1
|
Salgueiro RB, Bolin AP, Andreotti S, Medeiros Komino AC, de Sousa É, de Fatima Silva F, Gomes de Proença AR, Laurato Sertié RA, Rodrigues AC, Lima FB. Long-term glucocorticoid infusion impairs epididymal adipocyte metabolism and maturation and affects miR-150-5p actions. Mol Cell Endocrinol 2024; 589:112250. [PMID: 38663485 DOI: 10.1016/j.mce.2024.112250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The most common form of hypercortisolism is iatrogenic Cushing's syndrome. Lipodystrophy and metabolic disorders can result from the use of exogenous glucocorticoids (GC). Adipocytes play an important role in the production of circulating exosomal microRNAs, and knockdown of Dicer promotes lipodystrophy. The aim of this study is to investigate the effect of GCs on epididymal fat and to assess their influence on circulating microRNAs associated with fat turnover. The data indicate that despite the reduction in adipocyte volume due to increased lipolysis and apoptosis, there is no difference in tissue mass, suggesting that epididymal fat pad, related to animal size, is not affected by GC treatment. Although high concentrations of GC have no direct effect on epididymal microRNA-150-5p expression, GC can induce epididymal adipocyte uptake of microRNA-150-5p, which regulates transcription factor Ppar gamma during adipocyte maturation. In addition, GC treatment increased lipolysis and decreased glucose-derived lipid and glycerol incorporation. In conclusion, the similar control and GC epididymal fat mass results from increased dense fibrogenic tissue and decreased adipocyte volume induced by the lipolytic effect of GC. These findings demonstrate the complexity of epididymal fat. They also highlight how this disease alters fat distribution. This study is the first in a series published by our laboratory showing the detailed mechanism of adipocyte turnover in this disease.
Collapse
Affiliation(s)
- Rafael Barrera Salgueiro
- University of São Paulo, Institute of Biomedical Sciences, Department of Physiology and Biophysics, São Paulo, SP, Brazil; University of Brasília, Biology Institute, Department of Physiological Sciences, Brasília, Federal District, Brazil.
| | - Anaysa Paola Bolin
- University of São Paulo, Institute of Biomedical Sciences, Department of Pharmacology, São Paulo, SP, Brazil
| | - Sandra Andreotti
- University of São Paulo, Institute of Biomedical Sciences, Department of Physiology and Biophysics, São Paulo, SP, Brazil
| | - Ayumi Cristina Medeiros Komino
- University of São Paulo, Institute of Biomedical Sciences, Department of Physiology and Biophysics, São Paulo, SP, Brazil
| | - Érica de Sousa
- University of São Paulo, Institute of Biomedical Sciences, Department of Pharmacology, São Paulo, SP, Brazil
| | - Flaviane de Fatima Silva
- University of São Paulo, Institute of Biomedical Sciences, Department of Physiology and Biophysics, São Paulo, SP, Brazil
| | | | - Rogério Antonio Laurato Sertié
- University of São Paulo, Institute of Biomedical Sciences, Department of Physiology and Biophysics, São Paulo, SP, Brazil
| | - Alice Cristina Rodrigues
- University of São Paulo, Institute of Biomedical Sciences, Department of Pharmacology, São Paulo, SP, Brazil
| | - Fabio Bessa Lima
- University of São Paulo, Institute of Biomedical Sciences, Department of Physiology and Biophysics, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Daley AD, Bénézech C. Fat-associated lymphoid clusters: Supporting visceral adipose tissue B cell function in immunity and metabolism. Immunol Rev 2024; 324:78-94. [PMID: 38717136 DOI: 10.1111/imr.13339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 07/23/2024]
Abstract
It is now widely understood that visceral adipose tissue (VAT) is a highly active and dynamic organ, with many functions beyond lipid accumulation and storage. In this review, we discuss the immunological role of this tissue, underpinned by the presence of fat-associated lymphoid clusters (FALCs). FALC's distinctive structure and stromal cell composition support a very different immune cell mix to that found in classical secondary lymphoid organs, which underlies their unique functions of filtration, surveillance, innate-like immune responses, and adaptive immunity within the serous cavities. FALCs are important B cell hubs providing B1 cell-mediated frontline protection against infection and supporting B2 cell-adaptative immune responses. Beyond these beneficial immune responses orchestrated by FALCs, immune cells within VAT play important homeostatic role. Dysregulation of immune cells during obesity and aging leads to chronic pathological "metabolic inflammation", which contributes to the development of cardiometabolic diseases. Here, we examine the emerging and complex functions of B cells in VAT homeostasis and the metabolic complications of obesity, highlighting the potential role that FALCs play and emphasize the areas where further research is needed.
Collapse
Affiliation(s)
- Alexander D Daley
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Cécile Bénézech
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Improta-Caria AC, Ferrari F, Gomes JLP, Villalta PB, Soci ÚPR, Stein R, Oliveira EM. Dysregulated microRNAs in type 2 diabetes and breast cancer: Potential associated molecular mechanisms. World J Diabetes 2024; 15:1187-1198. [PMID: 38983808 PMCID: PMC11229979 DOI: 10.4239/wjd.v15.i6.1187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Type 2 diabetes (T2D) is a multifaceted and heterogeneous syndrome associated with complications such as hypertension, coronary artery disease, and notably, breast cancer (BC). The connection between T2D and BC is established through processes that involve insulin resistance, inflammation and other factors. Despite this comprehension the specific cellular and molecular mechanisms linking T2D to BC, especially through microRNAs (miRNAs), remain elusive. miRNAs are regulators of gene expression at the post-transcriptional level and have the function of regulating target genes by modulating various signaling pathways and biological processes. However, the signaling pathways and biological processes regulated by miRNAs that are associated with T2D and BC have not yet been elucidated. This review aims to identify dysregulated miRNAs in both T2D and BC, exploring potential signaling pathways and biological processes that collectively contribute to the development of BC.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Filipe Ferrari
- Graduate Program in Cardiology and Cardiovascular Sciences, Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | - João Lucas Penteado Gomes
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Paloma Brasilio Villalta
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas-UNICAMP, Campinas 13484-350, Brazil
| | - Úrsula Paula Renó Soci
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Ricardo Stein
- Graduate Program in Cardiology and Cardiovascular Sciences, Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | - Edilamar M Oliveira
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
- Departments of Internal Medicine, Molecular Pharmacology and Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, United States
| |
Collapse
|
4
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Wang Y, Qin J, Dong L, He C, Zhang D, Wu X, Li T, Yue H, Mu L, Wang Q, Yang J. Suppression of mir-150-5p attenuates the anti-inflammatory effect of glucocorticoids in mice with ulcerative colitis. Mol Immunol 2023; 163:28-38. [PMID: 37729776 DOI: 10.1016/j.molimm.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/08/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Glucocorticoids have been widely used in the treatment of ulcerative colitis, but not all patients benefit from this therapy due to hormone resistance. Mir-150-5p has been reported to enhance the efficacy of glucocorticoids, and low serum mir-150-5p expression has been linked to glucocorticoid resistance in ulcerative colitis patients. The aim of this study was to elucidate the mechanisms of mir-150-5p regulation on glucocorticoid resistance. An ulcerative colitis mouse model was used to evaluate changes in ulcerative colitis symptoms, inflammatory factors, and glucocorticoid resistance-related gene expression. The results showed that mir-150-5p suppression with antagomirs did not significantly interfere with or enhance the induction of ulcerative colitis symptoms by dextran sulfate sodium, but it did attenuate the inflammation inhibitory effect of dexamethasone by abnormally regulating the expression of IL-17a, IL-10, IL-2 and IL-6 levels and myeloperoxidase activity. Mir-150-5p inhibition also induced a glucocorticoid-resistant gene expression profile in colon tissues of ulcerative colitis mice, with upregulation of p-ERK, p-JNK, and HSP90 and downregulation of p-GRa, FKBP4, and HDAC2 expression. Our results indicate that mir-150-5p suppression attenuates the anti-inflammatory effect of glucocorticoids and may function as a driver element in ulcerative colitis glucocorticoid resistance. AVAILABILITY OF DATA AND MATERIALS: All data and figures analyzed in this study are available from the corresponding author by request.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Jiahong Qin
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lihong Dong
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen He
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dapeng Zhang
- Department of Internal Medicine, Kunming Meizhao Physical Examination Center, Kunming, China
| | - Xue Wu
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ting Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haidong Yue
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lingjie Mu
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiang Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jilin Yang
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
6
|
Meng F, Shen F, Chu X, Ling H, Qiao Y, Liu D. Hsa_circ_0008500 inhibits apoptosis of adipose-derived stem cells under high glucose through hsa-miR-1273h-5p/ELK1 axis. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37014014 DOI: 10.1002/tox.23801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Preliminary researches have confirmed that the number of apoptosis of adipose tissue-derived stem cells (ADSCs) in patients with diabetes is significantly increased, leading to a difficult healing wound. Increasing researches revealed that circular RNAs (circRNAs) can control apoptosis. However, it is still unclear whether and how circRNAs are critical for regulating ADSCs apoptosis. In this study, we utilized in vitro model in which ADSCs were cultivated with normal glucose (NG) (5.5 mM) or high glucose (HG) (25 mM) medium, respectively, and found that more apoptotic ADSCs were observed in HG medium comparing to ADSCs in NG medium. Furthermore, we found that hsa_circ_0008500 attenuated HG-mediated ADSCs apoptosis. In addition, Hsa_circ_0008500 could directly interact with hsa-miR-1273h-5p, acting as a miRNA sponge, which subsequently suppressed Ets-like protein-1(ELK1) expression, the downstream target of hsa-miR-1273h-5p. Thus, these results indicated that targeting the hsa_circ_0008500/hsa-miR-1273h-5p/ELK1 signaling pathway in ADSCs may be a potential target for repairing diabetic wounds.
Collapse
Affiliation(s)
- Fandong Meng
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Fengjie Shen
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Xuan Chu
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Hongwei Ling
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
7
|
Chen W, Meng F, Zeng X, Cao X, Bu G, Du X, Yu G, Kong F, Li Y, Gan T, Han X. Mechanic Insight into the Distinct and Common Roles of Ovariectomy Versus Adrenalectomy on Adipose Tissue Remodeling in Female Mice. Int J Mol Sci 2023; 24:ijms24032308. [PMID: 36768630 PMCID: PMC9916485 DOI: 10.3390/ijms24032308] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Dysfunctions of the ovaries and adrenal glands are both evidenced to cause aberrant adipose tissue (AT) remodeling and resultant metabolic disorders, but their distinct and common roles are poorly understood. In this study, through biochemical, histological and RNA-seq analyses, we comprehensively explored the mechanisms underpinning subcutaneous (SAT) and visceral adipose tissue (VAT) remodeling, in response to ovariectomy (OVX) versus adrenalectomy (ADX) in female mice. OVX promoted adipocyte differentiation and fat accumulation in both SAT and VAT, by potentiating the Pparg signaling, while ADX universally prevented the cell proliferation and extracellular matrix organization in both SAT and VAT, likely by inactivating the Nr3c1 signaling, thus causing lipoatrophy in females. ADX, but not OVX, exerted great effects on the intrinsic difference between SAT and VAT. Specifically, ADX reversed a large cluster of genes differentially expressed between SAT and VAT, by activating 12 key transcription factors, and thereby caused senescent cell accumulation, massive B cell infiltration and the development of selective inflammatory response in SAT. Commonly, both OVX and ADX enhance circadian rhythmicity in VAT, and impair cell proliferation, neurogenesis, tissue morphogenesis, as well as extracellular matrix organization in SAT, thus causing dysfunction of adipose tissues and concomitant metabolic disorders.
Collapse
|
8
|
Hu YZ, Li Q, Wang PF, Li XP, Hu ZL. Multiple functions and regulatory network of miR-150 in B lymphocyte-related diseases. Front Oncol 2023; 13:1140813. [PMID: 37182123 PMCID: PMC10172652 DOI: 10.3389/fonc.2023.1140813] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the post-transcriptional regulation of gene expression. Previous studies have shown that miR-150 is a crucial regulator of B cell proliferation, differentiation, metabolism, and apoptosis. miR-150 regulates the immune homeostasis during the development of obesity and is aberrantly expressed in multiple B-cell-related malignant tumors. Additionally, the altered expression of MIR-150 is a diagnostic biomarker of various autoimmune diseases. Furthermore, exosome-derived miR-150 is considered as prognostic tool in B cell lymphoma, autoimmune diseases and immune-mediated disorders, suggesting miR-150 plays a vital role in disease onset and progression. In this review, we summarized the miR-150-dependent regulation of B cell function in B cell-related immune diseases.
Collapse
Affiliation(s)
- Yue-Zi Hu
- Clinical Laboratory, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qiao Li
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Wang
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhao-Lan Hu,
| |
Collapse
|
9
|
Identification of Differentially Expressed miRNAs in Porcine Adipose Tissues and Evaluation of Their Effects on Feed Efficiency. Genes (Basel) 2022; 13:genes13122406. [PMID: 36553673 PMCID: PMC9778086 DOI: 10.3390/genes13122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Feed efficiency (FE) is a very important trait affecting the economic benefits of pig breeding enterprises. Adipose tissue can modulate a variety of processes such as feed intake, energy metabolism and systemic physiological processes. However, the mechanism by which microRNAs (miRNAs) in adipose tissues regulate FE remains largely unknown. Therefore, this study aimed to screen potential miRNAs related to FE through miRNA sequencing. The miRNA profiles in porcine adipose tissues were obtained and 14 miRNAs were identified differentially expressed in adipose tissues of pigs with extreme differences in FE, of which 9 were down-regulated and 5 were up-regulated. GO and KEGG analyses indicated that these miRNAs were significantly related to lipid metabolism and these miRNAs modulated FE by regulating lipid metabolism. Subsequently, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of five randomly selected DEMs was used to verify the reliability of miRNA-seq data. Furthermore, 39 differentially expressed target genes of these DEMs were obtained, and DEMs-target mRNA interaction networks were constructed. In addition, the most significantly down-regulated miRNAs, ssc-miR-122-5p and ssc-miR-192, might be the key miRNAs for FE. Our results reveal the mechanism by which adipose miRNAs regulate feed efficiency in pigs. This study provides a theoretical basis for the further study of swine feed efficiency improvement.
Collapse
|
10
|
Zhang S, Sun Z, Jiang X, Lu Z, Ding L, Li C, Tian X, Wang Q. Ferroptosis increases obesity: Crosstalk between adipocytes and the neuroimmune system. Front Immunol 2022; 13:1049936. [PMID: 36479119 PMCID: PMC9720262 DOI: 10.3389/fimmu.2022.1049936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Ferroptosis requires not only the accumulation of iron ions, but also changes in many ferroptosis-related regulators, including a decrease in GPX4 and inhibition of SLC7A11 for classical ferroptosis, a deletion of FSP1 or GCH1. Surprisingly, adipose tissue (AT) in the obesity conditions is also accompanied by iron buildup, decreased GSH, and increased ROS. On the neurological side, the pro-inflammatory factor released by AT may have first caused ferroptosis in the vagus nerve by inhibiting of the NRF2-GPX4 pathway, resulting in disorders of the autonomic nervous system. On the immune side, obesity may cause M2 macrophages ferroptosis due to damage to iron-rich ATMs (MFehi) and antioxidant ATMs (Mox), and lead to Treg cells ferroptosis through reductions in NRF2, GPX4, and GCH1 levels. At the same time, the reduction in GPX4 may also trigger the ferroptosis of B1 cells. In addition, some studies have also found the role of GPX4 in neutrophil autophagy, which is also worth pondering whether there is a connection with ferroptosis. In conclusion, this review summarizes the associations between neuroimmune regulation associated with obesity and ferroptosis, and on the basis of this, highlights their potential molecular mechanisms, proposing that ferroptosis in one or more cells in a multicellular tissue changes the fate of that tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuewen Tian
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| | - Qinglu Wang
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| |
Collapse
|
11
|
Gholami M, Zoughi M, Larijani B, Abdollahzadeh R, Taslimi R, Rahmani Z, Kazemeini A, Behboo R, Razi F, Bastami M, Hasani‐Ranjbar S, Amoli MM. The role of inflammatory miRNA-mRNA interactions in PBMCs of colorectal cancer and obesity patients. Immun Inflamm Dis 2022; 10:e702. [PMID: 36301024 PMCID: PMC9609448 DOI: 10.1002/iid3.702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Inflammation is a critical hallmark in obesity and colorectal cancer (CRC). This study aimed to investigate effective microRNA (miRNA)–messenger RNA (mRNA) interactions on inflammatory networks involved in obesity and CRC. Methods The literature searches were applied to identify genes expression reported on peripheral blood mononuclear cells (PBMCs) and/or blood of CRC subjects and to find inflammatory miRNA in blood samples. Furthermore, bioinformatics analysis was utilized to find inflammatory miRNA:mRNA interactions of the genes. Finally, a case‐control study was set to investigate the expression of LAMC1 and GNB3 genes besides miR‐10b, miR‐506‐3p, miR‐150‐5p, and miR‐124‐3p in CRC and control subjects. Results The expression of LAMC1 gene in healthy control groups was associated with body mass index (BMI) (p < .05). The level of miR‐10b (p < .001), miR‐506 (p < .001), and miR‐124 (p <. 001) were significantly increased in PBMCs of CRC patients, while they were not associated with BMI. The level of miR‐150 was associated with BMI in healthy subjects (p < .05). Conclusions The changes in the level of miR‐506 and miR‐124 in CRC patients may be associated with the regulatory role of these miRNAs on LAMC1 expression. The LAMC1 may be related to BMI, however, more observational studies on other populations are needed.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Marziyeh Zoughi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Rasoul Abdollahzadeh
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Reza Taslimi
- Department of Gastroenterology, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran
| | - Zeinab Rahmani
- Department of Gastroenterology, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran
| | - Alireza Kazemeini
- Department of General Surgery, Imam Khomeini Hospital, School of MedicineTehran University of Medical SciencesTehranIran
| | - Roobic Behboo
- Hazrate Rasoole Akram HospitalIran University of Medical ScienceTehranIran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular‐Cellular sciences instituteTehran University of Medical SciencesTehranIran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Shirin Hasani‐Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
12
|
MicroRNA-150 (miR-150) and Diabetic Retinopathy: Is miR-150 Only a Biomarker or Does It Contribute to Disease Progression? Int J Mol Sci 2022; 23:ijms232012099. [PMID: 36292956 PMCID: PMC9603433 DOI: 10.3390/ijms232012099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic disease associated with diabetes mellitus and is a leading cause of visual impairment among the working population in the US. Clinically, DR has been diagnosed and treated as a vascular complication, but it adversely impacts both neural retina and retinal vasculature. Degeneration of retinal neurons and microvasculature manifests in the diabetic retina and early stages of DR. Retinal photoreceptors undergo apoptosis shortly after the onset of diabetes, which contributes to the retinal dysfunction and microvascular complications leading to vision impairment. Chronic inflammation is a hallmark of diabetes and a contributor to cell apoptosis, and retinal photoreceptors are a major source of intraocular inflammation that contributes to vascular abnormalities in diabetes. As the levels of microRNAs (miRs) are changed in the plasma and vitreous of diabetic patients, miRs have been suggested as biomarkers to determine the progression of diabetic ocular diseases, including DR. However, few miRs have been thoroughly investigated as contributors to the pathogenesis of DR. Among these miRs, miR-150 is downregulated in diabetic patients and is an endogenous suppressor of inflammation, apoptosis, and pathological angiogenesis. In this review, how miR-150 and its downstream targets contribute to diabetes-associated retinal degeneration and pathological angiogenesis in DR are discussed. Currently, there is no effective treatment to stop or reverse diabetes-caused neural and vascular degeneration in the retina. Understanding the molecular mechanism of the pathogenesis of DR may shed light for the future development of more effective treatments for DR and other diabetes-associated ocular diseases.
Collapse
|
13
|
Mirra D, Cione E, Spaziano G, Esposito R, Sorgenti M, Granato E, Cerqua I, Muraca L, Iovino P, Gallelli L, D’Agostino B. Circulating MicroRNAs Expression Profile in Lung Inflammation: A Preliminary Study. J Clin Med 2022; 11:jcm11185446. [PMID: 36143090 PMCID: PMC9500709 DOI: 10.3390/jcm11185446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Bronchial asthma is an inflammatory airway disease with an ever-increasing incidence. Therefore, innovative management strategies are urgently needed. MicroRNAs are small molecules that play a key role in lungs cellular functions and are involved in chronic inflammatory diseases, such as bronchial asthma. This study aims to compare microRNA serum expression between subjects with asthma, obesity, the most common co-morbidity in asthma, and healthy controls to obtain a specific expression profile specifically related to lung inflammation. Methods: We collected serum samples from a prospective cohort of 25 sex-matched subjects to determine circulating miRNAs through a quantitative RT-PCR. Moreover, we performed an in silico prediction of microRNA target genes linked to lung inflammation. Results: Asthmatic patients had a significant lower expression of hsa-miR-34a-5p, 181a-5p and 146a-5p compared to both obese and healthy ones suggesting microRNAs’ specific involvement in the regulation of lungs inflammatory response. Indeed, using in silico analysis, we identified microRNAs novel target genes as GATA family, linked to the inflammatory-related pathway. Conclusions: This study identifies a novel circulating miRNAs expression profile with promising potentials for asthma clinical evaluations and management. Further and larger investigations will be needed to confirm the potential role of microRNA as a clinical marker of bronchial asthma and eventually of pharmacological treatment response.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018–2022, University of Calabria, 87036 Rende, CS, Italy
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Mario Sorgenti
- Respiratory Diseases in Primary Care, ASP Catanzaro, 88100 Catanzaro, Italy
| | - Elisabetta Granato
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Lucia Muraca
- Department of Primary Care, ASP Catanzaro, 88100 Catanzaro, Italy
| | - Pasquale Iovino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, Mater Domini Hospital, University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| |
Collapse
|
14
|
Yi TT, Yu JM, Liang YY, Wang SQ, Lin GC, Wu XD. Identification of cystic fibrosis transmembrane conductance regulator as a prognostic marker for juvenile myelomonocytic leukemia via the whole-genome bisulfite sequencing of monozygotic twins and data mining. Transl Pediatr 2022; 11:1521-1533. [PMID: 36247890 PMCID: PMC9561505 DOI: 10.21037/tp-22-381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Linked deoxyribonucleic acid (DNA) hypermethylation investigations of promoter methylation levels of candidate genes may help to increase the progressiveness and mortality rates of juvenile myelomonocytic leukemia (JMML), which is a unique myelodysplastic/myeloproliferative neoplasm caused by excessive monocyte and granulocyte proliferation in infancy/early childhood. However, the roles of hypermethylation in this malignant disease are uncertain. METHODS Bone marrow samples from a JMML patient and peripheral blood samples from a healthy monozygotic twin and an unrelated healthy donor were collected with the informed consent of the participant's parents. Whole-genome bisulfite sequencing (WGBS) was then performed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to analyze specific differentially methylated region (DMG) related genes. The target genes were screened with Cytoscape and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), which are gene/protein interaction databases. A data mining platform was used to examine the expression level data of the healthy control and JMML patient tissues in Gene Expression Omnibus data sets, and a survival analysis was performed for all the JMML patients. RESULTS The STRING analysis revealed that the red node [i.e., the cystic fibrosis transmembrane conductance regulator (CFTR)] was the gene of interest. The gene-expression microarray data set analysis suggested that the CFTR expression levels did not differ significantly between the JMML patients and healthy controls (P=0.81). A statistically significant difference was observed in the CFTR promoter methylation level but not in the CFTR gene body methylation level. The overall survival analysis demonstrated that a high level of CFTR expression was associated with a worse survival rate in patients with JMML (P=0.039). CONCLUSIONS CFTR promoter hypermethylation may be a novel biomarker for the diagnosis, monitoring of disease progression, and prognosis of JMML.
Collapse
Affiliation(s)
- Tian-Tian Yi
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-Ming Yu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Yang Liang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Si-Qi Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guan-Chuan Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xue-Dong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Abstract
Obesity is a prevalent health risk by inducing chronic, low-grade inflammation and insulin resistance, in part from adipose tissue inflammation perpetuated by activated B cells and other resident immune cells. However, regulatory mechanisms controlling B-cell actions in adipose tissue remain poorly understood, limiting therapeutic innovations. MicroRNAs are potent regulators of immune cell dynamics through fine-tuning a network of downstream genes in multiple signaling pathways. In particular, miR-150 is crucial to B-cell development and suppresses obesity-associated inflammation via regulating adipose tissue B-cell function. Herein, we review the effect of microRNAs on B-cell development, activation, and function and highlight miR-150-regulated B-cell actions during obesity which modulate systemic inflammation and insulin resistance. In this way, we hope to promote translational discoveries that mitigate obesity-induced health risks by targeting microRNA-regulated B-cell actions.
Collapse
|
16
|
Liu Y, Cheng X, Li H, Hui S, Zhang Z, Xiao Y, Peng W. Non-Coding RNAs as Novel Regulators of Neuroinflammation in Alzheimer's Disease. Front Immunol 2022; 13:908076. [PMID: 35720333 PMCID: PMC9201920 DOI: 10.3389/fimmu.2022.908076] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the most common causes of dementia. Although significant breakthroughs have been made in understanding the progression and pathogenesis of AD, it remains a worldwide problem and a significant public health burden. Thus, more efficient diagnostic and therapeutic strategies are urgently required. The latest research studies have revealed that neuroinflammation is crucial in the pathogenesis of AD. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA-derived small RNAs (tsRNAs), have been strongly associated with AD-induced neuroinflammation. Furthermore, several ongoing pre-clinical studies are currently investigating ncRNA as disease biomarkers and therapeutic interventions to provide new perspectives for AD diagnosis and treatment. In this review, the role of different types of ncRNAs in neuroinflammation during AD are summarized in order to improve our understanding of AD etiology and aid in the translation of basic research into clinical practice.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Xin Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Hongli Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China.,Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| |
Collapse
|
17
|
Proteomics and Phosphoproteomics of Circulating Extracellular Vesicles Provide New Insights into Diabetes Pathobiology. Int J Mol Sci 2022; 23:ijms23105779. [PMID: 35628588 PMCID: PMC9147902 DOI: 10.3390/ijms23105779] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to define the proteomic and phosphoproteomic landscape of circulating extracellular vesicles (EVs) in people with normal glucose tolerance (NGT), prediabetes (PDM), and diabetes (T2DM). Archived serum samples from 30 human subjects (n = 10 per group, ORIGINS study, NCT02226640) were used. EVs were isolated using EVtrap®. Mass spectrometry-based methods were used to detect the global EV proteome and phosphoproteome. Differentially expressed features, correlation, enriched pathways, and enriched tissue-specific protein sets were identified using custom R scripts. Phosphosite-centric analyses were conducted using directPA and PhosR software packages. A total of 2372 unique EV proteins and 716 unique EV phosphoproteins were identified among all samples. Unsupervised clustering of the differentially expressed (fold change ≥ 2, p < 0.05, FDR < 0.05) proteins and, particularly, phosphoproteins showed excellent discrimination among the three groups. CDK1 and PKCδ appear to drive key upstream phosphorylation events that define the phosphoproteomic signatures of PDM and T2DM. Circulating EVs from people with diabetes carry increased levels of specific phosphorylated kinases (i.e., AKT1, GSK3B, LYN, MAP2K2, MYLK, and PRKCD) and could potentially distribute activated kinases systemically. Among characteristic changes in the PDM and T2DM EVs, “integrin switching” appeared to be a central feature. Proteins involved in oxidative phosphorylation (OXPHOS), known to be reduced in various tissues in diabetes, were significantly increased in EVs from PDM and T2DM, which suggests that an abnormally elevated EV-mediated secretion of OXPHOS components may underlie the development of diabetes. A highly enriched signature of liver-specific markers among the downregulated EV proteins and phosphoproteins in both PDM and T2DM groups was also detected. This suggests that an alteration in liver EV composition and/or secretion may occur early in prediabetes. This study identified EV proteomic and phosphoproteomic signatures in people with prediabetes and T2DM and provides novel insight into the pathobiology of diabetes.
Collapse
|
18
|
Ding Q, Gao Z, Chen K, Zhang Q, Hu S, Zhao L. Inflammation-Related Epigenetic Modification: The Bridge Between Immune and Metabolism in Type 2 Diabetes. Front Immunol 2022; 13:883410. [PMID: 35603204 PMCID: PMC9120428 DOI: 10.3389/fimmu.2022.883410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
T2DM, as a typical metabolic inflammatory disease, is under the joint regulation of environmental factors and genetics, combining with a variety of epigenetic changes. Apart from epigenetic changes of islet β cells and glycometabolic tissues or organs, the inflammation-related epigenetics is also the core pathomechanism leading to β-cell dysfunction and insulin resistance. In this review, we focus on the epigenetic modification of immune cells’ proliferation, recruitment, differentiation and function, providing an overview of the key genes which regulated by DNA methylation, histone modifications, and non-coding RNA in the respect of T2DM. Meanwhile, we further summarize the present situation of T2DM epigenetic research and elucidate its prospect in T2DM clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Qiyou Ding
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keyu Chen
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiqi Zhang
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiwan Hu
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Linhua Zhao,
| |
Collapse
|
19
|
Khanlarkhani N, Azizi E, Amidi F, Khodarahmian M, Salehi E, Pazhohan A, Farhood B, Mortezae K, Goradel NH, Nashtaei MS. Metabolic risk factors of ovarian cancer: a review. JBRA Assist Reprod 2022; 26:335-347. [PMID: 34751020 PMCID: PMC9118962 DOI: 10.5935/1518-0557.20210067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/29/2021] [Indexed: 11/20/2022] Open
Abstract
Ovarian cancer continues to be the leading cause of death from gynecological cancers. Despite inconsistent results, patients with metabolic abnormalities, including obesity and diabetes mellitus (DM), have poorer outcomes, showing a correlation with ovarian cancer incidence and ovarian cancer survival. Since ovarian cancer is the most common cancer in women, and considering the increasing prevalence of obesity and DM, this paper reviews the literature regarding the relationship between the aforementioned metabolic derangements and ovarian cancer, with a focus on ovarian cancer incidence, mortality, and likely mechanisms behind them. Several systematic reviews and meta-analyses have shown that obesity is associated with a higher incidence and poorer survival in ovarian cancer. Although more studies are required to investigate the etiological relation of DM and ovarian cancer, sufficient biological evidence indicates poorer outcomes and shorter survival in DM women with ovarian cancer. A variety of pathologic factors may contribute to ovarian cancer risk, development, and survival, including altered adipokine expression, increased levels of circulating growth factors, altered levels of sex hormones, insulin resistance, hyperinsulinemia, and chronic inflammation. Thus, obesity and DM, as changeable risk factors, can be targeted for intervention to prevent ovarian cancer and improve its outcomes.
Collapse
Affiliation(s)
- Neda Khanlarkhani
- Department of Physiology and Pharmacology, Karolinska Institute, Sweden
| | - Elham Azizi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Infertility department, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Salehi
- Department of Gynecology, School of Medicine, Fertility and Infertility Research Center, Dr. Ali Shariati Hospital, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Azar Pazhohan
- Infertility Center, Academic Center for Education, Culture and Research, East Azarbaijan, Tabriz, Iran. / Department of Midwifery, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezae
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. / Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Jorgensen BG, Ro S. MicroRNAs and 'Sponging' Competitive Endogenous RNAs Dysregulated in Colorectal Cancer: Potential as Noninvasive Biomarkers and Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23042166. [PMID: 35216281 PMCID: PMC8876324 DOI: 10.3390/ijms23042166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal (GI) tract in mammals is comprised of dozens of cell types with varied functions, structures, and histological locations that respond in a myriad of ways to epigenetic and genetic factors, environmental cues, diet, and microbiota. The homeostatic functioning of these cells contained within this complex organ system has been shown to be highly regulated by the effect of microRNAs (miRNA). Multiple efforts have uncovered that these miRNAs are often tightly influential in either the suppression or overexpression of inflammatory, apoptotic, and differentiation-related genes and proteins in a variety of cell types in colorectal cancer (CRC). The early detection of CRC and other GI cancers can be difficult, attributable to the invasive nature of prophylactic colonoscopies. Additionally, the levels of miRNAs associated with CRC in biofluids can be contradictory and, therefore, must be considered in the context of other inhibiting competitive endogenous RNAs (ceRNA) such as lncRNAs and circRNAs. There is now a high demand for disease treatments and noninvasive screenings such as testing for bloodborne or fecal miRNAs and their inhibitors/targets. The breadth of this review encompasses current literature on well-established CRC-related miRNAs and the possibilities for their use as biomarkers in the diagnoses of this potentially fatal GI cancer.
Collapse
|
21
|
Lin H, Mercer KE, Ou X, Mansfield K, Buchmann R, Børsheim E, Tas E. Circulating microRNAs Are Associated With Metabolic Markers in Adolescents With Hepatosteatosis. Front Endocrinol (Lausanne) 2022; 13:856973. [PMID: 35498403 PMCID: PMC9047938 DOI: 10.3389/fendo.2022.856973] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Altered hepatic microRNA (miRNA) expression may play a role in the development of insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD). Circulating miRNAs could mirror the liver metabolism. OBJECTIVE This study aimed to assess the relationship between serum miRNA profile in children with obesity, IR, and NAFLD. METHODS Adolescents with obesity (n = 31) were stratified based on insulin resistance and NAFLD status. One-hundred seventy-nine miRNAs were determined in the serum by quantitative RT-PCR. Differentially expressed miRNAs were compared between groups, and log-transformed levels correlated with metabolic markers and intrahepatic triglyceride. RESULTS Serum miR-21-5p, -22-3p, -150-5p, and -155-5p levels were higher in children with IR and NAFLD, and their expression levels correlated with hepatic fat and serum triglyceride. In patients with NAFLD, miR-155-5p correlated with ALT (r = 0.68, p<0.01) and AST (r = 0.64, p<0.01) and miR-21-5p and -22-3p levels correlated with plasma adiponectin (r = -0.71 and r = -0.75, respectively, p<0.05) and fibroblast growth factor-21 (r = -0.73 and r = -0.89, respectively, p<0.01). miR-27-3a level was higher in children without IR and NAFLD. CONCLUSIONS Several miRNAs are differentially expressed in children with IR and NAFLD. Determining their mechanistic roles may provide newer diagnostic tools and therapeutic targets for pediatric NAFLD.
Collapse
Affiliation(s)
- Haixia Lin
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kelly E. Mercer
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Center for Childhood Obesity and Prevention, Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Xiawei Ou
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Center for Childhood Obesity and Prevention, Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kori Mansfield
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Robert Buchmann
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Elisabet Børsheim
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Center for Childhood Obesity and Prevention, Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Emir Tas
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Center for Childhood Obesity and Prevention, Arkansas Children’s Research Institute, Little Rock, AR, United States
- Endocrinology and Diabetes, Arkansas Children’s Hospital, Little Rock, AR, United States
- *Correspondence: Emir Tas,
| |
Collapse
|
22
|
Yu F, Ko ML, Ko GYP. MicroRNA-150 and its target ETS-domain transcription factor 1 contribute to inflammation in diabetic photoreceptors. J Cell Mol Med 2021; 25:10724-10735. [PMID: 34704358 PMCID: PMC8581325 DOI: 10.1111/jcmm.17012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity‐associated type 2 diabetes (T2D) is on the rise in the United States due to the obesity epidemic, and 60% of T2D patients develop diabetic retinopathy (DR) in their lifetime. Chronic inflammation is a hallmark of obesity and T2D and a well‐accepted major contributor to DR, and retinal photoreceptors are a major source of intraocular inflammation and directly contribute to vascular abnormalities in diabetes. However, how diabetic insults cause photoreceptor inflammation is not well known. In this study, we used a high‐fat diet (HFD)‐induced T2D mouse model and cultured photoreceptors treated with palmitic acid (PA) to decipher major players that mediate high‐fat‐induced photoreceptor inflammation. We found that PA‐elicited microRNA‐150 (miR‐150) decreases with a consistent upregulation of ETS‐domain transcription factor 1 (Elk1), a downstream target of miR‐150, in PA‐elicited photoreceptor inflammation. We compared wild‐type (WT) and miR‐150 null (miR‐150−/−) mice fed with an HFD and found that deletion of miR‐150 exacerbated HFD‐induced photoreceptor inflammation in conjunction with upregulated ELK1. We further delineated the critical cellular localization of phosphorylated ELK1 at serine 383 (pELK1S383) and found that decreased miR‐150 exacerbated the T2D‐induced inflammation in photoreceptors by upregulating ELK1 and pELK1S383, and knockdown of ELK1 alleviated PA‐elicited photoreceptor inflammation.
Collapse
Affiliation(s)
- Fei Yu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,Department of Biology, Division of Natural and Physical Sciences, Blinn College, Bryan, Texas, USA
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
23
|
Luís C, Baylina P, Soares R, Fernandes R. Metabolic Dysfunction Biomarkers as Predictors of Early Diabetes. Biomolecules 2021; 11:1589. [PMID: 34827587 PMCID: PMC8615896 DOI: 10.3390/biom11111589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
During the pathophysiological course of type 2 diabetes (T2D), several metabolic imbalances occur. There is increasing evidence that metabolic dysfunction far precedes clinical manifestations. Thus, knowing and understanding metabolic imbalances is crucial to unraveling new strategies and molecules (biomarkers) for the early-stage prediction of the disease's non-clinical phase. Lifestyle interventions must be made with considerable involvement of clinicians, and it should be considered that not all patients will respond in the same manner. Individuals with a high risk of diabetic progression will present compensatory metabolic mechanisms, translated into metabolic biomarkers that will therefore show potential predictive value to differentiate between progressors/non-progressors in T2D. Specific novel biomarkers are being proposed to entrap prediabetes and target progressors to achieve better outcomes. This study provides a review of the latest relevant biomarkers in prediabetes. A search for articles published between 2011 and 2021 was conducted; duplicates were removed, and inclusion criteria were applied. From the 29 studies considered, a survey of the most cited (relevant) biomarkers was conducted and further discussed in the two main identified fields: metabolomics, and miRNA studies.
Collapse
Affiliation(s)
- Carla Luís
- FMUP–Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal;
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto Polytechnic, 4200-375 Porto, Portugal;
| | - Pilar Baylina
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto Polytechnic, 4200-375 Porto, Portugal;
- IPP–Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Raquel Soares
- FMUP–Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal;
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Biochemistry Unit, Department of Biochemistry, FMUP, Faculty of Medicine, University of Porto, Al Prof Hernani Monteiro, 4200-319 Porto, Portugal
| | - Rúben Fernandes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto Polytechnic, 4200-375 Porto, Portugal;
- IPP–Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| |
Collapse
|
24
|
Decreased MicroRNA-150 Exacerbates Neuronal Apoptosis in the Diabetic Retina. Biomedicines 2021; 9:biomedicines9091135. [PMID: 34572320 PMCID: PMC8469350 DOI: 10.3390/biomedicines9091135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic complication associated with diabetes and the number one cause of blindness in working adults in the US. More than 90% of diabetic patients have obesity-associated type 2 diabetes (T2D), and 60% of T2D patients will develop DR. Photoreceptors undergo apoptosis shortly after the onset of diabetes, which contributes to the retinal dysfunction and microvascular complications leading to vision impairment. However, how diabetic insults cause photoreceptor apoptosis remains unclear. In this study, obesity-associated T2D mice and cultured photoreceptors were used to investigate how decreased microRNA-150 (miR-150) and its downstream target were involved in photoreceptor apoptosis. In the T2D retina, miR-150 was decreased with its target ETS-domain transcription factor (ELK1) and phosphorylated ELK1 at threonine 417 (pELK1T417) upregulated. In cultured photoreceptors, treatments with palmitic acid (PA), to mimic a high-fat environment, decreased miR-150 but upregulated ELK1, pELK1T417, and the translocation of pELK1T417 from the cytoplasm to the cell nucleus. Deletion of miR-150 (miR-150-/-) exacerbates T2D- or PA-induced photoreceptor apoptosis. Blocking the expression of ELK1 with small interfering RNA (siRNA) for Elk1 did not rescue PA-induced photoreceptor apoptosis. Translocation of pELK1T417 from cytoplasm-to-nucleus appears to be the key step of diabetic insult-elicited photoreceptor apoptosis.
Collapse
|
25
|
Hu C, Jia W. Multi-omics profiling: the way towards precision medicine in metabolic diseases. J Mol Cell Biol 2021; 13:mjab051. [PMID: 34406397 PMCID: PMC8697344 DOI: 10.1093/jmcb/mjab051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic diseases including type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome (MetS) are alarming health burdens around the world, while therapies for these diseases are far from satisfying as their etiologies are not completely clear yet. T2DM, NAFLD, and MetS are all complex and multifactorial metabolic disorders based on the interactions between genetics and environment. Omics studies such as genetics, transcriptomics, epigenetics, proteomics, and metabolomics are all promising approaches in accurately characterizing these diseases. And the most effective treatments for individuals can be achieved via omics pathways, which is the theme of precision medicine. In this review, we summarized the multi-omics studies of T2DM, NAFLD, and MetS in recent years, provided a theoretical basis for their pathogenesis and the effective prevention and treatment, and highlighted the biomarkers and future strategies for precision medicine.
Collapse
Affiliation(s)
- Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
- Institute for Metabolic Disease, Fengxian Central Hospital, The Third School of
Clinical Medicine, Southern Medical University, Shanghai 201499, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
| |
Collapse
|
26
|
Tello-Flores VA, Beltrán-Anaya FO, Ramírez-Vargas MA, Esteban-Casales BE, Navarro-Tito N, Alarcón-Romero LDC, Luciano-Villa CA, Ramírez M, del Moral-Hernández Ó, Flores-Alfaro E. Role of Long Non-Coding RNAs and the Molecular Mechanisms Involved in Insulin Resistance. Int J Mol Sci 2021; 22:7256. [PMID: 34298896 PMCID: PMC8306787 DOI: 10.3390/ijms22147256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are single-stranded RNA biomolecules with a length of >200 nt, and they are currently considered to be master regulators of many pathological processes. Recent publications have shown that lncRNAs play important roles in the pathogenesis and progression of insulin resistance (IR) and glucose homeostasis by regulating inflammatory and lipogenic processes. lncRNAs regulate gene expression by binding to other non-coding RNAs, mRNAs, proteins, and DNA. In recent years, several mechanisms have been reported to explain the key roles of lncRNAs in the development of IR, including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), imprinted maternal-ly expressed transcript (H19), maternally expressed gene 3 (MEG3), myocardial infarction-associated transcript (MIAT), and steroid receptor RNA activator (SRA), HOX transcript antisense RNA (HOTAIR), and downregulated Expression-Related Hexose/Glucose Transport Enhancer (DREH). LncRNAs participate in the regulation of lipid and carbohydrate metabolism, the inflammatory process, and oxidative stress through different pathways, such as cyclic adenosine monophosphate/protein kinase A (cAMP/PKA), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), polypyrimidine tract-binding protein 1/element-binding transcription factor 1c (PTBP1/SREBP-1c), AKT/nitric oxide synthase (eNOS), AKT/forkhead box O1 (FoxO1), and tumor necrosis factor-alpha (TNF-α)/c-Jun-N-terminal kinases (JNK). On the other hand, the mechanisms linked to the molecular, cellular, and biochemical actions of lncRNAs vary according to the tissue, biological species, and the severity of IR. Therefore, it is essential to elucidate the role of lncRNAs in the insulin signaling pathway and glucose and lipid metabolism. This review analyzes the function and molecular mechanisms of lncRNAs involved in the development of IR.
Collapse
Affiliation(s)
- Vianet Argelia Tello-Flores
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Marco Antonio Ramírez-Vargas
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Brenda Ely Esteban-Casales
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Luz del Carmen Alarcón-Romero
- Laboratorio de Citopatología e Histoquímica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Carlos Aldair Luciano-Villa
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Mónica Ramírez
- CONACyT, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Óscar del Moral-Hernández
- Laboratorio de Virología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico
| | - Eugenia Flores-Alfaro
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| |
Collapse
|
27
|
Adipocyte, Immune Cells, and miRNA Crosstalk: A Novel Regulator of Metabolic Dysfunction and Obesity. Cells 2021; 10:cells10051004. [PMID: 33923175 PMCID: PMC8147115 DOI: 10.3390/cells10051004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue (AT) accompanied with alterations in the immune response that affects virtually all age and socioeconomic groups around the globe. The abnormal accumulation of AT leads to several metabolic diseases, including nonalcoholic fatty liver disorder (NAFLD), low-grade inflammation, type 2 diabetes mellitus (T2DM), cardiovascular disorders (CVDs), and cancer. AT is an endocrine organ composed of adipocytes and immune cells, including B-Cells, T-cells and macrophages. These immune cells secrete various cytokines and chemokines and crosstalk with adipokines to maintain metabolic homeostasis and low-grade chronic inflammation. A novel form of adipokines, microRNA (miRs), is expressed in many developing peripheral tissues, including ATs, T-cells, and macrophages, and modulates the immune response. miRs are essential for insulin resistance, maintaining the tumor microenvironment, and obesity-associated inflammation (OAI). The abnormal regulation of AT, T-cells, and macrophage miRs may change the function of different organs including the pancreas, heart, liver, and skeletal muscle. Since obesity and inflammation are closely associated, the dysregulated expression of miRs in inflammatory adipocytes, T-cells, and macrophages suggest the importance of miRs in OAI. Therefore, in this review article, we have elaborated the role of miRs as epigenetic regulators affecting adipocyte differentiation, immune response, AT browning, adipogenesis, lipid metabolism, insulin resistance (IR), glucose homeostasis, obesity, and metabolic disorders. Further, we will discuss a set of altered miRs as novel biomarkers for metabolic disease progression and therapeutic targets for obesity.
Collapse
|
28
|
S.V. A, Pratibha M, Kapil B, M.K. S. Identification of circulatory miRNAs as candidate biomarkers in prediabetes - A systematic review and bioinformatics analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Moraes VN, Queiroz AL, Martone D, Rodrigues JAL, Gomes MM, Salgado JÚnior W, Bueno CR. Relationship between the hsa miR 150-5p and FTO gene expression in white subcutaneous adipose tissue with overweight/obesity, lipid profile and glycemia. AN ACAD BRAS CIENC 2020; 92:e20200249. [PMID: 33237144 DOI: 10.1590/0001-3765202020200249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/28/2020] [Indexed: 11/21/2022] Open
Abstract
The overweight population is growing in the world, and the search for obesity-associated mechanisms is important for a better understanding of this disease. Few studies with the FTO gene and miRs show how they associate to obesity and how they can impact this disease. The aim of this study was to verify the relationship between the FTO gene and the hsa-miR-150-5p expression with overweight/obesity, lipid profile, and fast blood glucose. Men and women (18 years older or above), with body mass index ≥ 18.5 kg/m2, were enrolled in the present study and the FTO gene and hsa-miR-150-5p expression, biochemical parameters of blood and anthropometric measurements were analyzed. The results highlight that the FTO gene expression is associated to obesity (p 0.029), LDL-C (p 0.02) and fasting blood glucose (p 0.02), but not with triglycerides (p 0.69), total cholesterol (p 0.21), and HDL-C (p 0.24). The hsa-miR-150-5p is not associated to obesity (p 0.84), triglycerides (p 0.57), total cholesterol (p 0.51), HDL-C (p 0.75), LDL-C (p 0.32), and fasting blood glucose (p 0.42). The FTO gene expression is related to obesity, LDL-C and blood fasting glucose, representing a good molecular marker for obesity.
Collapse
Affiliation(s)
- Vitor N Moraes
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - AndrÉ L Queiroz
- Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA
| | - Daniel Martone
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Jhennyfer A L Rodrigues
- Universidade de São Paulo, Escola de Educação Física e Esporte de Ribeirão Preto, Av. Bandeirantes, 3900, Vila Monte Alegre, 14040-907 Ribeirão Preto, SP, Brazil
| | - Matheus M Gomes
- Universidade de São Paulo, Escola de Educação Física e Esporte de Ribeirão Preto, Av. Bandeirantes, 3900, Vila Monte Alegre, 14040-907 Ribeirão Preto, SP, Brazil
| | - Wilson Salgado JÚnior
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Carlos Roberto Bueno
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Escola de Educação Física e Esporte de Ribeirão Preto, Av. Bandeirantes, 3900, Vila Monte Alegre, 14040-907 Ribeirão Preto, SP, Brazil
| |
Collapse
|
30
|
Profile of circulating microRNAs in myalgic encephalomyelitis and their relation to symptom severity, and disease pathophysiology. Sci Rep 2020; 10:19620. [PMID: 33184353 PMCID: PMC7665057 DOI: 10.1038/s41598-020-76438-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic disease, rooted in multi-system dysfunctions characterized by unexplained debilitating fatigue. Post-exertional malaise (PEM), defined as the exacerbation of the patient's symptoms following minimal physical or mental stress, is a hallmark of ME/CFS. While multiple case definitions exist, there is currently no well-established biomarkers or laboratory tests to diagnose ME/CFS. Our study aimed to investigate circulating microRNA expression in severely ill ME/CFS patients before and after an innovative stress challenge that stimulates PEM. Our findings highlight the differential expression of eleven microRNAs associated with a physiological response to PEM. The present study uncovers specific microRNA expression signatures associated with ME/CFS in response to PEM induction and reports microRNA expression patterns associated to specific symptom severities. The identification of distinctive microRNA expression signatures for ME/CFS through a provocation challenge is essential for the elucidation of the ME/CFS pathophysiology, and lead to accurate diagnoses, prevention measures, and effective treatment options.
Collapse
|
31
|
Yu F, Chapman S, Pham DL, Ko ML, Zhou B, Ko GYP. Decreased miR-150 in obesity-associated type 2 diabetic mice increases intraocular inflammation and exacerbates retinal dysfunction. BMJ Open Diabetes Res Care 2020; 8:8/1/e001446. [PMID: 32973073 PMCID: PMC7517560 DOI: 10.1136/bmjdrc-2020-001446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Diabetic retinopathy (DR) is the leading cause of blindness among the working population in the USA. Current therapies, including anti-vascular endothelial growth factor treatments, cannot completely reverse the visual defects induced by DR. MicroRNA-150 (miR-150) is a regulator that suppresses inflammation and pathological angiogenesis. In patients with diabetes, miR-150 is downregulated. As chronic inflammation is a major contributor to the pathogenesis of DR, whether diabetes-associated decrease of miR-150 is merely associated with the disease progression or decreased miR-150 causes retinal inflammation and pathological angiogenesis is still unknown. RESEARCH DESIGN AND METHODS We used high-fat diet (HFD)-induced type 2 diabetes (T2D) in wild type (WT) and miR-150 knockout (miR-150-/-) mice for this study and compared retinal function and microvasculature morphology. RESULTS We found that WT mice fed with an HFD for only 1 month had a significant decrease of miR-150 in the blood and retina, and retinal light sensitivity also decreased. The miR-150-/- mice on the HFD developed diabetes similar to that of the WT. At 7-8 months old, miR-150-/- mice under normal diet had increased degeneration of retinal capillaries compared with WT mice, indicating that miR-150 is important in maintaining the structural integrity of retinal microvasculature. Deletion of miR-150 worsened HFD-induced retinal dysfunction as early as 1 month after the diet regimen, and it exacerbated HFD-induced T2DR by further increasing retinal inflammation and microvascular degeneration. CONCLUSION These data suggest that decreased miR-150 caused by obesity or diabetic insults is not merely correlated to the disease progression, but it contributes to the retinal dysfunction and inflammation, as well as the development of DR.
Collapse
Affiliation(s)
- Fei Yu
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Samantha Chapman
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Dylan Luc Pham
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Michael Lee Ko
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Biology, Blinn College, Bryan, Texas, USA
| | - Beiyan Zhou
- Immunology, UConn Health, Farmington, Connecticut, USA
| | - Gladys Y-P Ko
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
32
|
Song J, Hao L, Wei W, Yang R, Wang C, Geng H, Li H, Wang S, Lu G, Feng T, Sun X, Liu S, Wang G, Cheng Y. A SNP in the 3'UTR of the porcine IGF-1 gene interacts with miR-new14 to affect IGF-1 expression, proliferation and apoptosis of PK-15 cells. Domest Anim Endocrinol 2020; 72:106430. [PMID: 32171113 DOI: 10.1016/j.domaniend.2019.106430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 11/06/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
The kidney of miniature pigs has been considered the most likely potential kidney source for patients needing kidney transplantation. Insulin-like growth factor 1 (IGF-1) is involved in regulating the growth of miniature pigs and inducing growth of kidneys. There are evidences showing that the SNPs in the 3'UTR of a gene may affect the gene expression by affecting the binding to a miRNA target site. In this study, one SNP (rs34142920) was screened in the IGF-1 3'UTR between 2 different body types of porcine breeds, Bama Xiang (BX) pigs, a miniature pig breed, and Large White (LW) pigs by sequencing. The secondary structure of the IGF-1 3'UTR mRNA containing the SNP in BX pigs is different from that of LW pigs. We then verified that there was a porcine miRNA (miR-new14) binding to this SNP in the 3'UTR of IGF-1 via cotransfecting the 3'UTR from the 2 breeds and miR-new14. We further found that the SNP downregulated mRNA and protein levels of IGF-1 by affecting the binding of miR-new14. To understand the function of miR-new14 in porcine kidney (PK-15) cells and its mechanism, cell proliferation and cell apoptosis assays were employed and results showed that proliferation viability of PK-15 cells was weakened and the apoptotic percentage of PK-15 cells was higher in the miR-new14 group. Porcine miRNA reduced the mRNA expression of AKT/ERK and protein levels of p-AKT/p-ERK. These results suggested that the expression of IGF-1 is influenced by this SNP and miR-new14 and that miR-new14 may suppress cell proliferation and promote cell apoptosis in PK-15 cells through regulating AKT and ERK signaling pathways, in which IGF-1 is involved.
Collapse
Affiliation(s)
- Jie Song
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Wenzhen Wei
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Rui Yang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Chunli Wang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Hongwei Geng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Haoyang Li
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Siyao Wang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Guanhong Lu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Tianqi Feng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Xiaotong Sun
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Songcai Liu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China; Five-Star Animal Health Pharmaceutical Factory of Jilin Province, 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Gang Wang
- Gan&Lee Pharmaceuticals, No. 8 Nanfeng West 1st Street, Huoxian, Tongzhou District, Beijing 101109, China.
| | - Yunyun Cheng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China; College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Cheema AK, Sarria L, Bekheit M, Collado F, Almenar‐Pérez E, Martín‐Martínez E, Alegre J, Castro‐Marrero J, Fletcher MA, Klimas NG, Oltra E, Nathanson L. Unravelling myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Gender-specific changes in the microRNA expression profiling in ME/CFS. J Cell Mol Med 2020; 24:5865-5877. [PMID: 32291908 PMCID: PMC7214164 DOI: 10.1111/jcmm.15260] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem illness characterized by medically unexplained debilitating fatigue with suggested altered immunological state. Our study aimed to explore peripheral blood mononuclear cells (PBMCs) for microRNAs (miRNAs) expression in ME/CFS subjects under an exercise challenge. The findings highlight the immune response and inflammation links to differential miRNA expression in ME/CFS. The present study is particularly important in being the first to uncover the differences that exist in miRNA expression patterns in males and females with ME/CFS in response to exercise. This provides new evidence for the understanding of differential miRNA expression patterns and post-exertional malaise in ME/CFS. We also report miRNA expression pattern differences associating with the nutritional status in individuals with ME/CFS, highlighting the effect of subjects' metabolic state on molecular changes to be considered in clinical research within the NINDS/CDC ME/CFS Common Data Elements. The identification of gender-based miRNAs importantly provides new insights into gender-specific ME/CFS susceptibility and demands exploration of sex-suited ME/CFS therapeutics.
Collapse
Affiliation(s)
- Amanpreet K. Cheema
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of NutritionDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
| | - Leonor Sarria
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
| | - Mina Bekheit
- Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityFort LauderdaleFLUSA
| | - Fanny Collado
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Eloy Almenar‐Pérez
- Escuela de DoctoradoUniversidad Católica de Valencia San Vicente MártirValenciaSpain
| | | | - Jose Alegre
- Vall d'Hebron University HospitalVall d'Hebron Research InstituteUniversitat Autónoma de BarcelonaBarcelonaSpain
| | - Jesus Castro‐Marrero
- Vall d'Hebron University HospitalVall d'Hebron Research InstituteUniversitat Autónoma de BarcelonaBarcelonaSpain
| | - Mary A. Fletcher
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Nancy G. Klimas
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Elisa Oltra
- School of MedicineUniversidad Católica de Valencia San Vicente MártirValenciaSpain
| | - Lubov Nathanson
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of NutritionDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityFort LauderdaleFLUSA
| |
Collapse
|
34
|
Abstract
The immune system plays an important role in obesity-induced adipose tissue inflammation and the resultant metabolic dysfunction, which can lead to hypertension, dyslipidemia, and insulin resistance and their downstream sequelae of type 2 diabetes mellitus and cardiovascular disease. While macrophages are the most abundant immune cell type in adipose tissue, other immune cells are also present, such as B cells, which play important roles in regulating adipose tissue inflammation. This brief review will overview B-cell subsets, describe their localization in various adipose depots and summarize our knowledge about the function of these B-cell subsets in regulating adipose tissue inflammation, obesity-induced metabolic dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Prasad Srikakulapu
- From the Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| | - Coleen A McNamara
- From the Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| |
Collapse
|
35
|
Cheng F, Yuan G, He J, Shao Y, Zhang J, Guo X. Aberrant expression of miR-214 is associated with obesity-induced insulin resistance as a biomarker and therapeutic. Diagn Pathol 2020; 15:18. [PMID: 32093712 PMCID: PMC7041268 DOI: 10.1186/s13000-019-0914-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Insulin resistance (IR) in obesity is associated with the occurrence of metabolic and cardiovascular diseases. Dipepidyl peptidase 4 (DPP4) plays a pivotal role during the development of IR, and was found to be a target gene of microRNA-214 (miR-214) in our study. This study sought to assess the expression and clinical value of miR-214 in obese patients with IR, and investigate its therapeutic potential in obese rats and adipocytes with IR. METHODS Serum expression of miR-214 in obese patients with or without IR was estimated by quantitative real-time-PCR. A receiver operating characteristic curve was plotted to evaluate the diagnostic value of miR-214 in the patients. Obesity-induced IR animal and cell models were constructed, and the therapeutic ability of miR-214 was explored. RESULTS Serum expression of miR-214 was decreased in obese patients compared with the healthy controls, and the lowest expression was observed in the cases with IR. Downregulation of miR-214 was significantly correlated with the serum DPP4 levels and HOMA-IR of the patients upon IR conditions, and was demonstrated to perform diagnostic accuracy for distinguishing obese patients with IR from those without IR. In obesity-associated IR animal and cell models, the downregulation of miR-214 was also been detected. According to the measurement of glucose and insulin tolerance and glucose uptake abilities, we found that the overexpression of miR-214 could be used to alleviate IR in the IR models, especially when collaboratively used with DPP4 inhibitor vildagliptin. CONCLUSION All data revealed that miR-214, as a regulator of DPP4, is decreased in obese patients with IR and may serve as a diagnostic biomarker. The upregulation of miR-214 could improve IR in obese rats and adipocytes, indicating that miR-214 has the therapeutic potential for obesity and IR.
Collapse
Affiliation(s)
- Fangxiao Cheng
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Geheng Yuan
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Jiao He
- Department of Endocrinology, Baoding First Central Hispital, Baoding, 071000, Hebei Province, China
| | - Yimin Shao
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
36
|
Wang Y, Wang K, Zhang L, Tan Y, Hu Z, Dang L, Zhou H, Li G, Wang H, Zhang S, Shi F, Cao X, Zhang G. Targeted overexpression of the long noncoding RNA ODSM can regulate osteoblast function in vitro and in vivo. Cell Death Dis 2020; 11:133. [PMID: 32071307 PMCID: PMC7028725 DOI: 10.1038/s41419-020-2325-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Ameliorating bone loss caused by mechanical unloading is a substantial clinical challenge, and the role of noncoding RNAs in this process has attracted increasing attention. In this study, we found that the long noncoding RNA osteoblast differentiation-related lncRNA under simulated microgravity (lncRNA ODSM) could inhibit osteoblast apoptosis and promote osteoblast mineralization in vitro. The increased expression level of the lncRNA ODSM partially reduced apoptosis and promoted differentiation in MC3T3-E1 cells under microgravity unloading conditions, and the effect was partially dependent on miR-139-3p. LncRNA ODSM supplementation in hindlimb-unloaded mice caused a decrease in the number of apoptotic cells in bone tissue and an increase in osteoblast activity. Furthermore, targeted overexpression of the lncRNA ODSM in osteoblasts partially reversed bone loss induced by mechanical unloading at the microstructural and biomechanical levels. These findings are the first to suggest the potential value of the lncRNA ODSM in osteoporosis therapy and the treatment of pathological osteopenia.
Collapse
Affiliation(s)
- Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Lei Dang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hua Zhou
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Han Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
37
|
MicroRNA-150 deficiency accelerates intimal hyperplasia by acting as a novel regulator of macrophage polarization. Life Sci 2020; 240:116985. [DOI: 10.1016/j.lfs.2019.116985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022]
|
38
|
Lee KM, Bassig BA, Zhang L, Vermeulen RC, Hu W, Wong JYY, Qiu C, Wen C, Huang Y, Purdue MP, Ji BT, Li L, Tang X, Rothman N, Smith MT, Lan Q. Association between occupational exposure to trichloroethylene and serum levels of microRNAs: a cross-sectional molecular epidemiology study in China. Int Arch Occup Environ Health 2019; 92:1077-1085. [PMID: 31161417 PMCID: PMC6953905 DOI: 10.1007/s00420-019-01448-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/28/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVES The objective of our study was to evaluate the association between occupational exposure to trichloroethylene (TCE), a suspected lymphomagen, and serum levels of miRNAs in a cross-sectional molecular epidemiology study of TCE-exposed workers and comparable unexposed controls in China. METHODS Serum levels of 40 miRNAs were compared in 74 workers exposed to TCE (median: 12 ppm) and 90 unexposed control workers. Linear regression models were used to test for differences in serum miRNA levels between exposed and unexposed workers and to evaluate exposure-response relationships across TCE exposure categories using a three-level ordinal variable [i.e., unexposed, < 12 ppm, the median value among workers exposed to TCE) and ≥ 12 ppm)]. Models were adjusted for sex, age, current smoking, current alcohol use, and recent infection. RESULTS Seven miRNAs showed significant differences between exposed and unexposed workers at FDR (false discovery rate) < 0.20. miR-150-5p and let-7b-5p also showed significant inverse exposure-response associations with TCE exposure (Ptrend= 0.002 and 0.03, respectively). The % differences in serum levels of miR-150-5p relative to unexposed controls were - 13% and - 20% among workers exposed to < 12 ppm and ≥ 12 ppm TCE, respectively. CONCLUSIONS miR-150-5p is involved in B cell receptor pathways and let-7b-5p plays a role in the innate immune response processes that are potentially important in the etiology of non-Hodgkin lymphoma (NHL). Further studies are needed to replicate these findings and to directly test the association between serum levels of these miRNAs and risk of NHL in prospective studies.
Collapse
Affiliation(s)
- Kyoung-Mu Lee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA.
- Department of Environmental Health, Korea National Open University, Seoul, Korea.
| | - Bryan A Bassig
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Roel C Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Services, Utrecht University, Utrecht, The Netherlands
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jason Y Y Wong
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Chuangyi Qiu
- Guangdong Poison Control Center, Guangzhou, China
| | - Cuiju Wen
- Guangdong Poison Control Center, Guangzhou, China
| | | | - Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Bu-Tian Ji
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Laiyu Li
- Guangdong Poison Control Center, Guangzhou, China
| | - Xiaojiang Tang
- Guangdong Medical Laboratory Animal Center, Foshan, Guangdong, China
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
39
|
Liang Y, Wang Y, Ma L, Zhong Z, Yang X, Tao X, Chen X, He Z, Yang Y, Zeng K, Kang R, Gong J, Ying S, Lei Y, Pang J, Lv X, Gu Y. Comparison of microRNAs in adipose and muscle tissue from seven indigenous Chinese breeds and Yorkshire pigs. Anim Genet 2019; 50:439-448. [PMID: 31328299 DOI: 10.1111/age.12826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 01/29/2023]
Abstract
Elucidation of the pig microRNAome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits. Here, we extracted small RNAs from skeletal muscle and adipose tissue, and we compared their expression levels between one Western breed (Yorkshire) and seven indigenous Chinese breeds. We detected the expression of 172 known porcine microRNAs (miRNAs) and 181 novel miRNAs. Differential expression analysis found 92 and 12 differentially expressed miRNAs in adipose and muscle tissue respectively. We found that different Chinese breeds shared common directional miRNA expression changes compared to Yorkshire pigs. Some miRNAs differentially expressed across multiple Chinese breeds, including ssc-miR-129-5p, ssc-miR-30 and ssc-miR-150, are involved in adipose tissue function. Functional enrichment analysis revealed that the target genes of the differentially expressed miRNAs are associated mainly with signaling pathways rather than metabolic and biosynthetic processes. The miRNA-target gene and miRNA-phenotypic traits networks identified many hub miRNAs that regulate a large number of target genes or phenotypic traits. Specifically, we found that intramuscular fat content is regulated by the greatest number of miRNAs in muscle tissue. This study provides valuable new candidate miRNAs that will aid in the improvement of meat quality and production.
Collapse
Affiliation(s)
- Y Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Y Wang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - L Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, 610052, Sichuan Province China
| | - Z Zhong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - X Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - X Tao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - X Chen
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Z He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Y Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - K Zeng
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - R Kang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - J Gong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - S Ying
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Y Lei
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - J Pang
- Chengdu Biotechservice Institute, Chengdu, 610041, Sichuan Province China
| | - X Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Y Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| |
Collapse
|
40
|
Desgagné V, Guérin R, Guay SP, Boyer M, Hutchins E, Picard S, Maréchal A, Corbin F, Keuren-Jensen KV, Arsenault BJ, Bouchard L. Human high-density lipoprotein microtranscriptome is unique and suggests an extended role in lipid metabolism. Epigenomics 2019; 11:917-934. [PMID: 31144512 DOI: 10.2217/epi-2018-0161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To comprehensively characterize the high-density lipoproteins (HDLs) microtranscriptome and to assess whether it is distinct from that of plasma and different between women and men. Methods: RNA was extracted from ultracentrifugation-purified HDLs and plasma from 17 healthy women and men couples, and libraries were sequenced on a HiSeq2500 platform. Results: On average, 310 ± 64 and 355 ± 31 miRNAs were detected (≥1 read per million) in HDLs and plasma, respectively. A total of 62 and 134 miRNAs were over-represented (e.g., miR-150-5p; fold change = 7.52; padj = 5.41 × 10-111) and under-represented (e.g., miR-22-3p; fold change = -5.28; padj = 2.11 × 10-154) in HDLs compared with plasma. These miRNAs were enriched in lipid metabolism and cellular processes-related pathways. Conclusion: HDLs exhibit a sex-independent miRNA profile distinct from that of plasma. These miRNAs may contribute to the HDLs' physiology.
Collapse
Affiliation(s)
- Véronique Desgagné
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,ECOGENE-21 Biocluster, CIUSSS du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada
| | - Renée Guérin
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,Department of Laboratory Medicine, CIUSSS du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada
| | - Simon-Pierre Guay
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,ECOGENE-21 Biocluster, CIUSSS du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada.,Department of Medicine, Programme de formation médicale à Saguenay (PFMS), Université de Sherbrooke, Sherbrooke, Québec, G7H 2B1, Canada.,Department of Medical Genetics, MUHC, McGill University, Montreal, Québec, H4A 3J1, Canada
| | - Marjorie Boyer
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Québec City, Québec, G1V 4G5, Canada.,Department of medicine, Faculty of Medicine, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, 85004, USA
| | - Samuel Picard
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Alexandre Maréchal
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - François Corbin
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Kendall Van Keuren-Jensen
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, 85004, USA
| | - Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Québec City, Québec, G1V 4G5, Canada.,Department of medicine, Faculty of Medicine, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,ECOGENE-21 Biocluster, CIUSSS du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada.,Department of Laboratory Medicine, CIUSSS du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada
| |
Collapse
|
41
|
A plasma circulating miRNAs profile predicts type 2 diabetes mellitus and prediabetes: from the CORDIOPREV study. Exp Mol Med 2018; 50:1-12. [PMID: 30598522 PMCID: PMC6312530 DOI: 10.1038/s12276-018-0194-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
We aimed to explore whether changes in circulating levels of miRNAs according to type 2 diabetes mellitus (T2DM) or prediabetes status could be used as biomarkers to evaluate the risk of developing the disease. The study included 462 patients without T2DM at baseline from the CORDIOPREV trial. After a median follow-up of 60 months, 107 of the subjects developed T2DM, 30 developed prediabetes, 223 maintained prediabetes and 78 remained disease-free. Plasma levels of four miRNAs related to insulin signaling and beta-cell function were measured by RT-PCR. We analyzed the relationship between miRNAs levels and insulin signaling and release indexes at baseline and after the follow-up period. The risk of developing disease based on tertiles (T1-T2-T3) of baseline miRNAs levels was evaluated by COX analysis. Thus, we observed higher miR-150 and miR-30a-5p and lower miR-15a and miR-375 baseline levels in subjects with T2DM than in disease-free subjects. Patients with high miR-150 and miR-30a-5p baseline levels had lower disposition index (p = 0.047 and p = 0.007, respectively). The higher risk of disease was associated with high levels (T3) of miR-150 and miR-30a-5p (HRT3-T1 = 4.218 and HRT3-T1 = 2.527, respectively) and low levels (T1) of miR-15a and miR-375 (HRT1-T3 = 3.269 and HRT1-T3 = 1.604, respectively). In conclusion, our study showed that deregulated plasma levels of miR-150, miR-30a-5p, miR-15a, and miR-375 were observed years before the onset of T2DM and pre-DM and could be used to evaluate the risk of developing the disease, which may improve prediction and prevention among individuals at high risk for T2DM. Tiny RNA molecules circulating in the blood could give early warning of type 2 diabetes risk. MicroRNAs help regulate the expression of other genes, and recent research has linked irregularities in these molecules to many different diseases. Researchers led by José López Miranda of the University of Córdoba in Spain monitored a cohort of 462 patients for several years to assess how plasma levels of certain microRNAs are deregulated before the onset and progression of diabetes. They observed a striking ‘signature’ of altered expression in four microRNAs for patients who developed diabetes over the course of the study. Intriguingly, patients with markedly elevated blood sugar—state known as prediabetes—exhibited a similar signature, but with more modest alteration in the gene expression levels, indicating that these microRNAs could help clinicians track and prevent disease onset.
Collapse
|
42
|
Pascut D, Tamini S, Bresolin S, Giraudi P, Basso G, Minocci A, Tiribelli C, Grugni G, Sartorio A. Differences in circulating microRNA signature in Prader-Willi syndrome and non-syndromic obesity. Endocr Connect 2018; 7:1262-1274. [PMID: 30352401 PMCID: PMC6240145 DOI: 10.1530/ec-18-0329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Prader-Willi syndrome (PWS) represents the most common genetic-derived obesity disorder caused by the loss of expression of genes located on the paternal chromosome 15q11.2-q13. The PWS phenotype shows peculiar physical, endocrine and metabolic characteristics compared to those observed in non-syndromic essential obesity. Since miRNAs have now a well-established role in many molecular pathways, including regulatory networks related to obesity, this pilot study was aimed to characterize the expression of circulating miRNAs in PWS compared to essential obesity. The circulating miRNome of 10 PWS and 10 obese subjects, adequately matched for age, BMI and sex, was profiled throughout Genechip miRNA 4.0 microarray analysis. We identified 362 out of 2578 mature miRNAs to be expressed in serum of the studied population. The circulating miRNA signature significantly characterising the two populations include 34 differently expressed RNAs. Among them, miR-24-3p, miR-122 and miR-23a-3p highly differ between the two groups with a FC >10 in obese compared to PWS. In the obese subjects, miR-7107-5p, miR-6880-3p, miR-6793-3p and miR-4258 were associated to the presence of steatosis. A different signature of miRNAs significantly distinguished PWS with steatosis from PWS without steatosis, involving miR-619-5p, miR-4507, miR-4656, miR-7847-3p and miR-6782-5p. The miRNA target GO enrichment analysis showed the different pathway involved in these two different forms of obesity. Although the rarity of PWS actually represents a limitation to the availability of large series, the present study provides novel hints on the molecular pathogenesis of syndromic and non-syndromic obesity.
Collapse
Affiliation(s)
- Devis Pascut
- Fondazione Italiana Fegato – ONLUS, Trieste, Italy
| | - Sofia Tamini
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Piancavallo (VB), Italy
| | - Silvia Bresolin
- Laboratory of Onco-Hematology, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | | | - Giuseppe Basso
- Laboratory of Onco-Hematology, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Alessandro Minocci
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Piancavallo (VB), Italy
- Division of Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, Piancavallo (VB), Italy
| | | | - Graziano Grugni
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Piancavallo (VB), Italy
- Division of Auxology, Istituto Auxologico Italiano, IRCCS, Piancavallo (VB), Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Piancavallo (VB), Italy
- Division of Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, Piancavallo (VB), Italy
- Division of Auxology, Istituto Auxologico Italiano, IRCCS, Piancavallo (VB), Italy
| |
Collapse
|
43
|
Abstract
The dramatic increase in global prevalence of metabolic disease is inexplicable when considering only environmental or only genetic factors, leading to the need to explore the possible roles of epigenetic factors. A great deal of progress has been made in this interdisciplinary field in recent years, with many studies investigating various aspects of the metabolic syndrome and its associated epigenetic changes. Rodent models of metabolic diseases have been particularly illuminating because of the ability to leverage tools such as genetic and environmental modifications. The current review summarizes recent breakthroughs regarding epigenetic markers in studies of obesity, Type II diabetes, and cardiovascular disease, the three major disorders associated with metabolic syndrome. We also discuss open questions and future directions for integrating genomic, epigenomic, and phenotypic big biodata toward understanding metabolic syndrome etiology.
Collapse
Affiliation(s)
- Caryn Carson
- Department of Genetics, Washington University School of Medicine , Saint Louis, Missouri
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine , Saint Louis, Missouri
| |
Collapse
|
44
|
Wang Y, Wang K, Hu Z, Zhou H, Zhang L, Wang H, Li G, Zhang S, Cao X, Shi F. MicroRNA-139-3p regulates osteoblast differentiation and apoptosis by targeting ELK1 and interacting with long noncoding RNA ODSM. Cell Death Dis 2018; 9:1107. [PMID: 30382082 PMCID: PMC6208413 DOI: 10.1038/s41419-018-1153-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022]
Abstract
Recent studies have confirmed that microRNAs and lncRNAs can affect bone cell differentiation and bone formation. In this study, miR-139-3p was upregulated in the femurs of hindlimb unloading mice and MC3T3-E1 cells under simulated microgravity; this effect was related to osteoblast differentiation and apoptosis. Silencing miR-139-3p attenuated the suppression of differentiation and the promotion of MC3T3-E1 cell apoptosis induced by simulated microgravity. ELK1 is a target of miR-139-3p and is essential for miR-139-3p to regulate osteoblast differentiation and apoptosis. An osteoblast differentiation-related lncRNA that could interact with miR-139-3p (lncRNA ODSM) was identified in MC3T3-E1 cells under simulated microgravity. Further investigations demonstrated that lncRNA ODSM could promote MC3T3-E1 cell differentiation. Therefore, this research was the first to reveal the critical role of the lncRNA ODSM/miR-139-3p/ELK1 pathway in osteoblasts, and these findings suggest the potential value of miR-139-3p in osteoporosis diagnosis and therapy.
Collapse
Affiliation(s)
- Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Hua Zhou
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Han Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
45
|
MiR-150 predicts survival in patients with sepsis and inhibits LPS-induced inflammatory factors and apoptosis by targeting NF-κB1 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2018; 500:828-837. [PMID: 29689269 DOI: 10.1016/j.bbrc.2018.04.168] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
Abstract
MiR-150 is involved into some pathological processes, such as tumorigenesis and autoimmune diseases. However, little is known about the involvement of miR-150 in human sepsis. In this study, plasma miR-150 level had a diagnostic and independent prognostic value in patients with sepsis, and negatively correlated with renal dysfunction and 28-day survival as well as plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). MiR-150 expression was also significantly decreased in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mice with sepsis after lipopolysaccharides (LPS) treatment. In-vitro, miR-150 over-expression protected HUVECs from LPS-induced apoptosis and the expressions of nuclear factor-κB1 (NF-κB1), IL-6, TNF-α, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin. Furthermore, NF-κB1 was identified as a direct target of miR-150. Restored NF-κB1 expression antagonized the protective effects of miR-150, while suppression of NF-κB1 enhanced these protective effects. Our findings indicate miR-150 predicts survival in patients with sepsis and inhibits LPS-induced inflammatory factors and apoptosis by targeting NF-κB1 in human umbilical vein endothelial cells. Thus, miR-150 may be a useful biomarker or target in the diagnosis, prognosis and treatment of patients with sepsis.
Collapse
|
46
|
Karkeni E, Bonnet L, Marcotorchino J, Tourniaire F, Astier J, Ye J, Landrier JF. Vitamin D limits inflammation-linked microRNA expression in adipocytes in vitro and in vivo: A new mechanism for the regulation of inflammation by vitamin D. Epigenetics 2018; 13:156-162. [PMID: 28055298 DOI: 10.1080/15592294.2016.1276681] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inflammation of adipose tissue is believed to be a contributing factor to many chronic diseases associated with obesity. Vitamin D (VD) is now known to limit this metabolic inflammation by decreasing inflammatory marker expression and leukocyte infiltration in adipose tissue. In this study, we investigated the impact of VD on microRNA (miR) expression in inflammatory conditions in human and mouse adipocytes, using high-throughput methodology (miRNA PCR arrays). Firstly, we identified three miRs (miR-146a, miR-150, and miR-155) positively regulated by TNFα in human adipocytes. Interestingly, the expression of these miRs was strongly prevented by 1,25(OH)2D preincubation. These results were partly confirmed in 3T3-L1 adipocytes (for miR-146a and miR-150). The ability of VD to control the expression of these miRs was confirmed in diet-induced obese mice: the levels of the three miRs were increased following high fat (HF) diet in epididymal white adipose tissue and reduced in HF diet fed mice supplemented with VD. The involvement of NF-κB signaling in the induction of these miRs was confirmed in vitro and in vivo using aP2-p65 transgenic mice. Finally, the ability of VD to deactivate NF-κB signaling, via p65 and IκB phosphorylation inhibition in murine adipocyte, was observed and could constitute a driving molecular mechanism. This study demonstrated for the first time that VD modulates the expression of miRs in adipocytes in vitro and in adipose tissue in vivo through its impact on NF-κB signaling pathway, which could represent a new mechanism of regulation of inflammation by VD.
Collapse
Affiliation(s)
- Esma Karkeni
- a NORT , Aix-Marseille Université , INRA, INSERM, 13000 , Marseille , France
| | - Lauriane Bonnet
- a NORT , Aix-Marseille Université , INRA, INSERM, 13000 , Marseille , France
| | - Julie Marcotorchino
- a NORT , Aix-Marseille Université , INRA, INSERM, 13000 , Marseille , France
| | - Franck Tourniaire
- a NORT , Aix-Marseille Université , INRA, INSERM, 13000 , Marseille , France
| | - Julien Astier
- a NORT , Aix-Marseille Université , INRA, INSERM, 13000 , Marseille , France
| | - Jianping Ye
- b Pennington Biomedical Research Center , Louisiana State University System , Baton Rouge , Louisiana 70808 , USA
| | | |
Collapse
|
47
|
Ma E, Fu Y, Garvey WT. Relationship of Circulating miRNAs with Insulin Sensitivity and Associated Metabolic Risk Factors in Humans. Metab Syndr Relat Disord 2018; 16:82-89. [PMID: 29360415 PMCID: PMC5833250 DOI: 10.1089/met.2017.0101] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Insulin resistance disrupts metabolic processes and leads to various chronic disease states such as diabetes and metabolic syndrome (MetS). However, the mechanism linking insulin resistance with cardiometabolic disease pathophysiology is still unclear. One possibility may be through circulating microRNAs (c-miRs), which can alter gene expression in target tissues. Our goal was to assess the relationship of c-miRs with insulin sensitivity, as measured by the gold standard, hyperinsulinemic-euglycemic clamp technique. METHODS Eighty-one nondiabetic, sedentary, and weight-stable patients across a wide range of insulin sensitivities were studied. Measurements were taken for blood pressure, anthropometric data, fasting glucose and lipids, and insulin sensitivity measured by clamp. After an initial screening array to identify candidate miRs in plasma, all samples were assessed for relationships between these c-miRs and insulin sensitivity, as well as associated metabolic factors. RESULTS miR-16 and miR-107 were positively associated with insulin sensitivity (R2 = 0.09, P = 0.0074 and R2 = 0.08, P = 0.0417, respectively) and remained so after adjustment with body mass index (BMI). After adjusting for BMI, miR-33, -150, and -222 were additionally found to be related to insulin sensitivity. Regarding metabolic risk factors, miR-16 was associated with waist circumference (r = -0.25), triglycerides (r = -0.28), and high-density lipoprotein (r = 0.22), while miR-33 was inversely associated with systolic blood pressure (r = -0.29). No significant relationships were found between any candidate c-miRs and BMI, diastolic blood pressure, or fasting glucose. CONCLUSIONS Our results show that relative levels of circulating miR-16, -107, -33, -150, and -222 are associated with insulin sensitivity and metabolic risk factors, and suggest that multiple miRs may act in concert to produce insulin resistance and the clustering of associated traits that comprise the MetS. Therefore, miRs may have potential as novel therapeutic targets or agents in cardiometabolic disease.
Collapse
Affiliation(s)
- Elizabeth Ma
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuchang Fu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - W. Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- The Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
48
|
Gong FH, Cheng WL, Wang H, Gao M, Qin JJ, Zhang Y, Li X, Zhu X, Xia H, She ZG. Reduced atherosclerosis lesion size, inflammatory response in miR-150 knockout mice via macrophage effects. J Lipid Res 2018; 59:658-669. [PMID: 29463607 DOI: 10.1194/jlr.m082651] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/07/2018] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is considered to be a chronic inflammatory disease that can lead to severe clinically important cardiovascular events. miR-150 is a small noncoding RNA that significantly enhances inflammatory responses by upregulating endothelial cell proliferation and migration, as well as intravascular environmental homeostasis. However, the exact role of miR-150 in atherosclerosis remains unknown. Here, we investigated the effect of miR-150 deficiency on atherosclerosis development. Using double-knockout (miR-150-/- and ApoE-/-) mice, we measured atherosclerotic lesion size and stability. Meanwhile, we conducted in vivo bone marrow transplantation to identify cellular-level components of the inflammatory response. Compared with mice deficient only in ApoE, the double-knockout mice had significantly smaller atherosclerotic lesions and displayed an attenuated inflammatory response. Moreover, miR-150 ablation promoted plaque stabilization via increases in smooth muscle cell and collagen content and decreased macrophage infiltration and lipid accumulation. The in vitro experiments indicated that an inflammatory response with miR-150 deficiency in atherosclerosis results directly from upregulated expression of the cytoskeletal protein, PDZ and LIM domain 1 (PDLIM1), in macrophages. More importantly, the decreases in phosphorylated p65 expression and inflammatory cytokine secretion induced by miR-150 ablation were reversed by PDLIM1 knockdown. These findings suggest that miR-150 is a promising target for the management of atherosclerosis.
Collapse
Affiliation(s)
- Fu-Han Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Wen-Lin Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Haiping Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Maomao Gao
- Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Juan-Juan Qin
- Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Xia Li
- Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Xueyong Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Basic Medical School and Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
49
|
Kumar AS, Rayala SK, Venkatraman G. Targeting IGF1R pathway in cancer with microRNAs: How close are we? RNA Biol 2018; 15:320-326. [PMID: 28613101 DOI: 10.1080/15476286.2017.1338240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer of the head and neck are the most common cancers in India and account for 30% of all cancers. At molecular level, it could be attributed to the overexpression of growth factors like IGF1-R, EGFR, VEGF-R and deregulation of cell cycle regulators and tumor suppressors. IGF1-R is an emerging target in head and neck cancer treatment, because of its reported role in tumor development, progression and metastasis. IGF1R targeted agents are in advanced stages of clinical development. Nevertheless, these agents suffer from several disadvantages including acquired resistance and toxic side effects. Hence there is a need for developing newer agents targeting not only the receptor but also its downstream signaling. miRNAs are considered as master regulators of gene expression of multiple genes and has been widely reported to be a promising therapeutic strategy. This review discusses the present status of research in both these arenas and emphasizes the role of miRNA as a promising agent for biologic therapy.
Collapse
Affiliation(s)
- Arathy S Kumar
- a Department of Biotechnology , Indian Institute of Technology, Madras (IIT M) , Chennai , India
| | - Suresh K Rayala
- a Department of Biotechnology , Indian Institute of Technology, Madras (IIT M) , Chennai , India
| | - Ganesh Venkatraman
- b Department of Human Genetics , College of Biomedical Sciences, Technology & Research, Sri Ramachandra University , Porur, Chennai , India
| |
Collapse
|
50
|
Xue H, Li MX. MicroRNA-150 protects against cigarette smoke-induced lung inflammation and airway epithelial cell apoptosis through repressing p53: MicroRNA-150 in CS-induced lung inflammation. Hum Exp Toxicol 2017; 37:920-928. [PMID: 29205062 DOI: 10.1177/0960327117741749] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cigarette smoke (CS) exposure is an important risk factor for chronic obstructive pulmonary disease (COPD). MicroRNA-150 (miR-150) is involved in several inflammatory diseases. However, little is known about the role of miR-150 in the pathogenesis of COPD. In this study, we established a CS-related mouse model of COPD and evaluated the impact of miR-150 on CS-induced lung inflammation. We further investigated the effects of miR-150 overexpression on pro-inflammatory cytokine production and apoptosis in airway epithelial cells exposed to CS extract (CSE). It was found that miR-150 was significantly ( p < 0.05) downregulated in the lungs of CS-exposed mice, compared to control mice under normal air. The CSE-exposed BEAS-2B airway epithelial cells displayed a four- to six-fold reduction in miR-150 levels, compared to control cells ( p < 0.05). Delivery of miR-150 mimic attenuated CS-induced lung inflammation and accumulation of neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid. Moreover, miR-150 overexpression prevented the induction of interleukin-6, tumor necrosis factor alpha, and interleukin-8 expression and nuclear factor kappa B (NF-κB) transcriptional activity in BEAS-2B cells by CSE. Additionally, miR-150 protected BEAS-2B cells from CSE-induced apoptosis, which was associated with reduced p53 expression. Co-expression of p53 restored apoptotic response to CSE in miR-150-overexpressing BEAS-2B cells. Collectively, miR-150 suppresses CS-induced lung inflammation and airway epithelial cell apoptosis, which is causally linked to repression of p53 expression and NF-κB activity. Restoration of miR-150 expression may represent a potential therapeutic strategy for CS-related COPD.
Collapse
Affiliation(s)
- H Xue
- 1 School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - M X Li
- 2 Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|