1
|
Sharma K, Singh M, Srivastava DK, Singh PK. Exploring the Diversity, Root Colonization, and Morphology of Arbuscular Mycorrhizal Fungi in Lamiaceae. J Basic Microbiol 2024:e2400379. [PMID: 39428672 DOI: 10.1002/jobm.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/22/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
This study aimed to explore the diversity, root morphology, and colonization of arbuscular mycorrhizal fungi (AMF) associated with eight medicinal plants of the Lamiaceae family. Rhizospheric soil and root samples were collected from eight species of Lamiaceae plants for AMF analysis. The results indicate that root colonization was not directly related to the number of AMF spores in the rhizosphere. However, a significant correlation was found between the percentage of root colonization and the number of AMF species present in the individual plants. The highest percentage of colonization (86.67 ± 1.92%) and the greatest number of AMF species were observed in Micromeria fructicosa, while the lowest colonization (27.67 ± 6.22%) was recorded in Mentha arvensis. The highest spore count was recorded in Thymus vulgaris (120 ± 27.01), whereas the lowest was found in Melissa officinalis (84 ± 17.20). Among the identified AMF species, Glomus was the most dominant, representing 35.7% of all AMF species across the eight medicinal plants. The maximum AMF spore density was observed in M. fructicosa and lowest in M. arvensis. The study suggests that AMF can significantly enhance medicinal plant growth by ensuring a consistent supply of nutrients and water, thereby supporting the sustainable cultivation of medicinal plants to meet the growing demand.
Collapse
Affiliation(s)
- Kalpana Sharma
- Department of Botany, Akal College of Basic Sciences, Eternal University, Baru Sahib, India
| | - Meenakshi Singh
- Department of Environmental Studies, Faculty of Science, Panjab University, Chandigarh, India
| | | | - Pradeep Kumar Singh
- Department of Botany, Akal College of Basic Sciences, Eternal University, Baru Sahib, India
| |
Collapse
|
2
|
Owiny AA, Dusengemungu L. Mycorrhizae in mine wasteland reclamation. Heliyon 2024; 10:e33141. [PMID: 39035525 PMCID: PMC11259807 DOI: 10.1016/j.heliyon.2024.e33141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024] Open
Abstract
Mycorrhizae are found on about 70-80 % of the roots of all plant species; ectomycorrhizae (ECM) are mostly found on woody plants and gymnosperms, whereas arbuscular mycorrhizal fungi (AMF) are found on 80-90 % of all plant species. In abandoned mining sites, woody plants dominate, while non-woody species remain scarce. However, this pattern depends on the specific mine site and its ecological context. This review article explores the potential of using mycorrhizae-plant associations to enhance and facilitate the remediation of mine wastelands and metal-polluted sites. In this review, we employed reputable databases to collect articles and relevant information on mycorrhizae and their role in plant growth and soil fertility spanning from the 1990s up to 2024. Our review found that the abilities of plants selected for minewasteland reclamation can be harnessed effectively if their mycorrhizae utilization is known and considered. Our findings indicate that AMF facilitates plant cohabitation by influencing species richness, feedback effects, shared mycelial networks, and plant-AMF specificity. Several types of mycorrhizae have been isolated from mine wastelands, including Glomus mosseae, which reduces heavy metal accumulation in plants, and Rhizophagus irregularis, which enhances plant growth and survival in revegetated mine sites. Additionally, studies on ECM in surface mine spoil restoration stands highlight their role in enhancing fungal biodiversity and providing habitats for rare and specialized fungal species. Recent research shows that ECM and AMF fungi can interact synergistically to enhance plant growth, with ECM improving plant nitrogen absorption and AMF increasing nitrogen use efficiency. Our review also found that despite their critical role in improving plant growth and resilience, there remains limited knowledge about the specific mechanisms by which mycorrhizae communicate with each other and other microorganisms, such as bacteria, root-associated fungi, soil protozoa, actinomycetes, nematodes, and endophytes, within the soil matrix. This article highlights the connection between mycorrhizae and plants and other microorganisms in mine wastelands, their role in improving soil structure and nutrient cycling, and how mycorrhizae can help restore soil fertility and promote plant growth, thus improving the overall environmental quality of mine wasteland sites.
Collapse
Affiliation(s)
- Arthur A. Owiny
- Copperbelt University, School of Natural Resources, Department of Plant and Environmental Sciences, P.O Box 21692, Kitwe, Zambia
- Chair of Environment and Development, Oliver R. Tambo Africa Research Chair Initiative (ORTARChI), The Copperbelt University, P.O. Box 21692, Kitwe, Zambia
| | - Leonce Dusengemungu
- Copperbelt University, School of Mathematics and Natural Sciences, Department of Biological Sciences, P.O BOX 21692, Kitwe, Zambia
- Copperbelt University, Africa Centre of Excellence for Sustainable Mining, Kitwe, Zambia
| |
Collapse
|
3
|
Alves de Oliveira E, Cavalheiro da Silva L, Antônio de Andrade E, Dênis Battirola L, Lopes Tortorela de Andrade R. Emilia fosbergii Nicolson, a novel and effective accumulator for phytoremediation of mercury-contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1076-1086. [PMID: 38059299 DOI: 10.1080/15226514.2023.2288906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Soil contamination by toxic metals threatens global public health, highlighting the need for cost-effective and ecologically sound site remediation. In this study, we assessed phytoremediation of Hg-contaminated soils by Emilia fosbergii Nicolson (Asteraceae). Pot experiment was conducted using a substrate of sand and vermiculite (1:1 volume ratio), treatments consisted of five Hg concentrations (0, 1, 3, 5, and 7 mg kg-1). Metal transfer rates were calculated, including accumulation (BAF), translocation (TF) and bioconcentration (BCF) factors. E. fosbergii roots exhibited greater Hg accumulation than other tissues, but biomass production and plant health were not significantly affected at the concentrations tested, as indicated by elongation factors and tolerance index. The results revealed BAF values between 2.18 and 7.14, TF values ranged between 0.15 and 0.52, and the BCF index varied between 8.97 and 26.58. Treatments with Hg content of 5 mg kg-1 and 7 mg kg-1 recorded the highest total Hg concentrations of 66 mg kg-1 and 65.53 mg kg-1 (roots), and 9.18 mg kg-1 and 33.88 mg kg-1 (aerial), respectively. E. fosbergii demonstrated promise for Hg phytoremediation due to its high accumulation capacity, indicated by regular TF and high BCF and BAF indexes, thus classifying it as a high Hg accumulator.
Collapse
Affiliation(s)
- Evandro Alves de Oliveira
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Larissa Cavalheiro da Silva
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Ednaldo Antônio de Andrade
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Leandro Dênis Battirola
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Ricardo Lopes Tortorela de Andrade
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| |
Collapse
|
4
|
Khalid M, Liu X, Ur Rahman S, Rehman A, Zhao C, Li X, Yucheng B, Hui N. Responses of microbial communities in rhizocompartments of king grass to phytoremediation of cadmium-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167226. [PMID: 37734611 DOI: 10.1016/j.scitotenv.2023.167226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
King grass has been recognized as a potential phytoremediation plant species due to its high biomass and resistance to heavy metals (HMs). However, the possible impacts of cadmium (Cd) contamination on rhizocompartments' microbial activities in association with king grass have not been extensively explored. The utilization of 16S rRNA gene and ITS sequencing was carried out to examine alterations in the bacterial and fungal communities in the rhizosphere and rhizoplane of king grass in response to low and high Cd stress. Results demonstrated that both bacterial and fungal communities' diversity and richness were negatively impacted by Cd stress, regardless of its concentration. However, evenness did not exhibit any significant response to either of the concentrations. Additionally, nonmetric multidimensional scaling (NMDS) ordination demonstrated a significant difference (p < 0.001) in microbial communities under different treatments. The abundance of bacterial taxa such as Steroibacter, Nitrospira, Pseudoxanthomonas, Cellvirio, Phenylobacterium, Mycobacterium, Pirellula and Aquicella was adversely affected under Cd stress while Flavobacterium, Gemmata, Thiobacillus and Gemmatimonas showed no prominent response, indicating their resistance to Cd stress. Like that, certain fungal taxa for instance, Cladosporium, Cercophora, Acremonium, Mortierella, Aspergillus, Penicillium, Glomus and Sebacina were also highly reduced by low and high Cd stress. In contrast, Fusarium, Thanatephorus, Botrytis and Curvularia did not show any response to Cd stress. The identified taxa may have a crucial role in the growth of king grass under heavy metal contamination, making them promising candidates for developing bioinoculants to encourage plant performance and phytoremediation capability in HM-contaminated soils.
Collapse
Affiliation(s)
- Muhammad Khalid
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Xinxin Liu
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation, 800 Dongchuan Rd, Shanghai 200240, China
| | - Saeed Ur Rahman
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang Zhao
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxiao Li
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bian Yucheng
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Hui
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation, 800 Dongchuan Rd, Shanghai 200240, China; Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
5
|
Becerra AG, Menoyo E, Faggioli V, Cabello M, Salazar MJ. Mycorrhizal fungal communities associated with three metal accumulator plants growing in an abandoned Pb smelting factory. Braz J Microbiol 2023; 54:2979-2990. [PMID: 37864756 PMCID: PMC10689650 DOI: 10.1007/s42770-023-01147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 10/05/2023] [Indexed: 10/23/2023] Open
Abstract
Plants associated with mycorrhizal fungi has the ability to establish on metal-contaminated soils playing an important role in phytoremediation programs. The objective of this study was to examine the presence of arbuscular mycorrhizal fungi (AMF) (spores density, diversity, indicator species, and root colonization) and dark septate endophytic fungi (DSE fungal root colonization) in three metal accumulator plants (Sorghum halepense, Bidens pilosa, and Tagetes minuta) growing in soils with high Pb content. The Pb content in AMF spores and plant biomass were also assessed. Rhizosphere soil samples were taken from the three dominant plant species at six study sites surrounding the abandoned Pb smelter and one uncontaminated site. The three studied plants were colonized by AMF and DSE fungi. A total of 24 AMF morphospecies were present in the Pb-contaminated areas. The AMF indicator species in the control site (non-contaminated area) was Funneliformis mosseae and in the most contaminated site were Gigaspora decipiens and Denticustata biornata. There was an increase in mycorrhizal variables such as the number of AMF vesicles, spore number, Pb content in AMF spores and plant biomass and DSE colonization (in Sorghum) with increasing soil Pb contamination, but a decrease in AMF diversity and richness was found. For upcoming soil restoration projects, it is crucial to understand the mycorrhizal fungi as well as the plant community that has adapted to the highly contaminated environment.
Collapse
Affiliation(s)
- Alejandra Gabriela Becerra
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto Multidisciplinario de Biología Vegetal (IMBIV)-CONICET, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba, Argentina.
| | - Eugenia Menoyo
- Grupo de Estudios Ambientales (GEA), Instituto de Matemática Aplicada San Luis (IMASL) - CONICET, Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Valeria Faggioli
- Instituto Nacional de Tecnología Agropecuaria, EEA Marcos Juárez, Ruta 12 Km 36, 2580, Marcos Juárez, Argentina
| | - Marta Cabello
- Instituto Spegazzini, CICPBA, Av. 53 N° 477, B1900AVJ, La Plata, Argentina
| | - María Julieta Salazar
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto Multidisciplinario de Biología Vegetal (IMBIV)-CONICET, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba, Argentina
| |
Collapse
|
6
|
Yu E, Liu Q, Gao Y, Li Y, Zang P, Zhao Y, He Z. An exploration of mechanism of high quality and yield of Gastrodia elata Bl. f. glauca by the isolation, identification, and evaluation of Mycena. Front Microbiol 2023; 14:1220670. [PMID: 37928654 PMCID: PMC10620705 DOI: 10.3389/fmicb.2023.1220670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Gastrodia elata Bl. f. glauca is an important traditional Chinese medicinal plant. The yield and quality of Gastrodia elata Bl. have significantly decreased due to multigenerational asexual reproduction. Therefore, it is necessary to have sexual reproduction of Gastrodia elata Bl. to supplement the market supply. Seeds of G. elata Bl. have no endosperm, and their sexual reproduction depends on the nutrients provided by the embryo cells infected by Mycena fungi to complete seed germination. However, Mycena fungi are small and have many species, and not all Mycena fungi can promote the germination of G. elata Bl. seeds. Therefore, it is of great significance to isolate and identify suitable germination fungi and explore the mechanism for improving the production performance and yield, and quality of G. elata Bl. Six closely related Mycena isolates, JFGL-01, JFGL-02, JFGL-03, JFGL-04, JFGL-05, and JFGL-06, were isolated from the leaves and protocorms of G. elata Bl. f. glauca and were identified as Mycena purpureofusca. The mycelial state and number of germinating protocorms were used as indicators to preferentially select Mycena fungi, and it was concluded that JFGL-06 had the best mycelial state and ability to germinate G. elata Bl. seeds. Finally, a mechanism to increase the yield of G. elata Bl. was explored by comparing the changes in nutrient elements and microbial diversity in the soil around G. elata Bl. with different strains. JFGL-06 proved to be an excellent Mycena fungal strain suitable for G. elata Bl. f. glauca. Compared with the commercial strain, JFGL-06 significantly increased the C, N, Na, Mg, S, Cl, K, Ca, and Fe contents of the soil surrounding the protocorms of G. elata Bl. f. glauca. JFGL-06 improved the composition, diversity, and metabolic function of the surrounding soil microbial community of G. elata Bl. f. glauca protocorms at the phylum, class, and genus levels, significantly increased the relative abundance of bacteria such as Acidobacteria and fungi such as Trichoderma among the dominant groups, and increased the abundance of functional genes in metabolic pathways such as nucleotide metabolism and energy metabolism. There was a significant reduction in the relative abundance of bacteria, such as Actinomycetes, and fungi, such as Fusarium, in the dominant flora, and a reduced abundance of functional genes, such as amino acid metabolism and xenobiotic biodegradation and metabolism. This is the main reason why the JFGL-06 strain promoted high-quality and high-yield G. elata Bl. f. glauca in Changbai Mountain.
Collapse
Affiliation(s)
- En Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Qun Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing, China
| | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yaqi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Pu Zang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
7
|
Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B. Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3147. [PMID: 37687393 PMCID: PMC10490184 DOI: 10.3390/plants12173147] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Soil contamination with cadmium (Cd) is a severe concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Industries such as mining, manufacturing, building, etc., rapidly produce a substantial amount of Cd, posing environmental risks. Cd toxicity in crop plants decreases nutrient and water uptake and translocation, increases oxidative damage, interferes with plant metabolism and inhibits plant morphology and physiology. However, various conventional physicochemical approaches are available to remove Cd from the soil, including chemical reduction, immobilization, stabilization and electro-remediation. Nevertheless, these processes are costly and unfriendly to the environment because they require much energy, skilled labor and hazardous chemicals. In contrasting, contaminated soils can be restored by using bioremediation techniques, which use plants alone and in association with different beneficial microbes as cutting-edge approaches. This review covers the bioremediation of soils contaminated with Cd in various new ways. The bioremediation capability of bacteria and fungi alone and in combination with plants are studied and analyzed. Microbes, including bacteria, fungi and algae, are reported to have a high tolerance for metals, having a 98% bioremediation capability. The internal structure of microorganisms, their cell surface characteristics and the surrounding environmental circumstances are all discussed concerning how microbes detoxify metals. Moreover, issues affecting the effectiveness of bioremediation are explored, along with potential difficulties, solutions and prospects.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan 32200, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan;
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Zoya Aslam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
8
|
Mi Y, Xu C, Li X, Zhou M, Cao K, Dong C, Li X, Ji N, Wang F, Su H, Liu X, Wei Y. Arbuscular mycorrhizal fungi community analysis revealed the significant impact of arsenic in antimony- and arsenic-contaminated soil in three Guizhou regions. Front Microbiol 2023; 14:1189400. [PMID: 37275177 PMCID: PMC10232906 DOI: 10.3389/fmicb.2023.1189400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/24/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction The lack of systematic investigations of arbuscular mycorrhizal fungi (AMF) community composition is an obstacle to AMF biotechnological applications in antimony (Sb)- and arsenic (As)-polluted soil. Methods Morphological and molecular identification were applied to study the AMF community composition in Sb- and As-contaminated areas, and the main influencing factors of AMF community composition in Sb- and As-contaminated areas were explored. Results (1) A total of 513,546 sequences were obtained, and the majority belonged to Glomeraceae [88.27%, 193 operational taxonomic units (OTUs)], followed by Diversisporaceae, Paraglomeraceae, Acaulosporaceae, Gigasporaceae, and Archaeosporaceae; (2) the affinity between AMF and plants was mainly related to plant species (F = 3.488, p = 0.022 < 0.050), which was not significantly correlated with the total Sb (TSb) and total As (TAs) in soil; (3) the AMF spore density was mainly related to the available nitrogen, available potassium, and total organic carbon; (4) The effect of soil nutrients on AMF community composition (total explanation: 15.36%) was greater than that of soil Sb and As content (total explanation: 5.80%); (5) the effect of TAs on AMF community composition (λ = -0.96) was more drastic than that of TSb (λ = -0.21), and the effect of As on AMF community composition was exacerbated by the interaction between As and phosphorus in the soil; and (6) Diversisporaceae was positively correlated with the TSb and TAs. Discussion The potential impact of As on the effective application of mycorrhizal technology should be further considered when applied to the ecological restoration of Sb- and As-contaminated areas.
Collapse
Affiliation(s)
- Yidong Mi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- College of Environment, Hohai University, Nanjing, China
| | - Chao Xu
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xinru Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Min Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- College of Environment, Hohai University, Nanjing, China
| | - Ke Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Cuimin Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xuemei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Ningning Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fanfan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Hailei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xuesong Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
9
|
You M, Wang L, Zhou G, Wang Y, Wang K, Zou R, Cao W, Fan H. Effects of microbial agents on cadmium uptake in Solanum nigrum L. and rhizosphere microbial communities in cadmium-contaminated soil. Front Microbiol 2023; 13:1106254. [PMID: 36687578 PMCID: PMC9849675 DOI: 10.3389/fmicb.2022.1106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Solanum nigrum L. (S. nigrum) and microbial agents are often used for the remediation of cadmium (Cd)-contaminated soil; however, no studies to date have examined the efficacy of using various microbial agents for enhancing the remediation efficiency of Cd-contaminated soil by S. nigrum. Here, we conducted greenhouse pot experiments to evaluate the efficacy of applying Bacillus megaterium (BM) along with citric acid (BM + CA), Glomus mosseae (BM + GM), and Piriformospora indica (BM + PI) on the ability of S. nigrum to remediate Cd-contaminated soil. The results showed that BM + GM significantly increased the Cd accumulation of each pot of S. nigrum by 104% compared with the control. Application of microbial agents changed the soil microbial communities. Redundancy analysis showed that the activities of Catalase (CAT) and urease (UE), soil organic matter, available N and total Cd were the main influencing factors. By constructing the microbial co-occurrence networks, the soil microbe was divided into four main Modules. BM + GM and BM + PI significantly increased the relative abundance of Module#1 and Module#3, respectively, when compared with the control. Additionally, Module#1 showed a significant positive correlation with translocation factor (TF), which could be regarded as the key microbial taxa. Further research found that Ascomycota, Glomeromycota, Proteobacteria, and Actinobacteria within Module#1 were also significantly correlated with TF, and these key species enriched in BM + GM. Overall, our findings indicate that the BM + GM treatment was the most effective for the remediation of Cd pollution. This treatment method may further affect the rhizosphere microbial community by affecting soil indicators, which might drive the formation of Module#1, thus greatly enhancing the Cd remediation capacity of S. nigrum.
Collapse
Affiliation(s)
- Meng You
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Wang
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Guopeng Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yikun Wang
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Wang
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zou
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Weidong Cao, ✉
| | - Hongli Fan
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,Hongli Fan, ✉
| |
Collapse
|
10
|
Sharma JK, Kumar N, Singh NP, Santal AR. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. FRONTIERS IN PLANT SCIENCE 2023; 14:1076876. [PMID: 36778693 PMCID: PMC9911669 DOI: 10.3389/fpls.2023.1076876] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/06/2023] [Indexed: 05/14/2023]
Abstract
The contamination of soils with heavy metals and its associated hazardous effects are a thrust area of today's research. Rapid industrialization, emissions from automobiles, agricultural inputs, improper disposal of waste, etc., are the major causes of soil contamination with heavy metals. These contaminants not only contaminate soil but also groundwater, reducing agricultural land and hence food quality. These contaminants enter the food chain and have a severe effect on human health. It is important to remove these contaminants from the soil. Various economic and ecological strategies are required to restore the soils contaminated with heavy metals. Phytoremediation is an emerging technology that is non-invasive, cost-effective, and aesthetically pleasing. Many metal-binding proteins (MBPs) of the plants are significantly involved in the phytoremediation of heavy metals; the MBPs include metallothioneins; phytochelatins; metalloenzymes; metal-activated enzymes; and many metal storage proteins, carrier proteins, and channel proteins. Plants are genetically modified to enhance their phytoremediation capacity. In Arabidopsis, the expression of the mercuric ion-binding protein in Bacillus megaterium improves the metal accumulation capacity. The phytoremediation efficiency of plants is also enhanced when assisted with microorganisms, biochar, and/or chemicals. Removing heavy metals from agricultural land without challenging food security is almost impossible. As a result, crop selections with the ability to sequester heavy metals and provide food security are in high demand. This paper summarizes the role of plant proteins and plant-microbe interaction in remediating soils contaminated with heavy metals. Biotechnological approaches or genetic engineering can also be used to tackle the problem of heavy metal contamination.
Collapse
Affiliation(s)
| | - Nitish Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - N. P. Singh
- Centre for Biotechnology, M. D. University, Rohtak, India
- *Correspondence: Anita Rani Santal, ; N. P. Singh,
| | - Anita Rani Santal
- Department of Microbiology, M. D. University, Rohtak, India
- *Correspondence: Anita Rani Santal, ; N. P. Singh,
| |
Collapse
|
11
|
Yu E, Gao Y, Li Y, Zang P, Zhao Y, He Z. An exploration of mechanism of high quality and yield of Gastrodia elata Bl. f. glauca by the isolation, identification and evaluation of Armillaria. BMC PLANT BIOLOGY 2022; 22:621. [PMID: 36581798 PMCID: PMC9801631 DOI: 10.1186/s12870-022-04007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Gastrodia elata Bl. f. glauca, a perennial herb of G.elata Bl. in Orchidaceae, is one of the most valuable traditional Chinese medicines. G. elata Bl. is a chlorophyll-free myco-heterotrophic plant, which must rely on the symbiotic growth of Armillaria, but not all Armillaria strains can play the symbiotic role. Additionally, Armillaria is easy to degenerate after multiple generations, and the compatibility between the strains from other areas and G. elata Bl. f. glauca in Changbai Mountain is unstable. Therefore, it is incredibly significant to isolate, identify and screen the symbiotic Armillaria suitable for the growth of G. elata Bl. f. glauca in Changbai Mountain, and to explore the mechanism by which Armillaria improves the production performance of G. elata Bl. f. glauca. RESULTS Firstly, G. elata Bl. f. glauca tubers, and rhizomorphs and fruiting bodies of Armillaria were used for the isolation and identification of Armillaria. Five Armillaria isolates were obtained in our laboratory and named: JMG, JMA, JMB, JMC and JMD. Secondly, Armillaria was selected based on the yield and the effective component content of G. elata Bl. f. glauca. It was concluded that the yield and quality of G. elata Bl. f. glauca co-planted with JMG is the highest. Finally, the mechanism of its high quality and yield was explored by investigating the effects of different Armillaria strains on the soil, its nutrition element contents and the soil microbial diversity around G. elata Bl. f. glauca in Changbai Mountain. CONCLUSIONS Compared with commercial strains, JMG significantly increased the content of Na, Al, Si, Mn, Fe, Zn, Rb and the absorption of C, Na, Mg, Ca, Cr, Cu, Zn and Rb in G. elata Bl. f. glauca; it improved the composition, diversity and metabolic functions of soil microbial communities around G. elata Bl. f. glauca at phylum, class and genus levels; it markedly increased the relative abundance of bacteria such as Chthoniobacter and Armillaria in the dominant populations, and enhanced such functions as Cell motility, amino acid metabolism and Lipid metabolism; it dramatically decreased the relative abundance of Bryobacter and other fungi in the dominant populations, and reduced such functions as microbial energy metabolism, translation and carbohydrate metabolism. This is the main reason why excellent Armillaria strains promote the high quality and yield of G. elata Bl. f. glauca in Changbai Mountain.
Collapse
Affiliation(s)
- En Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Yaqi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Pu Zang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
12
|
Wang L, Gong L, Gan D, Li X, Yao J, Wang L, Qu J, Cong J, Zhang Y. Diversity, function and assembly of the Trifolium repens L. root-associated microbiome under lead stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129510. [PMID: 35816797 DOI: 10.1016/j.jhazmat.2022.129510] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Root-associated microbial layers provide unique niches that drive specific microbe assemblies. While the rhizosphere microbiome has long received much attention, endophytic microbes remain largely elusive. Characterizing metal-tolerant plants' strategies for assembling different root-associated microbial layers is important for optimizing phytoremediation. Here, a pre-stratified rhizo-box assay was conducted with Trifolium repens L. under greenhouse conditions with artificial Pb-contaminated soil. Cultivation compensated for the pollution-driven loss of soil microbial biomass carbon, enzyme activities and abundance. The acid-soluble Pb proportion increased in the rhizosphere (from 6.5-13.7% to 7.1-18.0%) compared with bulk soil. Under stress, root-layer variants were a considerable source of variation in the microbiome, with the endosphere representing a unique and independent niche. A core set of root microbes were selected by T. repens, with Proteobacteria and Actinobacteria composed of diverse plant-growth-promoting bacteria (PGPBs) and metal-tolerant members. Cluster analysis revealed endosphere-enriched genera, with Rhizobium, Nocardioides, Novosphingobium, Phyllobacterium, and Sphingomonas being the most dominant. Finally, inferred microbial metabolic pathways suggested that these potential metal-tolerant PGPB species provide critical services to hosts, enabling them to tolerate and even flourish in contaminated soil. Our results provide novel insights for understanding how root-associated microbes help metal-tolerant plants cope with abiotic stress.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Li Gong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Deping Gan
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinying Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiaxuan Yao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingmin Cong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
13
|
Effects of an Arbuscular Mycorrhizal Fungus on the Growth of and Cadmium Uptake in Maize Grown on Polluted Wasteland, Farmland and Slopeland Soils in a Lead-Zinc Mining Area. TOXICS 2022; 10:toxics10070359. [PMID: 35878264 PMCID: PMC9322003 DOI: 10.3390/toxics10070359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) exist widely in soil polluted by heavy metals and have significant effects on plant growth and cadmium (Cd) uptake. Cd contents differ among wasteland, farmland and slopeland soils in a lead-zinc mining area in Yunnan Province, Southwest China. The effects of AMF on maize growth, root morphology, low-molecular-weight organic acid (LMWOA) concentrations and Cd uptake were investigated via a root-bag experiment. The results show that AMF increased maize growth on Cd-polluted soils, resulting in increases in root length, surface area, volume and branch number, with the effects being stronger in farmland than in wasteland and slopeland soils; increased malic acid and succinic acid secretion 1.3-fold and 1.1-fold, respectively, in roots on farmland soil; enhanced the iron- and manganese-oxidized Cd concentration by 22.6%, and decreased the organic-bound Cd concentration by 12.9% in the maize rhizosphere on farmland soil; and increased Cd uptake 12.5-fold and 1.7-fold in shoots and by 25.7% and 86.6% in roots grown on farmland and slopeland soils, respectively. Moreover, shoot Cd uptake presented significant positive correlations with root surface area and volume and LMWOA concentrations. Thus, these results indicated the possible mechanism that the increased maize Cd uptake induced by AMF was closely related to their effect on root morphology and LMWOA secretion, with the effects varying under different Cd pollution levels.
Collapse
|
14
|
Sabreena, Hassan S, Bhat SA, Kumar V, Ganai BA, Ameen F. Phytoremediation of Heavy Metals: An Indispensable Contrivance in Green Remediation Technology. PLANTS (BASEL, SWITZERLAND) 2022; 11:1255. [PMID: 35567256 PMCID: PMC9104525 DOI: 10.3390/plants11091255] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 08/01/2023]
Abstract
Environmental contamination is triggered by various anthropogenic activities, such as using pesticides, toxic chemicals, industrial effluents, and metals. Pollution not only affects both lotic and lentic environments but also terrestrial habitats, substantially endangering plants, animals, and human wellbeing. The traditional techniques used to eradicate the pollutants from soil and water are considered expensive, environmentally harmful and, typically, inefficacious. Thus, to abate the detrimental consequences of heavy metals, phytoremediation is one of the sustainable options for pollution remediation. The process involved is simple, effective, and economically efficient with large-scale extensive applicability. This green technology and its byproducts have several other essential utilities. Phytoremediation, in principle, utilizes solar energy and has an extraordinary perspective for abating and assembling heavy metals. The technique of phytoremediation has developed in contemporary times as an efficient method and its success depends on plant species selection. Here in this synthesis, we are presenting a scoping review of phytoremediation, its basic principles, techniques, and potential anticipated prospects. Furthermore, a detailed overview pertaining to biochemical aspects, progression of genetic engineering, and the exertion of macrophytes in phytoremediation has been provided. Such a promising technique is economically effective as well as eco-friendly, decontaminating and remediating the pollutants from the biosphere.
Collapse
Affiliation(s)
- Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India; (S.); (S.H.)
| | - Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India; (S.); (S.H.)
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Vineet Kumar
- Department of Botany, Guru Ghasidas Vishwavidyalaya (A Central University), Chhattisgarh, Bilaspur 495009, India;
| | - Bashir Ahmad Ganai
- Department of Environmental Science, University of Kashmir, Srinagar 190006, India; (S.); (S.H.)
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
15
|
Oleńska E, Małek W, Sujkowska-Rybkowska M, Szopa S, Włostowski T, Aleksandrowicz O, Swiecicka I, Wójcik M, Thijs S, Vangronsveld J. An Alliance of Trifolium repens—Rhizobium leguminosarum bv. trifolii—Mycorrhizal Fungi From an Old Zn-Pb-Cd Rich Waste Heap as a Promising Tripartite System for Phytostabilization of Metal Polluted Soils. Front Microbiol 2022; 13:853407. [PMID: 35495712 PMCID: PMC9051510 DOI: 10.3389/fmicb.2022.853407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
The Bolesław waste heap in South Poland, with total soil Zn concentrations higher than 50,000 mg kg–1, 5,000 mg Pb kg–1, and 500 mg Cd kg–1, is a unique habitat for metallicolous plants, such as Trifolium repens L. The purpose of this study was to characterize the association between T. repens and its microbial symbionts, i.e., Rhizobium leguminosarum bv. trifolii and mycorrhizal fungi and to evaluate its applicability for phytostabilization of metal-polluted soils. Rhizobia originating from the nutrient-poor waste heap area showed to be efficient in plant nodulation and nitrogen fixation. They demonstrated not only potential plant growth promotion traits in vitro, but they also improved the growth of T. repens plants to a similar extent as strains from a non-polluted reference area. Our results revealed that the adaptations of T. repens to high Zn-Pb-Cd concentrations are related to the storage of metals predominantly in the roots (excluder strategy) due to nodule apoplast modifications (i.e., thickening and suberization of cell walls, vacuolar storage), and symbiosis with arbuscular mycorrhizal fungi of a substantial genetic diversity. As a result, the rhizobia-mycorrhizal fungi-T. repens association appears to be a promising tool for phytostabilization of Zn-Pb-Cd-polluted soils.
Collapse
Affiliation(s)
- Ewa Oleńska
- Faculty of Biology, University of Bialystok, Bialystok, Poland
- *Correspondence: Ewa Oleńska,
| | - Wanda Małek
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | | | | | | | | | - Izabela Swiecicka
- Faculty of Biology, University of Bialystok, Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
| | - Małgorzata Wójcik
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
16
|
Hu R, Beguiristain T, De Junet A, Leyval C. Transfer of La, Ce, Sm and Yb to alfalfa and ryegrass from spiked soil and the role of Funneliformis mosseae. MYCORRHIZA 2022; 32:165-175. [PMID: 35253102 DOI: 10.1007/s00572-022-01073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Rare earth elements (REEs) are widely used in high-tech industries, and REE waste emissions have become a concern for ecosystems, food quality and human beings. Arbuscular mycorrhizal fungi (AMF) have repeatedly been reported to alleviate plant stress in metal-contaminated soils. To date, little information is available concerning the role of AMF in REE-contaminated soils. We recently showed that there was no transfer of Sm to alfalfa by Funneliformis mosseae, but only a single REE was examined, while light and heavy REEs are present in contaminated soils. To understand the role of AMF on the transfer of REEs to plants, we carried out an experiment using alfalfa (Medicago sativa) and ryegrass (Lolium perenne) in compartmented pots with separate bottom compartments that only were accessible by F. mosseae fungal hyphae. The bottom compartments contained a mixture of four REEs at equal concentrations (La, Ce, Sm and Yb). The concentration of REEs in plants was higher in roots than in shoots with higher REE soil-root than root-shoot transfer factors. Moreover, significantly higher light-REEs La and Ce were transferred to ryegrass shoots than Sm and the heavy-REE Yb, but this was not observed for alfalfa. Alfalfa dry weight was significantly increased by F. mosseae inoculation, but not ryegrass dry weight. For both plant species, there was significantly higher P uptake by the mycorrhizal plants than the nonmycorrhizal plants, but there was no significant transfer of La, Ce, Sm or Yb to alfalfa and ryegrass roots or shoots due to F. mosseae inoculation.
Collapse
Affiliation(s)
- Ruoyu Hu
- Université de Lorraine, CNRS, LIEC, 54000, Nancy, France
| | | | | | - Corinne Leyval
- Université de Lorraine, CNRS, LIEC, 54000, Nancy, France.
| |
Collapse
|
17
|
Becerra AG, Menoyo E, Cornejo P, Cabello M. Metal Soil Contamination, Metallophytes, and Arbuscular Mycorrhizal Fungi From South America. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Singh PP, Srivastava D, Shukla S, Varsha. Rhizophagus proliferus genome sequence reiterates conservation of genetic traits in AM fungi, but predicts higher saprotrophic activity. Arch Microbiol 2021; 204:105. [DOI: 10.1007/s00203-021-02651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022]
|
19
|
Yu Z, Zhao X, Su L, Yan K, Li B, He Y, Zhan F. Effect of an arbuscular mycorrhizal fungus on maize growth and cadmium migration in a sand column. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112782. [PMID: 34536792 DOI: 10.1016/j.ecoenv.2021.112782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The ecological role of arbuscular mycorrhizal fungi (AMF) on altering cadmium (Cd) migration in polluted soil is still unresolved. The present experiment aimed to clarify whether AMF can reduce Cd loss due to leaching at different Cd concentrations (0, 5, 10, and 15 mg L-1) with maize as a host plant cultured in a sand column. The effects of the arbuscular mycorrhizal fungus Funneliformis mosseae on the root morphology, exudate content, and Cd uptake by maize and Cd loss due to leaching were investigated. The AMF altered the root morphology and exudate content of the maize, resulting in increases in the root length, volume, surface area, tips and branch number and in the contents of soluble sugars, proteins, and amino acids in the root exudates, and the AMF increased maize biomass and Cd uptake by 22.0-31.0%. Moreover, the AMF significantly increased the contents of total and easily extractable glomalin-related soil protein (GRSP), increased Cd adsorption by sand particles and decreased the Cd concentration in the solution at a depth of 20 cm, resulting in a 67.5-97.2% decrease in the Cd loss due to leaching from the sand column. Furthermore, the root exudate content was very significantly positively correlated with Cd adsorption by the sand particles. Root length was significantly positively correlated with Cd uptake by the maize roots, but the average root diameter was very significantly negatively correlated with Cd uptake by maize. Thus, the AMF altered Cd migration by increasing the contents of GRSP and exudates and root morphology, which contributed to reducing the Cd concentration in the solution and Cd loss due to leaching from the sand column. Taken together, these results indicated that AMF serve an ecological function in reducing Cd loss due to leaching from polluted soil.
Collapse
Affiliation(s)
- Zihao Yu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiaoling Zhao
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lin Su
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Kai Yan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
20
|
Aavik T, Träger S, Zobel M, Honnay O, Van Geel M, Bueno CG, Koorem K. The joint effect of host plant genetic diversity and arbuscular mycorrhizal fungal communities on restoration success. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tsipe Aavik
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Sabrina Träger
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
- Institute of Biology/Geobotany and Botanical Garden Martin‐Luther‐University Halle‐Wittenberg Halle (Saale) Germany
| | - Martin Zobel
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Olivier Honnay
- Plant Conservation and Population Biology Biology Department University of Leuven Heverlee Belgium
| | - Maarten Van Geel
- Plant Conservation and Population Biology Biology Department University of Leuven Heverlee Belgium
| | - C. Guillermo Bueno
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Kadri Koorem
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| |
Collapse
|
21
|
Luo J, Li X, Jin Y, Traore I, Dong L, Yang G, Wang Y. Effects of Arbuscular Mycorrhizal Fungi Glomus mosseae on the Growth and Medicinal Components of Dysosma versipellis Under Copper Stress. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:924-930. [PMID: 31894371 DOI: 10.1007/s00128-019-02780-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/27/2019] [Indexed: 05/08/2023]
Abstract
In order to investigate the effects of arbuscular mycorrhizal fungi (AMF) (Glomus mosseae) inoculations and additions of copper (Cu) ion at gradual concentrations (0, 200, and 400 mg kg-1) on different parameters of Dysosma versipellis such as growth, lipid peroxidation (MDA and MRP), antioxidation enzymatic (SOD, POD and CAT) activities, and active medicinal components. Pot experiments have been conducted. The results showed that additions of Cu could inhibit growth and the activity of antioxidant enzymes, increase the degree of membrane lipid peroxidation, and decrease the podophyllotoxin content of D. versipellis compared with the control. Meanwhile, inoculations with AMF enhanced its antioxidant capacity and reduced the degree of membrane lipid peroxidation in leaves of D. versipellis under Cu stress. Besides, AMF inoculations significantly increased the biomass and content of podophyllotoxin in roots of D. versipellis, while it decreased Cu absorption content in roots. Thus, inoculations with AMF could effectively alleviate the Cu stress and improve the active components content of D. versipellis, which might be important for Cu stress adaptation and the improved productivity and quality of D. versipellis.
Collapse
Affiliation(s)
- Jie Luo
- Academy of Yuanpei, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Xue Li
- Academy of Yuanpei, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yefei Jin
- Academy of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Ibrahim Traore
- Academy of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Lijia Dong
- Academy of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Guo Yang
- Academy of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| | - Youbao Wang
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, Anhui, China.
| |
Collapse
|
22
|
Zeremski T, Ranđelović D, Jakovljević K, Marjanović Jeromela A, Milić S. Brassica Species in Phytoextractions: Real Potentials and Challenges. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112340. [PMID: 34834703 PMCID: PMC8617981 DOI: 10.3390/plants10112340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 05/08/2023]
Abstract
The genus Brassica is recognized for including species with phytoaccumulation potential and a large amount of research has been carried out in this area under a variety of conditions, from laboratory experiments to field trials, with spiked or naturally contaminated soils, using one- or multi-element contaminated soil, generating various and sometimes contradictory results with limited practical applications. To date, the actual field potential of Brassica species and the feasibility of a complete phytoextraction process have not been fully evaluated. Therefore, the aim of this study was to summarize the results of the experiments that have been performed with a view to analyzing real potentials and limitations. The reduced biomass and low metal mobility in the soil have been addressed by the development of chemically or biologically assisted phytoremediation technologies, the use of soil amendments, and the application of crop management strategies. Certain issues, such as the fate of harvested biomass or the performance of species in multi-metal-contaminated soils, remain to be solved by future research. Potential improvements to current experimental settings include testing species grown to full maturity, using a greater amount of soil in experiments, conducting more trials under real field conditions, developing improved crop management systems, and optimizing solutions for harvested biomass disposal.
Collapse
Affiliation(s)
- Tijana Zeremski
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.M.J.); (S.M.)
- Correspondence:
| | - Dragana Ranđelović
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d’Esperey Boulevard 86, 11000 Belgrade, Serbia;
| | - Ksenija Jakovljević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia;
| | - Ana Marjanović Jeromela
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.M.J.); (S.M.)
| | - Stanko Milić
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.M.J.); (S.M.)
| |
Collapse
|
23
|
Martignoni MM, Garnier J, Zhang X, Rosa D, Kokkoris V, Tyson RC, Hart MM. Co-inoculation with arbuscular mycorrhizal fungi differing in carbon sink strength induces a synergistic effect in plant growth. J Theor Biol 2021; 531:110859. [PMID: 34389360 DOI: 10.1016/j.jtbi.2021.110859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi play a key role in determining ecosystem functionality. Understanding how diversity in the fungal community affects plant productivity is therefore an important question in ecology. Current research has focused on understanding the role of functional complementarity in the fungal community when the host plant faces multiple stress factors. Fewer studies, however, have investigated how variation in traits affecting nutrient exchange can impact the plant growth dynamics, even in the absence of environmental stressors. Combining experimental data and a mathematical model based on ordinary differential equations, we investigate the role played by carbon sink strength on plant productivity. We simulate and measure plant growth over time when the plant is associated with two fungal isolates with different carbon sink strength, and when the plant is in pairwise association with each of the isolates alone. Overall, our theoretical as well as our experimental results show that co-inoculation with fungi with different carbon sink strength can induce positive non-additive effects (or synergistic effects) in plant productivity. Fungi with high carbon sink strength are able to quickly establish a fungal community and increase the nutrient supply to the plant, with a consequent positive impact on plant growth rate. On the other side, fungi with low carbon sink strength inflict lower carbon costs to the host plant, and support maximal plant productivity once plant biomass is large. As AM fungi are widely used as organic fertilizers worldwide, our findings have important implications for restoration ecology and agricultural management.
Collapse
Affiliation(s)
- Maria M Martignoni
- Department of Mathematics, University of British Columbia, Kelowna (BC), Canada; Department of Mathematics and Statistics, Memorial University, St. John's (NL), Canada
| | - Jimmy Garnier
- LAboratoire de MAthématiques (LAMA), CNRS, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Chambery, France
| | - Xinlu Zhang
- Department of Biology, University of British Columbia, Kelowna (BC), Canada
| | - Daniel Rosa
- Department of Biology, University of British Columbia, Kelowna (BC), Canada
| | - Vasilis Kokkoris
- Department of Biology, University of Ottawa, Ottawa (ON), Canada; Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa (ON), Canada
| | - Rebecca C Tyson
- Department of Mathematics, University of British Columbia, Kelowna (BC), Canada
| | - Miranda M Hart
- Department of Biology, University of British Columbia, Kelowna (BC), Canada
| |
Collapse
|
24
|
Zeng P, Guo Z, Xiao X, Zhou H, Gu J, Liao B. Tolerance capacities of Broussonetia papyrifera to heavy metal(loid)s and its phytoremediation potential of the contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:580-589. [PMID: 34369831 DOI: 10.1080/15226514.2021.1958746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Broussonetia papyrifera, is a promising fast-growing woody plant for the phytoremediation of heavy metal(loid) (HM)-contaminated soil. In this study, a greenhouse experiment was conducted to explore the tolerance capacities of B. papyrifera and its phytoremediation potential in the HM-contaminated soil. The results indicated that B. papyrifera could effectively decrease malondialdehyde (MDA) content by enhancing the antioxidant enzyme activities along with the cultivation in the HM-contaminated soil. Significant (p < 0.05) negative relationships were found between MDA content and superoxide dismutase (r = -0.620) and catalase activities (r = -0.702) in B. papyrifera leaves. Fourier Transform Infrared Spectroscopy analysis indicated that the main functional groups in B. papyrifera roots were slightly influenced by HMs, and organic acids, carbohydrates, protein, and amino acids might bind with HMs in plant roots to alleviate the adverse effect of HMs on plants growth. Meanwhile, B. papyrifera had great potential used for the phytoextraction of Cd and Zn in HM-contaminated soil. The maximum total Cd and Zn accumulation amount in B. papyrifera shoots could attach to 2.26 and 66.8 mg·pot-1, respectively. These observations suggested that B. papyrifera has large biomass and high tolerance to HMs, which can be regarded as a promising plant for the eco-remediation of HM-contaminated sites.Novelty statement In this study, a fast-growing woody plant, Broussonetia papyrifera, was used for heavy metal(loid) (HM)-contaminated soil remediation. We found that B. papyrifera can effectively alleviate the adverse effect of HMs on plant growth by enhancing the antioxidant enzyme activities in leaves and binding HMs with organic acids, carbohydrates, protein, and amino acids in roots. Furthermore, the maximum total Cd and Zn accumulation amount in B. papyrifera shoots could attach to 2.26 and 66.8 mg·pot-1, which suggested that B. papyrifera might be regarded as a promising woody plant used for the phytoextraction of Cd and Zn in the contaminated soil.
Collapse
Affiliation(s)
- Peng Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jiaofeng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Bohan Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
25
|
Sustainable Recovery of Secondary and Critical Raw Materials from Classified Mining Residues Using Mycorrhizal-Assisted Phytoextraction. METALS 2021. [DOI: 10.3390/met11081163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this work, mycorrhizal-assisted phytoextraction (MAP, Helianthus annuus–arbuscular mycorrhizal fungus Rhizophagus intraradices–Zn-volcanic ashes) was applied for the recovery of secondary and critical raw materials (SRMs and CRMs, respectively) from Joda West (Odisha, India) mine residues, within a novel multidisciplinary management strategy. Mine residues were preliminarily characterized by using advanced analytical techniques, and subsequently mapped, classified and selected using multispectral satellite Sentinel-2A images and cluster analysis. Selected mine residues were treated by MAP at laboratory scale, and the fate of several SRMs (e.g., Zn, Cr, As, Ni, Cu, Ca, Al, K, S, Rb, Fe, Mn) and CRMs (such as Ga, Ti, P, Ba and Sr) was investigated. Bioconcentration factors in shoots (BCS) and roots (BCR) and translocation factors (TF) were: 5.34(P) > BCS > 0.00(Al); 15.0(S) > BCR > 0.038(Ba); 9.28(Rb) > TF > 0.02(Ti). Results were used to predict MAP performance at larger scale, simulating a Vegetable Depuration Module (VDM) containing mine residues (1 m3). Estimated bio-extracting potential (BP) was in the range 2417 g/m3 (K) > BP> 0.14 g/m3 (As), suggesting the eventual subsequent recovery of SRMs and CRMs by hydrometallurgical techniques, with final purification by selective electrodeposition, as a viable and cost-effective option. The results are promising for MAP application at larger scale, within a circular economy-based approach.
Collapse
|
26
|
Zhang H, Ren W, Zheng Y, Li Y, Zhu M, Tang M. Arbuscular Mycorrhizal Fungi Increase Pb Uptake of Colonized and Non-Colonized Medicago truncatula Root and Deliver Extra Pb to Colonized Root Segment. Microorganisms 2021; 9:microorganisms9061203. [PMID: 34199397 PMCID: PMC8229133 DOI: 10.3390/microorganisms9061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi establish symbiosis and improve the lead (Pb) tolerance of host plants. The AM plants accumulate more Pb in roots than their non-mycorrhizal counterparts. However, the direct and long-term impact of AM fungi on plant Pb uptake has been rarely reported. In this study, AM fungus (Rhizophagus irregularis) colonized and non-colonized roots of Medicago truncatula were separated by a split-root system, and their differences in responding to Pb application were compared. The shoot biomass accumulation and transpiration were increased after R. irregularis inoculation, whereas the biomass of both colonized and non-colonized roots was decreased. Lead application in the non-colonized root compartment increased the R. irregularis colonization rate and up-regulated the relative expressions of MtPT4 and MtBCP1 in the colonized root compartments. Rhizophagus irregularis inoculation increased Pb uptake in both colonized and non-colonized roots, and R. irregularis transferred Pb to the colonized root segment. The Pb transferred through the colonized root segment had low mobility and might be sequestrated and compartmented in the root by R. irregularis. The Pb uptake of roots might follow water flow, which is facilitated by MtPIP2. The quantification of Pb transfer via the mycorrhizal pathway and the involvement of MtPIP2 deserve further study.
Collapse
Affiliation(s)
- Haoqiang Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (H.Z.); (W.R.); (Y.Z.); (Y.L.); (M.Z.)
| | - Wei Ren
- College of Forestry, Northwest A&F University, Yangling 712100, China; (H.Z.); (W.R.); (Y.Z.); (Y.L.); (M.Z.)
| | - Yaru Zheng
- College of Forestry, Northwest A&F University, Yangling 712100, China; (H.Z.); (W.R.); (Y.Z.); (Y.L.); (M.Z.)
| | - Yanpeng Li
- College of Forestry, Northwest A&F University, Yangling 712100, China; (H.Z.); (W.R.); (Y.Z.); (Y.L.); (M.Z.)
| | - Manzhe Zhu
- College of Forestry, Northwest A&F University, Yangling 712100, China; (H.Z.); (W.R.); (Y.Z.); (Y.L.); (M.Z.)
| | - Ming Tang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (H.Z.); (W.R.); (Y.Z.); (Y.L.); (M.Z.)
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-137-092-291-52
| |
Collapse
|
27
|
Huang GM, Srivastava AK, Zou YN, Wu QS, Kuča K. Exploring arbuscular mycorrhizal symbiosis in wetland plants with a focus on human impacts. Symbiosis 2021. [DOI: 10.1007/s13199-021-00770-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Singh U, Akhtar O, Mishra R, Zoomi I, Kehri HK, Pandey D. Arbuscular Mycorrhizal Fungi: Biodiversity, Interaction with Plants, and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Ardestani MM, Frouz J. The arbuscular mycorrhizal fungus Rhizophagus intraradices and other microbial groups affect plant species in a copper-contaminated post-mining soil. J Trace Elem Med Biol 2020; 62:126594. [PMID: 32622175 DOI: 10.1016/j.jtemb.2020.126594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIM Arbuscular mycorrhizal fungi (AMF) have an important role in plant-microbe interactions. But, there are few studies in which the combined effect of AMF with a stress factor, such as the presence of a metal, on plant species were assessed. This study investigated the effect of arbuscular mycorrhizal (AM) fungus Rhizophagus intraradices and other soil microbial groups in the presence of copper on three plant species in a microcosm experiment. METHODS Two grass species Poa compressa and Festuca rubra and one herb species Centaurea jacea were selected as model plants in a pot-design test in which soils were artificially contaminated with copper. Treatments were bacteria (control), saprophytic fungi, protists, and a combined treatment of saprophytic fungi and protists, all in the presence or absence of the AM fungal species. After sixty days, plants were harvested and the biomass of grass and herb species and microbial respiration were measured. RESULTS The results showed almost equal above- and belowground plant biomass and microbial respiration in the treatments in the presence or absence of R. intraradices. The herb species C. jecea responded significantly to the soil inoculation with AM fungus, while grass species showed inconsistent patterns. Significant effect of AMF and copper and their interactions was observed on plant biomass when comparing contaminated vs. non-contaminated soils. CONCLUSION Strong effect of AMF on the biomass of herb species and slight changes in plant growth with the presence of this fungal species in copper-spiked test soils indicates the importance of mycorrhizal fungi compared to other soil microorganisms in our experimental microcosms.
Collapse
Affiliation(s)
- Masoud M Ardestani
- Institute for Environmental Studies, Charles University in Prague, Benátská 2, Prague, CZ-12801, Czech Republic; Institute of Soil Biology and SoWa Research Infrastructure, Biology Centre, Czech Academy of Sciences, Na Sádkách 7, České Budějovice, CZ-37005, Czech Republic.
| | - Jan Frouz
- Institute for Environmental Studies, Charles University in Prague, Benátská 2, Prague, CZ-12801, Czech Republic; Institute of Soil Biology and SoWa Research Infrastructure, Biology Centre, Czech Academy of Sciences, Na Sádkách 7, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
30
|
Dagher DJ, Pitre FE, Hijri M. Ectomycorrhizal Fungal Inoculation of Sphaerosporella brunnea Significantly Increased Stem Biomass of Salix miyabeana and Decreased Lead, Tin, and Zinc, Soil Concentrations during the Phytoremediation of an Industrial Landfill. J Fungi (Basel) 2020; 6:E87. [PMID: 32560046 PMCID: PMC7344794 DOI: 10.3390/jof6020087] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 11/17/2022] Open
Abstract
Fast growing, high biomass willows (Salix sp.) have been extensively used for the phytoremediation of trace element-contaminated environments, as they have an extensive root system and they tolerate abiotic stressors such as drought and metal toxicity. Being dual mycorrhizal plants, they can engage single or simultaneous symbiotic associations with both arbuscular mycorrhizal (AM) fungi and ectomycorrhizal (EM) fungi, which can improve overall plant health and growth. The aim of this study was to test the effect of these mycorrhizal fungi on the growth and trace element (TE) extraction potential of willows. A field experiment was carried out where we grew Salix miyabeana clone SX67 on the site of a decommissioned industrial landfill, and inoculated the shrubs with an AM fungus Rhizophagus irregularis, an EM fungus Sphaerosporella brunnea, or a mixture of both. After two growing seasons, the willows inoculated with the EM fungus S. brunnea produced significantly higher biomass. Ba, Cd and Zn were found to be phytoextracted to the aerial plant biomass, where Cd presented the highest bioconcentration factor values in all treatments. Additionally, the plots where the willows received the S. brunnea inoculation showed a significant decrease of Cu, Pb, and Sn soil concentrations. AM fungi inoculation and dual inoculation did not significantly influence biomass production and soil TE levels.
Collapse
Affiliation(s)
- Dimitri J. Dagher
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada; (D.J.D.); (F.E.P.)
| | - Frédéric E. Pitre
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada; (D.J.D.); (F.E.P.)
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada; (D.J.D.); (F.E.P.)
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
31
|
Guglietta D, Belardi G, Cappai G, Casentini B, Godeas A, Milia S, Passeri D, Salvatori R, Scotti A, Silvani V, Tempesta E, Ubaldini S, Trapasso F. Toward a Multidisciplinary Strategy for the Classification and Reuse of Iron and Manganese Mining Wastes. CHEMISTRY JOURNAL OF MOLDOVA 2020. [DOI: 10.19261/cjm.2019.650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
32
|
Li H, Huang WX, Gao MY, Li X, Xiang L, Mo CH, Li YW, Cai QY, Wong MH, Wu FY. AM fungi increase uptake of Cd and BDE-209 and activities of dismutase and catalase in amaranth (Amaranthus hypochondriacus L.) in two contaminants spiked soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110485. [PMID: 32203776 DOI: 10.1016/j.ecoenv.2020.110485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Soil co-contaminated with cadmium (Cd) and decabromodiphenyl ether (BDE-209) is a widespread environmental problem, especially in electronic waste contaminated surroundings. Accumulation of Cd and BDE-209 in crops has possibly harmful effects on local human health. In order to assess the potential of arbuscular mycorrhizal (AM) fungi and amaranth (Amaranthus hypochondriacus L.) in remediation of soil co-contaminated with Cd and BDE-209, pot trials were performed to investigate interactive effects of AM fungi, Cd and BDE-209 on growth of amaranth, uptake of Cd and BDE-209, distribution of chemical forms of Cd and activities of antioxidant enzymes in shoots and dissipation of BDE-209 in soil. The present results showed that shoot biomass of non-mycorrhizal plants was significantly inhibited by increasing of Cd addition (5-15 mg kg-1), but were only slightly declined with BDE-209 addition (5 mg kg-1). The interaction of Cd and BDE-209 reduced the proportions of ethanol- and d-H2O-extractable Cd in shoots, consequently alleviated Cd toxicity to plants and enhanced root uptake of Cd and BDE-209. Inoculation of AM fungi resulted in significantly greater shoot biomass as well as higher concentrations of Cd and BDE-209 compared with non-mycorrhizal treatment. Moreover, AM fungi played a beneficial role in relieving oxidative stress on amaranth by increasing the activities of dismutase (SOD) and catalase (CAT) in shoots and significantly improved the dissipation of BDE-209 in soil. The present study suggested that combination of AM fungi and amaranth may be a potential option for remediation of Cd and BDE-209 co-contaminated soils.
Collapse
Affiliation(s)
- Hui Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China.
| | - Wei Xiong Huang
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Meng Ying Gao
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Xing Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Lei Xiang
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Ce Hui Mo
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Yan Wen Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Quan Ying Cai
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Ming Hung Wong
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Fu Yong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agricultureand Rural Affairs, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
33
|
Mokarram-Kashtiban S, Hosseini SM, Tabari Kouchaksaraei M, Younesi H. The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10776-10789. [PMID: 30778927 DOI: 10.1007/s11356-019-04411-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/28/2019] [Indexed: 05/23/2023]
Abstract
Soil contaminated with heavy metals (HMs) is a serious problem throughout the world that threatens all living organisms in the soil. Therefore, large-scale remediation is necessary. This study investigated a new combination of remediation techniques on heavy metal contaminated soil, phytoremediation, and soil amendment with nano-sized zero-valent iron (nZVI) and rhizosphere microorganisms. White willow (Salix alba L.) was grown for 160 days in pots containing Pb, Cu, and Cd and amended with 0, 150, and 300 (mg kg-1) of nZVI and rhizosphere microorganisms, including the arbuscular mycorrhizal fungus (AMF), Rhizophagus irregularis, and the plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens. The results showed that inoculation with PGPR and AMF, particularly dual inoculation, improved plant growth as well as the physiological and biochemical parameters of white willow, and increased the bioconcentration factor (BCF) of Pb, Cu, and Cd. The low dose of nZVI significantly increased the root length and the leaf area of the seedlings and increased the BCF of Cd. In contrast, the high dose of nZVI had negative effects on the seedlings growth and the BCF of Pb and Cu, about - 32% and - 63%, respectively. Our results demonstrate that nZVI at low doses can improve plant performance in a phytoremediation context and that the use of beneficial rhizosphere microorganisms can minimize nZVI stress in plants and make them less susceptible to stress even under high dose conditions.
Collapse
Affiliation(s)
| | - Seyed Mohsen Hosseini
- Department of Forestry, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran.
| | | | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
| |
Collapse
|
34
|
Mokarram-Kashtiban S, Hosseini SM, Tabari Kouchaksaraei M, Younesi H. The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 254:126909. [PMID: 30778927 DOI: 10.1016/j.chemosphere.2020.126909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 05/25/2023]
Abstract
Soil contaminated with heavy metals (HMs) is a serious problem throughout the world that threatens all living organisms in the soil. Therefore, large-scale remediation is necessary. This study investigated a new combination of remediation techniques on heavy metal contaminated soil, phytoremediation, and soil amendment with nano-sized zero-valent iron (nZVI) and rhizosphere microorganisms. White willow (Salix alba L.) was grown for 160 days in pots containing Pb, Cu, and Cd and amended with 0, 150, and 300 (mg kg-1) of nZVI and rhizosphere microorganisms, including the arbuscular mycorrhizal fungus (AMF), Rhizophagus irregularis, and the plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens. The results showed that inoculation with PGPR and AMF, particularly dual inoculation, improved plant growth as well as the physiological and biochemical parameters of white willow, and increased the bioconcentration factor (BCF) of Pb, Cu, and Cd. The low dose of nZVI significantly increased the root length and the leaf area of the seedlings and increased the BCF of Cd. In contrast, the high dose of nZVI had negative effects on the seedlings growth and the BCF of Pb and Cu, about - 32% and - 63%, respectively. Our results demonstrate that nZVI at low doses can improve plant performance in a phytoremediation context and that the use of beneficial rhizosphere microorganisms can minimize nZVI stress in plants and make them less susceptible to stress even under high dose conditions.
Collapse
Affiliation(s)
| | - Seyed Mohsen Hosseini
- Department of Forestry, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran.
| | | | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
| |
Collapse
|
35
|
Zeng P, Guo Z, Xiao X, Peng C. Effects of tree-herb co-planting on the bacterial community composition and the relationship between specific microorganisms and enzymatic activities in metal(loid)-contaminated soil. CHEMOSPHERE 2019; 220:237-248. [PMID: 30584955 DOI: 10.1016/j.chemosphere.2018.12.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Tree-herb co-planting is regarded as an ecologically sustainable approach for the remediation of metal(loid)-contaminated soil. In this study, two herb species, Pteris vittata L. and Arundo donax L., and two woody species, Morus alba L. and Broussonetia papyrifera L., were selected for the tree-herb co-planting, and their impacts on the changing of microbial community structure in metal(loid)-contaminated soil were studied by high-throughput sequencing. The results showed that the microbial diversity was stably maintained by the tree-herb interactions, while the composition of the microbial community was clearly affected in metal(loid)-contaminated soil. According to the Venn and flower diagrams, heat map and principal coordinate analysis, both plant monocultures and co-planting had specific microbial community structures, which suggested that the composition and abundance of bacterial communities varied between plant monoculture and tree-herb co-planting treatments. In particular, A. donax L. played a vital role in increasing the abundances of Cyanobacteria (>1%) in metal(loid)-contaminated soil when co-planted with woody plants. Furthermore, some specific microorganisms combined with plants played a key role in improving enzyme activity in the contaminated soil. Correspondingly, sucrase and acid phosphatase activities in monoculture and co-planting treatments significantly (p < 0.05) increased by 1.05-3.37 and 7.24-20.3 times. These results indicated that the rhizospheric interactions in the tree-herb co-planting system positively affected the soil microbes and had stronger impacts on the composition of soil microorganisms, which was closely related to the improvement of the biological quality in the metal(loid)-contaminated soil.
Collapse
Affiliation(s)
- Peng Zeng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| | - Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| |
Collapse
|
36
|
Scotti A, Silvani VA, Cerioni J, Visciglia M, Benavidez M, Godeas A. Pilot testing of a bioremediation system for water and soils contaminated with heavy metals: vegetable depuration module. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:899-907. [PMID: 30907107 DOI: 10.1080/15226514.2019.1583634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a novel constructed wetland called a vegetable depuration module (VDM) as a pilot test of a bioremediation system (BS) for decontaminating water and soil polluted with heavy metals. The VDM consisted of a pool filled with stones of different granulometry and a substrate top layer composed of a mixture of soil and volcanic ash (50:50, v/v) supplemented with 350 ppm Zn. The BS of sunflower plants colonized by the arbuscular mycorrhizal fungus Rhizophagus intraradices was planted in the VDM. Initially, the substrate registered high concentrations of Zn, Cr, Mn, Cu, and Sr, and had Eh > +500 mV and pH 8.4. Irrigation with a Cu solution by vertical flow was carried out. After 3 months, bioaccumulation factors ranged from 1.00 to 8.90, and translocation rates were >1 for Sr and Cu. Total metals extracted by the BS and percolation were 31%, 34%, 50%, 45%, and 57% for Zn, Cu, Mn, Cr, and Sr, respectively. Only the BS was capable of extracting 94% of Cu and 38% of Zn. VDM allowed us to calibrate the extractive performance of the studied elements in BS. This biotechnological development holds great potential for phytoremediation of polluted areas.
Collapse
Affiliation(s)
- Adalgisa Scotti
- a Comisión Nacional de Energía Atómica , International Center for Earth Sciences , Complejo Minero Fabril San Rafael CMFSR-CNEA , San Rafael , Argentina
- b Facultad de Ciencias Exactas y Naturales , Universidad Nacional de Cuyo , Mendoza , Argentina
| | - Vanesa Analia Silvani
- c Instituto de Biodiversidad y Biología Experimental y Aplicada, IBBEA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Juan Cerioni
- d Facultad Regional San Rafael , Universidad Tecnológica Nacional , San Rafael , Argentina
| | | | - Matías Benavidez
- c Instituto de Biodiversidad y Biología Experimental y Aplicada, IBBEA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Alicia Godeas
- c Instituto de Biodiversidad y Biología Experimental y Aplicada, IBBEA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
37
|
Zeng P, Guo Z, Xiao X, Peng C, Huang B, Feng W. Complementarity of co-planting a hyperaccumulator with three metal(loid)-tolerant species for metal(loid)-contaminated soil remediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:306-315. [PMID: 30458397 DOI: 10.1016/j.ecoenv.2018.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Co-planting with multiple plant species has great value for the remediation of soil co-contaminated with metal(loid)s. A pot experiment has been conducted to study the growth, phytoextraction of metal(loid) and complementarity by co-planting Pteris vittata L. with three metal(loid)-tolerant species with large biomass (namely Arundo donax L., Morus alba L., and Broussonetia papyrifera L.) on soil co-contaminated with As, Cd, Pb, and Zn. The results showed that the co-planting can favor the growth and uptake of As in hyperaccumulator P. vittata L., and improve comprehensive extraction of metal(loid). The total biomass and content of As in the roots of P. vittata L. under the co-planting system were significantly (p < 0.05) improved by 117.5% and 122.0%, respectively, compared with that in monoculture, while the content of As, Cd, Pb and Zn in the tissues of A. donax L., M. alba L. and B. papyrifera L. was slightly increased. The comprehensive accumulation amounts for As, Cd, Pb, and Zn by the four plants co-planting in contaminated soil were higher than that in part of plant's monoculture. Moreover, availability of As, Cd, and Zn in the contaminated soil was decreased in the co-planting system, meanwhile soil urease and acid phosphatase activities in soil significantly (p < 0.05) promoted as compared to the monocultures. The results suggested that positive interaction between hyperaccumulator and three metal(loid)-tolerant species can effectively enhance the growth of P. vittata L., regulate the comprehensive metal(loid)s accumulation capacity, and improve the environmental quality of contaminated soil, which drives high phytoremediation potential for metal(loid)s-contaminated soil by the co-planting.
Collapse
Affiliation(s)
- Peng Zeng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Bo Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Wenli Feng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
38
|
Mohanram S, Kumar P. Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01448-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
39
|
González-Chávez MDCA, Carrillo-González R, Cuellar-Sánchez A, Delgado-Alvarado A, Suárez-Espinosa J, Ríos-Leal E, Solís-Domínguez FA, Maldonado-Mendoza IE. Phytoremediation assisted by mycorrhizal fungi of a Mexican defunct lead-acid battery recycling site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:3134-3144. [PMID: 30373090 DOI: 10.1016/j.scitotenv.2018.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/18/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
A field experiment was conducted during 15 months to study the effects of four arbuscular mycorrhizal fungi (AMF) on the growth of Ricinus communis accession SF7. Plants were established on amended soil (vermicompost:sawdust:soil 1:1:1) severely polluted by lead-acid batteries (LAB) located at Mexico State, Mexico. Plants inoculated with Acaulospora sp., Funneliformis mosseae and Gigaspora gigantea had 100% survival in comparison to non-inoculated plants (57%). These same AMF enhanced palmitic and linoleic acids content in seeds of R. communis. Acaulospora sp. modified rhizosphere soil pH and decreased 3.5 folds Pb foliar concentrations while F. mosseae BEG25 decreased three times Pb soil availability in comparison to non-inoculated plants. Spatial changes in Pb soil availability were observed at the end of this research. No fungal effect on P, Ca, Cu foliar concentrations, soluble sugars, proline, chlorophyll or on the activity of two oxidative stress enzymes was observed. Mycorrhizal colonization from the inoculated fungi was between 40% and 60%, while colonization by native fungi was between 16% and 22%. A similar percentage of foliar total phenolic compounds was observed in non-mycorrhizal plants and those inoculated with G. gigantea and Acaulospora sp. This is the first research reporting effects of AMF on R. communis (castor bean) shrubs when grown on a LAB recycling site suggesting the use of Acaulospora sp. and F. mosseae BEG25 in phytostabilization to ameliorate Pb pollution and decreasing its ecological risk.
Collapse
Affiliation(s)
- Ma Del Carmen A González-Chávez
- Environmental Chemistry Lab, Postgrado en Edafología, Colegio de Postgraduados, Campus Montecillo, Texcoco, México 56230, Mexico.
| | - Rogelio Carrillo-González
- Environmental Chemistry Lab, Postgrado en Edafología, Colegio de Postgraduados, Campus Montecillo, Texcoco, México 56230, Mexico
| | - Alma Cuellar-Sánchez
- Environmental Chemistry Lab, Postgrado en Edafología, Colegio de Postgraduados, Campus Montecillo, Texcoco, México 56230, Mexico
| | - Adriana Delgado-Alvarado
- Postgrado en Estrategias para el Desarrollo Agrícola Regional, Colegio de Postgraduados, Campus Puebla, Mexico
| | - Javier Suárez-Espinosa
- Postgrado en Estadística, Colegio de Postgraduados, Campus Montecillo, Texcoco, México 56230, Mexico
| | - Elvira Ríos-Leal
- Depto. de Biotecnología y Bioingeniería, CINVESTAV-IPN, Ciudad de México, Mexico
| | | | - Ignacio Eduardo Maldonado-Mendoza
- Depto. de Ecología Molecular de la Rizósfera, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-IPN Unidad Sinaloa, Mexico
| |
Collapse
|
40
|
Zeng P, Guo Z, Xiao X, Peng C, Feng W, Xin L, Xu Z. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:594-603. [PMID: 30205349 DOI: 10.1016/j.scitotenv.2018.09.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 05/27/2023]
Abstract
The objective of this study was to determine the phytoextraction potential of a hyperaccumulator co-planted with a large biomass of woody plant in metal(loid)-contaminated soil. A pot experiment was conducted for 270 days (d) to study the growth, physiological responses, and metal(loid)s accumulation characteristics of plants, which included a shade-requiring, As-hyperaccumulator perennial herb, Pteris vittata L., co-planted with a woody tree, namely Morus alba L. or Broussonetia papyrifera L., for soil contaminated with arsenic (As), cadmium (Cd), lead (Pb), and zinc (Zn). The results showed that the biomass, photosynthetic pigment contents, antioxidant enzyme activity, and uptake of As in P. vittata L. were significantly enhanced by co-planting with M. alba L. or B. papyrifera L. Especially, the uptake of As by P. vittata L. was significantly (p < 0.05) increased by 80.0% and 64.2% when it was co-planted with M. alba L. or B. papyrifera L., respectively, while the As, Cd, Pb, and Zn contents of both M. alba L. and B. papyrifera L. were not significantly promoted by the co-planting. The comprehensive phytoextraction of metal(loid)s could be optimized by the co-planting of P. vittata L. with M. alba L. or B. papyrifera L. The total amount of As in the shoots from co-planting species was significantly (p < 0.05) higher than that of the monoculture with M. alba L. or B. papyrifera L., and that of Cd and Zn in the shoots was significantly (p < 0.05) higher than that of the monoculture with P. vittata L. The results showed that the co-planting of P. vittata L. with M. alba L. or B. papyrifera L. can alleviate the toxic effects of metal(loid)s on plant growth and improve the comprehensive phytoextraction amounts of metal(loid)s, and is a promising strategy for remediation of metal(loid)-contaminated soil.
Collapse
Affiliation(s)
- Peng Zeng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Wenli Feng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Liqing Xin
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Zhi Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| |
Collapse
|
41
|
Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P, Kumar R, Khan SA, Yadav KK, Rana KL, Kour D, Yadav N, Yadav AN. Fungal Phytoremediation of Heavy Metal-Contaminated Resources: Current Scenario and Future Prospects. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-25506-0_18] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Sabra M, Aboulnasr A, Franken P, Perreca E, Wright LP, Camehl I. Beneficial Root Endophytic Fungi Increase Growth and Quality Parameters of Sweet Basil in Heavy Metal Contaminated Soil. FRONTIERS IN PLANT SCIENCE 2018; 9:1726. [PMID: 30538713 PMCID: PMC6277477 DOI: 10.3389/fpls.2018.01726] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/06/2018] [Indexed: 05/18/2023]
Abstract
How interactions between plants, the rhizosphere, and contaminated soil affect environmental sustainability is still under research. We tested the effects of two root endophytic fungi, the arbuscular mycorrhiza fungus (AMF) Rhizophagus irregularis and the beneficial endophyte Serendipita indica, on sweet basil (Ocimum basilicum) growing on soil contaminated with lead and copper in a pot experiment under defined greenhouse conditions. Both fungi caused an increase in shoot and root dry weight of sweet basil plants under all conditions and decreased the amount of lead in shoots. The amount of copper was reduced by S. indica, while the AM fungus showed this effect only when the soil is contaminated with both copper and lead. Furthermore the AMF, but not the endophyte S. indica caused a strong increase on the concentrations of the essential oils linalool and eucalyptol even on sweet basil growing on contaminated soils. Hence, cultivating sweet basil in combination with beneficial fungi in case of difficult environmental conditions could be of interest for industry located in countries with widespread land pollution, because quantity and quality of plants are increased while the amount of heavy metals is generally reduced.
Collapse
Affiliation(s)
- Mayada Sabra
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
- Agriculture Botany Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Amal Aboulnasr
- Agriculture Botany Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Philipp Franken
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Erica Perreca
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Iris Camehl
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| |
Collapse
|
43
|
Campos C, Carvalho M, Brígido C, Goss MJ, Nobre T. Symbiosis Specificity of the Preceding Host Plant Can Dominate but Not Obliterate the Association Between Wheat and Its Arbuscular Mycorrhizal Fungal Partners. Front Microbiol 2018; 9:2920. [PMID: 30542338 PMCID: PMC6277769 DOI: 10.3389/fmicb.2018.02920] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
The symbiosis established between arbuscular mycorrhizal fungi (AMF) and roots of most land plants plays a key role in plant nutrient acquisition and alleviation of environmental stresses. Despite the ubiquity of the symbiosis, AMF and host species display significant specificity in their interactions. To clarify preferential associations between wheat (Triticum aestivum) and AMF, we characterized root AMF communities in the transition from two first host species, ryegrass (Lolium rigidum) and yellow-serradella (Ornithopus compressus), grown separately or together, to a second host (wheat), by sequencing the large subunit ribosomal DNA (LSU rDNA) gene. The response of AMF communities in wheat to prior soil disturbance – and consequently of the mycelial network [intact extraradical mycelium (ERM) vs. disrupted mycelium] established with either of the first hosts – was also investigated. Since the outcome of a specific host–symbiont interaction depends on the molecular responses of the host plant upon microbial colonization, we studied the expression of six key symbiosis-related genes in wheat roots. AMF communities on L. rigidum and O. compressus roots were clearly distinct. Within an undisturbed ERM, wheat AMF communities were similar to that of previous host, and O. compressus-wheat-AMF interactions supported a greater growth of wheat than L. rigidum-wheat-AMF interactions. This effect declined when ERM was disrupted, but generated a greater activation of symbiotic genes in wheat, indicating that plant symbiotic program depends on some extent on the colonizing symbiont propagule type. When a mixture of L. rigidum and O. compressus was planted, the wheat colonization pattern resembled that of O. compressus, although this was not reflected in a greater growth. These results show a lasting effect of previous hosts in shaping wheat AMF communities through an efficient use of the established ERM, although not completely obliterating host–symbiont specificity.
Collapse
Affiliation(s)
- Catarina Campos
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Mário Carvalho
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Clarisse Brígido
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Michael J Goss
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Tânia Nobre
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| |
Collapse
|
44
|
Gu HH, Zhou Z, Gao YQ, Yuan XT, Ai YJ, Zhang JY, Zuo WZ, Taylor AA, Nan SQ, Li FP. The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using four plant species. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:739-745. [PMID: 28537795 DOI: 10.1080/15226514.2017.1284751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A greenhouse experiment was conducted to investigate the effects of the arbuscular mycorrhizal fungus Funneliformis mosseae on three parameters: Pb, Zn, Cu and Cd accumulation, translocation and plant growth in perennial ryegrass (Lolium perenne), tall fescue (Festuca arundinacea), showy stonecrop (Hylotelephium spectabile) and Purple Heart (Tradescantia pallida). The purpose of this work is to enhance site-specific phytostabilization of lead/zinc mine tailings using native plant species. The results showed that mycorrhizal fungi inoculation significantly increased plant biomass of F. arundinacea, H. spectabile and T. pallida. The Pb, Zn, Cu and Cd concentrations in roots were higher than those in shoots both with and without mycorrhizae, with the exception of the Zn concentration in H. spectabile. Mycorrhizae generally increased metal concentrations in roots and decreased metal concentrations in shoots of L. perenne and F. arundinacea. In addition, it was found that the majority of the bioconcentration and translocation factors were lower than 1 and mycorrhizal fungi inoculation further reduced these values. These results suggest that appropriate plant species inoculated with mycorrhiza might be a potential approach to revegetating mine tailing sites and that H. spectabile is an appropriate plant for phytostabilization of Pb/Zn tailings in northern China due to its higher biomass production and lower metal accumulation in shoots.
Collapse
Affiliation(s)
- Hai-Hong Gu
- a College of Mining Engineering, North China University of Science and Technology , Tangshan , China
- b Hebei Provincial Key Laboratory of Mining Development and Security Technology , Tangshan , China
| | - Zheng Zhou
- c College of Mechanical Engineering, North China University of Science and Technology , Tangshan , China
| | - Yu-Qian Gao
- d Mine Design Co., Ltd. Hebei Iron & Steel Group , Luan County , China
| | - Xue-Tao Yuan
- a College of Mining Engineering, North China University of Science and Technology , Tangshan , China
| | - Yan-Jun Ai
- a College of Mining Engineering, North China University of Science and Technology , Tangshan , China
| | - Jun-Ying Zhang
- e College of Chemical Engineering, North China University of Science and Technology , Tangshan , China
| | - Wen-Zhe Zuo
- a College of Mining Engineering, North China University of Science and Technology , Tangshan , China
| | - Alicia A Taylor
- f Department of Plant and Microbial Biology , University of California , Berkeley , CA , USA
- g Exponent, Inc. , Bellevue , WA , USA
| | - Shi-Qing Nan
- d Mine Design Co., Ltd. Hebei Iron & Steel Group , Luan County , China
| | - Fu-Ping Li
- a College of Mining Engineering, North China University of Science and Technology , Tangshan , China
- b Hebei Provincial Key Laboratory of Mining Development and Security Technology , Tangshan , China
| |
Collapse
|
45
|
Bahadur A, Ahmad R, Afzal A, Feng H, Suthar V, Batool A, Khan A, Mahmood-Ul-Hassan M. The influences of Cr-tolerant rhizobacteria in phytoremediation and attenuation of Cr (VI) stress in agronomic sunflower (Helianthus annuus L.). CHEMOSPHERE 2017; 179:112-119. [PMID: 28364646 DOI: 10.1016/j.chemosphere.2017.03.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Chromium contamination of agronomic soil has to turn into a serious global problem. This research was pointed to assess the effects of three Cr-tolerant rhizobacteria (SS1, SS3, and SS6) on sunflower growth and heavy metal uptake under Cr smog i.e. 20, 30 and 40 ppm using K2Cr2O7. Root promotion assay and pot experiment were conducted to investigate and evaluate the effects of Cr tolerance rhizobacteria and Cr accumulation capacity of sunflower. From root promotion assay non-significant variation was observed in the root length between SS1 and SS3 compared with un-inoculated whereas SS6 enhanced the root length in the absence and presence of chromium. In addition, inoculation with rhizobacteria alleviated the Cr concentration and endorsed plant growth by enhancing Cr accumulation in sunflower. At different Cr levels, the Cr concentration in shoot was improved by each rhizobacterium though their difference was non-significant with each other, while the percentage increase was half as the Cr level doubled. Different rhizobacterium inoculation significantly (P < 0.05) affected the physiological and morphological characteristics of sunflower and increased the plant height, stem diameter, head diameter, grain yield, oil content of seeds, and total biomass, and among them, SS6 observed best followed by SS1 and SS3 comparing with un-inoculated. Our study illustrates an assessment about Cr-tolerant bacteria and their influences and recommends that these bacteria can effectively be used for crop improvement which provides a potential approach for Cr phytoremediation.
Collapse
Affiliation(s)
- Ali Bahadur
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan; School of Life Sciences, Lanzhou University, Lanzhou 730000, China; MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Rizwan Ahmad
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad, 45500, Pakistan
| | - Aftab Afzal
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Huyuan Feng
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Vishandas Suthar
- Plant Physiology/ Chemistry Section, Central Cotton Research Institute, Sakrand, Nawabshah, Sindh, Pakistan
| | - Asfa Batool
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Aman Khan
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan; School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
46
|
Ali A, Guo D, Mahar A, Ma F, Li R, Shen F, Wang P, Zhang Z. Streptomyces pactum assisted phytoremediation in Zn/Pb smelter contaminated soil of Feng County and its impact on enzymatic activities. Sci Rep 2017; 7:46087. [PMID: 28387235 PMCID: PMC5384225 DOI: 10.1038/srep46087] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/08/2017] [Indexed: 11/12/2022] Open
Abstract
Anthropogenic activities, such as industrial expansion, smelting, mining and agricultural practices, have intensified the discharge of potentially toxic trace elements (PTEs) into the environment, threatening human health and other organisms. To assist phytoremediation by sorghum in soil contaminated by smelters/mines in Feng County (FC), a pot experiment was performed to examine the phytoremediation potential of Streptomyces pactum (Act12) + biochar. The results showed that root uptake of Zn and Cd was reduced by 45 and 22%, respectively, while the uptake of Pb and Cu increased by 17 and 47%, respectively. The shoot and root dry weight and chlorophyll content improved after Act12 inoculation. β-glucosidase, alkaline phosphatase and urease activities in soil improved and antioxidant activities (POD, PAL, PPO) decreased after application of Act12 + biochar due to a reduction in stress from PTEs. BCF, TF and MEA confirmed the role of Act12 in the amelioration and translocation of PTEs. PCA analysis showed a correlation between different factors that affect the translocation of PTEs. Overall, Act12 promoted the phytoremediation of PTEs. Field experiments on Act12 + biochar may provide new insights into the rehabilitation and restoration of soils contaminated by mines.
Collapse
Affiliation(s)
- Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Di Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Amanullah Mahar
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.,Centre for Environmental Sciences, University of Sindh, Jamshoro 76080, Pakistan
| | - Fang Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Feng Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
47
|
Shi Y, Xie H, Cao L, Zhang R, Xu Z, Wang Z, Deng Z. Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:417-426. [PMID: 27726080 DOI: 10.1007/s11356-016-7693-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/12/2016] [Indexed: 05/24/2023]
Abstract
Metal-resistant endophytic fungi from roots improved phytoremediation efficacy of host plants; however, the effects of endophytic fungi from plant aerial parts on host plants are unknown. The aim of this study was to develop a feasible method to screen fungal endophytes from stems and roots of Brassica napus and to investigate effects of the endophytic fungi on growth and phytoremediation efficiency of the plant. Endophytic Fusarium sp. CBRF44, Penicillium sp. CBRF65, and Alternaria sp. CBSF68 with different traits were isolated from roots and stems of rapes grown in a metal-contaminated soil. Fusarium sp. CBRF44 (resistant to 5 mM Cd and 15 mM Pb, isolated from roots) and Alternaria sp. CBSF68 (resistant to 1 mM Cd and 10 mM Pb, isolated from stems) could produce indole-3-acetic acid (IAA) and siderophore; Penicillium sp. CBRF65 (tolerate 2 mM Cd and 20 mM Pb, isolated from roots) could not produce IAA and siderophore but showed the highest phosphate-solubilizing activities. Fusarium sp. CBRF44 and Penicillium sp. CBRF65 significantly increased the rape biomass and promoted the extraction efficacy of Pb and Cd, while Alternaria sp. CBSF68 did not show similar results. Penicillium sp. CBRF65 and Fusarium sp. CBRF44 could be frequently recovered from inoculated rape roots, while Alternaria sp. CBSF68 was scarcely recovered. The results indicate that the colonizing capacity of endophytic fungi in roots is important to improve phytoremediation efficacy of host plants.
Collapse
Affiliation(s)
- Yanan Shi
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Huarong Xie
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Lixiang Cao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Renduo Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zaichao Xu
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zhuoya Wang
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zujun Deng
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
48
|
Schneider J, Bundschuh J, do Nascimento CWA. Arbuscular mycorrhizal fungi-assisted phytoremediation of a lead-contaminated site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:86-97. [PMID: 27494657 DOI: 10.1016/j.scitotenv.2016.07.185] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/28/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
Knowledge of the behavior of plant species associated with arbuscular mycorrhizal fungi (AMF) and the ability of such plants to grow on metal-contaminated soils is important to phytoremediation. Here, we evaluate the occurrence and diversity of AMF and plant species as well as their interactions in soil contaminated with lead (Pb) from the recycling of automotive batteries. The experimental area was divided into three locations: a non-contaminated native area, a coarse rejects deposition area, and an area receiving particulate material from the chimneys during the Pb melting process. Thirty-nine AMF species from six families and 10 genera were identified. The Acaulospora and Glomus genera exhibited the highest occurrences both in the bulk (10 and 6) and in the rhizosphere soils (9 and 6). All of the herbaceous species presented mycorrhizal colonization. The highest Pb concentrations (mgkg-1) in roots and shoots, respectively, were observed in Vetiveria zizanoides (15,433 and 934), Pteris vitata (9343 and 865), Pteridim aquilinun (1433 and 733), and Ricinus communis (1106 and 625). The diversity of AMF seems to be related to the area heterogeneity; the structure communities of AMF are correlated with the soil Pb concentration. We found that plant diversity was significantly correlated with AMF diversity (r=0.645; P>0.05) in areas with high Pb soil concentrations. A better understanding of AMF communities in the presence of Pb stress may shed light on the interactions between fungi and metals taking place in contaminated sites. Such knowledge can aid in developing soil phytoremediation techniques such as phytostabilization.
Collapse
Affiliation(s)
- Jerusa Schneider
- School of Civil Engineering, Architecture and Urban Design - FEC Sanitation and Environment Dept. - DSA, State University of Campinas - Unicamp, P. O. Box 6143, 13083-889 Campinas (SP) Brazil; Agronomy Department, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco 52171-920, Brazil.
| | - Jochen Bundschuh
- Deputy Vice-Chancellor's Office (Research and Innovation), University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia; Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia; KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-10044 Stockholm, Sweden
| | | |
Collapse
|