1
|
Yang F, Cheng MH, Pan HF, Gao J. Progranulin: A promising biomarker and therapeutic target for fibrotic diseases. Acta Pharm Sin B 2024; 14:3312-3326. [PMID: 39220875 PMCID: PMC11365408 DOI: 10.1016/j.apsb.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Progranulin (PGRN), a multifunctional growth factor-like protein expressed by a variety of cell types, serves an important function in the physiologic and pathologic processes of fibrotic diseases, including wound healing and the inflammatory response. PGRN was discovered to inhibit pro-inflammation effect by competing with tumor necrosis factor-alpha (TNF-α) binding to TNF receptors. Notably, excessive tissue repair in the development of inflammation causes tissue fibrosis. Previous investigations have indicated the significance of PGRN in regulating inflammatory responses. Recently, multiple studies have shown that PGRN was linked to fibrogenesis, and was considered to monitor the formation of fibrosis in multiple organs, including liver, cardiovascular, lung and skin. This paper is a comprehensive review summarizing our current knowledge of PGRN, from its discovery to the role in fibrosis. This is followed by an in-depth look at the characteristics of PGRN, consisting of its structure, basic function and intracellular signaling. Finally, we will discuss the potential of PGRN in the diagnosis and treatment of fibrosis.
Collapse
Affiliation(s)
- Fan Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
- Department of Ophthalmology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ming-Han Cheng
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230022, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230022, China
| | - Jian Gao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| |
Collapse
|
2
|
Wang H, Wan Y, Yu M, Ji Z, Zhao G, Dou J, Su W, Liu C. Complete Removal of Residual Particles and Realization of Mechanical Properties to Improve Osseointegration in Additively Manufactured Ti6Al4 V Scaffolds through Flowing Acid Etching. ACS Biomater Sci Eng 2024; 10:3454-3469. [PMID: 38590081 DOI: 10.1021/acsbiomaterials.3c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Massive unmelted Ti6Al4 V (Ti64) particles presented across all surfaces of additively manufactured Ti64 scaffolds significantly impacted the designed surface topography, mechanical properties, and permeability, reducing the osseointegration of the scaffolds. In this study, the proposed flowing acid etching (FAE) method presented high efficiency in eliminating Ti64 particles and enhancing the surface modification capacity across all surfaces of Ti64 scaffolds. The Ti64 particles across all surfaces of the scaffolds were completely removed effectively and evenly. The surface topography of the scaffolds closely resembled the design after the 75 s FAE treatment. The actual elastic modulus of the treated scaffolds (3.206 ± 0.040 GPa) was closer to the designed value (3.110 GPa), and a micrometer-scale structure was constructed on the inner and outer surfaces of the scaffolds after the 90 s FAE treatment. However, the yield strength of scaffolds was reduced to 89.743 ± 0.893 MPa from 118.251 ± 0.982 MPa after the 90 s FAE treatment. The FAE method also showed higher efficiency in decreasing the roughness and enhancing the hydrophilicity and surface energy of all of the surfaces. The FAE treatment improved the permeability of scaffolds efficiently, and the permeability of scaffolds increased to 11.93 ± 0.21 × 10-10 mm2 from 8.57 ± 0.021 × 10-10 mm2 after the 90 s FAE treatment. The treated Ti64 scaffolds after the 90 s FAE treatment exhibited optimized osseointegration effects in vitro and in vivo. In conclusion, the FAE method was an efficient way to eliminate unmelted Ti64 particles and obtain ideal surface topography, mechanical properties, and permeability to promote osseointegration in additively manufactured Ti64 scaffolds.
Collapse
Affiliation(s)
- Hongwei Wang
- College of Artificial Intelligence and Big Data for Medical Science, Shandong First Medical University, Jinan 250117, China
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yi Wan
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Mingzhi Yu
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhenbing Ji
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Geng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jinhe Dou
- College of Artificial Intelligence and Big Data for Medical Science, Shandong First Medical University, Jinan 250117, China
| | - Weidong Su
- College of Artificial Intelligence and Big Data for Medical Science, Shandong First Medical University, Jinan 250117, China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
3
|
Huang G, Jian J, Liu CJ. Progranulinopathy: A diverse realm of disorders linked to progranulin imbalances. Cytokine Growth Factor Rev 2024; 76:142-159. [PMID: 37981505 PMCID: PMC10978308 DOI: 10.1016/j.cytogfr.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Progranulin (PGRN), encoded by the GRN gene in humans, was originally isolated as a secreted growth factor that implicates in a multitude of processes ranging from regulation of tumorigenesis, inflammation to neural proliferation. Compelling evidence indicating that GRN mutation can lead to various common neuronal degenerative diseases and rare lysosomal storage diseases. These findings have unveiled a critical role for PGRN as a lysosomal protein in maintaining lysosomal function. The phenotypic spectrum of PGRN imbalance has expanded to encompass a broad spectrum of diseases, including autoimmune diseases, metabolic, musculoskeletal and cardiovascular diseases. These diseases collectively referred to as Progranulinopathy- a term encompasses the wide spectrum of disorders influenced by PGRN imbalance. Unlike its known extracellular function as a growth factor-like molecule associated with multiple membrane receptors, PGRN also serves as an intracellular co-chaperone engaged in the folding and traffic of its associated proteins, particularly the lysosomal hydrolases. This chaperone activity is required for PGRN to exert its diverse functions across a broad range of diseases, encompassing both the central nervous system and peripheral systems. In this comprehensive review, we present an update of the emerging role of PGRN in Progranulinopathy, with special focus on elucidating the intricate interplay between PGRN and a diverse array of proteins at various levels, ranging from extracellular fluids and intracellular components, as well as various pathophysiological processes involved. This review seeks to offer a comprehensive grasp of PGRN's diverse functions, aiming to unveil intricate mechanisms behind Progranulinopathy and open doors for future research endeavors.
Collapse
Affiliation(s)
- Guiwu Huang
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA; Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA; Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Jinlong Jian
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA; Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Kushioka J, Toya M, Shen H, Hirata H, Zhang N, Huang E, Tsubosaka M, Gao Q, Teissier V, Li X, Utsunomiya T, Goodman SB. Therapeutic effects of MSCs, genetically modified MSCs, and NFĸB-inhibitor on chronic inflammatory osteolysis in aged mice. J Orthop Res 2023; 41:1004-1013. [PMID: 36031590 PMCID: PMC9971358 DOI: 10.1002/jor.25434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023]
Abstract
The number of total joint replacements is increasing, especially in elderly patients, and so too are implant-related complications such as prosthesis loosening. Wear particles from the prosthesis induce a chronic inflammatory reaction and subsequent osteolysis, leading to the need for revision surgery. This study investigated the therapeutic effect of NF-ĸB decoy oligodeoxynucleotides (ODN), mesenchymal stem cells (MSCs), and genetically-modified NF-ĸB sensing interleukin-4 over-secreting MSCs (IL4-MSCs) on chronic inflammation in aged mice. The model was generated by continuous infusion of contaminated polyethylene particles into the intramedullary space of the distal femur of aged mice (15-17 months old) for 6 weeks. Local delivery of ODN showed increased bone mineral density (BMD), decreased osteoclast-like cells, increased alkaline phosphatase (ALP)-positive area, and increased M2/M1 macrophage ratio. Local injection of MSCs and IL4-MSCs significantly decreased osteoclast-like cells and increased the M2/M1 ratio, with a greater trend for IL4-MSCs than MSCs. MSCs significantly increased ALP-positive area and BMD values compared with the control. The IL4-MSCs demonstrated higher values for both ALP-positive area and BMD. These findings demonstrated the therapeutic effects of ODN, MSCs, and IL4-MSCs on chronic inflammatory osteolysis in aged mice. The two MSC-based therapies were more effective than ODN in increasing the M2/M1 macrophage ratio, reducing bone resorption, and increasing bone formation. Specifically, MSCs were more effective in increasing bone formation, and IL4-MSCs were more effective in mitigating inflammation. This study suggests potential therapeutic strategies for treating wear particle-associated inflammatory osteolysis after arthroplasty in the elderly.
Collapse
Affiliation(s)
- Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Victoria Teissier
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Lu Y, Xu X, Yang C, Hosseinkhani S, Zhang C, Luo K, Tang K, Yang K, Lin J. Copper modified cobalt-chromium particles for attenuating wear particle induced-inflammation and osteoclastogenesis. BIOMATERIALS ADVANCES 2023; 147:213315. [PMID: 36746101 DOI: 10.1016/j.bioadv.2023.213315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 01/30/2023]
Abstract
The nature of aseptic prosthetic loosening mainly relates to the wear particles that induce inflammation and subsequent osteoclastogenesis. The ideal approach to impede wear particle-induced osteolysis should minimize inflammation and osteoclastogenesis. In this work, Co29Cr9W3Cu particles were used as a research model for the first time to explore the response of Co29Cr9W3Cu particles to inflammatory response and osteoclast activation in vitro and in vivo by using Co29Cr9W particles as the control group. In vitro studies showed that the Co29Cr9W3Cu particles could promote the generation of M2-phenotype macrophages and increase the expression level of anti-inflammatory factor IL-10, while inhibiting the formation of M1-phenotype macrophages and down-regulating the expression of inflammatory factors TNF-α, IL-6 and IL-1β; More importantly, the Co29Cr9W3Cu particles reduced the expression of NF-κB and downstream osteoclast related-specific transcription marker genes, such as TRAP, NFATc1, and Cath-K; In vivo results indicated that the Co29Cr9W3Cu particles exposed to murine calvarial contributed to decreasing the amount of osteoclast and osteolysis area. These findings collectively demonstrated that Cu-bearing cobalt-chromium alloy may potentially delay the development of aseptic prosthetic loosening induced by wear particles, which is expected to provide evidence of Co29Cr9W3Cu alloy as an alternative material of joint implants with anti-wear associated osteolysis.
Collapse
Affiliation(s)
- Yanjin Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350001, China; Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xiongcheng Xu
- Research Center of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Chunguang Yang
- Institute of Metal Research, Chinese Academy of Sciences, 110000 Shenyang, China
| | | | - Chenke Zhang
- Sports Medicine Center, Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing 40000, China.
| | - Kai Luo
- Research Center of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China.
| | - Kanglai Tang
- Sports Medicine Center, Department of Orthopedic Surgery, Southwest Hospital, Army Military Medical University, Chongqing 40000, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, 110000 Shenyang, China
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350001, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.
| |
Collapse
|
6
|
Tauviqirrahman M, Ammarullah MI, Jamari J, Saputra E, Winarni TI, Kurniawan FD, Shiddiq SA, van der Heide E. Analysis of contact pressure in a 3D model of dual-mobility hip joint prosthesis under a gait cycle. Sci Rep 2023; 13:3564. [PMID: 36864170 PMCID: PMC9981612 DOI: 10.1038/s41598-023-30725-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/28/2023] [Indexed: 03/04/2023] Open
Abstract
Hip joint prostheses are used to replace hip joint function in the human body. The latest dual-mobility hip joint prosthesis has an additional component of an outer liner that acts as a cover for the liner component. Research on the contact pressure generated on the latest model of a dual-mobility hip joint prosthesis under a gait cycle has never been done before. The model is made of ultrahigh molecular weight polyethylene (UHMWPE) on the inner liner and 316L stainless steel (SS 316L) on the outer liner and acetabular cup. Simulation modeling using the finite element method is considered static loading with an implicit solver for studying the geometric parameter design of dual-mobility hip joint prostheses. In this study, simulation modeling was carried out by applying varying inclination angles of 30°, 40°, 45°, 50°, 60°, and 70° to the acetabular cup component. Three-dimensional loads were placed on femoral head reference points with variations of femoral head diameter used at 22 mm, 28 mm, and 32 mm. The results in the inner surface of the inner liner, the outer surface of the outer liner, and the inner surface of the acetabular cup showed that the variations in inclination angle do not have a major effect on the maximum contact pressure value on the liner component, where the acetabular cup with an inclination angle of 45° can reduce contact pressure more than the other studied inclination angle variations. In addition, it was found that the 22 mm diameter of the femoral head increases the contact pressure. The use of a larger diameter femoral head with an acetabular cup configuration at a 45° inclination can minimize the risk of implant failure due to wear.
Collapse
Affiliation(s)
- Mohammad Tauviqirrahman
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, 50275, Central Java, Indonesia.
| | - Muhammad Imam Ammarullah
- Department of Mechanical Engineering, Faculty of Engineering, Pasundan University, Bandung, 40153, West Java, Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Pasundan University, Bandung, 40153, West Java, Indonesia
- Undip Biomechanics Engineering and Research Centre (UBM-ERC), Diponegoro University, Semarang, 50275, Central Java, Indonesia
| | - J Jamari
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, 50275, Central Java, Indonesia
- Undip Biomechanics Engineering and Research Centre (UBM-ERC), Diponegoro University, Semarang, 50275, Central Java, Indonesia
| | - Eko Saputra
- Department of Mechanical Engineering, Semarang State Polytechnic, Semarang, 50275, Central Java, Indonesia
| | - Tri Indah Winarni
- Undip Biomechanics Engineering and Research Centre (UBM-ERC), Diponegoro University, Semarang, 50275, Central Java, Indonesia
- Department of Anatomy, Faculty of Medicine, Diponegoro University, Semarang, 50275, Central Java, Indonesia
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Semarang, 50275, Central Java, Indonesia
| | - Febri Dwi Kurniawan
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, 50275, Central Java, Indonesia
- Undip Biomechanics Engineering and Research Centre (UBM-ERC), Diponegoro University, Semarang, 50275, Central Java, Indonesia
| | - Shidnan Amir Shiddiq
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, 50275, Central Java, Indonesia
- Undip Biomechanics Engineering and Research Centre (UBM-ERC), Diponegoro University, Semarang, 50275, Central Java, Indonesia
| | - Emile van der Heide
- Department of Mechanics of Solids, Surfaces and Systems (MS3), Faculty of Engineering Technology, University of Twente, Postbox 217, 7500 AE, Enschede, The Netherlands
- Laboratory for Surface Technology and Tribology, Faculty of Engineering Technology, University of Twente, Postbox 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
7
|
Yin Z, Gong G, Wang X, Liu W, Wang B, Yin J. The dual role of autophagy in periprosthetic osteolysis. Front Cell Dev Biol 2023; 11:1123753. [PMID: 37035243 PMCID: PMC10080036 DOI: 10.3389/fcell.2023.1123753] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
Periprosthetic osteolysis (PPO) induced by wear particles is an important cause of aseptic loosening after artificial joint replacement, among which the imbalance of osteogenesis and osteoclastic processes occupies a central position. The cells involved in PPO mainly include osteoclasts (macrophages), osteoblasts, osteocytes, and fibroblasts. RANKL/RANK/OGP axis is a typical way for osteolysis. Autophagy, a mode of regulatory cell death and maintenance of cellular homeostasis, has a dual role in PPO. Although autophagy is activated in various periprosthetic cells and regulates the release of inflammatory cytokines, osteoclast activation, and osteoblast differentiation, its beneficial or detrimental role remains controversy. In particular, differences in the temporal control and intensity of autophagy may have different effects. This article focuses on the role of autophagy in PPO, and expects the regulation of autophagy to become a powerful target for clinical treatment of PPO.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The First People’s Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Bin Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Jian Yin, ; Bin Wang,
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Jian Yin, ; Bin Wang,
| |
Collapse
|
8
|
Supra R, Agrawal DK. Innate Immune Response in Orthopedic Implant Failure. JOURNAL OF ORTHOPAEDICS AND SPORTS MEDICINE 2022; 5:9-19. [PMID: 36777741 PMCID: PMC9912346 DOI: 10.26502/josm.511500073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The total joint replacement is recognized as one of the most effective medical arbitrations leading to increased mobility, pain relief, and an overall restored function of the joint. Unfortunately, prosthetic debris accumulates after long-term wear of the implant leading to activation of the innate immune response and periprosthetic osteolysis. Understanding the intricate biological mechanisms underlying the innate immune response to implant debris would support the development of novel pharmacological treatments to prolong the life span of the implant. This article provides a detailed description on the role of the innate immune system in response to implant debris, emphasizing the most recent research and outstanding questions. Furthermore, a critical discussion is presented on the novel pharmacological treatments currently under investigation to prevent implant failure.
Collapse
Affiliation(s)
- Rajiv Supra
- College of Osteopathic Medicine, Touro University, Henderson, Nevada
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766-1854, USA
| |
Collapse
|
9
|
Chen Q, Wu Z, Xie L. Progranulin is essential for bone homeostasis and immunology. Ann N Y Acad Sci 2022; 1518:58-68. [PMID: 36177883 DOI: 10.1111/nyas.14905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intercellular communication or crosstalk between immune and skeletal cells is considered a crucial element in bone homeostasis modulation. Progranulin (PGRN) is an autocrine growth factor that is structured as beads-on-a-string and participates in multiple pathophysiological processes, including atherosclerosis, arthritis, neurodegenerative pathologies, cancer, and wound repair. PGRN functions as a competitor that binds to tumor necrosis factor receptor 1 (TNFR1), thereby blocking the TNF-α pathway. PGRN is regarded as an agonist of chondrogenesis and osteogenesis, delaying the progression of inflammation through the TNFR2 pathway. The exploitation of PGRN may bring benefits for inflammatory bone diseases and the stabilization of bone homeostasis. The PGRN-modified analog Atsttrin possesses three TNFR-binding fragments and thereby exerts superior therapeutic effects on multiple preclinical animal models compared to PGRN. In this review, we highlight the emerging roles of PGRN in bone formation, as well as in physiological and TNF-α-mediated inflammatory conditions revealed in recent discoveries. We address potential therapies for the treatment of inflammatory bone conditions, such as periodontitis, by the use of PGRN and its derivative Atsttrin.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China.,The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, P. R. China
| | - ZuPing Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China.,The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, P. R. China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
10
|
Su N, Villicana C, Yang F. Immunomodulatory strategies for bone regeneration: A review from the perspective of disease types. Biomaterials 2022; 286:121604. [PMID: 35667249 PMCID: PMC9881498 DOI: 10.1016/j.biomaterials.2022.121604] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Tissue engineering strategies for treating bone loss to date have largely focused on targeting stem cells or vascularization. Immune cells, including macrophages and T cells, can also indirectly enhance bone healing via cytokine secretion to interact with other bone niche cells. Bone niche cues and local immune environment vary depending on anatomical location, size of defects and disease types. As such, it is critical to evaluate the role of the immune system in the context of specific bone niche and different disease types. This review focuses on immunomodulation research for bone applications using biomaterials and cell-based strategies, with a unique perspective from different disease types. We first reviewed applications for prolonging orthopaedic implant lifetime and enhancing fracture healing, two clinical challenges where immunomodulatory strategies were initially developed for orthopedic applications. We then reviewed recent research progress in harnessing immunomodulatory strategies for regenerating critical-sized, long bone or cranial bone defects, and treating osteolytic bone diseases. Remaining gaps in knowledge, future directions and opportunities were also discussed.
Collapse
Affiliation(s)
- Ni Su
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cassandra Villicana
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA.,: Corresponding Author Fan Yang, Ph D, Department of Orthopaedic Surgery and Bioengineering, Stanford University School of Medicine, 240 Pasteur Dr, Palo Alto, CA 94304, Biomedical Innovation Building, 1st floor, Room 1200, , Phone: (650) 646-8558
| |
Collapse
|
11
|
Cao J, Ma X, Liu L, Zhang G, Wu Y, Fu Y, Gong A, Yang Z, Zhao Y, Zhang L, Li Y. Cortistatin attenuates titanium particle-induced osteolysis through regulation of TNFR1-ROS-caspase-3 signaling in osteoblasts. Ann N Y Acad Sci 2022; 1513:140-152. [PMID: 35419858 DOI: 10.1111/nyas.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aseptic loosening is a major complication of prosthetic joint surgery and is associated with impaired osteoblast homeostasis. Cortistatin (CST) is a neuropeptide that protects against inflammatory conditions. In this study, we found that expression of CST was diminished in patients with prosthetic joint loosening and in titanium (Ti) particle-induced animal models. A Ti particle-induced calvarial osteolysis model was established in wild-type and CST gene knockout mice; CST deficiency enhanced, while exogenously added CST attenuated, the severity of Ti particle-mediated osteolysis. CST protected against inflammation as well as apoptosis and maintained the osteogenic function of MC3T3-E1 osteoblasts upon stimulation with Ti particles. Furthermore, CST antagonized reactive oxygen species production and suppressed caspase-3-associated apoptosis mediated by Ti particles in osteoblasts. Additionally, CST protects against Ti particle-induced osteolysis through tumor necrosis factor receptor 1. Taken together, CST might provide a therapeutic strategy for wear debris-induced inflammatory osteolysis.
Collapse
Affiliation(s)
- Jiankang Cao
- Department of Pain, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Xiaojie Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Long Liu
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Gaorui Zhang
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Yawei Wu
- Caoxian People's Hospital, Heze, P. R. China
| | - Yu Fu
- The First Affiliated Hospital of Shandong First Medical University, Jinan, P. R. China
| | - Ao Gong
- Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Zhongbo Yang
- Shandong Yellow River Hospital, Yellow River Shandong Bureau, Jinan, P. R. China
| | - Yunpeng Zhao
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Lei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Shandong First Medical University, Jinan, P. R. China.,Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, P. R. China
| | - Yuhua Li
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| |
Collapse
|
12
|
Lu X, Wu Z, Xu K, Wang X, Wang S, Qiu H, Li X, Chen J. Multifunctional Coatings of Titanium Implants Toward Promoting Osseointegration and Preventing Infection: Recent Developments. Front Bioeng Biotechnol 2021; 9:783816. [PMID: 34950645 PMCID: PMC8691702 DOI: 10.3389/fbioe.2021.783816] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 01/27/2023] Open
Abstract
Titanium and its alloys are dominant material for orthopedic/dental implants due to their stable chemical properties and good biocompatibility. However, aseptic loosening and peri-implant infection remain problems that may lead to implant removal eventually. The ideal orthopedic implant should possess both osteogenic and antibacterial properties and do proper assistance to in situ inflammatory cells for anti-microbe and tissue repair. Recent advances in surface modification have provided various strategies to procure the harmonious relationship between implant and its microenvironment. In this review, we provide an overview of the latest strategies to endow titanium implants with bio-function and anti-infection properties. We state the methods they use to preparing these efficient surfaces and offer further insight into the interaction between these devices and the local biological environment. Finally, we discuss the unmet needs and current challenges in the development of ideal materials for bone implantation.
Collapse
Affiliation(s)
- Xiaoxuan Lu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Zichen Wu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Kehui Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiaowei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Shuang Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Hua Qiu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiangyang Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Jialong Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Jiang Y, Ma H, Zhang Q, Shi J, Gao Y, Sun C, Zhang W. Integrative analyses reveal RNA regulatory network in Ti particles induced inflammation. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211044863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Wear particles induced inflammatory osteolysis is the most important initiating factors in the mechanism of aseptic loosening. However, the molecular network changes in this process remain largely elusive. Methods Here, we performed whole transcriptome analysis using Ti particles induced RAW264.7 cell model to identify specific genes and pathways. Results Sequencing results totally identified 159 mRNAs, 96 lncRNAs, 31 circRNAs, and 12 miRNAs were significantly differently expressed. Of these, we selected two of each RNA for qRT-PCR validation and the results were highly consistent with the RNA-seq data. GSEA analysis shows that upregulated gene sets were related to the three classical inflammation pathway, cytokine–cytokine receptor interaction, TNF, and NF-kappa B signaling pathway. The enriched genes included not only IL-1β and TNF- α, which were independently verified before sequencing, but also other inflammatory osteolysis-related genes such as Mmp9, Fas, and Ccl2. Co-differentially expressed RNAs were employed to construct the ceRNA co-regulatory network. Conclusion: The results revealed that 4 lncRNAs and 2 circRNAs formed a regulatory network to simultaneously regulate miR-3065-3p targeting Myo18a. The present study helps to comprehensively understand the molecular mechanisms and regulatory interaction networks during early inflammatory response.
Collapse
Affiliation(s)
- Yonghui Jiang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huanzhi Ma
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qin Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Shi
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yutong Gao
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengliang Sun
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
Yu M, Sun L, Ba P, Li L, Chen J, Sun Q. Progranulin promotes osteogenic differentiation of periodontal membrane stem cells in both inflammatory and non-inflammatory conditions. J Int Med Res 2021; 49:3000605211032508. [PMID: 34344217 PMCID: PMC8358516 DOI: 10.1177/03000605211032508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective The growth factor progranulin (PGRN) is widely expressed and plays important
roles in anti-inflammatory signaling and bone regeneration. However, the
anti-inflammatory and pro-osteogenic roles of PGRN in periodontitis are
seldom studied. We used an in vitro model to investigate
whether PGRN can promote osteogenic differentiation of periodontal ligament
stem cells (PDLSCs). Methods PDLSCs were treated with PGRN (0 to 100 ng/mL) and the optimal concentrations
required to induce proliferation and osteogenesis were identified. PDLSCs
were cultured with 10 ng/mL tumor necrosis factor (TNF)-α, 25 ng/mL PGRN, or
10 ng/mL TNF-α + 25 ng/ml PGRN; untreated PDLSCs were used as controls. The
effects of PGRN on PDLSC proliferation and osteogenic differentiation were
assessed. Results PGRN (5, 25, and 50 ng/mL) promoted PDLSC proliferation and osteogenic
differentiation, with the 25-ng/mL dose showing the largest effect.
Furthermore, 25 ng/mL PGRN reversed inhibition of osteogenic differentiation
by TNF-α. Conclusion PGRN promotes PDLSC proliferation, osteogenic differentiation, and
mineralization in both inflammatory and non-inflammatory conditions. The
25-ng/mL PRGN dose was the most suitable for inducing proliferation and
osteogenesis. Further studies using animal models will be required to obtain
pre-clinical evidence to support using PGRN as a treatment for
periodontitis.
Collapse
Affiliation(s)
- Miao Yu
- Weifang People's Hospital, Department of Stomatology, Weifang, Shandong, China
| | - Long Sun
- Department of Stomatology, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Pengfei Ba
- Department of Periodontology, Weihai Stomatological Hospital, Weihai, Shandong, China
| | - Linxia Li
- Department of Stomatology, 562122Affiliated Hospital of Jining Medical University, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Jing Chen
- Department of Stomatology, Zoucheng People's Hospital, Zoucheng, Shandong, China
| | - Qinfeng Sun
- Department of Periodontology, 12589Shandong University, School of Stomatology, Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Monitoring Atsttrin-Mediated Inhibition of TNFα/NF-κβ Activation Through In Vivo Bioluminescence Imaging. Methods Mol Biol 2021. [PMID: 33185877 DOI: 10.1007/978-1-0716-1130-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The NF-κβ transcription factor is a molecular mediator crucial to many biological functions and a central regulator of inflammatory and immune responses. NF-κβ is activated by multiple immunologically relevant stimuli, including members of the tumor necrosis factor (TNF) superfamily, and targeting TNF/NFκβ activity is a therapeutic objective in many inflammatory and autoimmune conditions. Here, we describe the generation of a transgenic reporter mouse model, expressing the human tumor necrosis factor α (TNF-α) transgene (TNF-tg) and carrying the luciferase gene under control of the NFκB-responsive element (NF-κB-Luc). Bioluminescence imaging shows that overexpression of TNF-α effectively activates NF-κB luciferase in vivo. To evaluate this system as a screen for potential therapeutics targeting the TNF/NFκβ signaling pathway, we treated double mutant mice with PGRN-derived Atsttrin, an engineered molecule comprising the minimal progranulin (PGRN):TNFR binding fragments previously demonstrated as therapeutic in multiple models of TNF/NFκβ-driven disease. Administration of Atsttrin could effectively inhibit luciferase activity in TNF-tg:NF-κB-Luc double mutant mice and demonstrates that this transgenic model can be used to non-invasively monitor the in vivo efficacy of modulators of TNF-activated NF-κB signaling pathway.
Collapse
|
16
|
Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111505. [DOI: 10.1016/j.msec.2020.111505] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
|
17
|
Progranulin Improves Acute Lung Injury through Regulating the Differentiation of Regulatory T Cells and Interleukin-10 Immunomodulation to Promote Macrophage Polarization. Mediators Inflamm 2020; 2020:9704327. [PMID: 32565732 PMCID: PMC7281846 DOI: 10.1155/2020/9704327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
Progranulin (PGRN), which plays an anti-inflammatory role in acute lung injury (ALI), is promising as a potential drug. Studies have shown that regulatory T cells (Tregs) and interleukin- (IL-) 10 can repress inflammation and alleviate tissue damage during ALI. In this study, we built a lipopolysaccharide- (LPS-) induced ALI mouse model to illustrate the effect of PGRN on regulation of Treg differentiation and modulation of IL-10 promoting macrophage polarization. We found that the proportion of Tregs in splenic mononuclear cells and peripheral blood mononuclear cells was higher after treatment with PGRN. The increased proportion of Tregs after PGRN intratracheal instillation was consistent with the decreased severity of lung injury, the reduction of proinflammatory cytokines, and the increase of anti-inflammatory cytokines. In vitro, the percentages of CD4+CD25+FOXP3+ Tregs from splenic naïve CD4+ T cells increased after PGRN treatment. In further research, it was found that PGRN can regulate the anti-inflammatory factor IL-10 and affect the polarization of M1/M2 macrophages by upregulating IL-10. These findings show that PGRN likely plays a protective role in ALI by promoting Treg differentiation and activating IL-10 immunomodulation.
Collapse
|
18
|
Nanosized Alumina Particle and Proteasome Inhibitor Bortezomib Prevented inflammation and Osteolysis Induced by Titanium Particle via Autophagy and NF-κB Signaling. Sci Rep 2020; 10:5562. [PMID: 32221318 PMCID: PMC7101404 DOI: 10.1038/s41598-020-62254-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/11/2020] [Indexed: 12/17/2022] Open
Abstract
Autophagy and NF-κB signaling are involving in the process of Particle Disease, which was caused by the particles released from friction interface of artificial joint, implant materials of particle reinforced composite, scaffolds for tissue engineering, or material for drug delivery. However, the biological interaction of different material particles and the mechanism of proteasome inhibitor, Bortezomib (BTZ), against Titanium (Ti) particle-induced Particle Disease remain unclear. In this study, we evaluated effect of nanosized Alumina (Al) particles and BTZ on reducing and treating the Ti particle-induced inflammatory reaction in MG-63 cells and mouse calvarial osteolysis model. We found that Al particles and BTZ could block apoptosis and NF- κB activation in osteoblasts in vitro and in a mouse model of calvarial resorption induced by Ti particles. We found that Al particles and BTZ attenuated the expression of inflammatory cytokines (IL-1β, IL-6, TNF-α). And Al prevented the IL-1β expression induced by Ti via attenuating the NF- κB activation β-TRCP and reducing the expression of Casepase-3. Expressions of autophagy marker LC3 was activated in Ti group, and reduced by Al and/not BTZ. Furthermore, the expressions of OPG were also higher in these groups than the Ti treated group. Collectively, nanosized Al could prevent autophagy and reduce the apoptosis, inflammatory and osteolysis induced by Ti particles. Our data offered a basic data for implant design when it was inevitable to use Ti as biomaterials, considering the outstanding mechanical propertie of Ti. What's more, proteasome inhibitor BTZ could be a potential therapy for wear particle-induced inflammation and osteogenic activity via regulating the activity of NF- κB signaling pathway.
Collapse
|
19
|
Goodman SB, Gallo J, Gibon E, Takagi M. Diagnosis and management of implant debris-associated inflammation. Expert Rev Med Devices 2020; 17:41-56. [PMID: 31810395 PMCID: PMC7254884 DOI: 10.1080/17434440.2020.1702024] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023]
Abstract
Introduction: Total joint replacement is one of the most common, safe, and efficacious operations in all of surgery. However, one major long-standing and unresolved issue is the adverse biological reaction to byproducts of wear from the bearing surfaces and modular articulations. These inflammatory reactions are mediated by the innate and adaptive immune systems.Areas covered: We review the etiology and pathophysiology of implant debris-associated inflammation, the clinical presentation and detailed work-up of these cases, and the principles and outcomes of non-operative and operative management. Furthermore, we suggest future strategies for prevention and novel treatments of implant-related adverse biological reactions.Expert opinion: The generation of byproducts from joint replacements is inevitable, due to repetitive loading of the implants. A clear understanding of the relevant biological principles, clinical presentations, investigative measures and treatments for implant-associated inflammatory reactions and periprosthetic osteolysis will help identify and treat patients with this issue earlier and more effectively. Although progressive implant-associated osteolysis is currently a condition that is treated surgically, with further research, it is hoped that non-operative biological interventions could prolong the lifetime of joint replacements that are otherwise functional and still salvageable.
Collapse
Affiliation(s)
- Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jiri Gallo
- Department of Orthopaedics, Palacký University Olomouc, Olomouc, Czech Republic
| | - Emmanuel Gibon
- Department of Orthopaedic Surgery, University of Florida, Gainesville, FL, USA
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University, Yamagata, Japan
| |
Collapse
|
20
|
Yoo W, Lee J, Noh KH, Lee S, Jung D, Kabir MH, Park D, Lee C, Kwon KS, Kim JS, Kim S. Progranulin attenuates liver fibrosis by downregulating the inflammatory response. Cell Death Dis 2019; 10:758. [PMID: 31591383 PMCID: PMC6779917 DOI: 10.1038/s41419-019-1994-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 12/29/2022]
Abstract
Progranulin (PGRN) is a cysteine-rich secreted protein expressed in endothelial cells, immune cells, neurons, and adipocytes. It was first identified for its growth factor-like properties, being implicated in tissue remodeling, development, inflammation, and protein homeostasis. However, these findings are controversial, and the role of PGRN in liver disease remains unknown. In the current study, we examined the effect of PGRN in two different models of chronic liver disease, methionine‐choline‐deficient diet (MCD)-induced non-alcoholic steatohepatitis (NASH) and carbon tetrachloride (CCl4)-induced liver fibrosis. To induce long-term expression of PGRN, PGRN-expressing adenovirus was delivered via injection into the tibialis anterior. In the CCl4-induced fibrosis model, PGRN showed protective effects against hepatic injury, inflammation, and fibrosis via inhibition of nuclear transcription factor kappa B (NF-κB) phosphorylation. PGRN also decreased lipid accumulation and inhibited pro-inflammatory cytokine production and fibrosis in the MCD-induced NASH model. In vitro treatment of primary macrophages and Raw 264.7 cells with conditioned media from hepatocytes pre-treated with PGRN prior to stimulation with tumor necrosis factor (TNF)-α or palmitate decreased their expression of pro-inflammatory genes. Furthermore, PGRN suppressed inflammatory and fibrotic gene expression in a cell culture model of hepatocyte injury and primary stellate cell activation. These observations increase our understanding of the role of PGRN in liver injury and suggest PGRN delivery as a potential therapeutic strategy in chronic inflammatory liver disease.
Collapse
Affiliation(s)
- Wonbeak Yoo
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jaemin Lee
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kyung Hee Noh
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sangmin Lee
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Dana Jung
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Mohammad Humayun Kabir
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Korea.,Incepta Vaccine Limited, Dhamrai, Kalampur, Dhaka, 1351, Bangladesh
| | - Dongmin Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Ji-Su Kim
- National Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeonbuk, 56212, Republic of Korea.
| | - Seokho Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
21
|
Wei J, Zhang L, Ding Y, Liu R, Guo Y, Hettinghouse A, Buza J, De La Croix J, Li X, Einhorn TA, Liu CJ. Progranulin promotes diabetic fracture healing in mice with type 1 diabetes. Ann N Y Acad Sci 2019; 1460:43-56. [PMID: 31423598 DOI: 10.1111/nyas.14208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by insulin deficiency, and patients with diabetes have an increased risk of bone fracture and significantly impaired fracture healing. Proinflammatory cytokine tumor necrosis factor-alpha is significantly upregulated in diabetic fractures and is believed to underlie delayed fracture healing commonly observed in diabetes. Our previous genetic screen for the binding partners of progranulin (PGRN), a growth factor-like molecule that induces chondrogenesis, led to the identification of tumor necrosis factor receptors (TNFRs) as the PGRN-binding receptors. In this study, we employed several in vivo models to ascertain whether PGRN has therapeutic effects in diabetic fracture healing. Here, we report that deletion of PGRN significantly delayed bone fracture healing and aggravated inflammation in the fracture models of mice with T1DM. In contrast, recombinant PGRN effectively promoted diabetic fracture healing by inhibiting inflammation and enhancing chondrogenesis. In addition, both TNFR1 proinflammatory and TNFR2 anti-inflammatory signaling pathways are involved in PGRN-stimulated diabetic fracture healing. Collectively, these findings illuminate a novel understanding concerning the role of PGRN in diabetic fracture healing and may have an application in the development of novel therapeutic intervention strategies for diabetic and other types of impaired fracture healing.
Collapse
Affiliation(s)
- Jianlu Wei
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York.,Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Zhang
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York.,Department of Orthopaedics, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Yuanjing Ding
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Ronghan Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Yuqi Guo
- College of Dentistry, New York University, New York, New York
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - John Buza
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Jean De La Croix
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Xin Li
- College of Dentistry, New York University, New York, New York
| | - Thomas A Einhorn
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| |
Collapse
|
22
|
Qu R, Chen X, Yuan Y, Wang W, Qiu C, Liu L, Li P, Zhang Z, Vasilev K, Liu L, Hayball J, Zhao Y, Li Y, Li W. Ghrelin Fights Against Titanium Particle-Induced Inflammatory Osteolysis Through Activation of β-Catenin Signaling Pathway. Inflammation 2019; 42:1652-1665. [DOI: 10.1007/s10753-019-01026-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Chen Q, Cai J, Li X, Song A, Guo H, Sun Q, Yang C, Yang P. Progranulin Promotes Regeneration of Inflammatory Periodontal Bone Defect in Rats via Anti-inflammation, Osteoclastogenic Inhibition, and Osteogenic Promotion. Inflammation 2019; 42:221-234. [PMID: 30187338 DOI: 10.1007/s10753-018-0886-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Progranulin (PGRN) has been proved to play a crucial role in anti-inflammation and osteogenesis promotion; thus, it was hypothesized that PGRN could promote bone regeneration in periodontal disease. In this experiment, the periodontal bone defects were established in periodontitis rats; recombinant human progranulin (rhPGRN), tumor necrosis factor alpha inhibitor (anti-TNF-α), or phosphate buffer saline (PBS)-loaded collagen membrane scaffolds were implanted within defects and the rats were sacrificed at scheduled time points. Volume of new bone was assessed by radiological and histomorphometric analyses. Expression of osteogenesis-related markers and tumor necrosis factor-α (TNF-α) was evaluated using immunohistochemistry. Tartrate-resistant acid phosphatase (TRAP) staining was also performed to determine the number of osteoclasts. Immunofluorescence (IF) staining was performed to explore the interaction between rhPGRN and tumor necrosis factor receptors (TNFRs). The results showed that the rhPGRN group had significantly superior quantity and quality of newly formed bone, higher expression of alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and TNFR2 compared with the PBS group and the anti-TNF-α group. Similarly to the anti-TNF-α group, the rhPGRN group also exhibited the significant inhibitory effect on the expression of TNF-α and the number of TRAP-positive cells compared with the PBS group. Hence, our experiment suggests that PGRN promotes regeneration of inflammatory periodontal bone defect in rats via anti-inflammation, osteoclastogenic inhibition, and osteogenic promotion. Local administration of PGRN may provide a new therapeutic strategy for periodontal bone regeneration.
Collapse
Affiliation(s)
- Qian Chen
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Dentistry, Shandong University, Jinan, Shandong, China
| | - Jun Cai
- Department of Comprehensive Dentistry, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Xiao Li
- Department of Periodontology, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Aimei Song
- Department of Periodontology, School of Dentistry, Shandong University, Jinan, Shandong, China
| | - Hongmei Guo
- Department of Periodontology, School of Dentistry, Shandong University, Jinan, Shandong, China
| | - Qinfeng Sun
- Department of Periodontology, School of Dentistry, Shandong University, Jinan, Shandong, China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China.
| | - Pishan Yang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China. .,Department of Periodontology, School of Dentistry, Shandong University, Jinan, Shandong, China. .,Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
24
|
Zhao Y, Li Y, Qu R, Chen X, Wang W, Qiu C, Liu B, Pan X, Liu L, Vasilev K, Hayball J, Dong S, Li W. Cortistatin binds to TNF-α receptors and protects against osteoarthritis. EBioMedicine 2019; 41:556-570. [PMID: 30826358 PMCID: PMC6443028 DOI: 10.1016/j.ebiom.2019.02.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background Osteoarthritis (OA) is a common degenerative disease, and tumor necrosis factor (TNF-α) is known to play a critical role in OA. Cortistatin (CST) is a neuropeptide discovered over 20 years ago, which plays a vital role in inflammatory reactions. However, it is unknown whether CST is involved in cartilage degeneration and OA development. Methods The interaction between CST and TNF-α receptors was investigated through Coimmunoprecipitation and Biotin-based solid-phase binding assay. Western blot, Real-time PCR, ELISA, immunofluorescence staining, nitrite production assay and DMMB assay of GAG were performed for the primary chondrocyte experiments. Surgically induced and spontaneous OA models were established and western blot, flow cytometry, Real-time PCR, ELISA, immunohistochemistry and fluorescence in vivo imaging were performed for in vivo experiments. Findings CST competitively bound to TNFR1 as well as TNFR2. CST suppressed proinflammatory function of TNF-α. Both spontaneous and surgically induced OA models indicated that deficiency of CST led to an accelerated OA-like phenotype, while exogenous CST attenuated OA development in vivo. Additionally, TNFR1- and TNFR2-knockout mice were used for analysis and indicated that TNFRs might be involved in the protective role of CST in OA. CST inhibited activation of the NF-κB signaling pathway in OA. Interpretation This study provides new insight into the pathogenesis and therapeutic strategy of cartilage degenerative diseases, including OA. Fund The National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province, Key Research and Development Projects of Shandong Province and the Cross-disciplinary Fund of Shandong University.
Collapse
Affiliation(s)
- Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Yuhua Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Ruize Qu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Xiaomin Chen
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Wenhan Wang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Cheng Qiu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Ben Liu
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Xin Pan
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Liang Liu
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Krasimir Vasilev
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - John Hayball
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Shuli Dong
- College of Chemistry, Shandong University, Jinan, Shandong 250101, PR China
| | - Weiwei Li
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
25
|
Rivera MC, Perni S, Sloan A, Prokopovich P. Anti-inflammatory drug-eluting implant model system to prevent wear particle-induced periprosthetic osteolysis. Int J Nanomedicine 2019; 14:1069-1084. [PMID: 30804671 PMCID: PMC6371946 DOI: 10.2147/ijn.s188193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aseptic loosening, as a consequence of an extended inflammatory reaction induced by wear particles, has been classified as one of the most common complications of total joint replacement (TJR). Despite its high incidence, no therapeutical approach has yet been found to prevent aseptic loosening, leaving revision as only effective treatment. The local delivery of anti-inflammatory drugs to modulate wear-induced inflammation has been regarded as a potential therapeutical approach to prevent aseptic-loosening. METHODS In this context, we developed and characterized anti-inflammatory drug-eluting TiO2 surfaces, using nanoparticles as a model for larger surfaces. The eluting surfaces were obtained by conjugating dexamethasone to carboxyl-functionalized TiO2 particles, obtained by using either silane agents with amino or mercapto moieties. RESULTS Zeta potential measurements, thermogravimetric analysis (TGA) and drug release results suggest that dexamethasone was successfully loaded onto the TiO2 particles. Release was pH dependent and greater amounts of drug were observed from amino route functionalized surfaces. The model-system was then tested for its cytotoxic and anti-inflammatory properties in LPS-stimulated macrophages. Dexamethasone released from amino route functionalized surfaces TiO2 particles was able to decrease LPS-induced nitric oxide (NO) and TNF-a production similarly to pure DEX at the same concentration; DEX released from mercapto route functionalized surfaces was at a too low concentration to be effective. CONCLUSION Dexamethasone released from amino functionalized titanium can offer the possibility of preventing asepting loosening of joint replacement devices.
Collapse
Affiliation(s)
- Melissa C Rivera
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK,
| | - Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK,
| | - Alastair Sloan
- School of Dentistry, Cardiff University, Heath Park, Cardiff, Wales, UK
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK,
| |
Collapse
|
26
|
Cui Y, Hettinghouse A, Liu CJ. Progranulin: A conductor of receptors orchestra, a chaperone of lysosomal enzymes and a therapeutic target for multiple diseases. Cytokine Growth Factor Rev 2019; 45:53-64. [PMID: 30733059 DOI: 10.1016/j.cytogfr.2019.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
Progranulin (PGRN), a widely expressed glycoprotein with pleiotropic function, has been linked to a host of physiological processes and diverse pathological states. A series of contemporary preclinical disease models and clinical trials have evaluated various therapeutic strategies targeting PGRN, highlighting PGRN as a promising therapeutic target. Herein we summarize available knowledge of PGRN targeting in various kinds of diseases, including common neurological diseases, inflammatory autoimmune diseases, cancer, tissue repair, and rare lysosomal storage diseases, with a focus on the functional domain-oriented drug development strategies. In particular, we emphasize the role of extracellular PGRN as a non-conventional, extracellular matrix bound, growth factor-like conductor orchestrating multiple membrane receptors and intracellular PGRN as a chaperone/co-chaperone that mediates the folding and traffic of its various binding partners.
Collapse
Affiliation(s)
- Yazhou Cui
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA; Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
27
|
Progranulin Is Positively Associated with Intervertebral Disc Degeneration by Interaction with IL-10 and IL-17 Through TNF Pathways. Inflammation 2019; 41:1852-1863. [PMID: 29992506 DOI: 10.1007/s10753-018-0828-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Progranulin (PGRN) is a widely expressed growth factor that effectively inhibits tumor necrosis factor α (TNFα)-mediated inflammatory response. TNFα is involved in intervertebral disc degeneration (IDD) and plays a key role. This study aims to determine the role of PGRN in the intervertebral disc degeneration process. We collected intervertebral discs (IVDs) from humans and mice with different genetic backgrounds. We examined the expression of PGRN in IVD tissues by immunohistochemistry staining and Western blotting assay. We examined the peripheral serum level of PGRN by ELISA assay. Murine IVD tissue samples were taken to undergo safranin O, HE, and immunohistochemistry staining. Primary human nucleus pulposus cells were used for ELISA and RT-PCR assays. PGRN as well as interlukin-10 (IL-10) and interlukin-17 (IL-17) expressions were elevated in degenerative discs and peripheral blood sera. Loss of PGRN led to accelerated disc degeneration in the animal model, along with decreased expression of IL-10 and increased expression of IL-17. Additionally, the PGRN level was positively related to levels of IL-10 and IL-17. In vitro study suggested that PGRN protected against disc degeneration by inducing IL-10 and reducing IL-17. PGRN is associated with intervertebral disc degeneration through interfering with IL-10 and IL-17; thus, PGRN could be an interesting biomarker for diagnosis and a potential treatment target.
Collapse
|
28
|
Liu YW, An SB, Yang T, Xiao YJ, Wang L, Hu YH. Protection Effect of Curcumin for Macrophage-Involved Polyethylene Wear Particle-Induced Inflammatory Osteolysis by Increasing the Cholesterol Efflux. Med Sci Monit 2019; 25:10-20. [PMID: 30599093 PMCID: PMC6327781 DOI: 10.12659/msm.914197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Periprosthetic osteolysis, induced by wear particles and inflammation, is a common reason for failure of primary arthroplasty. Curcumin, a nature phenol from plants, has been reported to reduce the inflammation in macrophages. This study aimed to investigate the potential effect of curcumin on macrophage involved, wear particle-induced osteolysis and its mechanism. MATERIAL AND METHODS RAW264.7 macrophages were used to test the effects of polyethylene (PE) particles and curcumin on macrophage cholesterol efflux and phenotypic changes. A mouse model of PE particle-induced calvarial osteolysis was established to test the effects of curcumin in vivo. After 14 days of treatment, the bone quality of the affected areas was analyzed by micro-computed tomography (micro-CT) and histology, and the bone surrounding soft tissues were analyzed at the cellular and molecular levels. RESULTS We found that PE particles can stimulate osteoclastogenesis and produce an M1-like phenotype in macrophages in vitro. Curcumin enhanced the cholesterol efflux in macrophages, and maintained the M0-like phenotype under the influence of PE particles in vitro. Additionally, the cholesterol transmembrane regulators ABCA1, ABCG1, and CAV1 were enhanced by curcumin in vivo. We also found enhanced bone density, reduced osteoclastogenesis, and fewer inflammatory responses in the curcumin treated groups in our mouse osteolysis model. CONCLUSIONS Our study findings indicated that curcumin can inhibit macrophage involved osteolysis and inflammation via promoting cholesterol efflux. Maintaining the cholesterol efflux might be a potential strategy to prevent periprosthetic osteolysis after total joint arthroplasty surgery.
Collapse
Affiliation(s)
- Yu-Wei Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Sen-Bo An
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Tao Yang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Yue-Jun Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Long Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Yi-He Hu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
29
|
Song P, Hu C, Pei X, Sun J, Sun H, Wu L, Jiang Q, Fan H, Yang B, Zhou C, Fan Y, Zhang X. Dual modulation of crystallinity and macro-/microstructures of 3D printed porous titanium implants to enhance stability and osseointegration. J Mater Chem B 2019; 7:2865-2877. [PMID: 32255089 DOI: 10.1039/c9tb00093c] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The macro architecture and micro surface topological morphology of implants play essential roles in bone tissue regeneration.
Collapse
|
30
|
Wang G, Zhang P, Zhao J. Endotoxin Contributes to Artificial Loosening of Prostheses Induced by Titanium Particles. Med Sci Monit 2018; 24:7001-7006. [PMID: 30277224 PMCID: PMC6180935 DOI: 10.12659/msm.910039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Aseptic loosening of orthopedic implants caused by wear particles is a major cause of joint replacement failure. However, the mechanism of aseptic loosening has not yet been defined. The present study explored whether endotoxin adherent on the titanium (Ti) particles contributes to aseptic loosening. Material/Methods Limulus amebocyte lysate detection was conducted to detect the levels of endotoxin adhered to the Ti particles. A mouse air pouches model was established and mice were divided into 4 groups and injected with phosphate-buffered saline (PBS) or Ti particles suspensions (0.1, 1, 10 mg/mL), following detection of the number of macrophages and the level of endotoxin. Scanning electron microscopy (SEM) was used to characterize the microstructures of Ti particles adhered with endotoxin. Results In vitro experiments showed that the level of endotoxin adhered to the Ti particles was significantly increased after adding LPS back to these “endotoxin-free” particles. In vivo experiments showed that Ti particles injection significantly increased the number of macrophages and the level of endotoxin. Conclusions In conclusion, these results suggest that adherent endotoxin may play an important role in aseptic loosening induced by Ti particles.
Collapse
Affiliation(s)
- Guihua Wang
- Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Orthopedics, Nanjing Pukou Central Hospital, Nanjing, Jiangsu, China (mainland)
| | - Pin Zhang
- Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jianning Zhao
- Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
31
|
Dicalcium Silicate Induced Proinflammatory Responses through TLR2-Mediated NF- κB and JNK Pathways in the Murine RAW 264.7 Macrophage Cell Line. Mediators Inflamm 2018; 2018:8167932. [PMID: 29853794 PMCID: PMC5954956 DOI: 10.1155/2018/8167932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/08/2018] [Indexed: 11/21/2022] Open
Abstract
Proinflammatory responses are important aspects of the immune response to biomaterials, which may cause peri-implantitis and implant shedding. The purpose of this study was to test the cytotoxicity and proinflammatory effects of dicalcium silicate particles on RAW 264.7 macrophages and to investigate the proinflammatory response mechanism induced by C2S and tricalcium phosphate (TCP). C2S and TCP particles were characterized using scanning electron microscopy (SEM), energy spectrum analysis (EDS) and X-ray diffraction (XRD). Cytotoxicity and apoptosis assays with C2S and TCP in the murine RAW 264.7 cell line were tested using the cell counting kit-8 (CCK-8) assay and flow cytometry (FCM). The detection results showed that C2S and TCP particles had no obvious toxicity in RAW 264.7 cells and did not cause obvious apoptosis, although they both caused an oxidative stress response by producing ROS when the concentrations were at 100 μg/mL. C2S particles are likely to induce a proinflammatory response by inducing high TLR2, TNF-α mRNA, TNF-α proinflammatory cytokine, p-IκB, and p-JNK1 + JNK2 + JNK3 expression levels. When we added siRNA-TLR2-1, a significant reduction was observed. These findings support the theory that C2S particles induce proinflammatory responses through the TLR2-mediated NF-κB and JNK pathways in the murine RAW 264.7 macrophage cell line.
Collapse
|
32
|
Chen Y, Sud N, Hettinghouse A, Liu CJ. Molecular regulations and therapeutic targets of Gaucher disease. Cytokine Growth Factor Rev 2018; 41:65-74. [PMID: 29699937 DOI: 10.1016/j.cytogfr.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Gaucher disease (GD) is the most common lysosomal storage disease caused by deficiency of beta-glucocerebrosidase (GCase) resulting in lysosomal accumulation of its glycolipid substrate glucosylceramide. The activity of GCase depends on many factors such as proper folding and lysosomal localization, which are influenced by mutations in GCase encoding gene, and regulated by various GCase-binding partners including Saposin C, progranulin and heat shock proteins. In addition, proinflammatory molecules also contribute to pathogenicity of GD. In this review, we summarize the molecules that are known to be important for the pathogenesis of GD, particularly those modulating GCase lysosomal appearance and activity. In addition, small molecules that inhibit inflammatory mediators, calcium ion channels and other factors associated with GD are also described. Discovery and characterization of novel molecules that impact GD are not only important for deciphering the pathogenic mechanisms of the disease, but they also provide new targets for drug development to treat the disease.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neetu Sud
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
33
|
Li J, Li Y, Peng X, Li B, Qin H, Chen Y. In vivo analysis of the effects of CoCrMo and Ti particles on inflammatory responses and osteolysis. RSC Adv 2018; 8:5151-5157. [PMID: 35542395 PMCID: PMC9082049 DOI: 10.1039/c7ra12325f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/23/2018] [Indexed: 11/25/2022] Open
Abstract
Metal wear particles play a major role in periprosthetic osteolysis and aseptic loosening in patients with total joint arthroplasty. The ability to induce osteolysis depends on the size, shape, dose, and type of the particles. However, much remains unknown regarding which type of metal particles are most reactive. We compared the inflammatory response and bone loss induced by two metal wear particles, cobalt-chromium-molybdenum (CoCrMo) and titanium (Ti), in a mouse calvaria model of osteolysis. We found that CoCrMo particles caused markedly greater bone resorption than Ti particles, according to three-dimensional images of the calvariae. CoCrMo particles activated more functional osteoclasts by significantly increasing the expression of the osteoclast-specific gene tartrate-specific acid phosphatase (Trap), calcitonin receptor (Ctr), and nuclear factor of activated T cells c1 (Nfatc1), and induced a greater increase in the ratio of receptor activator of nuclear factor kappa B ligand (RANKL)/osteoprotegerin (OPG) than Ti particles. CoCrMo particles also induced a stronger local inflammatory response, markedly increasing the expression and secretion of tumor necrosis factor-α and interleukin-1β compared with Ti particles. Therefore, CoCrMo particles induced a more severe inflammatory response and greater osteolysis than Ti particles in vivo.
Collapse
Affiliation(s)
- Juehong Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China +86-21-24058102
| | - Yamin Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China +86-21-24058102
| | - Xiaochun Peng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China +86-21-24058102
| | - Bin Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China +86-21-24058102
| | - Hui Qin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China +86-21-24058102
| | - Yunsu Chen
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China +86-21-24058102
| |
Collapse
|
34
|
Progranulin derivative Atsttrin protects against early osteoarthritis in mouse and rat models. Arthritis Res Ther 2017; 19:280. [PMID: 29258611 PMCID: PMC5735869 DOI: 10.1186/s13075-017-1485-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Atsttrin, an engineered protein composed of three tumor necrosis factor receptor (TNFR)-binding fragments of progranulin (PGRN), shows therapeutic effect in multiple murine models of inflammatory arthritis . Additionally, intra-articular delivery of PGRN protects against osteoarthritis (OA) progression. The purpose of this study is to determine whether Atsttrin also has therapeutic effects in OA and the molecular mechanisms involved. METHODS Surgically induced and noninvasive rupture OA models were established in mouse and rat, respectively. Cartilage degradation and OA were evaluated using Safranin O staining, immunohistochemistry, and ELISA. Additionally, expressions of pain-related markers, degenerative factors, and anabolic and catabolic markers known to be involved in OA were analyzed. Furthermore, the anabolic and anti-catabolic effects and underlying mechanisms of Atsttrin were determined using in-vitro assays with primary chondrocytes. RESULTS Herein, we found Atsttrin effectively prevented the accelerated OA phenotype associated with PGRN deficiency. Additionally, Atsttrin exhibited a preventative effect in OA by protecting articular cartilage and reducing OA-associated pain in both nonsurgically induced rat and surgically induced murine OA models. Mechanistic studies revealed that Atsttrin stimulated TNFR2-Akt-Erk1/2-dependent chondrocyte anabolism, while inhibiting TNFα/TNFR1-mediated inflammatory catabolism. CONCLUSIONS These findings not only provide new insights into the role of PGRN and its derived engineered protein Atsttrin in cartilage homeostasis as well as OA in vivo, but may also lead to new therapeutic alternatives for OA as well as other relative degenerative joint diseases.
Collapse
|
35
|
Chiba Y, Danno S, Suto R, Suto W, Yamane Y, Hanazaki M, Katayama H, Sakai H. Intranasal administration of recombinant progranulin inhibits bronchial smooth muscle hyperresponsiveness in mouse allergic asthma. Am J Physiol Lung Cell Mol Physiol 2017; 314:L215-L223. [PMID: 28982738 DOI: 10.1152/ajplung.00575.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Progranulin (PGRN) is a growth factor with multiple biological functions and has been suggested as an endogenous inhibitor of Tumor necrosis factor-α (TNF-α)-mediated signaling. TNF-α is believed to be one of the important mediators of the pathogenesis of asthma, including airway hyperresponsiveness (AHR). In the present study, effects of recombinant PGRN on TNF-α-mediated signaling and antigen-induced hypercontractility were examined in bronchial smooth muscles (BSMs) both in vitro and in vivo. Cultured human BSM cells (hBSMCs) and male BALB/c mice were used. The mice were sensitized and repeatedly challenged with ovalbumin antigen. Animals also received intranasal administrations of recombinant PGRN into the airways 1 h before each antigen inhalation. In hBSMCs, PGRN inhibited both the degradation of IκB-α (an index of NF-κB activation) and the upregulation of RhoA (a contractile machinery-associated protein that contributes to the BSM hyperresponsiveness) induced by TNF-α, indicating that PGRN has an ability to inhibit TNF-α-mediated signaling also in the BSM cells. In BSMs of the repeatedly antigen-challenged mice, an augmented contractile responsiveness to acetylcholine with an upregulation of RhoA was observed: both the events were ameliorated by pretreatments with PGRN intranasally. Interestingly, a significant decrease in PGRN expression was found in the airways of the repeatedly antigen-challenged mice rather than those of control animals. In conclusion, exogenously applied PGRN into the airways ameliorated the antigen-induced BSM hyperresponsiveness, probably by blocking TNF-α-mediated response. Increasing PGRN levels might be a promising therapeutic for AHR in allergic asthma.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, Hoshi University , Tokyo , Japan.,Department of Biology, Hoshi University , Tokyo , Japan
| | - Shunta Danno
- Department of Biology, Hoshi University , Tokyo , Japan
| | - Rena Suto
- Department of Biology, Hoshi University , Tokyo , Japan
| | - Wataru Suto
- Department of Physiology and Molecular Sciences, Hoshi University , Tokyo , Japan
| | - Yamato Yamane
- Department of Physiology and Molecular Sciences, Hoshi University , Tokyo , Japan
| | - Motohiko Hanazaki
- Department of Anesthesiology and Intensive Care Medicine, Kawasaki Medical School , Kurashiki , Japan
| | - Hiroshi Katayama
- Department of Anesthesiology and Intensive Care Medicine, Kawasaki Medical School , Kurashiki , Japan
| | - Hiroyasu Sakai
- Department of Analytical Pathophysiology, School of Pharmacy, Hoshi University , Tokyo , Japan
| |
Collapse
|
36
|
Zhang K, Li YJ, Feng D, Zhang P, Wang YT, Li X, Liu SB, Wu YM, Zhao MG. Imbalance between TNFα and progranulin contributes to memory impairment and anxiety in sleep-deprived mice. Sci Rep 2017; 7:43594. [PMID: 28300056 PMCID: PMC5353617 DOI: 10.1038/srep43594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Sleep disorder is becoming a widespread problem in current society, and is associated with impaired cognition and emotional disorders. Progranulin (PGRN), also known as granulin epithelin precursor, promotes neurite outgrowth and cell survival, and is encoded by the GRN gene. It is a tumor necrosis factor α receptor (TNFR) ligand which is implicated in many central nervous system diseases. However, the role PGRN in sleep disorder remains unclear. In the present study, we found that sleep deprivation (S-DEP) impaired the memory and produced thigmotaxis/anxiety-like behaviors in mice. S-DEP increased the levels of TNFα but decreased PGRN levels in the hippocampus. The intracerebroventricular (ICV) injection of PGRN or intraperitoneal injection of TNFα synthesis blocker thalidomide (25 mg/kg), prevented the memory impairment and anxiety behaviors induced by S-DEP. PGRN treatment also restored dendritic spine density in the hippocampus CA1 region and neurogenesis in hippocampus dentate gyrus (DG). These results indicate that an imbalance between TNFα and PGRN contributes to memory impairment and thigmotaxis/anxiety caused by sleep deprivation.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Precision Pharmacy &Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yu-Jiao Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Dan Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Peng Zhang
- Department of Neurobiology, Capital Medical University, Beijing, 100069, China
| | - Ya-Tao Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Precision Pharmacy &Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| |
Collapse
|
37
|
Veronesi F, Tschon M, Fini M. Gene Expression in Osteolysis: Review on the Identification of Altered Molecular Pathways in Preclinical and Clinical Studies. Int J Mol Sci 2017; 18:E499. [PMID: 28245614 PMCID: PMC5372515 DOI: 10.3390/ijms18030499] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Aseptic loosening (AL) due to osteolysis is the primary cause of joint prosthesis failure. Currently, a second surgery is still the only available treatment for AL, with its associated drawbacks. The present review aims at identifying genes whose expression is altered in osteolysis, and that could be the target of new pharmacological treatments, with the goal of replacing surgery. This review also aims at identifying the molecular pathways altered by different wear particles. We reviewed preclinical and clinical studies from 2010 to 2016, analyzing gene expression of tissues or cells affected by osteolysis. A total of 32 in vitro, 16 in vivo and six clinical studies were included. These studies revealed that genes belonging to both inflammation and osteoclastogenesis pathways are mainly involved in osteolysis. More precisely, an increase in genes encoding for the following factors were observed: Interleukins 6 and 1β (IL16 and β), Tumor Necrosis Factor α (TNFα), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), Cathepsin K (CATK) and Tartrate-resistant acid phosphatase (TRAP). Titanium (Ti) and Polyethylene (PE) were the most studied particles, showing that Ti up-regulated inflammation and osteoclastogenesis related genes, while PE up-regulated primarily osteoclastogenesis related genes.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Matilde Tschon
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
38
|
Strontium inhibits titanium particle-induced osteoclast activation and chronic inflammation via suppression of NF-κB pathway. Sci Rep 2016; 6:36251. [PMID: 27796351 PMCID: PMC5087084 DOI: 10.1038/srep36251] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
Wear-particle-induced chronic inflammation and osteoclastogenesis have been identified as critical factors of aseptic loosening. Although strontium is known to be involved in osteoclast differentiation, its effect on particle-induced inflammatory osteolysis remains unclear. In this study, we investigate the potential impact and underling mechanism of strontium on particle-induced osteoclast activation and chronic inflammation in vivo and in vitro. As expected, strontium significantly inhibited titanium particle-induced inflammatory infiltration and prevented bone loss in a murine calvarial osteolysis model. Interestingly, the number of mature osteoclasts decreased after treatment with strontium in vivo, suggesting osteoclast formation might be inhibited by strontium. Additionally, low receptor activator of nuclear factor-κB ligand (RANKL), tumor necrosis factor-α, interleukin-1β, interleukin-6 and p65 immunochemistry staining were observed in strontium-treatment groups. In vitro, strontium obviously decreased osteoclast formation, osteoclastogenesis-related gene expression, osteoclastic bone resorption and pro-inflammatory cytokine expression in bone-marrow-derived macrophages in a dose-dependent manner. Furthermore, we demonstrated that strontium impaired osteoclastogenesis by blocking RANKL-induced activation of NF-κB pathway. In conclusion, our study demonstrated that strontium can significantly inhibit particle-induced osteoclast activation and inflammatory bone loss by disturbing the NF-κB pathway, and is an effective therapeutic agent for the treatment of wear particle-induced aseptic loosening.
Collapse
|
39
|
Liu S, Wang B, Zhang P. Effect of Glucose Concentration on Electrochemical Corrosion Behavior of Pure Titanium TA2 in Hanks' Simulated Body Fluid. MATERIALS 2016; 9:ma9110874. [PMID: 28773993 PMCID: PMC5457212 DOI: 10.3390/ma9110874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/13/2016] [Accepted: 10/23/2016] [Indexed: 02/07/2023]
Abstract
Titanium and its alloys have been widely used as implant materials due to their excellent mechanical property and biocompatibility. In the present study, the effect of glucose concentration on corrosion behavior of pure titanium TA2 in Hanks’ simulated body fluid is investigated by the electrochemical impedance spectrum (EIS) and potentiodynamic polarization methods. The range of glucose concentrations investigated in this research includes 5 mmol/L (limosis for healthy people), 7 mmol/L (after diet for healthy people), 10 mmol/L (limosis for hyperglycemia patient), and 12 mmol/L (after diet for hyperglycemia patient), as well as, 15 mmol/L and 20 mmol/L, which represent different body fluid environments. The results indicate that the pure titanium TA2 demonstrates the best corrosion resistance when the glucose concentration is less than 10 mmol/L, which shows that the pure titanium TA2 as implant material can play an effective role in the body fluids with normal and slight high glucose concentrations. Comparatively, the corrosion for the pure titanium implant is more probable when the glucose concentration is over 10 mmol/L due to the premature penetration through passive film on the material surface. Corrosion defects of pitting and crevice exist on the corroded surface, and the depth of corrosion is limited to three microns with a low corrosion rate. The oxidation film on the surface of pure titanium TA2 has a protective effect on the corrosion behavior of the implant inner material. The corrosion behavior of pure titanium TA2 will happen easily once the passive film has been penetrated through. The corrosion rate for TA2 implant will accelerate quickly and a pure titanium implant cannot be used.
Collapse
Affiliation(s)
- Shuyue Liu
- High School Attached to Shandong Normal University, Jinan 250014, China.
| | - Bing Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
- Department of Mechanical Engineering, Michigan State University, Lansing, MI 48910, USA.
| | - Peirong Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|
40
|
Wei J, Hettinghouse A, Liu C. The role of progranulin in arthritis. Ann N Y Acad Sci 2016; 1383:5-20. [PMID: 27505256 DOI: 10.1111/nyas.13191] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Progranulin (PGRN) is a growth factor with a unique beads-on-a-string structure that is involved in multiple pathophysiological processes, including anti-inflammation, tissue repair, wound healing, neurodegenerative diseases, and tumorigenesis. This review presents up-to-date information concerning recent studies on the role of PGRN in inflammatory arthritis and osteoarthritis, with a special focus on the involvement of the interactions and interplay between PGRN and tumor necrosis factor receptor (TNFR) family members in regulating such musculoskeletal diseases. In addition, this paper highlights the applications of atsttrin, an engineered protein comprising three TNFR-binding fragments of PGRN, as a promising intervention in treating arthritis.
Collapse
Affiliation(s)
- Jianlu Wei
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York.,Department of Orthopaedic Surgery, Medical School of Shandong University, Jinan, Shandong, China
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| |
Collapse
|