1
|
Dvorska D, Mazurakova A, Lackova L, Sebova D, Kajo K, Samec M, Brany D, Svajdlenka E, Treml J, Mersakova S, Strnadel J, Adamkov M, Lasabova Z, Biringer K, Mojzis J, Büsselberg D, Smejkal K, Kello M, Kubatka P. Aronia melanocarpa L. fruit peels show anti-cancer effects in preclinical models of breast carcinoma: The perspectives in the chemoprevention and therapy modulation. Front Oncol 2024; 14:1463656. [PMID: 39435289 PMCID: PMC11491292 DOI: 10.3389/fonc.2024.1463656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Within oncology research, there is a high effort for new approaches to prevent and treat cancer as a life-threatening disease. Specific plant species that adapt to harsh conditions may possess unique properties that may be utilized in the management of cancer. Hypothesis Chokeberry fruit is rich in secondary metabolites with anti-cancer activities potentially useful in cancer prevention and treatment. Aims of the study and Methods Based on mentioned hypothesis, the main goal of our study was to evaluate the antitumor effects of dietary administered Aronia melanocarpa L. fruit peels (in two concentrations of 0.3 and 3% [w/w]) in the therapeutic syngeneic 4T1 mouse adenocarcinoma model, the chemopreventive model of chemically induced mammary carcinogenesis in rats, a cell antioxidant assay, and robust in vitro analyses using MCF-7 and MDA-MB-231 cancer cells. Results The dominant metabolites in the A. melanocarpa fruit peel extract tested were phenolic derivatives classified as anthocyanins and procyanidins. In a therapeutic model, aronia significantly reduced the volume of 4T1 tumors at both higher and lower doses. In the same tumors, we noted a significant dose-dependent decrease in the mitotic activity index compared to the control. In the chemopreventive model, the expression of Bax was significantly increased by aronia at both doses. Additionally, aronia decreased Bcl-2 and VEGF levels, increasing the Bax/Bcl-2 ratio compared to the control group. The cytoplasmic expression of caspase-3 was significantly enhanced when aronia was administered at a higher dosage, in contrast to both the control group and the aronia group treated with a lower dosage. Furthermore, the higher dosage of aronia exhibited a significant reduction in the expression of the tumor stem cell marker CD133 compared to the control group. In addition, the examination of aronia`s epigenetic impact on tumor tissue through in vivo analyses revealed significant alterations in histone chemical modifications, specifically H3K4m3 and H3K9m3, miRNAs expression (miR155, miR210, and miR34a) and methylation status of tumor suppressor genes (PTEN and TIMP3). In vitro studies utilizing a methanolic extract of A.melanocarpa demonstrated significant anti-cancer properties in the MCF-7 and MDA-MB-231 cell lines. Various analyses, including Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential, were conducted in this regard. Additionally, the aronia extract enhanced the responsiveness to epirubicin in both cancer cell lines. Conclusion This study is the first to analyze the antitumor effect of A. melanocarpa in selected models of experimental breast carcinoma in vivo and in vitro. The utilization of the antitumor effects of aronia in clinical practice is still minimal and requires precise and long-term clinical evaluations. Individualized cancer-type profiling and patient stratification are crucial for effectively implementing plant nutraceuticals within targeted anti-cancer strategies in clinical oncology.
Collapse
Affiliation(s)
- Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Lackova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dominika Sebova
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, Bratislava, Slovakia
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Brany
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Emil Svajdlenka
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Jakub Treml
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Sandra Mersakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
2
|
Hasan‐Abad A, Atapour A, Sobhani‐Nasab A, Motedayyen H, ArefNezhad R. Plant-Based Anticancer Compounds With a Focus on Breast Cancer. Cancer Rep (Hoboken) 2024; 7:e70012. [PMID: 39453820 PMCID: PMC11506041 DOI: 10.1002/cnr2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/11/2024] [Accepted: 08/11/2024] [Indexed: 10/27/2024] Open
Abstract
Breast cancer is a common form of cancer among women characterized by the growth of malignant cells in the breast tissue. The most common treatments for this condition include chemotherapy, surgical intervention, radiation therapy, hormone therapy, and biological therapy. The primary issues associated with chemotherapy and radiation therapy are their adverse events and significant financial burden among patients in underdeveloped countries. This highlights the need to explore and develop superior therapeutic options that are less detrimental and more economically efficient. Plants provide an abundant supply of innovative compounds and present a promising new avenue for investigating cancer. Plants and their derivations are undergoing a revolution due to their reduced toxicity, expediency, cost-effectiveness, safety, and simplicity in comparison to conventional treatment methods. Natural products are considered promising candidates for the development of anticancer drugs, due perhaps to the diverse pleiotropic effects on target events. The effects of plant-derived products are limited to cancer cells while leaving healthy cells unaffected. Identification of compounds with strong anticancer properties and development of plant-based medications for cancer treatment might be crucial steps in breast cancer therapy. Although bioactive compounds have potent anticancer properties, they also have drawbacks that need to be resolved before their application in clinical trials and improved for the approved drugs. This study aims to give comprehensive information on known anticancer compounds, including their sources and molecular mechanisms of actions, along with opportunities and challenges in plant-based anticancer therapies.
Collapse
Affiliation(s)
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Ali Sobhani‐Nasab
- Autoimmune Diseases Research CenterKashan University of Medical SciencesKashanIran
| | - Hossein Motedayyen
- Autoimmune Diseases Research CenterKashan University of Medical SciencesKashanIran
| | - Reza ArefNezhad
- Department of Anatomy, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
3
|
Al-Qaisi T, Al-Rawadeih S, Alsarayreh A, Qaisi YA, Al-Limoun M, Alqaraleh M, Khleifat K. The effects of Anchusa azurea methanolic extract on burn wound healing: Histological, antioxidant, and anti-inflammatory evaluation. Burns 2024; 50:1812-1822. [PMID: 38760186 DOI: 10.1016/j.burns.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Anchusa azurea one of the medicinal plants that has been traditionally used for treat burn wounds. However, the traditional claim that A.azurea can hasten burn wound healing has not been supported by scientific studies. This experiment used a male Wistar rats model to investigate the activity of A. azurea aerial parts methanolic extract in burn wound healing. To determine their ability to help in healing burn wounds in rat models, the active components of the aerial parts of A. azurea were extracted with 80% methanol, then, 1% and 10% ointments were prepared from the extract, and applied topically. The LCMS chromatography of A. azurea plant extract showed different active ingredients, including phenolic compounds, flavonoids, fatty acids, and others. The plant extract's investigated as anti-inflammatory, antioxidant, and histological effects on the burn wound healing process. The results showed a significant (p-value < 0.025) rate of burn wound healing with 78.6% and 84.8% contraction, respectively using 1% and 10% (w/w) extract ointments after 12 days. These results were corroborated by histological observations such as collagen deposition, re-epithelialization, and repair of the remaining skin tissues without any sign of cutaneous toxicity. The plant extract showed significant (p-value < 0.025) antioxidant effect at the highest tested dose of 500 µg/mL, scavenging 89.78% of the DPPH with an IC50 of 213.6 µg/mL. These results confirmed by histological changes observations of collagen deposition, re-epithelialization, and reformation of remaining skin tissues without any signs of dermal toxicity. The plant extract exhibited significant (p-value < 0.025) level of antioxidant agents, by scavenging 89.78% of the DPPH at 500 µg/mL with IC50 of 213.6 µg/mL. Additionally, all pro-inflammatory cytokines examined, including IL-6 and IL-10, the results exhibited reduction in IL-6 level and increase IL-10 level. The aerial extract of the A. azurea plant revealed a wealth of several significant active ingredients, including phenolic compounds, flavonoids, fatty acids, and others, suggesting the potential for anti-inflammatory, burn wound-healing, and antioxidant medications. These findings can open an avenue to find new therapeutics for burn wounds healing, anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Talal Al-Qaisi
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Saddam Al-Rawadeih
- Biology Department, College of Science, Mutah University, Al-Karak, Jordan
| | - Ahmad Alsarayreh
- Biology Department, College of Science, Mutah University, Al-Karak, Jordan.
| | - Yaseen Al Qaisi
- Biology Department, College of Science, Mutah University, Al-Karak, Jordan
| | - Muhamad Al-Limoun
- Biology Department, College of Science, Mutah University, Al-Karak, Jordan
| | - Moath Alqaraleh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Khaled Khleifat
- Biology Department, College of Science, Mutah University, Al-Karak, Jordan
| |
Collapse
|
4
|
El Mahi Y, Nizami ZN, Wali AF, Al Neyadi A, Magramane M, Al Azzani M, Arafat K, Attoub S, Eid AH, Iratni R. Rhus coriaria induces autophagic and apoptotic cell death in pancreatic cancer cells. Front Pharmacol 2024; 15:1412565. [PMID: 39139643 PMCID: PMC11319293 DOI: 10.3389/fphar.2024.1412565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Background:Pancreatic cancer is a leading cause of cancer-related mortality worldwide with increasing global incidence. We previously reported the anticancer effect of Rhus coriaria ethanolic extract (RCE) in triple negative breast and colon cancer cells. Herein, we investigated the anticancer effect of RCE on human pancreatic cancer cells. Methods: Cell viability was measured using Cell Titer-Glo and staining of viable and dead cells based on differential permeability to two DNA binding dyes. Cell cycle distribution and annexin V staining was carried out in Muse cell analyzer. Protein level was determined by Western blot. Tumor growth was assessed by in ovo chick embryo chorioallantoic membrane assay. Results: We found that RCE significantly inhibited the viability and colony growth of pancreatic cancer cells (Panc-1, Mia-PaCa-2, S2-013, AsPC-1). The antiproliferative effects of RCE in pancreatic cancer cells (Panc-1 and Mia-PaCa-2) were mediated through induction of G1 cell cycle arrest, Beclin-1-independent autophagy, and apoptosis. RCE activated both the extrinsic and intrinsic pathways of apoptosis and regulated the Bax/Bcl-2 apoptotic switch. Mechanistically, we found that RCE inhibited the AKT/mTOR pathway, downstream of which, inactivation of the cell cycle regulator p70S6K and downregulation of the antiapoptotic protein survivin was observed. Additionally, we found that RCE-induced autophagy preceded apoptosis. Further, we confirmed the anticancer effect of RCE in a chick embryo xenograft model and found that RCE inhibited the growth of pancreatic cancer xenografts without affecting embryo survival. Conclusion: Collectively, our findings demonstrate that Rhus coriaria exerts potent anti-pancreatic cancer activity though cell cycle impairment, autophagy, and apoptosis, and is hence a promising source of anticancer phytochemicals.
Collapse
Affiliation(s)
- Yassine El Mahi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Aysha Al Neyadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Magramane
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Wehbe N, Badran A, Baydoun S, Al-Sawalmih A, Maresca M, Baydoun E, Mesmar JE. The Antioxidant Potential and Anticancer Activity of Halodule uninervis Ethanolic Extract against Triple-Negative Breast Cancer Cells. Antioxidants (Basel) 2024; 13:726. [PMID: 38929164 PMCID: PMC11200955 DOI: 10.3390/antiox13060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Natural remedies have been indispensable to traditional medicine practices for generations, offering therapeutic solutions for various ailments. In modern times, these natural products continue to play a pivotal role in the discovery of new drugs, especially for cancer treatment. The marine ecosystem offers a wide range of plants with potential anticancer activities due to their distinct biochemical diversity and adaptation to extreme situations. The seagrass Halodule uninervis is rich in diverse bioactive metabolites that bestow the plant with various pharmacological properties. However, its anticancer activity against invasive triple-negative breast cancer (TNBC) is still poorly investigated. In the present study, the phytochemical composition of an ethanolic extract of H. uninervis (HUE) was screened, and its antioxidant potential was evaluated. Moreover, the anticancer potential of HUE against MDA-MB-231 cells was investigated along with the possible underlying mechanisms of action. Our results showed that HUE is rich in diverse phytochemicals that are known for their antioxidant and anticancer effects. In MDA-MB-231 cells, HUE targeted the hallmarks of cancer, including cell proliferation, adhesion, migration, invasion, and angiogenesis. The HUE-mediated anti-proliferative and anti-metastatic effects were associated with the downregulation of the proto-oncogenic STAT3 signaling pathway. Taken together, H. uninervis could serve as a valuable source for developing novel drugs targeting TNBC.
Collapse
Affiliation(s)
- Nadine Wehbe
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| | - Adnan Badran
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Serine Baydoun
- Breast Imaging Section, Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Ali Al-Sawalmih
- Marine Science Station, University of Jordan, Aqaba 11942, Jordan;
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSM2, 13013 Marseille, France
| | - Elias Baydoun
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| | - Joelle Edward Mesmar
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| |
Collapse
|
6
|
Mongy Y, Shalaby T. Green synthesis of zinc oxide nanoparticles using Rhus coriaria extract and their anticancer activity against triple-negative breast cancer cells. Sci Rep 2024; 14:13470. [PMID: 38866790 PMCID: PMC11169510 DOI: 10.1038/s41598-024-63258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
The growing interest in using plant extracts for the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) stems from their facile, eco-friendly, and biologically safe approach instead of chemical routes. For the first time, ZnO NPs were successfully biosynthesized using Rhus coriaria fruit aqueous extract as a reducing and capping agent. Characterization revealed that the biosynthesized ZnO NPs possessed a maximum absorbance of approximately 359 nm and closely resembled the hexagonal ZnO wurtzite crystalline structure, with an average crystalline size of 16.69 nm. The transmission electron microscope (TEM) showed the presence of spherical and hexagonal morphologies, with an average grain size of 20.51 ± 3.90 nm. Moreover, the elemental composition of the synthesized ZnO NPs was assessed via energy-dispersive X-ray spectrometry (EDX), and the presence of phytocompounds on their surface was subsequently verified through FT-IR analysis. The ζ-potential of ZnO NPs was recorded at - 19.9 ± 0.1663 mV. Regarding anti-cancer properties, ZnO NPs were found to possess potent anti-tumor effects on MCF-7 and MDA-MB-231 breast cancer cells. Their efficacy was dose-dependent, with IC50 values ranging from 35.04-44.86 μg/mL for MCF-7 and 55.54-63.71 µg/mL for MDA-MB-231 cells. Mechanistic studies in MDA-MB-231 cells revealed apoptosis induction, validated by DAPI staining, confocal microscopy, and Annexin V/PI staining, showing apoptosis by 12.59% and 81.57% at ½ IC50 and IC50 values, respectively. Additionally, ZnO NPs were observed to provoke S-phase arrest and inhibit colony-forming and metastatic potential by modulating apoptosis and metastasis-related genes. This study unravels new insights into how ZnO NPs provoke cancer cell death and inhibit metastasis, revealing new prospects in cancer nanotechnology.
Collapse
Affiliation(s)
- Youssef Mongy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt.
| | - Thanaa Shalaby
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
- Nanotechnology Training Center, Medical Technology Center, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Scarano P, Prigioniero A, Tartaglia M, Zuzolo D, Maisto M, Ranauda MA, Schicchi R, Geraci A, Sciarrillo R, Guarino C. Rhus coriaria L. in tradition and innovation like natural dye. Sci Rep 2024; 14:12068. [PMID: 38802505 PMCID: PMC11130214 DOI: 10.1038/s41598-024-62528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Nowadays, secondary raw materials (SRM) obtained from plant matrices are of great interest for circular economy, suitable for sustainable measures to reduce environmental impact. This work focused on the extraction, characterization and quantification of compounds obtained from leaves and fruits of the Sicilian sumac, Rhus coriaria L. and their application as natural dyes on textile fibres. Extractions were performed with Extractor Naviglio®, maceration and ultrasound assisted methods and food-grade solvents (aqueous and hydroalcoholic) to evaluate the yields for dye compounds. The presence of colouring molecules was evaluated by UV-Vis spectrophotometer, and the extracts selected for colouring were quantified and characterized by LC-MS. The results showed that Extractor Naviglio® achieved the best extraction yield, and the ethanol-water mixture extracts had a higher amount of total phenolic compounds (TPC) and a higher content of total colouring compounds (TCC). These extracts were selected for subsequent applications as dyes for linen, cotton and wool. The chemical profile of selected extracts was rich in compounds such as gallotannin and anthocyanin class. Fibre dyeing was verified by recording CIELAB colouring coordinates. The results suggest that the dyes obtained from R. coriaria can be of great interest for artisanal and industrial processes, in accordance with environmental sustainability.
Collapse
Affiliation(s)
- Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy.
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy
| | - Maria Maisto
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy
| | - Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy
| | - Rosario Schicchi
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Viale Delle Scienze, Ed. 4, 90128, Palermo, Italy
| | - Anna Geraci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze, Ed. 16, 90128, Palermo, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, Snc, 82100, Benevento, Italy
| |
Collapse
|
8
|
Long L, Fei X, Chen L, Yao L, Lei X. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer. Front Oncol 2024; 14:1381251. [PMID: 38699644 PMCID: PMC11063389 DOI: 10.3389/fonc.2024.1381251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its propensity for metastasis and poor prognosis. TNBC evades the body's immune system recognition and attack through various mechanisms, including the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. This pathway, characterized by heightened activity in numerous solid tumors, exhibits pronounced activation in specific TNBC subtypes. Consequently, targeting the JAK2/STAT3 signaling pathway emerges as a promising and precise therapeutic strategy for TNBC. The signal transduction cascade of the JAK2/STAT3 pathway predominantly involves receptor tyrosine kinases, the tyrosine kinase JAK2, and the transcription factor STAT3. Ongoing preclinical studies and clinical research are actively investigating this pathway as a potential therapeutic target for TNBC treatment. This article comprehensively reviews preclinical and clinical investigations into TNBC treatment by targeting the JAK2/STAT3 signaling pathway using small molecule compounds. The review explores the role of the JAK2/STAT3 pathway in TNBC therapeutics, evaluating the benefits and limitations of active inhibitors and proteolysis-targeting chimeras in TNBC treatment. The aim is to facilitate the development of novel small-molecule compounds that target TNBC effectively. Ultimately, this work seeks to contribute to enhancing therapeutic efficacy for patients with TNBC.
Collapse
Affiliation(s)
- Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiangyu Fei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liucui Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang Yao
- Department of Pharmacy, Central Hospital of Hengyang, Hengyang, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
9
|
Abdallah R, Shaito AA, Badran A, Baydoun S, Sobeh M, Ouchari W, Sahri N, Eid AH, Mesmar JE, Baydoun E. Fractionation and phytochemical composition of an ethanolic extract of Ziziphus nummularia leaves: antioxidant and anticancerous properties in human triple negative breast cancer cells. Front Pharmacol 2024; 15:1331843. [PMID: 38405665 PMCID: PMC10885810 DOI: 10.3389/fphar.2024.1331843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 02/27/2024] Open
Abstract
Natural products have long been utilized in traditional medicine as remedies to improve health and treat illnesses, and have had a key role in modern drug discovery. Recently, there has been a revived interest in the search for bioactives from natural sources as alternative or complementary modalities to synthetic medicines; especially for cancer treatment, which incidence and mortality rates are on the rise worldwide. Ziziphus nummularia has been widely used in traditional medicine for the treatment of various diseases. Its traditional uses and numerous ethnopharmacological properties may be attributed to its richness in bioactive metabolites. However, its phytochemical composition or chemopreventive effects against the aggressive triple-negative breast cancer (TNBC) are still poorly explored. Here, phytochemical composition of an ethanolic extract of Z. nummularia leaves (ZNE) and its chromatographically isolated fractions was identified both qualitatively by spectrophotometric assays and analytically by HPLC-PDA-MS/MS. The anti-proliferative effects of ZNE were tested in several cancer cell lines, but we focused on its anti-TNBC effects since they were not explored yet. The anti-cancerous potential of ZNE and its fractions was tested in vitro in MDA-MB-231, a TNBC cell line. Results showed that ZNE and its Fraction 6 (F6) reduced the viability of MDA-MB-231 cells. F6 decreased MDA-MB-231 viability more than crude ZNE or its other fractions. ZNE and F6 are rich in phytochemicals and HPLC-PDA-MS/MS analysis identified several metabolites that were previously reported to have anti-cancerous effects. Both ZNE and F6 showed potent antioxidant capacity in the DPPH assay, but promoted reactive oxygen species (ROS) production in MDA-MB-231 cells; an effect which was blunted by the antioxidant N-acetyl cysteine (NAC). NAC also blunted ZNE- and F6-induced reduction in TNBC cell viability. We also demonstrated that ZNE and F6 induced an arrest of the cell cycle, and triggered apoptosis- and autophagy-mediated cell death. ZNE and F6 inhibited metastasis-related cellular processes by modifying cell migration, invasion, and adhesion. Taken together, our findings reveal that Z. nummularia is rich in phytochemicals that can attenuate the malignant phenotype of TNBC and may offer innovative avenues for the discovery of new drug leads for treatment of TNBC and other cancers.
Collapse
Affiliation(s)
- Rola Abdallah
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Abdullah A. Shaito
- Biomedical Research Center, Department of Biomedical Sciences at College of Health Sciences, and College of Medicine, Qatar University, Doha, Qatar
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman, Jordan
| | - Serine Baydoun
- Breast Imaging Section, Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Mansour Sobeh
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Wafae Ouchari
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Nihad Sahri
- Agrobiosciences Program, College for Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
10
|
Yagi S, Nilofar N, Uba AI, Caprioli G, Mustafa AM, Angeloni S, Koyuncu I, Seker F, Polat R, Supti SJ, Tasnim F, Al Dhaheri Y, Zengin G, Eid AH. Elucidating the chemical profile and biological studies of Verbascum diversifolium Hochst. extracts. Front Pharmacol 2024; 15:1333865. [PMID: 38352148 PMCID: PMC10862011 DOI: 10.3389/fphar.2024.1333865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
The present study was designed to evaluate the chemical composition, antioxidant, enzyme inhibition and cytotoxic properties of different extracts from aerial parts of V. diversifolium (family Scrophulariaceae), a plant that is native to Lebanon, Syria and Turkey. Six extracts, namely, hexane, dichloromethane (DCM), ethyl acetate (EtOAc), ethanol (EtOH), 70% EtOH, and water (aqueous) were prepared by maceration. The EtOH extract was predominated by the presence of rutin (4280.20 μg g-1) and p-coumaric acid (3044.01 μg g-1) while the highest accumulation of kaempferol-3-glucoside (1537.38 μg g-1), caffeic acid (130.13 μg g-1) and 4-hydroxy benzoic acid (465.93 μg g-1) was recorded in the 70% EtOH, aqueous, and EtOAc extracts, respectively. The EtOH (46.86 mg TE/g) and 70% EtOH (46.33 mg TE/g) extracts displayed the highest DPPH radical scavenging result. Both these extracts, along with the aqueous one, exerted the highest ABTS radical scavenging result (73.03-73.56 mg TE/g). The EtOH and 70% EtOH extracts revealed the most potent anti-AChE (2.66 and 2.64 mg GALAE/g) and anti-glucosidase (1.07 and 1.09 mmol ACAE/g) activities. The aqueous extract was the most efficacious in inhibiting the proliferation of prostate cancer (DU-145) cells with an IC50 of 8.71 μg/mL and a Selectivity Index of 3.7. In conclusion, this study appraised the use of V. diversifolium aerial parts as a potential therapeutic source for future development of phytopharmaceuticals that target specific oxidative stress-linked diseases including diabetes, cancer, cardiovascular disease, and Alzheimer's disease among others.
Collapse
Affiliation(s)
- Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
- Université de Lorraine, INRAE, LAE, Nancy, France
| | - Nilofar Nilofar
- Physiology and Biochemistry Research Laborotory, Department of Biology, Science Faculty, Selcuk University, Konya, Türkiye
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici” “Gabriele d’Annunzio” University, Chieti, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Türkiye
| | | | | | | | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Türkiye
| | - Fatma Seker
- Department of Biology, Science Arts Faculty, Harran University, Sanliurfa, Türkiye
| | - Rıdvan Polat
- Department of Landscape Architecture, Faculty of Agriculture, Bingol University, Bingöl, Türkiye
| | - Sumaiya Jahan Supti
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Faria Tasnim
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laborotory, Department of Biology, Science Faculty, Selcuk University, Konya, Türkiye
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Doha, Qatar
| |
Collapse
|
11
|
Bahari H, Zeraattalab-Motlagh S, Hezaveh ZS, Namkhah Z, Golafrouz H, Taheri S, Sahebkar A. The Effects of Sumac Consumption on Inflammatory and Oxidative Stress Factors: A Systematic Review of Randomized Clinical Trials. Curr Pharm Des 2024; 30:2142-2151. [PMID: 38920072 DOI: 10.2174/0113816128305609240529114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Rhus coriaria L., commonly known as Sumac, is a plant from the Anacardiaceae family that is known for its high phytochemical content. These phytochemicals have the potential to effectively manage inflammation and oxidative stress. To explore the existing evidence on the impact of Sumac consumption on inflammation and oxidative stress, we conducted a systematic review of randomized controlled trials. METHODS We conducted a comprehensive search of Medline/PubMed, Scopus, and Web of Science from inception to August 2023 to identify relevant studies examining the effects of Sumac on biomarkers of inflammation and oxidative stress. The selected studies were assessed for risk of bias using the Cochrane tool. RESULTS A total of seven trials were included in this review. Among these trials, three focused on diabetes patients, while the remaining four involved individuals with fatty liver, overweight individuals with depression, and those with polycystic ovary or metabolic syndrome. Five studies reported the effects of Sumac on oxidative stress, with four of them demonstrating a significant reduction in malondialdehyde (MDA) levels and an increase in total antioxidant capacity (TAC) and paraoxonase 1 (PON1). Regarding inflammation, one study reported no significant difference in tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels between the intervention and control groups. The results for high-sensitivity C-reactive protein levels, reported in five trials, were inconsistent. CONCLUSION Sumac consumption over time may positively affect oxidative stress, although short-term use shows minimal impact. While one study found no significant effect on IL-6 and TNF-α, hs-CRP levels could decrease or remain unchanged. Further meta-analyses are needed to fully understand Sumac's potential benefits in managing metabolic diseases.
Collapse
Affiliation(s)
- Hossein Bahari
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sheida Zeraattalab-Motlagh
- Department of Health & Human Performance, University of Houston, Houston, TX 77004, USA
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Sajadi Hezaveh
- Department of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Zahra Namkhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haniyeh Golafrouz
- Department of Medical Sciences and Technologies, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Taheri
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Hosseini A, Ghorbani A, Alavi MS, Forouhi N, Rajabian A, Boroumand-Noughabi S, Sahebkar A, Eid AH. Cardioprotective effect of Sanguisorba minor against isoprenaline-induced myocardial infarction in rats. Front Pharmacol 2023; 14:1305816. [PMID: 38223198 PMCID: PMC10784747 DOI: 10.3389/fphar.2023.1305816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction: Oxidative stress is a major instigator of various cardiovascular diseases, including myocardial infarction (MI). Despite available drugs, there is still an increased need to look for alternative therapies or identify new bioactive compounds. Sanguisorba minor (S. minor) is a native herb characterized by its potent antioxidant activity. This study was designed to evaluate the effect of S. minor against isoprenaline-induced MI. Methods: Rats were treated with the hydro-ethanolic extract of the aerial parts of S. minor at doses of 100 or 300 mg/kg orally for 9 days. Isoprenaline was injected subcutaneously at the dose of 85 mg/kg on days 8 and 9. Then, the activities of various cardiac injury markers including cardiac troponin (cTnT), lactate dehydrogenase (LDH), creatinine kinase muscle brain (CK-MB), creatinine phosphokinase (CPK), and antioxidant enzymes in serum were determined. Malondialdehyde (MDA) and thiol content were measured in cardiac tissue, and histopathological analysis was conducted. Results: Our results show that isoprenaline increased the serum levels of cTnT, LDH, CK-MB, and CPK (p < 0.001) and elevated MDA levels (p < 0.001) in cardiac tissue. Isoprenaline also reduced superoxide dismutase (SOD), catalase, and thiol content (p < 0.001). Importantly, the extract abolished isoprenaline-induced MI by elevating SOD and catalase (p < 0.001), reducing levels of MDA, and diminishing levels of cTnT, LDH, CK-MB, and CPK cardiac markers (p < 0.001). Histopathological studies of the cardiac tissue showed isoprenaline-induced injury that was significantly attenuated by the extract. Conclusion: Our results suggest that S. minor could abrogate isoprenaline-induced cardiac toxicity due to its ability to mitigate oxidative stress.
Collapse
Affiliation(s)
- Azar Hosseini
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Ghorbani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Forouhi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
13
|
Mazzara E, Caprodossi A, Mustafa AM, Maggi F, Caprioli G. Phytochemical Investigation of Sumac ( Rhus coriaria L.) Fruits from Different Sicilian Accessions. Foods 2023; 12:4359. [PMID: 38231844 DOI: 10.3390/foods12234359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Sumac, Rhus coriaria L., is employed as a natural preservative in the food sector, due to its rich content of antioxidant compounds, including hydrolysable tannins, phenolic acids, anthocyanins, and flavonoids. In this work, the phytochemical characterization of sumac fruits from five Sicilian accessions was performed to evaluate their potential as a food preservative for nutraceutical exploitation. Spectrophotometric tests and HPLC-MS/MS analyses were conducted to assess and compare the antioxidant power of the water extracts produced with the five sumac accessions. Principal component analysis was also carried out to better visualize the obtained results. Flavonoids and phenolic acids, namely isoquercitrin (20,342.82 mg/kg dry extract) and gallic acid (197,489.19 mg/kg dry extract), were more abundant in fruits from the population of San Biagio Platani, while the one from Giarratana was characterized by a higher content of anthocyanins such as cyanidin-3-glucoside (20,889.81 mg/kg dry extract). These two populations can be recognized as the most suitable settings for the implementation of sumac cultivation and the development of sumac-based products, especially for food and nutraceutical purposes.
Collapse
Affiliation(s)
- Eugenia Mazzara
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Arianna Caprodossi
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Ahmed M Mustafa
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|
14
|
Zhang S, Chen M, Geng Z, Liu T, Li S, Yu Q, Cao L, Liu D. Potential Application of Self-Assembled Peptides and Proteins in Breast Cancer and Cervical Cancer. Int J Mol Sci 2023; 24:17056. [PMID: 38069380 PMCID: PMC10706889 DOI: 10.3390/ijms242317056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Ongoing research is gradually broadening the idea of cancer treatment, with attention being focused on nanoparticles to improve the stability, therapeutic efficacy, targeting, and other important metrics of conventional drugs and traditional drug delivery methods. Studies have demonstrated that drug delivery carriers based on biomaterials (e.g., protein nanoparticles and lipids) and inorganic materials (e.g., metal nanoparticles) have potential anticancer effects. Among these carriers, self-assembled proteins and peptides, which are highly biocompatible and easy to standardize and produce, are strong candidates for the preparation of anticancer drugs. Breast cancer (BC) and cervical cancer (CC) are two of the most common and deadly cancers in women. These cancers not only threaten lives globally but also put a heavy burden on the healthcare system. Despite advances in medical care, the incidence of these two cancers, particularly CC, which is almost entirely preventable, continues to rise, and the mortality rate remains steady. Therefore, there is still a need for in-depth research on these two cancers to develop more targeted, efficacious, and safe therapies. This paper reviews the types of self-assembling proteins and peptides (e.g., ferritin, albumin, and virus-like particles) and natural products (e.g., soy and paclitaxel) commonly used in the treatment of BC and CC and describes the types of drugs that can be delivered using self-assembling proteins and peptides as carriers (e.g., siRNAs, DNA, plasmids, and mRNAs). The mechanisms (including self-assembly) by which the natural products act on CC and BC are discussed. The mechanism of action of natural products on CC and BC and the mechanism of action of self-assembled proteins and peptides have many similarities (e.g., NF-KB and Wnt). Thus, natural products using self-assembled proteins and peptides as carriers show potential for the treatment of BC and CC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lingling Cao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.Z.); (M.C.); (Z.G.); (T.L.); (S.L.); (Q.Y.)
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.Z.); (M.C.); (Z.G.); (T.L.); (S.L.); (Q.Y.)
| |
Collapse
|
15
|
Uka A, Krasniqi D, Beretta G, Daci A. Assessment of In Vitro Airway Smooth Muscle Relaxant Activity of Rhus coriaria L. Fruit Ethanolic Extract and Its Possible Mechanisms. J Med Food 2023; 26:820-830. [PMID: 37902984 DOI: 10.1089/jmf.2022.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Rhus coriaria L. (Anacardiaceae), also known as Sumac, is commonly used as a spice, flavoring agent, and as a traditional medicinal herb. This includes also the traditional use for treating asthma, catarrh, and common colds. The accumulating evidence supports its cardioprotective, antidiabetic, neuroprotective, anticancer, gastroprotective, antibacterial, anti-inflammatory, antiviral, antioxidant, and respiratory effects. However, there are no previous studies that have shown its effects and mechanism in the airway smooth muscle tone, and therefore, the aim of our study was to investigate the in vitro pharmacological action of R. coriaria L. extract (RCE) on the rat isolated tracheal and bronchial preparations by exploring its relaxant activity and mechanism of action. The direct relaxant effect of RCE (0.1-0.7 mg/mL) was tested in the rat bronchi and trachea rings precontracted by carbachol (CCh). In addition, the pretreatment with RCE (1 mg/mL) was tested on the bronchial and tracheal reactivity induced by CCh, potassium chloride (KCl), or CaCl2. In addition, the cyclooxygenase inhibitor indomethacin and the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME), respectively, were used for exploring the mechanisms of RCE-induced relaxation and reduction of reactivity. Our findings demonstrated that RCE induced a concentration-dependent relaxation and a significant reduction of reactivity, significantly reduced with either indomethacin or L-NAME. In addition, RCE decreased the responsiveness to KCl and affected the extracellular Ca2+-induced contraction in the tissues with added CCh or KCl in Ca2+-free Krebs-Henseleit solution. In summary, we have shown that RCE displayed relaxant activities in the in vitro airway smooth muscles, and the possible mechanisms seems to involve the prostaglandin, nitric oxide, and Ca2+ pathways. Taken together, our findings indicate the potential role of RCE in the treatment of respiratory diseases with limited airflow, or obstructive respiratory diseases, and could justify its traditional use in the respiratory diseases.
Collapse
Affiliation(s)
- Albina Uka
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Donjeta Krasniqi
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Giangiacomo Beretta
- Department of Environmental Science, Università degli Studi di Milano, Milan, Italy
| | - Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| |
Collapse
|
16
|
Koning T, Cordova F, Aguilar G, Sarmiento J, Mardones GA, Boric M, Varas-Godoy M, Lladser A, Duran WN, Ehrenfeld P, Sanchez FA. S-Nitrosylation in endothelial cells contributes to tumor cell adhesion and extravasation during breast cancer metastasis. Biol Res 2023; 56:51. [PMID: 37773178 PMCID: PMC10540418 DOI: 10.1186/s40659-023-00461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/23/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Nitric oxide is produced by different nitric oxide synthases isoforms. NO activates two signaling pathways, one dependent on soluble guanylate cyclase and protein kinase G, and other where NO post-translationally modifies proteins through S-nitrosylation, which is the modification induced by NO in free-thiol cysteines in proteins to form S-nitrosothiols. High levels of NO have been detected in blood of breast cancer patients and increased NOS activity has been detected in invasive breast tumors compared to benign or normal breast tissue, suggesting a positive correlation between NO biosynthesis, degree of malignancy and metastasis. During metastasis, the endothelium plays a key role allowing the adhesion of tumor cells, which is the first step in the extravasation process leading to metastasis. This step shares similarities with leukocyte adhesion to the endothelium, and it is plausible that it may also share some regulatory elements. The vascular cell adhesion molecule-1 (VCAM-1) expressed on the endothelial cell surface promotes interactions between the endothelium and tumor cells, as well as leukocytes. Data show that breast tumor cells adhere to areas in the vasculature where NO production is increased, however, the mechanisms involved are unknown. RESULTS We report that the stimulation of endothelial cells with interleukin-8, and conditioned medium from breast tumor cells activates the S-nitrosylation pathway in the endothelium to induce leukocyte adhesion and tumor cell extravasation by a mechanism that involves an increased VCAM-1 cell surface expression in endothelial cells. We identified VCAM-1 as an S-nitrosylation target during this process. The inhibition of NO signaling and S-nitrosylation blocked the transmigration of tumor cells through endothelial monolayers. Using an in vivo model, the number of lung metastases was inhibited in the presence of the S-nitrosylation inhibitor N-acetylcysteine (NAC), which was correlated with lower levels of S-nitrosylated VCAM-1 in the metastases. CONCLUSIONS S-Nitrosylation in the endothelium activates pathways that enhance VCAM-1 surface localization to promote binding of leukocytes and extravasation of tumor cells leading to metastasis. NAC is positioned as an important tool that might be tested as a co-therapy against breast cancer metastasis.
Collapse
Affiliation(s)
- T Koning
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, 511-0566, Valdivia, Chile
- Escuela de Graduados de Ciencias, Universidad Austral de Chile, 511-0566, Valdivia, Chile
| | - F Cordova
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, 511-0566, Valdivia, Chile
| | - G Aguilar
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, 511-0566, Valdivia, Chile
| | - J Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, 511-0566, Valdivia, Chile
| | - G A Mardones
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, 511-0566, Valdivia, Chile
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - M Boric
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - M Varas-Godoy
- Cancer Cell Biology Lab., Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510157, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, 7780272, Santiago, Chile
| | - A Lladser
- Centro Ciencia & Vida, Fundación Ciencia & Vida, 7780272, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - W N Duran
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - P Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, 511-0566, Valdivia, Chile.
- Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, 5110566, Valdivia, Chile.
| | - F A Sanchez
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, 511-0566, Valdivia, Chile.
- Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, 5110566, Valdivia, Chile.
| |
Collapse
|
17
|
Oza PP, Kashfi K. The Triple Crown: NO, CO, and H 2S in cancer cell biology. Pharmacol Ther 2023; 249:108502. [PMID: 37517510 PMCID: PMC10529678 DOI: 10.1016/j.pharmthera.2023.108502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are three endogenously produced gases with important functions in the vasculature, immune defense, and inflammation. It is increasingly apparent that, far from working in isolation, these three exert many effects by modulating each other's activity. Each gas is produced by three enzymes, which have some tissue specificities and can also be non-enzymatically produced by redox reactions of various substrates. Both NO and CO share similar properties, such as activating soluble guanylate cyclase (sGC) to increase cyclic guanosine monophosphate (cGMP) levels. At the same time, H2S both inhibits phosphodiesterase 5A (PDE5A), an enzyme that metabolizes sGC and exerts redox regulation on sGC. The role of NO, CO, and H2S in the setting of cancer has been quite perplexing, as there is evidence for both tumor-promoting and pro-inflammatory effects and anti-tumor and anti-inflammatory activities. Each gasotransmitter has been found to have dual effects on different aspects of cancer biology, including cancer cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and immunomodulation. These seemingly contradictory actions may relate to each gas having a dual effect dependent on its local flux. In this review, we discuss the major roles of NO, CO, and H2S in the context of cancer, with an effort to highlight the dual nature of each gas in different events occurring during cancer progression.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA.
| |
Collapse
|
18
|
Nouri M, Mohit M, Sohaei S, Mehrabani S, Ansari MJ, Yasin G, Hejazi N, Zangane A, Hadi A. Effect of Sumac Powder Supplementation on Anthropometric Indices: A Systematic Review and Meta-analysis of Randomised Controlled Trials. J Herb Med 2023; 41:100727. [DOI: 10.1016/j.hermed.2023.100727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Swaminathan H, Saravanamurali K, Yadav SA. Extensive review on breast cancer its etiology, progression, prognostic markers, and treatment. Med Oncol 2023; 40:238. [PMID: 37442848 DOI: 10.1007/s12032-023-02111-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
As the most frequent and vulnerable malignancy among women, breast cancer universally manifests a formidable healthcare challenge. From a biological and molecular perspective, it is a heterogenous disease and is stratified based on the etiological factors driving breast carcinogenesis. Notably, genetic predispositions and epigenetic impacts often constitute the heterogeneity of this disease. Typically, breast cancer is classified intrinsically into histological subtypes in clinical landscapes. These stratifications empower physicians to tailor precise treatments among the spectrum of breast cancer therapeutics. In this pursuit, numerous prognostic algorithms are extensively characterized, drastically changing how breast cancer is portrayed. Therefore, it is a basic requisite to comprehend the multidisciplinary rationales of breast cancer to assist the evolution of novel therapeutic strategies. This review aims at highlighting the molecular and genetic grounds of cancer additionally with therapeutic and phytotherapeutic context. Substantially, it also renders researchers with an insight into the breast cancer cell lines as a model paradigm for breast cancer research interventions.
Collapse
Affiliation(s)
- Harshini Swaminathan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - K Saravanamurali
- Virus Research and Diagnostics Laboratory, Department of Microbiology, Coimbatore Medical College, Coimbatore, India
| | - Sangilimuthu Alagar Yadav
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India.
| |
Collapse
|
20
|
Calabrò A, Ligotti ME, Accardi G, Di Majo D, Caruso C, Candore G, Aiello A. The Nutraceutical Properties of Rhus coriaria Linn: Potential Application on Human Health and Aging Biomedicine. Int J Mol Sci 2023; 24:ijms24076206. [PMID: 37047178 PMCID: PMC10094520 DOI: 10.3390/ijms24076206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Rhus coriaria Linn is a little plant growing in the Mediterranean basin, including Sicily, where it is known as Sicilian Sumac. Since antiquity, it has been used as a medicinal herb, considering its pharmacological properties and its recognized anti-inflammatory, antioxidant, and antimicrobial effects. Multiple studies have highlighted that the beneficial properties of Sumac extracts depend on the abundance of phytochemicals such as polyphenols, fatty acids, minerals, and fibers. Despite its wide use as a spice, the literature on Sumac effects on humans’ health and aging is still scarce. Considering its great nutraceutical potential, Sumac could be used to treat age-related diseases such as those in which the inflammatory process plays a crucial role in manifestation and progression. Thus, Sumac could be an interesting new insight in the biomedical field, especially in aging biomedicine.
Collapse
Affiliation(s)
- Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
- Correspondence:
| | - Danila Di Majo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| |
Collapse
|
21
|
Afandak F, Aryaeian N, Kashanian M, Janani L, Namizadeh T, Karimi MY, Morvaridi M. Effect of sumac powder on clinical symptoms, hyperandrogenism, inflammation, blood glucose, lipid profiles in women with polycystic ovary syndrome: A double-blind randomized clinical trial. Phytother Res 2023. [PMID: 36724890 DOI: 10.1002/ptr.7744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 09/24/2022] [Accepted: 10/09/2022] [Indexed: 02/03/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders associated with a high risk of diabetes, atherosclerosis, and cardiovascular disease. The purpose of this study was to determine the effect of sumac powder on clinical symptoms and laboratory parameters in women with PCOS. The double-blind randomized controlled clinical trial was conducted on 88 women with PCOS randomly assigned to the intervention and control groups. The intervention group received three capsules each containing 1 g of sumac powder for 12 weeks. All data and serum levels of sex hormone, hs-CRP, glucose, and lipid profiles were measured at the baseline and at the end of the study. Data were analyzed using SPSS version 25 software. The ANCOVA test results showed that hs-CRP level was significantly reduced in the intervention group (p = .008). Blood glucose and lipid profiles in the intervention group were significantly reduced compared to the placebo group (p < .05). Insulin sensitivity and HDL levels were increased significantly in the Sumac group after the intervention (p < .05). Sumac powder can reduce the inflammatory effects, and glycemic status and lipid profile of polycystic ovaries in affected women, but has no significant effect on anthropometric parameters and sex hormones.
Collapse
Affiliation(s)
- Fateme Afandak
- Department of Nutrition Sciences, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Naheed Aryaeian
- Department of Nutrition Sciences, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Kashanian
- Department of Obstetrics & Gynecology, Iran University of Medical Sciences, Akbarabadi Teaching Hospital, Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Tandis Namizadeh
- Department of Nutrition Sciences, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mehrnaz Morvaridi
- Department of Nutrition Sciences, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Thilagavathi R, Priyankha S, Kannan M, Prakash M, Selvam C. Compounds from diverse natural origin against triple-negative breast cancer: A comprehensive review. Chem Biol Drug Des 2023; 101:218-243. [PMID: 36323650 DOI: 10.1111/cbdd.14172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Triple-negative breast cancer (TNBC) is caused due to the lack of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor 2 (HER2) expression. Triple-negative breast cancer is the most aggressive heterogeneous disease that is capable of producing different clones and mutations. Tumorigenesis in TNBC is caused due to the mutation or overexpression of tumor suppressor genes. It is also associated with mutations in the BRCA gene which is linked to hereditary breast cancer. In addition, PARP proteins and checkpoint proteins also play a crucial function in causing TNBC. Many cell signaling pathways are dysregulated in TNBC. Even though chemotherapy and immunotherapy are good options for TNBC treatment, the response rates are still low in general. Many phytochemicals that are derived from natural compounds have shown very good inhibitions for TNBC. Natural compounds have the great advantage of being less toxic, having lesser side effects, and being easily available. The secondary metabolites such as alkaloids, terpenoids, steroids, and flavonoids in natural products make them promising inhibitors of TNBC. Their compositions also offer vital insights into inhibitory action, which could lead to new cancer-fighting strategies. This review can help in understanding how naturally occurring substances and medicinal herbs decrease specific tumors and pave the way for the development of novel and extremely efficient antitumor therapies.
Collapse
Affiliation(s)
- Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Sridhar Priyankha
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, India
| | - Manivel Kannan
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, India
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, India
| | - Chelliah Selvam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
23
|
Santos JC, Profitós-Pelejà N, Ribeiro ML, Roué G. Antitumor Activity of Simvastatin in Preclinical Models of Mantle Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14225601. [PMID: 36428695 PMCID: PMC9688202 DOI: 10.3390/cancers14225601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is a rare and aggressive subtype of B-cell non-Hodgkin lymphoma that remains incurable with standard therapy. Statins are well-tolerated, inexpensive, and widely prescribed as cholesterol-lowering agents to treat hyperlipidemia and to prevent cardiovascular diseases through the blockage of the mevalonate metabolic pathway. These drugs have also shown promising anti-cancer activity through pleiotropic effects including the induction of lymphoma cell death. However, their potential use as anti-MCL agents has not been evaluated so far. AIM The present study aimed to investigate the activity of simvastatin on MCL cells. METHODS We evaluated the cytotoxicity of simvastatin in MCL cell lines by CellTiter-Glo and lactate dehydrogenase (LDH) release assays. Cell proliferation and mitotic index were assessed by direct cell recounting and histone H3-pSer10 immunostaining. Apoptosis induction and reactive oxygen species (ROS) generation were evaluated by flow cytometry. Cell migration and invasion properties were determined by transwell assay. The antitumoral effect of simvastatin in vivo was evaluated in a chick embryo chorioallantoic membrane (CAM) MCL xenograft model. RESULTS We show that treatment with simvastatin induced a 2 to 6-fold LDH release, inhibited more than 50% of cell proliferation, and enhanced the caspase-independent ROS-mediated death of MCL cells. The effective impairment of MCL cell survival was accompanied by the inhibition of AKT and mTOR phosphorylation. Moreover, simvastatin strongly decreased MCL cell migration and invasion ability, leading to a 55% tumor growth inhibition and a consistent diminution of bone marrow and spleen metastasis in vivo. CONCLUSION Altogether, these data provide the first preclinical insight into the effect of simvastatin against MCL cells, suggesting that this agent might be considered for repurpose as a precise MCL therapy.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukemia Research Institute, 08916 Badalona, Spain
- Correspondence: (J.C.S.); (G.R.); Tel.: +34-935572800 (ext. 4081) (J.C.S.); +34-935572835 (G.R.)
| | - Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukemia Research Institute, 08916 Badalona, Spain
| | - Marcelo Lima Ribeiro
- Lymphoma Translational Group, Josep Carreras Leukemia Research Institute, 08916 Badalona, Spain
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 01246-100, SP, Brazil
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukemia Research Institute, 08916 Badalona, Spain
- Correspondence: (J.C.S.); (G.R.); Tel.: +34-935572800 (ext. 4081) (J.C.S.); +34-935572835 (G.R.)
| |
Collapse
|
24
|
Pontel LB, Bueno-Costa A, Morellato AE, Carvalho Santos J, Roué G, Esteller M. Acute lymphoblastic leukemia necessitates GSH-dependent ferroptosis defenses to overcome FSP1-epigenetic silencing. Redox Biol 2022; 55:102408. [PMID: 35944469 PMCID: PMC9364119 DOI: 10.1016/j.redox.2022.102408] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
Ferroptosis is a form of cell death triggered by phospholipid hydroperoxides (PLOOH) generated from the iron-dependent oxidation of polyunsaturated fatty acids (PUFAs). To prevent ferroptosis, cells rely on the antioxidant glutathione (GSH), which serves as cofactor of the glutathione peroxidase 4 (GPX4) for the neutralization of PLOOHs. Some cancer cells can also limit ferroptosis through a GSH-independent axis, centered mainly on the ferroptosis suppressor protein 1 (FSP1). The significance of these two anti-ferroptosis pathways is still poorly understood in cancers from hematopoietic origin. Here, we report that blood-derived cancer cells are selectively sensitive to compounds that block the GSH-dependent anti-ferroptosis axis. In T- and B- acute lymphoblastic leukemia (ALL) cell lines and patient biopsies, the promoter of the gene coding for FSP1 is hypermethylated, silencing the expression of FSP1 and creating a selective dependency on GSH-centered anti-ferroptosis defenses. In-trans expression of FSP1 increases the resistance of leukemic cells to compounds targeting the GSH-dependent anti-ferroptosis pathway. FSP1 over-expression also favors ALL-tumor growth in an in vivo chick chorioallantoic membrane (CAM) model. Hence, our results reveal a metabolic vulnerability of ALL that might be of therapeutic interest.
Collapse
Affiliation(s)
- Lucas B Pontel
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Alberto Bueno-Costa
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Agustín E Morellato
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
25
|
Rhus coriaria L. (Sumac), a Versatile and Resourceful Food Spice with Cornucopia of Polyphenols. Molecules 2022; 27:molecules27165179. [PMID: 36014419 PMCID: PMC9414570 DOI: 10.3390/molecules27165179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, utilization of Rhus coriaria L. (sumac) is upgrading not only in their culinary use and human nutrition, but also in the pharmaceutical industry, food industry and veterinary practices. This is driven by accumulating evidence that support the ethnobotanical use of this plant; in particular, advanced knowledge of the content of nutritional, medicinal and techno-functional bioactive ingredients. Herein, we discuss polyphenolic compounds as the main bioactive ingredients in Rhus coriaria L., which contribute mainly to the significance and utility of this spice. Most of the antioxidant potential and therapeutic roles of sumac are increasingly attributed to its constituent tannins, flavonoids, and phenolic acids. Hydroxyphenyl pyranoanthocyanins and other anthocynins are responsible for the highly desired red pigments accounting for the strong pigmentation capacity and colorant ability of sumac. Certain polyphenols and the essential oil components are responsible for the peculiar flavor and antimicrobial activity of sumac. Tannin-rich sumac extracts and isolates are known to enhance the food quality and the oxidative stability of animal products such as meat and milk. In conclusion, polyphenol-rich sumac extracts and its bioactive ingredients could be exploited towards developing novel food products which do not only address the current consumers' interests regarding organoleptic and nutritional value of food, but also meet the growing need for 'clean label' as well as value addition with respect to antioxidant capacity, disease prevention, and health promotion in humans.
Collapse
|
26
|
Alsarayreh AZ, Oran SA, Shakhanbeh JM, Khleifat KM, Al Qaisi YT, Alfarrayeh II, Alkaramseh AM. Efficacy of methanolic extracts of some medicinal plants on wound healing in diabetic rats. Heliyon 2022; 8:e10071. [PMID: 35965986 PMCID: PMC9364101 DOI: 10.1016/j.heliyon.2022.e10071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/15/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Materials and methods Results Conclusion
Collapse
Affiliation(s)
- Ahmad Z. Alsarayreh
- Department of Biological Sciences, Faculty of Sciences, Mutah University, Al-Karak, Jordan
- Corresponding author.
| | - Sawsan A. Oran
- Department of Biological Sciences, Faculty of Sciences, University of Jordan, Amman, Jordan
| | - Jumah M. Shakhanbeh
- Department of Biological Sciences, Faculty of Sciences, Mutah University, Al-Karak, Jordan
| | - Khaled M. Khleifat
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Yaseen T. Al Qaisi
- Department of Biological Sciences, Faculty of Sciences, Mutah University, Al-Karak, Jordan
| | - Ibrahim I. Alfarrayeh
- Department of Biological Sciences, Faculty of Sciences, Mutah University, Al-Karak, Jordan
| | - Ayah M. Alkaramseh
- Department of Biological Sciences, Faculty of Sciences, University of Jordan, Amman, Jordan
| |
Collapse
|
27
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
28
|
AlKahlout A, Fardoun M, Mesmar J, Abdallah R, Badran A, Nasser SA, Baydoun S, Kobeissy F, Shaito A, Iratni R, Muhammad K, Baydoun E, Eid AH. Origanum syriacum L. Attenuates the Malignant Phenotype of MDA-MB231 Breast Cancer Cells. Front Oncol 2022; 12:922196. [PMID: 35847867 PMCID: PMC9280492 DOI: 10.3389/fonc.2022.922196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women. Among breast cancer types, triple negative breast cancer (TNBC) is the most aggressive, and is resistant to hormonal and chemotherapeutic treatments. As such, alternative approaches that may provide some benefit in fighting this debilitating pathology are critically needed; hence the utilization of herbal medicine. Origanum syriacum L., one of the most regularly consumed plants in the Mediterranean region, exhibits antiproliferative effect on several cancer cell lines. However, whether this herb modulates the malignant phenotype of TNBC remains poorly investigated. Here, we show that in MDA-MB-231, a TNBC cell line, Origanum syriacum L. aqueous extract (OSE) inhibited cellular viability, induced autophagy determined by the accumulation of lipidized LC3 II, and triggered apoptosis. We also show that OSE significantly promoted homotypic cell-cell adhesion while it decreased cellular migration, adhesion to fibronectin, and invasion of MDA-MB-231 cells. This was supported by decreased activity of focal adhesion kinase (FAK), reduced α2 integrin expression, and downregulation of secreted PgE2, MMP2 and MMP-9, in OSE-treated cells. Finally, we also show that OSE significantly inhibited angiogenesis and downregulated the level of nitric oxide (NO) production. Our findings demonstrate the ability of OSE to attenuate the malignant phenotype of the MDA-MB-231 cells, thus presenting Origanum syriacum L. as a promising potential source for therapeutic compounds for TNBC.
Collapse
Affiliation(s)
| | - Manal Fardoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Joelle Mesmar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Rola Abdallah
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Adnan Badran
- Department of Basic Sciences, University of Petra, Amman, Jordan
| | - Suzanne A. Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Serine Baydoun
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, United States
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainseville, FL, United States
| | | | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
29
|
PD-1/PD-L1 Checkpoint Inhibitors Are Active in the Chicken Embryo Model and Show Antitumor Efficacy In Ovo. Cancers (Basel) 2022; 14:cancers14133095. [PMID: 35804865 PMCID: PMC9264844 DOI: 10.3390/cancers14133095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Cancer immunotherapy, also known as immuno-oncology (IO), has made impressive progress in recent decades and is becoming an essential approach for cancer treatments. For IO drug development, a pertinent preclinical model is indispensable for the rapid and efficient transition from preclinical evaluation through to clinical progress. To date, rodents represent the most-often used models for preclinical evaluation. However, their use presents several drawbacks, including ethical constraints, and time-consuming and costly experiments, which could slow down IO drug development. The aim of our study was to assess the use of the chicken embryo (in ovo) model as an alternative in vivo model for evaluating IO drugs. We confirmed in ovo the anti-tumor efficacy of programmed cell death protein-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) checkpoint inhibitors based on the Chicken Chorioallantoic Membrane (CAM) assay, revealing the pertinence of the chicken embryo model in its use for IO research. Abstract (1) Purpose: To assess the use of the chicken embryo (in ovo) model as an alternative in vivo model for immuno-oncology (IO) drug development, focusing on programmed cell death protein-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) immune checkpoint inhibitors. (2) Methods: First, the presence of immune cells in the model was detected through the immunophenotyping of chicken peripheral blood mononuclear cells (PBMCs) based on fluorescence activated cell sorting (FACS) analysis and the immunohistochemistry (IHC) analysis of in ovo tumor-infiltrating lymphocytes. Second, the cross-reactivity between one anti-human PD-1 Ab, pembrolizumab (KEYTRUDA®), and chicken PD-1 was verified through the labelling of chicken splenocytes with pembrolizumab by FACS analysis. Third, the blockade effect of pembrolizumab on chicken PBMCs was assessed in vitro through cytotoxicity assay based on MTT. Fourth, the CAM assay was used to estimate the anti-tumor performance of pembrolizumab through the analyses of tumor growth and chicken immune cell infiltration in tumors. Finally, the efficacy of several PD-1 or PD-L1 inhibitors (nivolumab, atezolizumab and avelumab) on tumor growth was further assessed using the CAM assay. (3) Results: The presence of CD3+, CD4+, CD8+ T lymphocytes and monocytes was confirmed by FACS and IHC analyses. During in vitro assays, pembrolizumab cross-reacted with chicken lymphocytes and induced PD-1/PD-L1 blockade, which permitted the restoration of chicken T-cell’s cytotoxicity against human lung cancer H460 tumor cells. All these in vitro results were correlated with in ovo findings based on the CAM assay: pembrolizumab inhibited H460 tumor growth and induced evident chicken immune cell infiltration (with significant chicken CD45, CD3, CD4, CD8 and CD56 markers) in tumors. Furthermore, the potency of the CAM assay was not limited to the application of pembrolizumab. Nivolumab, atezolizumab and avelumab also led to tumor growth inhibition in ovo, on different tumor models. (4) Conclusions: The chicken embryo affords a physiological, immune reactive, in vivo environment for IO research, which allows observation of how the immune system defense against tumor cells, as well as the different immune tolerance mechanisms leading to tumor immune escape. The encouraging results obtained with PD-1/PD-L1 inhibitors in this study reveal the potential use of the chicken embryo model as an alternative, fast, and reliable in vivo model in the different fields of IO drug discovery.
Collapse
|
30
|
Zhan X, Jiang X, He Q, Zhong L, Wang Y, Huang Y, He S, Sheng J, Liao J, Zeng Z, Hu S. Pam2 lipopeptides enhance the immunosuppressive activity of monocytic myeloid-derived suppressor cells by STAT3 signal in chronic inflammation. Cent Eur J Immunol 2022; 47:30-40. [PMID: 35600157 PMCID: PMC9115589 DOI: 10.5114/ceji.2022.113086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic inflammation develops when the immune system is unable to clear a persistent insult. Unresolved chronic inflammation leads to immunosuppression to maintain the internal homeostatic conditions, which is mediated primarily by myeloid-derived suppressor cells (MDSCs). Toll-like receptors 2 (TLR2) has an important role in chronic inflammation and can be activated by a vast number and diversity of TLR2 ligands, for example Pam2CSK4. However, the regulatory effect of TLR2 signaling on MDSCs in chronic inflammation remains controversial. This study demonstrated that heat-killed Mycobacterium bovis BCG-induced pathology-free chronic inflammation triggered suppressive monocytic MDSCs (M-MDSCs) that expressed TLR2. Activation of TLR2 signaling by Pam2CSK4 treatment enhanced immunosuppression of M-MDSCs by upregulating inducible nitric oxide synthase (iNOS) activity and nitric oxide (NO) production partly through signal transducer and activator of transcription 3 (STAT3) activation. Thus, TLR2 has a fundamental role in promoting the MDSC-mediated immunosuppressive environment during chronic inflammation and might represent a potentially therapeutic target in chronic inflammation disease.
Collapse
Affiliation(s)
- Xiaoxia Zhan
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaobing Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiuying He
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liangyin Zhong
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yichong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shitong He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Junli Sheng
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianwei Liao
- Cellular and Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhijie Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Butein and Frondoside-A Combination Exhibits Additive Anti-Cancer Effects on Tumor Cell Viability, Colony Growth, and Invasion and Synergism on Endothelial Cell Migration. Int J Mol Sci 2021; 23:ijms23010431. [PMID: 35008855 PMCID: PMC8745659 DOI: 10.3390/ijms23010431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the significant advances in targeted- and immuno-therapies, lung and breast cancer are at the top list of cancer incidence and mortality worldwide as of 2020. Combination therapy consisting of a mixture of different drugs taken at once is currently the main approach in cancer management. Natural compounds are extensively investigated for their promising anti-cancer potential. This study explored the anti-cancer potential of butein, a biologically active flavonoid, on two major solid tumors, namely, A549 lung and MDA-MB-231 breast cancer cells alone and in combination with another natural anti-cancer compound, frondoside-A. We demonstrated that butein decreases A549 and MDA-MB-231 cancer cell viability and colony growth in vitro in addition to tumor growth on chick embryo chorioallantoic membrane (CAM) in vivo without inducing any noticeable toxicity. Additionally, non-toxic concentrations of butein significantly reduced the migration and invasion of both cell lines, suggesting its potential anti-metastatic effect. We showed that butein anti-cancer effects are due, at least in part, to a potent inhibition of STAT3 phosphorylation, leading to PARP cleavage and consequently cell death. Moreover, we demonstrated that combining butein with frondoside-A leads to additive effects on inhibiting A549 and MDA-MB-231 cellular viability, induction of caspase 3/7 activity, inhibition of colony growth, and inhibition of cellular migration and invasion. This combination reached a synergistic effect on the inhibition of HUVECs migration in vitro. Collectively, this study provides sufficient rationale to further carry out animal studies to confirm the relevance of these compounds’ combination in cancer therapy.
Collapse
|
32
|
Shrihastini V, Muthuramalingam P, Adarshan S, Sujitha M, Chen JT, Shin H, Ramesh M. Plant Derived Bioactive Compounds, Their Anti-Cancer Effects and In Silico Approaches as an Alternative Target Treatment Strategy for Breast Cancer: An Updated Overview. Cancers (Basel) 2021; 13:cancers13246222. [PMID: 34944840 PMCID: PMC8699774 DOI: 10.3390/cancers13246222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the most common malignant diseases that occur worldwide, among which breast cancer is the second leading cause of death in women. The subtypes are associated with differences in the outcome and were selected for treatments according to the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor. Triple-negative breast cancer, one of the subtypes of breast cancer, is difficult to treat and can even lead to death. If breast cancer is not treated during the initial stages, it may spread to nearby organs, a process called metastasis, through the blood or lymph system. For in vitro studies, MCF-7, MDA-MB-231, MDA-MB-468, and T47B are the most commonly used breast cancer cell lines. Clinically, chemotherapy and radiotherapy are usually expensive and can also cause side effects. To overcome these issues, medicinal plants could be the best alternative for chemotherapeutic drugs with fewer side effects and cost-effectiveness. Furthermore, the genes involved in breast cancer can be regulated and synergized with signaling molecules to suppress the proliferation of breast cancer cells. In addition, nanoparticles encapsulating (nano-encapsulation) medicinal plant extracts showed a significant reduction in the apoptotic and cytotoxic activities of breast cancer cells. This present review mainly speculates an overview of the native medicinal plant derived anti-cancerous compounds with its efficiency, types and pathways involved in breast cancer along with its genes, the mechanism of breast cancer brain metastasis, chemoresistivity and its mechanism, bioinformatics approaches which could be an effective alternative for drug discovery.
Collapse
Affiliation(s)
- Vijayakumar Shrihastini
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India; (V.S.); (M.S.)
| | - Pandiyan Muthuramalingam
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India; (V.S.); (M.S.)
- Correspondence: (P.M.); (J.-T.C.)
| | - Sivakumar Adarshan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (M.R.)
| | - Mariappan Sujitha
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India; (V.S.); (M.S.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
- Correspondence: (P.M.); (J.-T.C.)
| | - Hyunsuk Shin
- Department of Horticultural Sciences, Gyeongsang National University, Jinju 52725, Korea;
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (M.R.)
| |
Collapse
|
33
|
Khalil M, Hayek S, Khalil N, Serale N, Vergani L, Calasso M, De Angelis M, Portincasa P. Role of Sumac (Rhus coriaria L.) in the management of metabolic syndrome and related disorders: Focus on NAFLD-atherosclerosis interplay. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
34
|
Garcia P, Wang Y, Viallet J, Macek Jilkova Z. The Chicken Embryo Model: A Novel and Relevant Model for Immune-Based Studies. Front Immunol 2021; 12:791081. [PMID: 34868080 PMCID: PMC8640176 DOI: 10.3389/fimmu.2021.791081] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the immune system is associated with many pathologies, including cardiovascular diseases, diabetes, and cancer. To date, the most commonly used models in biomedical research are rodents, and despite the various advantages they offer, their use also raises numerous drawbacks. Recently, another in vivo model, the chicken embryo and its chorioallantoic membrane, has re-emerged for various applications. This model has many benefits compared to other classical models, as it is cost-effective, time-efficient, and easier to use. In this review, we explain how the chicken embryo can be used as a model for immune-based studies, as it gradually develops an embryonic immune system, yet which is functionally similar to humans'. We mainly aim to describe the avian immune system, highlighting the differences and similarities with the human immune system, including the repertoire of lymphoid tissues, immune cells, and other key features. We also describe the general in ovo immune ontogeny. In conclusion, we expect that this review will help future studies better tailor their use of the chicken embryo model for testing specific experimental hypotheses or performing preclinical testing.
Collapse
Affiliation(s)
- Paul Garcia
- Université Grenoble Alpes, Grenoble, France
- R&D Department, Inovotion, La Tronche, France
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, La Tronche, France
| | - Yan Wang
- R&D Department, Inovotion, La Tronche, France
| | | | - Zuzana Macek Jilkova
- Université Grenoble Alpes, Grenoble, France
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, La Tronche, France
- Service d’Hépato-Gastroentérologie, Pôle Digidune, Centre Hospitalo-Universitaire (USA) Grenoble Alpes, La Tronche, France
| |
Collapse
|
35
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
36
|
Potential anticancer activities of Rhus coriaria (sumac) extract against human cancer cell lines. Biosci Rep 2021; 41:228452. [PMID: 33891003 PMCID: PMC8112848 DOI: 10.1042/bsr20204384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
Therapeutic strategies of plant origin are a better choice as both dietary plant products or its isolated active constituents against the development and progression of cancer. The present study aims to evaluate the anticancer activity of sumac (Rhus coriaria) against different human cancer MCF-7, PC-3, and SKOV3 cell lines. In addition, the study tries to explore a prospective mechanism of action, assessment of in vitro enzyme-inhibitory capacity of sumac extract against hCA I, II, IX, and XII. In the present study, the potential antitumor effects of sumac (Rhus coriaria) were explored in the human cancer cell lines; MCF-7, PC-3, and SKOV3 using in vitro assays. Apoptotic, cell survival, ELISA immunoassays were also conducted to reveal the inhibitory effects of sumac extract against hCA I, II, IX, and XII. In addition, both Clioquinol and Acetazolamide (AZM) were used as standards to explore the in vitro enzyme-inhibitory capacity of sumac extract against hCA I, II, IX, and XII. The hydro-alcoholic extract of R. coriaria (Sumac) was subjected to phytochemical analysis using GC/MS assays. Sumac at non-cytotoxic doses of 50 and 100 µM significantly modulates the growth of the MCF-7, PC-3, and SKOV3 cancer cells with a higher inhibitory effect and selectivity to carbonic anhydrase (CA) isoforms; hCA I, II, hCA IX, and XII. The data showed that sumac at doses of 50 and 100 µM significantly inhibited the growth, proliferation, and viability of cancer cells by activating the apoptotic process via caspase-3 overexpression and the regulation of Bcl-2 anti-apoptotic protein.
Collapse
|
37
|
Khalil M, Bazzi A, Zeineddine D, Jomaa W, Daher A, Awada R. Repressive effect of Rhus coriaria L. fruit extracts on microglial cells-mediated inflammatory and oxidative stress responses. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113748. [PMID: 33359864 DOI: 10.1016/j.jep.2020.113748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhus coriaria L. represents a herbal shrub that is used widely in traditional medicine in the Middle East region to treat different diseases including inflammation-related disorders. R. coriaria extracts have been well characterized in terms of their biological activities, pharmacological potential and phytochemical components. However, the effect of R. coriaria on neuro-inflammation has not been studied previously in detail. AIM OF THE STUDY In the present study, we performed a qualitative phytochemical analysis and investigated the antioxidant and anti-neuro-inflammatory potential of R. coriaria extracts on BV-2 microglial cells. MATERIALS AND METHODS R. coriaria extracts were prepared using two different solvents: distilled water and ethanol. Phytochemical screening was performed to determine the principal bioactive components. The radical scavenging activity was assessed by DPPH method (2,2-diphenyl-1-picrylhydrazyl). The effect of R. coriaria on neuro-inflammation was studied upon measuring the production of oxidative stress and inflammatory factors using DCF (2',7'-dichlorofluorescein) and Nitric oxide (NO) assays respectively, and by analyzing the mRNA (TNFα, IL-10, iNOS and COX-2) and protein (NFκβ) levels of genes involved BV-2 microglia cells-mediated inflammation using quantitative Real Time PCR and Western blot, respectively. RESULTS We found that R. coriaria extracts contain high phenolic and flavonoid contents. Interestingly, the ethanolic extract exerted a potent anti-inflammatory potential on insulted BV-2 cells manifested by: i) inhibition of Reactive Oxygen species (ROS) production and nitric oxide (NO) release; ii) suppressing TNFα, iNOS and COX-2 mRNA levels; iii) reducing NFκβ activation; and iiii) enhancing IL-10 transcription levels. CONCLUSION Our results indicate that the neuro-inflammation inhibitory activity of R. coriaria extracts involves the inhibition of NF-κB signaling pathway. These findings suggest that R. coriaria might carry therapeutic potential against neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohamad Khalil
- Anti-cancer Therapeutic Approaches Group (ATAC), Rammal Rammal Laboratory, Biology Department, Faculty of Sciences, Lebanese University, Lebanon; Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Ali Bazzi
- Anti-cancer Therapeutic Approaches Group (ATAC), Rammal Rammal Laboratory, Biology Department, Faculty of Sciences, Lebanese University, Lebanon
| | - Dana Zeineddine
- Anti-cancer Therapeutic Approaches Group (ATAC), Rammal Rammal Laboratory, Biology Department, Faculty of Sciences, Lebanese University, Lebanon
| | - Wissam Jomaa
- Anti-cancer Therapeutic Approaches Group (ATAC), Rammal Rammal Laboratory, Biology Department, Faculty of Sciences, Lebanese University, Lebanon
| | - Ahmad Daher
- Anti-cancer Therapeutic Approaches Group (ATAC), Rammal Rammal Laboratory, Biology Department, Faculty of Sciences, Lebanese University, Lebanon; Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Lebanese University, Lebanon
| | - Rana Awada
- Anti-cancer Therapeutic Approaches Group (ATAC), Rammal Rammal Laboratory, Biology Department, Faculty of Sciences, Lebanese University, Lebanon; Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Lebanese University, Lebanon.
| |
Collapse
|
38
|
Afshari AR, Mollazadeh H, Mohtashami E, Soltani A, Soukhtanloo M, Hosseini A, Jalili-Nik M, Vahedi MM, Roshan MK, Sahebkar A. Protective Role of Natural Products in Glioblastoma Multiforme: A Focus on Nitric Oxide Pathway. Curr Med Chem 2021; 28:377-400. [PMID: 32000638 DOI: 10.2174/0929867327666200130104757] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
Abstract
In spite of therapeutic modalities such as surgical resection, chemotherapy, and radiotherapy, Glioblastoma Multiforme (GBM) remains an incurable fatal disease. This necessitates further therapeutic options that could enhance the efficacy of existing modalities. Nitric Oxide (NO), a short-lived small molecule, has been revealed to play a crucial role in the pathophysiology of GBM. Several studies have demonstrated that NO is involved in apoptosis, metastasis, cellular proliferation, angiogenesis, invasion, and many other processes implicated in GBM pathobiology. Herein, we elaborate on the role of NO as a therapeutic target in GBM and discuss some natural products affecting the NO signaling pathway.
Collapse
Affiliation(s)
- Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mostafa Karimi Roshan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
39
|
Yang Z, Zhang Q, Yu L, Zhu J, Cao Y, Gao X. The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113249. [PMID: 32810619 DOI: 10.1016/j.jep.2020.113249] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Triple-negative breast cancer (TNBC) has a poorer prognosis than other subtypes due to its strong invasion and higher risk of distant metastasis. Traditional Chinese medicine (TCM) and natural medicine have the unique advantages of multitargets and small side-effects and may be used as long-term complementary and alternative therapies. AIM OF THE REVIEW The present article summarizes the classical signaling pathways and potential targets by the action of TCM and natural medicine (including extracts, active constituents and formulas) on TNBC and provides evidence for its clinical efficacy. METHODS The literature information was acquired from the scientific databases PubMed, Web of Science and CNKI from January 2010 to June 2020, and it was designed to elucidate the internal mechanism and role of TCM and natural medicine in the treatment of TNBC. The search key words included "Triple negative breast cancer" or "triple negative breast carcinoma", "TNBC" and "traditional Chinese medicine" or "Chinese herbal medicine", "medicinal plant", "natural plant", and "herb". RESULTS We described the antitumor activity of TCM and natural medicine in TNBC based on different signaling pathways. Plant medicine and herbal formulas regulated the related gene and protein expression via pathways such as PI3K/AKT/mTOR, MAPK and Wnt/β-catenin, which inhibit the growth, proliferation, migration, invasion and metastasis of TNBC cells. CONCLUSION The inhibitory effect of TCM and natural medicine on tumors was reflected in multiple levels and multiple pathways, providing reasonable evidence for new drug development. To make TCM and natural medicine widely and flexibly used in clinical practice, the efficacy, safety and mechanism of action need more in-depth experimental research.
Collapse
Affiliation(s)
- Zimei Yang
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310053, China.
| | - Qiuhua Zhang
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310053, China.
| | - Linghong Yu
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310053, China.
| | - Jiayan Zhu
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310053, China.
| | - Yi Cao
- The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, NO. 54 Youdian Road, Hangzhou, Zhejiang, 310006, China.
| | - Xiufei Gao
- The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, NO. 54 Youdian Road, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
40
|
Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants (Basel) 2021; 10:antiox10010073. [PMID: 33430013 PMCID: PMC7828031 DOI: 10.3390/antiox10010073] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Rhus coriaria L. (Anacardiaceae), commonly known as sumac, is a commonly used spice, condiment, and flavoring agent, especially in the Mediterranean region. Owing to its bountiful beneficial values, sumac has been used in traditional medicine for the management and treatment of many ailments including hemorrhoids, wound healing, diarrhea, ulcer, and eye inflammation. This plant is rich in various classes of phytochemicals including flavonoids, tannins, polyphenolic compounds, organic acids, and many others. By virtue of its bioactive, Rhus coriaria possesses powerful antioxidant capacities that have ameliorative and therapeutic benefits for many common diseases including cardiovascular disease, diabetes, and cancer. This review describes the phytochemical properties of R. coriaria and then focuses on the potent antioxidant capacities of sumac. We then dissect the cellular and molecular mechanisms of sumac’s action in modulating many pathophysiological instigators. We show how accumulating evidence supports the antibacterial, antinociceptive, antidiabetic, cardioprotective, neuroprotective, and anticancer effects of this plant, especially that toxicity studies show that sumac is very safe to consume by humans and has little toxicity. Taken together, the findings we summarize here support the utilization of this plant as an attractive target for drug discovery.
Collapse
|
41
|
Hasheminasab FS, Sharififar F, Hashemi SM, Setayesh M. An Evidence-Based Research on Botanical Sources for Oral Mucositis Treatment in Traditional Persian Medicine. Curr Drug Discov Technol 2021; 18:225-234. [PMID: 32013832 DOI: 10.2174/1570163817666200203110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/03/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cancer is one of the most prevalent diseases associated with heavy complications in treatment. Mucotoxic cancer therapies such as head and neck radiotherapy and some of the chemotherapy agents may lead to oral mucositis. In addition to its economic consequences, mucositis also affects patients' quality of life. In Traditional Persian Medicine (TPM) manuscripts, several medicaments have been suggested for the treatment of mucositis. OBJECTIVE Considering the public welcome for herbal medicine, the current evidence-based review study is conducted to investigate the herbal remedies which have been proposed for oral mucositis in TPM. METHODS At first, a comprehensive survey was done on Qanon fi al-Teb, which is the most important textbook of TPM; then the scientific name of the herbs was authenticated according to the botanical textbooks. At last, data banks including Scopus, Pubmed, Web of science and Science direct were investigated for possible relevant properties of each medicinal plant in the literature. RESULTS In total, 30 herbs are introduced in this study. According to the registered documents, 18 herbs are reported to have antioxidant, anti-inflammatory, antimicrobial, anti-nociceptive and wound healing properties of which the therapeutic effect of only a few herbs including Glycyrrhiza glabra, Malva sylvestris, Morus nigra, Punica granatum, and Solanum nigrum were directly evaluated against oral mucositis on the literature. CONCLUSION Despite the lack of human studies on mucositis for the other discussed herbs, their related pharmacological properties can be considered for new natural drug discovery supported by medieval and traditional experiments.
Collapse
Affiliation(s)
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Mehdi Hashemi
- Clinical Immunology Research Center, Ali-ebne Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Setayesh
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
42
|
Kubatka P, Kello M, Kajo K, Samec M, Liskova A, Jasek K, Koklesova L, Kuruc T, Adamkov M, Smejkal K, Svajdlenka E, Solar P, Pec M, Büsselberg D, Sadlonova V, Mojzis J. Rhus coriaria L. (Sumac) Demonstrates Oncostatic Activity in the Therapeutic and Preventive Model of Breast Carcinoma. Int J Mol Sci 2020; 22:ijms22010183. [PMID: 33375383 PMCID: PMC7795985 DOI: 10.3390/ijms22010183] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Comprehensive scientific data provide evidence that isolated phytochemicals or whole plant foods may beneficially modify carcinogenesis. The aim of this study was to evaluate the oncostatic activities of Rhus coriaria L. (sumac) using animal models (rat and mouse), and cell lines of breast carcinoma. R. coriaria (as a powder) was administered through the diet at two concentrations (low dose: 0.1% (w/w) and high dose: 1 % (w/w)) for the duration of the experiment in a syngeneic 4T1 mouse and chemically-induced rat mammary carcinoma models. After autopsy, histopathological and molecular analyses of tumor samples in rodents were performed. Moreover, in vitro analyses using MCF-7 and MDA-MB-231 cells were conducted. The dominant metabolites present in tested R. coriaria methanolic extract were glycosides of gallic acid (possible gallotannins). In the mouse model, R. coriaria at a higher dose (1%) significantly decreased tumor volume by 27% when compared to controls. In addition, treated tumors showed significant dose-dependent decrease in mitotic activity index by 36.5% and 51% in comparison with the control group. In the chemoprevention study using rats, R. coriaria at a higher dose significantly reduced the tumor incidence by 20% and in lower dose non-significantly reduced tumor frequency by 29% when compared to controls. Evaluations of the mechanism of oncostatic action using valid clinical markers demonstrated several positive alterations in rat tumor cells after the treatment with R. coriaria. In this regard, histopathological analysis of treated tumor specimens showed robust dose-dependent decrease in the ratio of high-/low-grade carcinomas by 66% and 73% compared to controls. In treated rat carcinomas, we found significant caspase-3, Bax, and Bax/Bcl-2 expression increases; on the other side, a significant down-regulation of Bcl-2, Ki67, CD24, ALDH1, and EpCam expressions and MDA levels. When compared to control specimens, evaluation of epigenetic alterations in rat tumor cells in vivo showed significant dose-dependent decrease in lysine methylation status of H3K4m3 and H3K9m3 and dose-dependent increase in lysine acetylation in H4K16ac levels (H4K20m3 was not changed) in treated groups. However, only in lower dose of sumac were significant decreases in the expression of oncogenic miR210 and increase of tumor-suppressive miR145 (miR21, miR22, and miR155 were not changed) observed. Finally, only in lower sumac dose, significant decreases in methylation status of three out of five gene promoters-ATM, PTEN, and TIMP3 (PITX2 and RASSF1 promoters were not changed). In vitro evaluations using methanolic extract of R. coriaria showed significant anticancer efficacy in MCF-7 and MDA-MB-231 cells (using Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential analyses). In conclusion, sumac demonstrated significant oncostatic activities in rodent models of breast carcinoma that were validated by mechanistic studies in vivo and in vitro.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
- Division of Oncology, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, 036 01 Martin, Slovakia;
- Correspondence: (P.K.); (V.S.); (J.M.)
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, 040 11 Košice, Slovakia; (M.K.); (T.K.)
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, 812 50 Bratislava, Slovakia;
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Karin Jasek
- Division of Oncology, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, 036 01 Martin, Slovakia;
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Tomas Kuruc
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, 040 11 Košice, Slovakia; (M.K.); (T.K.)
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic; (K.S.); (E.S.)
| | - Emil Svajdlenka
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic; (K.S.); (E.S.)
| | - Peter Solar
- Department of Medical Biology, Faculty of Medicine, P. J. Šafárik University, 040 11 Kosice, Slovakia;
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, 24144 Doha, Qatar;
| | - Vladimira Sadlonova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- Correspondence: (P.K.); (V.S.); (J.M.)
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, 040 11 Košice, Slovakia; (M.K.); (T.K.)
- Correspondence: (P.K.); (V.S.); (J.M.)
| |
Collapse
|
43
|
Khan FH, Dervan E, Bhattacharyya DD, McAuliffe JD, Miranda KM, Glynn SA. The Role of Nitric Oxide in Cancer: Master Regulator or NOt? Int J Mol Sci 2020; 21:ijms21249393. [PMID: 33321789 PMCID: PMC7763974 DOI: 10.3390/ijms21249393] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a key player in both the development and suppression of tumourigenesis depending on the source and concentration of NO. In this review, we discuss the mechanisms by which NO induces DNA damage, influences the DNA damage repair response, and subsequently modulates cell cycle arrest. In some circumstances, NO induces cell cycle arrest and apoptosis protecting against tumourigenesis. NO in other scenarios can cause a delay in cell cycle progression, allowing for aberrant DNA repair that promotes the accumulation of mutations and tumour heterogeneity. Within the tumour microenvironment, low to moderate levels of NO derived from tumour and endothelial cells can activate angiogenesis and epithelial-to-mesenchymal transition, promoting an aggressive phenotype. In contrast, high levels of NO derived from inducible nitric oxide synthase (iNOS) expressing M1 and Th1 polarised macrophages and lymphocytes may exert an anti-tumour effect protecting against cancer. It is important to note that the existing evidence on immunomodulation is mainly based on murine iNOS studies which produce higher fluxes of NO than human iNOS. Finally, we discuss different strategies to target NO related pathways therapeutically. Collectively, we present a picture of NO as a master regulator of cancer development and progression.
Collapse
Affiliation(s)
- Faizan H. Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Eoin Dervan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Dibyangana D. Bhattacharyya
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Jake D. McAuliffe
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Katrina M. Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA;
| | - Sharon A. Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
- Correspondence:
| |
Collapse
|
44
|
Aguilar G, Koning T, Ehrenfeld P, Sánchez FA. Role of NO and S-nitrosylation in the Expression of Endothelial Adhesion Proteins That Regulate Leukocyte and Tumor Cell Adhesion. Front Physiol 2020; 11:595526. [PMID: 33281627 PMCID: PMC7691576 DOI: 10.3389/fphys.2020.595526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Leukocyte recruitment is one of the most important cellular responses to tissue damage. Leukocyte extravasation is exquisitely regulated by mechanisms of selective leukocyte-endothelium recognition through adhesion proteins in the endothelial cell surface that recognize specific integrins in the activated leukocytes. A similar mechanism is used by tumor cells during metastasis to extravasate and form a secondary tumor. Nitric oxide (NO) has been classically described as an anti-inflammatory molecule that inhibits leukocyte adhesion. However, the evidence available shows also a positive role of NO in leukocyte adhesion. These apparent discrepancies might be explained by the different NO concentrations reached during the inflammatory response, which are highly modulated by the expression of different nitric oxide synthases, along the inflammatory response and by changes in their subcellular locations.
Collapse
Affiliation(s)
- Gaynor Aguilar
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Tania Koning
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Fabiola A Sánchez
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
45
|
Chen JY, Li CF, Lai YS, Hung WC. Lysine demethylase 2A expression in cancer-associated fibroblasts promotes breast tumour growth. Br J Cancer 2020; 124:484-493. [PMID: 33024266 PMCID: PMC7852571 DOI: 10.1038/s41416-020-01112-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 08/05/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our previous study demonstrated that lysine demethylase 2A (KDM2A) enhances stemness in breast cancer cells. This demethylase is also highly expressed in cancer-associated fibroblasts (CAFs). However, its clinical significance is unclear. METHODS The expression of KDM2A in CAFs was studied using immunohistochemical staining and its association with clinicopathological features and patient's survival was tested. Overexpression and knockdown strategies were used to investigate KDM2A-regulated genes in fibroblasts. Senescent cells were detected by using β-galactosidase staining. The in vivo tumour-promoting activity of stromal KDM2A was confirmed by animal study. RESULTS Increase of stromal KDM2A is associated with advanced tumour stage and poor clinical outcome in breast cancer patients. Cancer-derived cytokines stimulated KDM2A expression in normal fibroblasts and transformed them into CAFs. Upregulation of KDM2A induced p53-dependent senescence in fibroblasts and enhanced the release of cytokines, which reciprocally promoted cancer cell proliferation. Additionally, KDM2A upregulated programmed death-ligand 1 (PD-L1) expression via transcriptional activation in fibroblasts. Knockdown of KDM2A completely abolished the tumour-promoting activity of CAFs on breast tumour growth in vivo and diminished PD-L1 expression in the stroma of tumour tissues. CONCLUSIONS Stromal KDM2A plays an oncogenic role in breast cancer and inhibition of KDM2A reduces fibroblast senescence and suppresses tumour growth.
Collapse
Affiliation(s)
- Jing-Yi Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, 840, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Foundation Medical Center, 710, Tainan, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, 704, Tainan, Taiwan
| | - You-Syuan Lai
- National Institute of Cancer Research, National Health Research Institutes, 704, Tainan, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, 704, Tainan, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807, Kaohsiung, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, 807, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, 807, Kaohsiung, Taiwan.
| |
Collapse
|
46
|
Ózsvári B, Magalhães LG, Latimer J, Kangasmetsa J, Sotgia F, Lisanti MP. A Myristoyl Amide Derivative of Doxycycline Potently Targets Cancer Stem Cells (CSCs) and Prevents Spontaneous Metastasis, Without Retaining Antibiotic Activity. Front Oncol 2020; 10:1528. [PMID: 33042796 PMCID: PMC7523513 DOI: 10.3389/fonc.2020.01528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Here, we describe the chemical synthesis and biological activity of a new Doxycycline derivative, designed specifically to more effectively target cancer stem cells (CSCs). In this analog, a myristic acid (14 carbon) moiety is covalently attached to the free amino group of 9-amino-Doxycycline. First, we determined the IC50 of Doxy-Myr using the 3D-mammosphere assay, to assess its ability to inhibit the anchorage-independent growth of breast CSCs, using MCF7 cells as a model system. Our results indicate that Doxy-Myr is >5-fold more potent than Doxycycline, as it appears to be better retained in cells, within a peri-nuclear membranous compartment. Moreover, Doxy-Myr did not affect the viability of the total MCF7 cancer cell population or normal fibroblasts grown as 2D-monolayers, showing remarkable selectivity for CSCs. Using both gram-negative and gram-positive bacterial strains, we also demonstrated that Doxy-Myr did not show antibiotic activity, against Escherichia coli and Staphylococcus aureus. Interestingly, other complementary Doxycycline amide derivatives, with longer (16 carbon; palmitic acid) or shorter (12 carbon; lauric acid) fatty acid chain lengths, were both less potent than Doxy-Myr for the targeting of CSCs. Finally, using MDA-MB-231 cells, we also demonstrate that Doxy-Myr has no appreciable effect on tumor growth, but potently inhibits tumor cell metastasis in vivo, with little or no toxicity. In summary, by using 9-amino-Doxycycline as a scaffold, here we have designed new chemical entities for their further development as anti-cancer agents. These compounds selectively target CSCs, e.g., Doxy-Myr, while effectively minimizing the risk of driving antibiotic resistance. Taken together, our current studies provide proof-of-principle, that existing FDA-approved drugs can be further modified and optimized, to successfully target the anchorage-independent growth of CSCs and to prevent the process of spontaneous tumor cell metastasis.
Collapse
Affiliation(s)
- Béla Ózsvári
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Manchester, United Kingdom
| | - Luma G Magalhães
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Manchester, United Kingdom
| | - Joe Latimer
- Salford Antibiotic Research Network, School of Science, Engineering and Environment (SEE), University of Salford, Manchester, United Kingdom
| | | | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Manchester, United Kingdom.,Lunella Biotech, Inc., Ottawa, ON, Canada
| | - Michael P Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Manchester, United Kingdom.,Lunella Biotech, Inc., Ottawa, ON, Canada
| |
Collapse
|
47
|
Khalil M, Khalifeh H, Baldini F, Serale N, Parodi A, Voci A, Vergani L, Daher A. Antitumor Activity of Ethanolic Extract from Thymbra Spicata L. aerial Parts: Effects on Cell Viability and Proliferation, Apoptosis Induction, STAT3, and NF-kB Signaling. Nutr Cancer 2020; 73:1193-1206. [PMID: 32696667 DOI: 10.1080/01635581.2020.1792517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Thyme-like plants including Thymbra spicata L. are widely used as food and folk medicinal remedies in the Mediterranean area. This study aimed to explore the in vitro antitumor potential of polyphenol-enriched extracts from aerial parts of T. spicata. The ethanolic extract significantly inhibited proliferation of different human tumor cell lines, without significant effects on non-neoplastic cells. A deeper investigation of the molecular mechanism sustaining the in vitro antitumor activity of the extract was carried on the human breast cancer cells MCF-7 in comparison with the normal breast cells MCF-10A. The effects on MCF-7 cells were associated with the following: (i) production of reactive oxygen species (ROS) and release of nitric oxide; (ii) apoptosis induction; and (iii) reduction in STAT3 and NF-kB phosphorylation. The ethanolic extract from T. spicata leaves might represent a novel therapeutic tool in combination with conventional chemotherapy to reduce the adverse side effects and drug resistance.
Collapse
Affiliation(s)
- Mohamad Khalil
- Laboratory Rammal Rammal (ATAC), Faculty of Sciences, Lebanese University, Beirut, Lebanon.,Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Hala Khalifeh
- Laboratory Rammal Rammal (ATAC), Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Francesca Baldini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Nadia Serale
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Alessia Parodi
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Adriana Voci
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Ahmad Daher
- Laboratory Rammal Rammal (ATAC), Faculty of Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
48
|
Hariri N, Darafshi Ghahroudi S, Jahangiri S, Borumandnia N, Narmaki E, Saidpour A. The beneficial effects of sumac (
Rhus coriaria
L.) supplementation along with restricted calorie diet on anthropometric indices, oxidative stress, and inflammation in overweight or obese women with depression: A randomized clinical trial. Phytother Res 2020; 34:3041-3051. [DOI: 10.1002/ptr.6737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/08/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Nastaran Hariri
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Sahar Darafshi Ghahroudi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | - Nasrin Borumandnia
- Department of Basic Science, Faculty of Paramedical Sciences Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Elham Narmaki
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Atoosa Saidpour
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
49
|
Ózsvári B, Sotgia F, Lisanti MP. First-in-class candidate therapeutics that target mitochondria and effectively prevent cancer cell metastasis: mitoriboscins and TPP compounds. Aging (Albany NY) 2020; 12:10162-10179. [PMID: 32452826 PMCID: PMC7346015 DOI: 10.18632/aging.103336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) have been proposed to be responsible for tumor recurrence, distant metastasis and drug-resistance, in the vast majority of cancer patients. Therefore, there is an urgent need to identify new drugs that can target and eradicate CSCs. To identify new molecular targets that are unique to CSCs, we previously compared MCF7 2D-monolayers with 3D-mammospheres, which are enriched in CSCs. We observed that 25 mitochondrial-related proteins were >100-fold over-expressed in 3D-mammospheres. Here, we used these 25 proteins to derive short gene signatures to predict distant metastasis (in N=1,395 patients) and tumor recurrence (in N=3,082 patients), by employing a large collection of transcriptional profiling data from ER(+) breast cancer patients. This analysis resulted in a 4-gene signature for predicting distant metastasis, with a hazard ratio of 1.91-fold (P=2.2e-08). This provides clinical evidence to support a role for CSC mitochondria in metastatic dissemination. Next, we employed a panel of mitochondrial inhibitors, previously shown to target mitochondria and selectively inhibit 3D-mammosphere formation in MCF7 cells and cell migration in MDA-MB-231 cells. Remarkably, these five mitochondrial inhibitors had only minor effects or no effect on MDA-MB-231 tumor formation, but preferentially and selectively inhibited tumor cell metastasis, without causing significant toxicity. Mechanistically, all five mitochondrial inhibitors have been previously shown to induce ATP-depletion in cancer cells. Since 3 of these 5 inhibitors were designed to target the large mitochondrial ribosome, we next interrogated whether genes encoding the large mitochondrial ribosomal proteins (MRPL) also show prognostic value in the prediction of distant metastasis in both ER(+) and ER(-) breast cancer patients. Interestingly, gene signatures composed of 6 to 9 MRPL mRNA-transcripts were indeed sufficient to predict distant metastasis, tumor recurrence and Tamoxifen resistance. These gene signatures could be useful as companion diagnostics to assess which patients may benefit most from anti-mito-ribosome therapy. Overall, our studies provide the necessary proof-of-concept, and in vivo functional evidence, that mitochondrial inhibitors can successfully and selectively target the biological process of cancer cell metastasis. Ultimately, we envision that mitochondrial inhibitors could be employed to develop new treatment protocols, for clinically providing metastasis prophylaxis, to help prevent poor clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Béla Ózsvári
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
50
|
Jeong CH, Kwon HC, Cheng WN, Kim DH, Choi Y, Han SG. Aluminum exposure promotes the metastatic proclivity of human colorectal cancer cells through matrix metalloproteinases and the TGF-β/Smad signaling pathway. Food Chem Toxicol 2020; 141:111402. [PMID: 32437896 DOI: 10.1016/j.fct.2020.111402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 11/15/2022]
Abstract
Human exposure to aluminum (Al) mainly occurs through food intake. However, influences of Al on the gastrointestinal tract have been rarely reported. In particular, the effect of Al on the metastasis and angiogenesis of colorectal cancer cells has not been studied. Thus, we investigated the effect of Al on the metastatic proclivity using the human colorectal cancer cell line, HT-29. Cells were exposed to 1-16 mM AlCl3 for 3-72 h. The effects of AlCl3 on HT-29 cells for migration/invasion/adhesion, and metastasis-associated protein and gene expression were evaluated. AlCl3 promoted cell migration and invasion, whereas it suppressed cell adhesion. AlCl3-exposed cells showed decreased E-cadherin and increased vimentin and Snail. AlCl3 increased transforming growth factor-beta (TGF-β) mRNA expression and Smad2/3 nuclear translocation. AlCl3-treated cells had a higher mRNA expression of matrix metalloproteinase (MMP)-7 and -9 than the control. Particularly, AlCl3-treated HT-29 cells promoted the angiogenesis of endothelial cells via increasing the secretion of vascular endothelial growth factor. Taken together, AlCl3 can promote the metastatic proclivity of colorectal cancer cells through MMP-7, -9, and TGF-β/Smad2/3 pathway. Our data suggest that Al exposure of the gastrointestinal tract may be a risk factor for metastasis initiation in colorectal cancer cells.
Collapse
Affiliation(s)
- Chang Hee Jeong
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyuk Cheol Kwon
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Wei Nee Cheng
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Do Hyun Kim
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Gu Han
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|