involved in the chaperone activity of PDILT.
Collapse
Affiliation(s)
- Huanhuan Li
- From the National Laboratory of Biomacromolecules, ,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, and
| | - Kai Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, ,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, and
| | - Wenjia Wang
- the Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences and
| | - Yingbo Niu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, ,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, and
| | - Jun Li
- From the National Laboratory of Biomacromolecules, ,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, and
| | - Yuhui Dong
- the Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences and
| | - Yingfang Liu
- From the National Laboratory of Biomacromolecules, ,the School of Medicine and
| | - Chih-chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, ,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, and
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, ,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, and , To whom correspondence may be addressed. E-mail:
| | - Huanhuan Liang
- From the National Laboratory of Biomacromolecules, ,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China, To whom correspondence may be addressed. E-mail:
| |
Collapse
|
43
|
The immunobiology and clinical features of type 1 autoimmune polyglandular syndrome (APS-1). Autoimmun Rev 2018; 17:78-85. [DOI: 10.1016/j.autrev.2017.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/08/2017] [Indexed: 12/15/2022]
|
44
|
Passos GA, Speck‐Hernandez CA, Assis AF, Mendes‐da‐Cruz DA. Update on Aire and thymic negative selection. Immunology 2018; 153:10-20. [PMID: 28871661 PMCID: PMC5721245 DOI: 10.1111/imm.12831] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022] Open
Abstract
Twenty years ago, the autoimmune regulator (Aire) gene was associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, and was cloned and sequenced. Its importance goes beyond its abstract link with human autoimmune disease. Aire identification opened new perspectives to better understand the molecular basis of central tolerance and self-non-self distinction, the main properties of the immune system. Since 1997, a growing number of immunologists and molecular geneticists have made important discoveries about the function of Aire, which is essentially a pleiotropic gene. Aire is one of the functional markers in medullary thymic epithelial cells (mTECs), controlling their differentiation and expression of peripheral tissue antigens (PTAs), mTEC-thymocyte adhesion and the expression of microRNAs, among other functions. With Aire, the immunological tolerance became even more apparent from the molecular genetics point of view. Currently, mTECs represent the most unusual cells because they express almost the entire functional genome but still maintain their identity. Due to the enormous diversity of PTAs, this uncommon gene expression pattern was termed promiscuous gene expression, the interpretation of which is essentially immunological - i.e. it is related to self-representation in the thymus. Therefore, this knowledge is strongly linked to the negative selection of autoreactive thymocytes. In this update, we focus on the most relevant results of Aire as a transcriptional and post-transcriptional controller of PTAs in mTECs, its mechanism of action, and its influence on the negative selection of autoreactive thymocytes as the bases of the induction of central tolerance and prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Geraldo A. Passos
- Molecular Immunogenetics GroupDepartment of GeneticsRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
- Discipline of Genetics and Molecular BiologyDepartment of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| | - Cesar A. Speck‐Hernandez
- Graduate Programme in Basic and Applied ImmunologyRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| | - Amanda F. Assis
- Molecular Immunogenetics GroupDepartment of GeneticsRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| | - Daniella A. Mendes‐da‐Cruz
- Laboratory on Thymus ResearchOswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
- National Institute of Science and Technology on NeuroimmunomodulationRio de JaneiroRJBrazil
| |
Collapse
|
45
|
Proekt I, Miller CN, Lionakis MS, Anderson MS. Insights into immune tolerance from AIRE deficiency. Curr Opin Immunol 2017; 49:71-78. [PMID: 29065385 PMCID: PMC5705335 DOI: 10.1016/j.coi.2017.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 01/07/2023]
Abstract
AIRE is a well-established master regulator of central tolerance. It plays an essential role in driving expression of tissue-specific antigens in the thymus and shaping the development of positively selected T-cells. Humans and mice with compromised or absent AIRE function have markedly variable phenotypes that include a range of autoimmune manifestations. Recent evidence suggests that this variability stems from cooperation of autoimmune susceptibilities involving both central and peripheral tolerance checkpoints. Here we discuss the broadening understanding of the factors that influence Aire expression, modify AIRE function, and the impact and intersection of AIRE with peripheral immunity. This rapidly expanding body of knowledge will force a reexamination of the definition and clinical management of APS-1 patients as well as provide a foundation for the development of immunomodulatory strategies targeting central tolerance.
Collapse
Affiliation(s)
- Irina Proekt
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Corey N Miller
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michail S Lionakis
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA.
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
46
|
Fishman D, Kisand K, Hertel C, Rothe M, Remm A, Pihlap M, Adler P, Vilo J, Peet A, Meloni A, Podkrajsek KT, Battelino T, Bruserud Ø, Wolff ASB, Husebye ES, Kluger N, Krohn K, Ranki A, Peterson H, Hayday A, Peterson P. Autoantibody Repertoire in APECED Patients Targets Two Distinct Subgroups of Proteins. Front Immunol 2017; 8:976. [PMID: 28861084 PMCID: PMC5561390 DOI: 10.3389/fimmu.2017.00976] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
High titer autoantibodies produced by B lymphocytes are clinically important features of many common autoimmune diseases. APECED patients with deficient autoimmune regulator (AIRE) gene collectively display a broad repertoire of high titer autoantibodies, including some which are pathognomonic for major autoimmune diseases. AIRE deficiency severely reduces thymic expression of gene-products ordinarily restricted to discrete peripheral tissues, and developing T cells reactive to those gene-products are not inactivated during their development. However, the extent of the autoantibody repertoire in APECED and its relation to thymic expression of self-antigens are unclear. We here undertook a broad protein array approach to assess autoantibody repertoire in APECED patients. Our results show that in addition to shared autoantigen reactivities, APECED patients display high inter-individual variation in their autoantigen profiles, which collectively are enriched in evolutionarily conserved, cytosolic and nuclear phosphoproteins. The APECED autoantigens have two major origins; proteins expressed in thymic medullary epithelial cells and proteins expressed in lymphoid cells. These findings support the hypothesis that specific protein properties strongly contribute to the etiology of B cell autoimmunity.
Collapse
Affiliation(s)
- Dmytro Fishman
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | - Anu Remm
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maire Pihlap
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Priit Adler
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Aleksandr Peet
- Children's Clinic of Tartu University Hospital, Tartu, Estonia
| | - Antonella Meloni
- Pediatric Clinic II, Ospedale Microcitemico, Cagliari, Italy.,Department of Biomedical and Biotechnological Science, University of Cagliari, Cagliari, Italy
| | - Katarina Trebusak Podkrajsek
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Øyvind Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Kai Krohn
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Hedi Peterson
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King's College, Guy's Hospital, London, United Kingdom
| | - Pärt Peterson
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
47
|
Leonard JD, Gilmore DC, Dileepan T, Nawrocka WI, Chao JL, Schoenbach MH, Jenkins MK, Adams EJ, Savage PA. Identification of Natural Regulatory T Cell Epitopes Reveals Convergence on a Dominant Autoantigen. Immunity 2017; 47:107-117.e8. [PMID: 28709804 DOI: 10.1016/j.immuni.2017.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/17/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
Regulatory T (Treg) cells expressing the transcription factor Foxp3 are critical for the prevention of autoimmunity and the suppression of anti-tumor immunity. The major self-antigens recognized by Treg cells remain undefined, representing a substantial barrier to the understanding of immune regulation. Here, we have identified natural Treg cell ligands in mice. We found that two recurrent Treg cell clones, one prevalent in prostate tumors and the other associated with prostatic autoimmune lesions, recognized distinct non-overlapping MHC-class-II-restricted peptides derived from the same prostate-specific protein. Notably, this protein is frequently targeted by autoantibodies in experimental models of prostatic autoimmunity. On the basis of these findings, we propose a model in which Treg cell responses at peripheral sites converge on those self-proteins that are most susceptible to autoimmune attack, and we suggest that this link could be exploited as a generalizable strategy for identifying the Treg cell antigens relevant to human autoimmunity.
Collapse
Affiliation(s)
- John D Leonard
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Dana C Gilmore
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Thamotharampillai Dileepan
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Wioletta I Nawrocka
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jaime L Chao
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Mary H Schoenbach
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Marc K Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
48
|
Bruserud Ø, Oftedal BE, Landegren N, Erichsen MM, Bratland E, Lima K, Jørgensen AP, Myhre AG, Svartberg J, Fougner KJ, Bakke Å, Nedrebø BG, Mella B, Breivik L, Viken MK, Knappskog PM, Marthinussen MC, Løvås K, Kämpe O, Wolff AB, Husebye ES. A Longitudinal Follow-up of Autoimmune Polyendocrine Syndrome Type 1. J Clin Endocrinol Metab 2016; 101:2975-83. [PMID: 27253668 PMCID: PMC4971337 DOI: 10.1210/jc.2016-1821] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/27/2016] [Indexed: 11/19/2022]
Abstract
CONTEXT Autoimmune polyendocrine syndrome type 1 (APS1) is a childhood-onset monogenic disease defined by the presence of two of the three major components: hypoparathyroidism, primary adrenocortical insufficiency, and chronic mucocutaneous candidiasis (CMC). Information on longitudinal follow-up of APS1 is sparse. OBJECTIVE To describe the phenotypes of APS1 and correlate the clinical features with autoantibody profiles and autoimmune regulator (AIRE) mutations during extended follow-up (1996-2016). PATIENTS All known Norwegian patients with APS1. RESULTS Fifty-two patients from 34 families were identified. The majority presented with one of the major disease components during childhood. Enamel hypoplasia, hypoparathyroidism, and CMC were the most frequent components. With age, most patients presented three to five disease manifestations, although some had milder phenotypes diagnosed in adulthood. Fifteen of the patients died during follow-up (median age at death, 34 years) or were deceased siblings with a high probability of undisclosed APS1. All except three had interferon-ω) autoantibodies, and all had organ-specific autoantibodies. The most common AIRE mutation was c.967_979del13, found in homozygosity in 15 patients. A mild phenotype was associated with the splice mutation c.879+1G>A. Primary adrenocortical insufficiency and type 1 diabetes were associated with protective human leucocyte antigen genotypes. CONCLUSIONS Multiple presumable autoimmune manifestations, in particular hypoparathyroidism, CMC, and enamel hypoplasia, should prompt further diagnostic workup using autoantibody analyses (eg, interferon-ω) and AIRE sequencing to reveal APS1, even in adults. Treatment is complicated, and mortality is high. Structured follow-up should be performed in a specialized center.
Collapse
Affiliation(s)
- Øyvind Bruserud
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Bergithe E Oftedal
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Nils Landegren
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Martina M Erichsen
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Kari Lima
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Anders P Jørgensen
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Anne G Myhre
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Johan Svartberg
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Kristian J Fougner
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Åsne Bakke
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Bjørn G Nedrebø
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Bjarne Mella
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Lars Breivik
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Marte K Viken
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Per M Knappskog
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Mihaela C Marthinussen
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Kristian Løvås
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Olle Kämpe
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Anette B Wolff
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| | - Eystein S Husebye
- Department of Clinical Science (Ø.B., B.E.O., E.B., B.G.N., L.B., P.M.K., K.Lo., A.B.W., E.S.H.), University of Bergen, 5021 Bergen, Norway; Department of Medicine (Solna) (N.L., O.K.), Karolinska Institutet, 171 76 Stockholm, Sweden; Science for Life Laboratory (N.L.), Department of Medical Sciences, University of Uppsala, 751 05 Uppsala, Sweden; Department of Medicine (M.M.E., K.Lo., E.S.H.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (K.Li.,), Akershus University Hospital, 1474 Nordbyhagen, Norway; Department of Endocrinology (K.Li., A.P.J.), Oslo University Hospital, 0372 Oslo, Norway; Department of Pediatrics (A.G.M.), Oslo University Hospital, 0424 Oslo, Norway; Division of Internal Medicine (J.S.), University Hospital of North Norway, 9019 Tromsø, Norway; Institute of Clinical Medicine (J.S.), University of Tromsø, The Artic University of Norway, 9019 Tromsø, Norway; Department of Endocrinology (K.J.F.), St. Olavs Hospital, 7006 Trondheim, Norway; Department of Medicine (Å.B.), Stavanger University Hospital, 4011 Stavanger, Norway; Department of Medicine (B.G.N.), Haugesund Hospital, 5504 Haugesund, Norway; Department of Medicine (B.M.), Østfold Hospital, 1603 Fredrikstad, Norway; Department of Immunology (M.K.V.), Oslo University Hospital, 0372 Oslo, Norway; University of Oslo (M.K.V.), 0372 Oslo, Norway; Center for Medical Genetics and Molecular Medicine (P.M.K.), Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Dentistry (M.C.M.), Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway; and Oral Health Centre of Expertise in Western Norway (M.C.M.), 5021 Bergen, Norway
| |
Collapse
|
49
|
Meyer S, Woodward M, Hertel C, Vlaicu P, Haque Y, Kärner J, Macagno A, Onuoha SC, Fishman D, Peterson H, Metsküla K, Uibo R, Jäntti K, Hokynar K, Wolff ASB, Krohn K, Ranki A, Peterson P, Kisand K, Hayday A. AIRE-Deficient Patients Harbor Unique High-Affinity Disease-Ameliorating Autoantibodies. Cell 2016; 166:582-595. [PMID: 27426947 PMCID: PMC4967814 DOI: 10.1016/j.cell.2016.06.024] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/24/2016] [Accepted: 06/10/2016] [Indexed: 01/01/2023]
Abstract
APS1/APECED patients are defined by defects in the autoimmune regulator (AIRE) that mediates central T cell tolerance to many self-antigens. AIRE deficiency also affects B cell tolerance, but this is incompletely understood. Here we show that most APS1/APECED patients displayed B cell autoreactivity toward unique sets of approximately 100 self-proteins. Thereby, autoantibodies from 81 patients collectively detected many thousands of human proteins. The loss of B cell tolerance seemingly occurred during antibody affinity maturation, an obligatorily T cell-dependent step. Consistent with this, many APS1/APECED patients harbored extremely high-affinity, neutralizing autoantibodies, particularly against specific cytokines. Such antibodies were biologically active in vitro and in vivo, and those neutralizing type I interferons (IFNs) showed a striking inverse correlation with type I diabetes, not shown by other anti-cytokine antibodies. Thus, naturally occurring human autoantibodies may actively limit disease and be of therapeutic utility.
Collapse
Affiliation(s)
- Steffen Meyer
- ImmunoQure AG, Königsallee 90, 2012 Düsseldorf, Germany
| | - Martin Woodward
- Peter Gorer Department of Immunobiology, King's College, London SE19RT, UK
| | | | - Philip Vlaicu
- ImmunoQure AG, Königsallee 90, 2012 Düsseldorf, Germany
| | - Yasmin Haque
- Peter Gorer Department of Immunobiology, King's College, London SE19RT, UK
| | - Jaanika Kärner
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, Tartu 50411, Estonia
| | - Annalisa Macagno
- ImmunoQure Research AG, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Shimobi C Onuoha
- ImmunoQure Research AG, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Dmytro Fishman
- Institute of Computer Science, University of Tartu, Liivi 2, Tartu 50409, Estonia; Quretec Ltd., Ülikooli 6A, Tartu 51003, Estonia
| | - Hedi Peterson
- Institute of Computer Science, University of Tartu, Liivi 2, Tartu 50409, Estonia; Quretec Ltd., Ülikooli 6A, Tartu 51003, Estonia
| | - Kaja Metsküla
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, Tartu 50411, Estonia
| | - Raivo Uibo
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, Tartu 50411, Estonia
| | - Kirsi Jäntti
- Clinical Research Institute HUCH Ltd., Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Kati Hokynar
- Clinical Research Institute HUCH Ltd., Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Laboratory Building, 8th floor, 5021 Bergen, Norway
| | - Kai Krohn
- Clinical Research Institute HUCH Ltd., Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Meilahdentie 2, 00250 Helsinki, Finland
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, Tartu 50411, Estonia
| | - Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, Tartu 50411, Estonia.
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King's College, London SE19RT, UK.
| |
Collapse
|
50
|
De Martino L, Capalbo D, Improda N, Lorello P, Ungaro C, Di Mase R, Cirillo E, Pignata C, Salerno M. Novel Findings into AIRE Genetics and Functioning: Clinical Implications. Front Pediatr 2016; 4:86. [PMID: 27597936 PMCID: PMC4992815 DOI: 10.3389/fped.2016.00086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 01/22/2023] Open
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), formerly known as autoimmune polyendocrine syndrome type 1, is a paradigm of a monogenic autoimmune disease caused by mutations of a gene, named autoimmune regulator (AIRE). AIRE acts as a transcription regulator that promotes immunological central tolerance by inducing the ectopic thymic expression of many tissue-specific antigens. Although the syndrome is a monogenic disease, it is characterized by a wide variability of the clinical expression with no significant correlation between genotype and phenotype. Indeed, many aspects regarding the exact role of AIRE and APECED pathogenesis still remain unraveled. In the last decades, several studies in APECED and in its mouse experimental counterpart have revealed new insights on how immune system learns self-tolerance. Moreover, novel interesting findings have extended our understanding of AIRE's function and regulation thus improving our knowledge on the pathogenesis of APECED. In this review, we will summarize recent novelties on molecular mechanisms underlying the development of APECED and their clinical implications.
Collapse
Affiliation(s)
- Lucia De Martino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | | | - Nicola Improda
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Paola Lorello
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Carla Ungaro
- Department of Pediatrics, Federico II University , Naples , Italy
| | | | - Emilia Cirillo
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Mariacarolina Salerno
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| |
Collapse
|