1
|
Viola V, Chinnappa K, Francis F. Radial glia progenitor polarity in health and disease. Front Cell Dev Biol 2024; 12:1478283. [PMID: 39416687 PMCID: PMC11479994 DOI: 10.3389/fcell.2024.1478283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Radial glia (RG) are the main progenitor cell type in the developing cortex. These cells are highly polarized, with a long basal process spanning the entire thickness of the cortex and acting as a support for neuronal migration. The RG cell terminates by an endfoot that contacts the pial (basal) surface. A shorter apical process also terminates with an endfoot that faces the ventricle, with a primary cilium protruding in the cerebrospinal fluid. These cell domains have particular subcellular compositions that are critical for the correct functioning of RG. When altered, this can affect proper development of the cortex, ultimately leading to cortical malformations, associated with different pathological outcomes. In this review, we focus on the current knowledge concerning the cell biology of these bipolar stem cells and discuss the role of their polarity in health and disease.
Collapse
Affiliation(s)
- Valeria Viola
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| | - Kaviya Chinnappa
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| | - Fiona Francis
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| |
Collapse
|
2
|
Liu Y, Chen X, Ma Y, Song C, Ma J, Chen C, Su J, Ma L, Saiyin H. Endogenous mutant Huntingtin alters the corticogenesis via lowering Golgi recruiting ARF1 in cortical organoid. Mol Psychiatry 2024; 29:3024-3039. [PMID: 38654124 PMCID: PMC11449793 DOI: 10.1038/s41380-024-02562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Pathogenic mutant huntingtin (mHTT) infiltrates the adult Huntington's disease (HD) brain and impairs fetal corticogenesis. However, most HD animal models rarely recapitulate neuroanatomical alterations in adult HD and developing brains. Thus, the human cortical organoid (hCO) is an alternative approach to decode mHTT pathogenesis precisely during human corticogenesis. Here, we replicated the altered corticogenesis in the HD fetal brain using HD patient-derived hCOs. Our HD-hCOs had pathological phenotypes, including deficient junctional complexes in the neural tubes, delayed postmitotic neuronal maturation, dysregulated fate specification of cortical neuron subtypes, and abnormalities in early HD subcortical projections during corticogenesis, revealing a causal link between impaired progenitor cells and chaotic cortical neuronal layering in the HD brain. We identified novel long, oriented, and enriched polyQ assemblies of HTTs that hold large flat Golgi stacks and scaffold clathrin+ vesicles in the neural tubes of hCOs. Flat Golgi stacks conjugated polyQ assemblies by ADP-ribosylation factor 1 (ARF1). Inhibiting ARF1 activation with Brefeldin A (BFA) disassociated polyQ assemblies from Golgi. PolyQ assembles with mHTT scaffolded fewer ARF1 and formed shorter polyQ assembles with fewer and shorter Golgi and clathrin vesicles in neural tubes of HD-hCOs compared with those in hCOs. Inhibiting the activation of ARF1 by BFA in healthy hCOs replicated impaired junctional complexes in the neural tubes. Together, endogenous polyQ assemblies with mHTT reduced the Golgi recruiting ARF1 in the neuroepithelium, impaired the Golgi structure and activities, and altered the corticogenesis in HD-hCO.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyu Chen
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunlong Ma
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Chenyun Song
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jixin Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Cheng Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jianzhong Su
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Lixiang Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Banks E, Francis V, Lin SJ, Kharfallah F, Fonov V, Lévesque M, Han C, Kulasekaran G, Tuznik M, Bayati A, Al-Khater R, Alkuraya FS, Argyriou L, Babaei M, Bahlo M, Bakhshoodeh B, Barr E, Bartik L, Bassiony M, Bertrand M, Braun D, Buchert R, Budetta M, Cadieux-Dion M, Calame DG, Cope H, Cushing D, Efthymiou S, Elmaksoud MA, El Said HG, Froukh T, Gill HK, Gleeson JG, Gogoll L, Goh ESY, Gowda VK, Haack TB, Hashem MO, Hauser S, Hoffman TL, Hogue JS, Hosokawa A, Houlden H, Huang K, Huynh S, Karimiani EG, Kaulfuß S, Korenke GC, Kritzer A, Lee H, Lupski JR, Marco EJ, McWalter K, Minassian A, Minassian BA, Murphy D, Neira-Fresneda J, Northrup H, Nyaga DM, Oehl-Jaschkowitz B, Osmond M, Person R, Pehlivan D, Petree C, Sadleir LG, Saunders C, Schoels L, Shashi V, Spillmann RC, Srinivasan VM, Torbati PN, Tos T, Zaki MS, Zhou D, Zweier C, Trempe JF, Durcan TM, Gan-Or Z, Avoli M, Alves C, Varshney GK, Maroofian R, Rudko DA, McPherson PS. Loss of symmetric cell division of apical neural progenitors drives DENND5A-related developmental and epileptic encephalopathy. Nat Commun 2024; 15:7239. [PMID: 39174524 PMCID: PMC11341845 DOI: 10.1038/s41467-024-51310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells. Human induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division with an inherent propensity to differentiate into neurons. These phenotypes result from misalignment of the mitotic spindle in apical neural progenitors. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state, ultimately shortening the period of neurogenesis. This study provides a mechanism for DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.
Collapse
Affiliation(s)
- Emily Banks
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Vincent Francis
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Fares Kharfallah
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Vladimir Fonov
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Maxime Lévesque
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Chanshuai Han
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Marius Tuznik
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Armin Bayati
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | | | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Loukas Argyriou
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Melanie Bahlo
- Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | | | - Eileen Barr
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Lauren Bartik
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
- Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA
| | | | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mauro Budetta
- Paediatric and Child Neurology Unit, Cava de' Tirreni AOU S. Giovanni di Dio e Ruggiero d'Aragona Hospital, Salerno, Italy
| | - Maxime Cadieux-Dion
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Daniel G Calame
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Donna Cushing
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON, Canada
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Marwa Abd Elmaksoud
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Huda G El Said
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan
| | - Harinder K Gill
- Provincial Medical Genetics Program at BC Women's Health Centre, Vancouver, BC, Canada
| | - Joseph G Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Laura Gogoll
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elaine S-Y Goh
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON, Canada
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Stefan Hauser
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Center for Neurology and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, 72076, Germany
| | - Trevor L Hoffman
- Department of Regional Genetics, Southern California Kaiser Permanente Medical Group, Anaheim, CA, USA
| | | | - Akimoto Hosokawa
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Stephanie Huynh
- Provincial Medical Genetics Program at BC Women's Health Centre, Vancouver, BC, Canada
| | - Ehsan G Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
| | - G Christoph Korenke
- Department of Neuropediatrics, University Children's Hospital, Klinikum Oldenburg, Oldenburg, Germany
| | - Amy Kritzer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Hane Lee
- 3billion Inc, Seoul, South Korea
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Arakel Minassian
- Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Berge A Minassian
- Department of Pediatrics and Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David Murphy
- Department of Clinical and Movement Neurosciences, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | | | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Denis M Nyaga
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | | | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | | | - Davut Pehlivan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Carol Saunders
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- Center for Pediatric Genomic Medicine Children's Mercy, Kansas City, MO, USA
| | - Ludger Schoels
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Center for Neurology and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, 72076, Germany
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Rebecca C Spillmann
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - Paria N Torbati
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Tulay Tos
- Department of Medical Genetics, University of Health Sciences, Zubeyde Hanim Research and Training Hospital of Women's Health and Diseases, Ankara, Turkey
| | - Maha S Zaki
- Human Genetics and Genome Research Institute, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Dihong Zhou
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
- Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Massimo Avoli
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Cesar Alves
- Division of Neuroradiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Reza Maroofian
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - David A Rudko
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
- McConnell Brain Imaging Centre, the Neuro, Montréal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada.
| |
Collapse
|
4
|
Wilsch-Bräuninger M, Peters J, Huttner WB. High-resolution 3D ultrastructural analysis of developing mouse neocortex reveals long slender processes of endothelial cells that enter neural cells. Front Cell Dev Biol 2024; 12:1344734. [PMID: 38500687 PMCID: PMC10945550 DOI: 10.3389/fcell.2024.1344734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
The development of the neocortex involves an interplay between neural cells and the vasculature. However, little is known about this interplay at the ultrastructural level. To gain a 3D insight into the ultrastructure of the developing neocortex, we have analyzed the embryonic mouse neocortex by serial block-face scanning electron microscopy (SBF-SEM). In this study, we report a first set of findings that focus on the interaction of blood vessels, notably endothelial tip cells (ETCs), and the neural cells in this tissue. A key observation was that the processes of ETCs, located either in the ventricular zone (VZ) or subventricular zone (SVZ)/intermediate zone (IZ), can enter, traverse the cytoplasm, and even exit via deep plasma membrane invaginations of the host cells, including apical progenitors (APs), basal progenitors (BPs), and newborn neurons. More than half of the ETC processes were found to enter the neural cells. Striking examples of this ETC process "invasion" were (i) protrusions of apical progenitors or newborn basal progenitors into the ventricular lumen that contained an ETC process inside and (ii) ETC process-containing protrusions of neurons that penetrated other neurons. Our observations reveal a - so far unknown - complexity of the ETC-neural cell interaction.
Collapse
Affiliation(s)
| | | | - Wieland B. Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
5
|
Wijaya CS, Xu S. Reevaluating Golgi fragmentation and its implications in wound repair. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:4. [PMID: 38349608 PMCID: PMC10864233 DOI: 10.1186/s13619-024-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
The Golgi Apparatus (GA) is pivotal in vesicle sorting and protein modifications within cells. Traditionally, the GA has been described as a perinuclear organelle consisting of stacked cisternae forming a ribbon-like structure. Changes in the stacked structure or the canonical perinuclear localization of the GA have been referred to as "GA fragmentation", a term widely employed in the literature to describe changes in GA morphology and distribution. However, the precise meaning and function of GA fragmentation remain intricate. This review aims to demystify this enigmatic phenomenon, dissecting the diverse morphological changes observed and their potential contributions to cellular wound repair and regeneration. Through a comprehensive analysis of current research, we hope to pave the way for future advancements in GA research and their important role in physiological and pathological conditions.
Collapse
Affiliation(s)
- Chandra Sugiarto Wijaya
- Department of Burns and Wound Repair and Center for Stem Cell and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Suhong Xu
- Department of Burns and Wound Repair and Center for Stem Cell and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang, 314400, China.
| |
Collapse
|
6
|
Banks E, Francis V, Lin SJ, Kharfallah F, Fonov V, Levesque M, Han C, Kulasekaran G, Tuznik M, Bayati A, Al-Khater R, Alkuraya FS, Argyriou L, Babaei M, Bahlo M, Bakhshoodeh B, Barr E, Bartik L, Bassiony M, Bertrand M, Braun D, Buchert R, Budetta M, Cadieux-Dion M, Calame D, Cope H, Cushing D, Efthymiou S, Elmaksoud MA, El Said HG, Froukh T, Gill HK, Gleeson JG, Gogoll L, Goh ESY, Gowda VK, Haack TB, Hashem MO, Hauser S, Hoffman TL, Hogue JS, Hosokawa A, Houlden H, Huang K, Huynh S, Karimiani EG, Kaulfuß S, Korenke GC, Kritzer A, Lee H, Lupski JR, Marco EJ, McWalter K, Minassian A, Minassian BA, Murphy D, Neira-Fresneda J, Northrup H, Nyaga D, Oehl-Jaschkowitz B, Osmond M, Person R, Pehlivan D, Petree C, Sadleir LG, Saunders C, Schoels L, Shashi V, Spillman RC, Srinivasan VM, Torbati PN, Tos T, Zaki MS, Zhou D, Zweier C, Trempe JF, Durcan TM, Gan-Or Z, Avoli M, Alves C, Varshney GK, Maroofian R, Rudko DA, McPherson PS. Loss of symmetric cell division of apical neural progenitors drives DENND5A-related developmental and epileptic encephalopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2022.08.23.22278845. [PMID: 38352438 PMCID: PMC10863025 DOI: 10.1101/2022.08.23.22278845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in DENND5A and determine that variant type is correlated with disease severity. We demonstrate that DENND5A interacts with MUPP1 and PALS1, components of the Crumbs apical polarity complex, which is required for both neural progenitor cell identity and the ability of these stem cells to divide symmetrically. Induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division during neural induction and have an inherent propensity to differentiate into neurons, and transgenic DENND5A mice, with phenotypes like the human syndrome, have an increased number of neurons in the adult subventricular zone. Disruption of symmetric cell division following loss of DENND5A results from misalignment of the mitotic spindle in apical neural progenitors. A subset of DENND5A is localized to centrosomes, which define the spindle poles during mitosis. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state and ultimately shortening the period of neurogenesis. This study provides a mechanism behind DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.
Collapse
Affiliation(s)
- Emily Banks
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Vincent Francis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Fares Kharfallah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Vladimir Fonov
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Maxime Levesque
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Chanshuai Han
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Marius Tuznik
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Reem Al-Khater
- Johns Hopkins Aramco Healthcare, Dhahran 34465, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Loukas Argyriou
- Institute of Human Genetics, University Medical Center, Göttingen 37073, Germany
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Melanie Bahlo
- Walter and Eliza Hall Institute for Medical Research, Parkville Victoria 3052, Australia
| | | | - Eileen Barr
- Emory University, Department of Human Genetics, Atlanta, GA 30322, USA
| | - Lauren Bartik
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
- Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | | | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Mauro Budetta
- Paediatric and Child Neurology Unit, Cava de' Tirreni AOU S. Giovanni di Dio e Ruggiero d'Aragona Hospital, Salerno, Italy
| | - Maxime Cadieux-Dion
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Daniel Calame
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Donna Cushing
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON L5B 1B8, Canada
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Marwa A Elmaksoud
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Huda G El Said
- Department of Family Health, High Institute of Public Health, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman 19392, Jordan
| | - Harinder K Gill
- Provincial Medical Genetics Program at BC Women's Health Centre, Vancouver, BC V6H 3N1, Canada
| | - Joseph G Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Laura Gogoll
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elaine S-Y Goh
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON L5B 1B8, Canada
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Stefan Hauser
- Center for Neurology and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen 72076, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| | - Trevor L Hoffman
- Southern California Kaiser Permanente Medical Group, Department of Regional Genetics, Anaheim, CA 92806, USA
| | | | - Akimoto Hosokawa
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Stephanie Huynh
- Provincial Medical Genetics Program at BC Women's Health Centre, Vancouver, BC V6H 3N1, Canada
| | - Ehsan G Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center, Göttingen 37073, Germany
| | - G Christoph Korenke
- Department of Neuropediatrics, University Children's Hospital, Klinikum Oldenburg, Oldenburg 26133, Germany
| | - Amy Kritzer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hane Lee
- 3billion, Inc, Seoul, South Korea
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Arakel Minassian
- Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Berge A Minassian
- UT Southwestern Medical Center, Departments of Pediatrics and Neurology, Dallas, TX 75390, USA
| | - David Murphy
- Department of Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Denis Nyaga
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | | | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa K1H 8L1, Canada
| | | | - Davut Pehlivan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Carol Saunders
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA
- Center for Pediatric Genomic Medicine Children's Mercy - Kansas City, Missouri, USA
| | - Ludger Schoels
- Center for Neurology and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen 72076, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Rebecca C Spillman
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Paria N Torbati
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Tulay Tos
- University of Health Sciences, Zubeyde Hanim Research and Training Hospital of Women's Health and Diseases, Department of Medical Genetics, Ankara 06080, Turkey
| | - Maha S Zaki
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Dihong Zhou
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
- Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 2B4, Canada
| | - Massimo Avoli
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Cesar Alves
- Division of Neuroradiology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Guarav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Reza Maroofian
- Department of Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - David A Rudko
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| |
Collapse
|
7
|
Polenghi M, Taverna E. Intracellular traffic and polarity in brain development. Front Neurosci 2023; 17:1172016. [PMID: 37859764 PMCID: PMC10583573 DOI: 10.3389/fnins.2023.1172016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/31/2023] [Indexed: 10/21/2023] Open
Abstract
Neurons forming the human brain are generated during embryonic development by neural stem and progenitor cells via a process called neurogenesis. A crucial feature contributing to neural stem cell morphological and functional heterogeneity is cell polarity, defined as asymmetric distribution of cellular components. Cell polarity is built and maintained thanks to the interplay between polarity proteins and polarity-generating organelles, such as the endoplasmic reticulum (ER) and the Golgi apparatus (GA). ER and GA affect the distribution of membrane components and work as a hub where glycans are added to nascent proteins and lipids. In the last decades our knowledge on the role of polarity in neural stem and progenitor cells have increased tremendously. However, the role of traffic and associated glycosylation in neural stem and progenitor cells is still relatively underexplored. In this review, we discuss the link between cell polarity, architecture, identity and intracellular traffic, and highlight how studies on neurons have shaped our knowledge and conceptual framework on traffic and polarity. We will then conclude by discussing how a group of rare diseases, called congenital disorders of glycosylation (CDG) offers the unique opportunity to study the contribution of traffic and glycosylation in the context of neurodevelopment.
Collapse
|
8
|
Rocha-Martins M, Nerli E, Kretzschmar J, Weigert M, Icha J, Myers EW, Norden C. Neuronal migration prevents spatial competition in retinal morphogenesis. Nature 2023; 620:615-624. [PMID: 37558872 DOI: 10.1038/s41586-023-06392-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
The concomitant occurrence of tissue growth and organization is a hallmark of organismal development1-3. This often means that proliferating and differentiating cells are found at the same time in a continuously changing tissue environment. How cells adapt to architectural changes to prevent spatial interference remains unclear. Here, to understand how cell movements that are key for growth and organization are orchestrated, we study the emergence of photoreceptor neurons that occur during the peak of retinal growth, using zebrafish, human tissue and human organoids. Quantitative imaging reveals that successful retinal morphogenesis depends on the active bidirectional translocation of photoreceptors, leading to a transient transfer of the entire cell population away from the apical proliferative zone. This pattern of migration is driven by cytoskeletal machineries that differ depending on the direction: microtubules are exclusively required for basal translocation, whereas actomyosin is involved in apical movement. Blocking the basal translocation of photoreceptors induces apical congestion, which hampers the apical divisions of progenitor cells and leads to secondary defects in lamination. Thus, photoreceptor migration is crucial to prevent competition for space, and to allow concurrent tissue growth and lamination. This shows that neuronal migration, in addition to its canonical role in cell positioning4, can be involved in coordinating morphogenesis.
Collapse
Affiliation(s)
- Mauricio Rocha-Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden (CSBD), Dresden, Germany.
| | - Elisa Nerli
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Jenny Kretzschmar
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Weigert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
- Institute of Bioengineering, School of Life Sciences École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jaroslav Icha
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Caren Norden
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
9
|
Yang S, Au FK, Li G, Lin J, Li XD, Qi RZ. Autoinhibitory mechanism controls binding of centrosomin motif 1 to γ-tubulin ring complex. J Cell Biol 2023; 222:e202007101. [PMID: 37213089 PMCID: PMC10202828 DOI: 10.1083/jcb.202007101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/03/2023] [Accepted: 03/24/2023] [Indexed: 05/23/2023] Open
Abstract
The γ-tubulin ring complex (γTuRC) is the principal nucleator of cellular microtubules, and the microtubule-nucleating activity of the complex is stimulated by binding to the γTuRC-mediated nucleation activator (γTuNA) motif. The γTuNA is part of the centrosomin motif 1 (CM1), which is widely found in γTuRC stimulators, including CDK5RAP2. Here, we show that a conserved segment within CM1 binds to the γTuNA and blocks its association with γTuRCs; therefore, we refer to this segment as the γTuNA inhibitor (γTuNA-In). Mutational disruption of the interaction between the γTuNA and the γTuNA-In results in a loss of autoinhibition, which consequently augments microtubule nucleation on centrosomes and the Golgi complex, the two major microtubule-organizing centers. This also causes centrosome repositioning, leads to defects in Golgi assembly and organization, and affects cell polarization. Remarkably, phosphorylation of the γTuNA-In, probably by Nek2, counteracts the autoinhibition by disrupting the γTuNA‒γTuNA-In interaction. Together, our data reveal an on-site mechanism for controlling γTuNA function.
Collapse
Affiliation(s)
- Shaozhong Yang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Franco K.C. Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gefei Li
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Robert Z. Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| |
Collapse
|
10
|
Dell'Amico C, Angulo Salavarria MM, Takeo Y, Saotome I, Dell'Anno MT, Galimberti M, Pellegrino E, Cattaneo E, Louvi A, Onorati M. Microcephaly-associated protein WDR62 shuttles from the Golgi apparatus to the spindle poles in human neural progenitors. eLife 2023; 12:e81716. [PMID: 37272619 PMCID: PMC10241521 DOI: 10.7554/elife.81716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
WDR62 is a spindle pole-associated scaffold protein with pleiotropic functions. Recessive mutations in WDR62 cause structural brain abnormalities and account for the second most common cause of autosomal recessive primary microcephaly (MCPH), indicating WDR62 as a critical hub for human brain development. Here, we investigated WDR62 function in corticogenesis through the analysis of a C-terminal truncating mutation (D955AfsX112). Using induced Pluripotent Stem Cells (iPSCs) obtained from a patient and his unaffected parent, as well as isogenic corrected lines, we generated 2D and 3D models of human neurodevelopment, including neuroepithelial stem cells, cerebro-cortical progenitors, terminally differentiated neurons, and cerebral organoids. We report that WDR62 localizes to the Golgi apparatus during interphase in cultured cells and human fetal brain tissue, and translocates to the mitotic spindle poles in a microtubule-dependent manner. Moreover, we demonstrate that WDR62 dysfunction impairs mitotic progression and results in alterations of the neurogenic trajectories of iPSC neuroderivatives. In summary, impairment of WDR62 localization and function results in severe neurodevelopmental abnormalities, thus delineating new mechanisms in the etiology of MCPH.
Collapse
Affiliation(s)
- Claudia Dell'Amico
- Department of Biology, Unit of Cell and Developmental Biology, University of PisaPisaItaly
| | | | - Yutaka Takeo
- Departments of Neurosurgery and Neuroscience, Yale School of MedicineNew HavenUnited States
| | - Ichiko Saotome
- Departments of Neurosurgery and Neuroscience, Yale School of MedicineNew HavenUnited States
| | | | - Maura Galimberti
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilanItaly
- INGM, Istituto Nazionale Genetica MolecolareMilanItaly
| | - Enrica Pellegrino
- Department of Biology, Unit of Cell and Developmental Biology, University of PisaPisaItaly
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Elena Cattaneo
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilanItaly
- INGM, Istituto Nazionale Genetica MolecolareMilanItaly
| | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience, Yale School of MedicineNew HavenUnited States
| | - Marco Onorati
- Department of Biology, Unit of Cell and Developmental Biology, University of PisaPisaItaly
| |
Collapse
|
11
|
Meyerink BL, KC P, Tiwari NK, Kittock CM, Klein A, Evans CM, Pilaz LJ. Breasi-CRISPR: an efficient genome-editing method to interrogate protein localization and protein-protein interactions in the embryonic mouse cortex. Development 2022; 149:dev200616. [PMID: 35993342 PMCID: PMC9637389 DOI: 10.1242/dev.200616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/15/2022] [Indexed: 09/29/2023]
Abstract
In developing tissues, knowing the localization and interactors of proteins of interest is key to understanding their function. Here, we describe the Breasi-CRISPR approach (Brain Easi-CRISPR), combining Easi-CRISPR with in utero electroporation to tag endogenous proteins within embryonic mouse brains. Breasi-CRISPR enables knock-in of both short and long epitope tag sequences with high efficiency. We visualized epitope-tagged proteins with varied expression levels, such as ACTB, LMNB1, EMD, FMRP, NOTCH1 and RPL22. Detection was possible by immunohistochemistry as soon as 1 day after electroporation and we observed efficient gene editing in up to 50% of electroporated cells. Moreover, tagged proteins could be detected by immunoblotting in lysates from individual cortices. Next, we demonstrated that Breasi-CRISPR enables the tagging of proteins with fluorophores, allowing visualization of endogenous proteins by live imaging in organotypic brain slices. Finally, we used Breasi-CRISPR to perform co-immunoprecipitation mass-spectrometry analyses of the autism-related protein FMRP to discover its interactome in the embryonic cortex. Together, these data demonstrate that Breasi-CRISPR is a powerful tool with diverse applications that will propel the understanding of protein function in neurodevelopment.
Collapse
Affiliation(s)
- Brandon L. Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Pratiksha KC
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Neeraj K. Tiwari
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Claire M. Kittock
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Abigail Klein
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Claire M. Evans
- Histology Core, Sanford Research, Sioux Falls, SD 57104, USA
| | - Louis-Jan Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
12
|
Brault J, Bardin S, Lampic M, Carpentieri JA, Coquand L, Penisson M, Lachuer H, Victoria GS, Baloul S, El Marjou F, Boncompain G, Miserey‐Lenkei S, Belvindrah R, Fraisier V, Francis F, Perez F, Goud B, Baffet AD. RAB6
and dynein drive
post‐Golgi
apical transport to prevent neuronal progenitor delamination. EMBO Rep 2022; 23:e54605. [PMID: 35979738 PMCID: PMC9535803 DOI: 10.15252/embr.202254605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Radial glial (RG) cells are the neural stem cells of the developing neocortex. Apical RG (aRG) cells can delaminate to generate basal RG (bRG) cells, a cell type associated with human brain expansion. Here, we report that aRG delamination is regulated by the post‐Golgi secretory pathway. Using in situ subcellular live imaging, we show that post‐Golgi transport of RAB6+ vesicles occurs toward the minus ends of microtubules and depends on dynein. We demonstrate that the apical determinant Crumbs3 (CRB3) is also transported by dynein. Double knockout of RAB6A/A' and RAB6B impairs apical localization of CRB3 and induces a retraction of aRG cell apical process, leading to delamination and ectopic division. These defects are phenocopied by knockout of the dynein activator LIS1. Overall, our results identify a RAB6‐dynein‐LIS1 complex for Golgi to apical surface transport in aRG cells, and highlights the role of this pathway in the maintenance of neuroepithelial integrity.
Collapse
Affiliation(s)
| | - Sabine Bardin
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Marusa Lampic
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | | | - Laure Coquand
- Institut Curie PSL Research University, CNRS UMR144 Paris France
- Sorbonne University Paris France
| | - Maxime Penisson
- Sorbonne University Paris France
- INSERM UMR‐S 1270 Paris France
- Institut du Fer à Moulin Paris France
| | - Hugo Lachuer
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | | | - Sarah Baloul
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Fatima El Marjou
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | | | | | - Richard Belvindrah
- Sorbonne University Paris France
- INSERM UMR‐S 1270 Paris France
- Institut du Fer à Moulin Paris France
| | - Vincent Fraisier
- UMR 144‐Cell and Tissue Imaging Facility (PICT‐IBiSA) CNRS‐Institut Curie Paris France
| | - Fiona Francis
- Sorbonne University Paris France
- INSERM UMR‐S 1270 Paris France
- Institut du Fer à Moulin Paris France
| | - Franck Perez
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Bruno Goud
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Alexandre D Baffet
- Institut Curie PSL Research University, CNRS UMR144 Paris France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Paris France
| |
Collapse
|
13
|
Sokpor G, Brand-Saberi B, Nguyen HP, Tuoc T. Regulation of Cell Delamination During Cortical Neurodevelopment and Implication for Brain Disorders. Front Neurosci 2022; 16:824802. [PMID: 35281509 PMCID: PMC8904418 DOI: 10.3389/fnins.2022.824802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical development is dependent on key processes that can influence apical progenitor cell division and progeny. Pivotal among such critical cellular processes is the intricate mechanism of cell delamination. This indispensable cell detachment process mainly entails the loss of apical anchorage, and subsequent migration of the mitotic derivatives of the highly polarized apical cortical progenitors. Such apical progenitor derivatives are responsible for the majority of cortical neurogenesis. Many factors, including transcriptional and epigenetic/chromatin regulators, are known to tightly control cell attachment and delamination tendency in the cortical neurepithelium. Activity of these molecular regulators principally coordinate morphogenetic cues to engender remodeling or disassembly of tethering cellular components and external cell adhesion molecules leading to exit of differentiating cells in the ventricular zone. Improper cell delamination is known to frequently impair progenitor cell fate commitment and neuronal migration, which can cause aberrant cortical cell number and organization known to be detrimental to the structure and function of the cerebral cortex. Indeed, some neurodevelopmental abnormalities, including Heterotopia, Schizophrenia, Hydrocephalus, Microcephaly, and Chudley-McCullough syndrome have been associated with cell attachment dysregulation in the developing mammalian cortex. This review sheds light on the concept of cell delamination, mechanistic (transcriptional and epigenetic regulation) nuances involved, and its importance for corticogenesis. Various neurodevelopmental disorders with defective (too much or too little) cell delamination as a notable etiological underpinning are also discussed.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Godwin Sokpor,
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Tran Tuoc,
| |
Collapse
|
14
|
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2022; 15:817218. [PMID: 35069108 PMCID: PMC8766818 DOI: 10.3389/fnins.2021.817218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Collapse
|
15
|
Johkura K, Usuda N, Tanaka Y, Fukasawa M, Murata K, Noda T, Ohno N. OUP accepted manuscript. Microscopy (Oxf) 2022; 71:262-270. [PMID: 35535544 PMCID: PMC9535788 DOI: 10.1093/jmicro/dfac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/25/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kohei Johkura
- Department of Histology and Embryology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Nobuteru Usuda
- *To whom correspondence should be addressed. E-mail: (N.U.); (N.O.)
| | - Yoshihiro Tanaka
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Motoaki Fukasawa
- Department of Biomedical Molecular Sciences (Anatomy II), Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Toru Noda
- Department of Occupational Therapy (Anatomy), Biwako Professional University of Rehabilitation, 967 Kitasakacho, Higashiomi, Shiga 527-0145, Japan
- Department of Cell Biology and Anatomy, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Nobuhiko Ohno
- *To whom correspondence should be addressed. E-mail: (N.U.); (N.O.)
| |
Collapse
|
16
|
Kalebic N, Namba T. Inheritance and flexibility of cell polarity: a clue for understanding human brain development and evolution. Development 2021; 148:272121. [PMID: 34499710 PMCID: PMC8451944 DOI: 10.1242/dev.199417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell polarity is fundamentally important for understanding brain development. Here, we hypothesize that the inheritance and flexibility of cell polarity during neocortex development could be implicated in neocortical evolutionary expansion. Molecular and morphological features of cell polarity may be inherited from one type of progenitor cell to the other and finally transmitted to neurons. Furthermore, key cell types, such as basal progenitors and neurons, exhibit a highly flexible polarity. We suggest that both inheritance and flexibility of cell polarity are implicated in the amplification of basal progenitors and tangential dispersion of neurons, which are key features of the evolutionary expansion of the neocortex. Summary: We suggest that the inheritance and flexibility of cell polarity are implicated in the evolutionary expansion of the developing neocortex by promoting the amplification of neural progenitors and tangential migration of neurons.
Collapse
Affiliation(s)
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
17
|
Ashlin TG, Blunsom NJ, Cockcroft S. Courier service for phosphatidylinositol: PITPs deliver on demand. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158985. [PMID: 34111527 PMCID: PMC8266687 DOI: 10.1016/j.bbalip.2021.158985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022]
Abstract
Phosphatidylinositol is the parent lipid for the synthesis of seven phosphorylated inositol lipids and each of them play specific roles in numerous processes including receptor-mediated signalling, actin cytoskeleton dynamics and membrane trafficking. PI synthesis is localised to the endoplasmic reticulum (ER) whilst its phosphorylated derivatives are found in other organelles where the lipid kinases also reside. Phosphorylation of PI to phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) at the plasma membrane and to phosphatidylinositol 4-phosphate (PI4P) at the Golgi are key events in lipid signalling and Golgi function respectively. Here we review a family of proteins, phosphatidylinositol transfer proteins (PITPs), that can mobilise PI from the ER to provide the substrate to the resident kinases for phosphorylation. Recent studies identify specific and overlapping functions for the three soluble PITPs (PITPα, PITPβ and PITPNC1) in phospholipase C signalling, neuronal function, membrane trafficking, viral replication and in cancer metastases.
Collapse
Affiliation(s)
- Tim G Ashlin
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Nicholas J Blunsom
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
18
|
Coquand L, Victoria GS, Tata A, Carpentieri JA, Brault JB, Guimiot F, Fraisier V, Baffet AD. CAMSAPs organize an acentrosomal microtubule network from basal varicosities in radial glial cells. J Cell Biol 2021; 220:212175. [PMID: 34019079 PMCID: PMC8144914 DOI: 10.1083/jcb.202003151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/30/2020] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
Neurons of the neocortex are generated by stem cells called radial glial cells. These polarized cells extend a short apical process toward the ventricular surface and a long basal fiber that acts as a scaffold for neuronal migration. How the microtubule cytoskeleton is organized in these cells to support long-range transport is unknown. Using subcellular live imaging within brain tissue, we show that microtubules in the apical process uniformly emanate for the pericentrosomal region, while microtubules in the basal fiber display a mixed polarity, reminiscent of the mammalian dendrite. We identify acentrosomal microtubule organizing centers localized in varicosities of the basal fiber. CAMSAP family members accumulate in these varicosities, where they control microtubule growth. Double knockdown of CAMSAP1 and 2 leads to a destabilization of the entire basal process. Finally, using live imaging of human fetal cortex, we reveal that this organization is conserved in basal radial glial cells, a related progenitor cell population associated with human brain size expansion.
Collapse
Affiliation(s)
- Laure Coquand
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Guiliana Soraya Victoria
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Alice Tata
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Jacopo Amerigo Carpentieri
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Jean-Baptiste Brault
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Fabien Guimiot
- Unité de Fœtopathologie-Université de Paris et Institut national de la santé et de la recherche médicale UMR1141, Hôpital Robert Debré, Paris, France
| | - Vincent Fraisier
- UMR144-Cell and Tissue Imaging Facility, Centre national de la recherche scientifique-Institut Curie, Paris, France
| | - Alexandre D Baffet
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France.,Institut national de la santé et de la recherche médicale, Paris, France
| |
Collapse
|
19
|
Herrera A, Menendez A, Torroba B, Ochoa A, Pons S. Dbnl and β-catenin promote pro-N-cadherin processing to maintain apico-basal polarity. J Cell Biol 2021; 220:212044. [PMID: 33939796 PMCID: PMC8097490 DOI: 10.1083/jcb.202007055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/15/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
The neural tube forms when neural stem cells arrange into a pseudostratified, single-cell–layered epithelium, with a marked apico-basal polarity, and in which adherens junctions (AJs) concentrate in the subapical domain. We previously reported that sustained β-catenin expression promotes the formation of enlarged apical complexes (ACs), enhancing apico-basal polarity, although the mechanism through which this occurs remained unclear. Here, we show that β-catenin interacts with phosphorylated pro-N-cadherin early in its transit through the Golgi apparatus, promoting propeptide excision and the final maturation of N-cadherin. We describe a new β-catenin–dependent interaction of N-cadherin with Drebrin-like (Dbnl), an actin-binding protein that is involved in anterograde Golgi trafficking of proteins. Notably, Dbnl knockdown led to pro-N-cadherin accumulation and limited AJ formation. In brief, we demonstrate that Dbnl and β-catenin assist in the maturation of pro-N-cadherin, which is critical for AJ formation and for the recruitment AC components like aPKC and, consequently, for the maintenance of apico-basal polarity.
Collapse
Affiliation(s)
- Antonio Herrera
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Anghara Menendez
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Blanca Torroba
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Andrea Ochoa
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Sebastián Pons
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Cell intercalation driven by SMAD3 underlies secondary neural tube formation. Dev Cell 2021; 56:1147-1163.e6. [PMID: 33878300 DOI: 10.1016/j.devcel.2021.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 01/07/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Body axis elongation is a hallmark of the vertebrate embryo, involving the architectural remodeling of the tail bud. Although it is clear how neuromesodermal progenitors (NMPs) contribute to embryo elongation, the dynamic events that lead to de novo lumen formation and that culminate in the formation of a 3-dimensional, neural tube from NMPs, are poorly understood. Here, we used in vivo imaging of the chicken embryo to show that cell intercalation downstream of TGF-β/SMAD3 signaling is required for secondary neural tube formation. Our analysis describes the events in embryo elongation including lineage restriction, the epithelial-to-mesenchymal transition of NMPs, and the initiation of lumen formation. We show that the resolution of a single, centrally positioned lumen, which occurs through the intercalation of central cells, requires SMAD3/Yes-associated protein (YAP) activity. We anticipate that these findings will be relevant to understand caudal, skin-covered neural tube defects, among the most frequent birth defects detected in humans.
Collapse
|
21
|
Abstract
The mammalian cerebral cortex is the pinnacle of brain evolution, reaching its maximum complexity in terms of neuron number, diversity and functional circuitry. The emergence of this outstanding complexity begins during embryonic development, when a limited number of neural stem and progenitor cells manage to generate myriads of neurons in the appropriate numbers, types and proportions, in a process called neurogenesis. Here we review the current knowledge on the regulation of cortical neurogenesis, beginning with a description of the types of progenitor cells and their lineage relationships. This is followed by a review of the determinants of neuron fate, the molecular and genetic regulatory mechanisms, and considerations on the evolution of cortical neurogenesis in vertebrates leading to humans. We finish with an overview on how dysregulation of neurogenesis is a leading cause of human brain malformations and functional disabilities.
Collapse
Affiliation(s)
- Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum München & Biomedical Center, Ludwig-Maximilians Universitaet, Planegg-Martinsried, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
22
|
Meyerink BL, Tiwari NK, Pilaz LJ. Ariadne's Thread in the Developing Cerebral Cortex: Mechanisms Enabling the Guiding Role of the Radial Glia Basal Process during Neuron Migration. Cells 2020; 10:E3. [PMID: 33375033 PMCID: PMC7822038 DOI: 10.3390/cells10010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
Radial neuron migration in the developing cerebral cortex is a complex journey, starting in the germinal zones and ending in the cortical plate. In mice, migratory distances can reach several hundreds of microns, or millimeters in humans. Along the migratory path, radially migrating neurons slither through cellularly dense and complex territories before they reach their final destination in the cortical plate. This task is facilitated by radial glia, the neural stem cells of the developing cortex. Indeed, radial glia have a unique bipolar morphology, enabling them to serve as guides for neuronal migration. The key guiding structure of radial glia is the basal process, which traverses the entire thickness of the developing cortex. Neurons recognize the basal process as their guide and maintain physical interactions with this structure until the end of migration. Thus, the radial glia basal process plays a key role during radial migration. In this review, we highlight the pathways enabling neuron-basal process interactions during migration, as well as the known mechanisms regulating the morphology of the radial glia basal process. Throughout, we describe how dysregulation of these interactions and of basal process morphology can have profound effects on cortical development, and therefore lead to neurodevelopmental diseases.
Collapse
Affiliation(s)
- Brandon L. Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Neeraj K. Tiwari
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
| | - Louis-Jan Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
23
|
Nerli E, Rocha-Martins M, Norden C. Asymmetric neurogenic commitment of retinal progenitors involves Notch through the endocytic pathway. eLife 2020; 9:e60462. [PMID: 33141024 PMCID: PMC7679139 DOI: 10.7554/elife.60462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 01/07/2023] Open
Abstract
During brain development, progenitor cells need to balanceproliferation and differentiation in order to generate different neurons in the correct numbers and proportions. Currently, the patterns of multipotent progenitor divisions that lead to neurogenic entry and the factors that regulate them are not fully understood. We here use the zebrafish retina to address this gap, exploiting its suitability for quantitative live-imaging. We show that early neurogenic progenitors arise from asymmetric divisions. Notch regulates this asymmetry, as when inhibited, symmetric divisions producing two neurogenic progenitors occur. Surprisingly however, Notch does not act through an apicobasal activity gradient as previously suggested, but through asymmetric inheritance of Sara-positive endosomes. Further, the resulting neurogenic progenitors show cell biological features different from multipotent progenitors, raising the possibility that an intermediate progenitor state exists in the retina. Our study thus reveals new insights into the regulation of proliferative and differentiative events during central nervous system development.
Collapse
Affiliation(s)
- Elisa Nerli
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Mauricio Rocha-Martins
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Instituto Gulbenkian de CiênciaOeirasPortugal
| |
Collapse
|
24
|
Uzquiano A, Cifuentes-Diaz C, Jabali A, Romero DM, Houllier A, Dingli F, Maillard C, Boland A, Deleuze JF, Loew D, Mancini GMS, Bahi-Buisson N, Ladewig J, Francis F. Mutations in the Heterotopia Gene Eml1/EML1 Severely Disrupt the Formation of Primary Cilia. Cell Rep 2020; 28:1596-1611.e10. [PMID: 31390572 DOI: 10.1016/j.celrep.2019.06.096] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Apical radial glia (aRGs) are predominant progenitors during corticogenesis. Perturbing their function leads to cortical malformations, including subcortical heterotopia (SH), characterized by the presence of neurons below the cortex. EML1/Eml1 mutations lead to SH in patients, as well as to heterotopic cortex (HeCo) mutant mice. In HeCo mice, some aRGs are abnormally positioned away from the ventricular zone (VZ). Thus, unraveling EML1/Eml1 function will clarify mechanisms maintaining aRGs in the VZ. We pinpoint an unknown EML1/Eml1 function in primary cilium formation. In HeCo aRGs, cilia are shorter, less numerous, and often found aberrantly oriented within vesicles. Patient fibroblasts and human cortical progenitors show similar defects. EML1 interacts with RPGRIP1L, a ciliary protein, and RPGRIP1L mutations were revealed in a heterotopia patient. We also identify Golgi apparatus abnormalities in EML1/Eml1 mutant cells, potentially upstream of the cilia phenotype. We thus reveal primary cilia mechanisms impacting aRG dynamics in physiological and pathological conditions.
Collapse
Affiliation(s)
- Ana Uzquiano
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France
| | - Carmen Cifuentes-Diaz
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France
| | - Ammar Jabali
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Delfina M Romero
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France
| | - Anne Houllier
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Camille Maillard
- Laboratory of Genetics and Development of the Cerebral Cortex, INSERM UMR1163 Imagine Institute, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91057 Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91057 Evry, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015CN Rotterdam, the Netherlands
| | - Nadia Bahi-Buisson
- Laboratory of Genetics and Development of the Cerebral Cortex, INSERM UMR1163 Imagine Institute, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric Neurology APHP-Necker Enfants Malades University Hospital, Paris, France; Centre de Référence, Déficiences Intellectuelles de Causes Rares, APHP-Necker Enfants Malades University Hospital, Paris, France
| | - Julia Ladewig
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fiona Francis
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
25
|
Kalebic N, Huttner WB. Basal Progenitor Morphology and Neocortex Evolution. Trends Neurosci 2020; 43:843-853. [PMID: 32828546 DOI: 10.1016/j.tins.2020.07.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 11/28/2022]
Abstract
The evolutionary expansion of the mammalian neocortex is widely considered to be a basis of increased cognitive abilities. This expansion is a consequence of the enhanced production of neurons during the fetal/embryonic development of the neocortex, which in turn reflects an increased proliferative capacity of neural progenitor cells; in particular basal progenitors (BPs). The remarkable heterogeneity of BP subtypes across mammals, notably their various morphotypes and molecular fingerprints, which has recently been revealed, corroborates the importance of BPs for neocortical expansion. Here, we argue that the morphology of BPs is a key cell biological basis for maintaining their high proliferative capacity and therefore plays crucial roles in the evolutionary expansion of the neocortex.
Collapse
Affiliation(s)
- Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Human Technopole, Milan, Italy.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
26
|
Sasaki-Takahashi N, Shinohara H, Shioda S, Seki T. The polarity and properties of radial glia-like neural stem cells are altered by seizures with status epilepticus: Study using an improved mouse pilocarpine model of epilepsy. Hippocampus 2020; 30:250-262. [PMID: 32101365 DOI: 10.1002/hipo.23153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/04/2019] [Accepted: 08/19/2019] [Indexed: 01/08/2023]
Abstract
In the adult mouse hippocampus, new neurons are produced by radial glia-like (RGL) neural stem cells in the subgranular zone, which extend their apical processes toward the molecular layer, and express the astrocyte marker glial fibrillary acidic protein, but not the astrocyte marker S100β. In rodent models of epilepsy, adult hippocampal neurogenesis was reported to be increased after acute and mild seizures, but to be decreased by chronic and severe epilepsy. In the present study, we investigated how the severity of seizures affects neurogenesis and RGL neural stem cells in acute stages of epilepsy, using an improved mouse pilocarpine model in which pilocarpine-induced hypothermia was prevented by maintaining body temperature, resulting in a high incidence rate of epileptic seizures and low rate of mortality. In mice that experienced seizures without status epilepticus (SE), the number of proliferating progenitors and immature neurons were significantly increased, whereas no changes were observed in RGL cells. In mice that experienced seizures with SE, the number of proliferating progenitors and immature neurons were unchanged, but the number of RGL cells with an apical process was significantly reduced. Furthermore, the processes of the majority of RGL cells extended inversely toward the hilus, and about half of the aberrant RGL cells expressed S100β. These results suggest that seizures with SE lead to changes in the polarity and properties of RGL neural stem cells, which may direct them toward astrocyte differentiation, resulting in the reduction of neural stem cells producing new granule cells. This also suggests the possibility that cell polarity of RGL stem cells is important for maintaining the stemness of adult neural stem cells.
Collapse
Affiliation(s)
| | - Hiroshi Shinohara
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Seiji Shioda
- Institute for Advanced Bioscience Research, Hoshi University, Tokyo, Japan
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
27
|
Passemard S, Perez F, Gressens P, El Ghouzzi V. Endoplasmic reticulum and Golgi stress in microcephaly. Cell Stress 2019; 3:369-384. [PMID: 31832602 PMCID: PMC6883743 DOI: 10.15698/cst2019.12.206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Microcephaly is a neurodevelopmental condition characterized by a small brain size associated with intellectual deficiency in most cases and is one of the most frequent clinical sign encountered in neurodevelopmental disorders. It can result from a wide range of environmental insults occurring during pregnancy or postnatally, as well as from various genetic causes and represents a highly heterogeneous condition. However, several lines of evidence highlight a compromised mode of division of the cortical precursor cells during neurogenesis, affecting neural commitment or survival as one of the common mechanisms leading to a limited production of neurons and associated with the most severe forms of congenital microcephaly. In this context, the emergence of the endoplasmic reticulum (ER) and the Golgi apparatus as key guardians of cellular homeostasis, especially through the regulation of proteostasis, has raised the hypothesis that pathological ER and/or Golgi stress could contribute significantly to cortical impairments eliciting microcephaly. In this review, we discuss recent findings implicating ER and Golgi stress responses in early brain development and provide an overview of microcephaly-associated genes involved in these pathways.
Collapse
Affiliation(s)
- Sandrine Passemard
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Service de Génétique Clinique, AP-HP, Hôpital Robert Debré, F-75019 Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, France
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas'Hospital, London, United Kingdom
| | | |
Collapse
|
28
|
Will L, Portegies S, van Schelt J, van Luyk M, Jaarsma D, Hoogenraad CC. Dynein activating adaptor BICD2 controls radial migration of upper-layer cortical neurons in vivo. Acta Neuropathol Commun 2019; 7:162. [PMID: 31655624 PMCID: PMC6815425 DOI: 10.1186/s40478-019-0827-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 01/19/2023] Open
Abstract
For the proper organization of the six-layered mammalian neocortex it is required that neurons migrate radially from their place of birth towards their designated destination. The molecular machinery underlying this neuronal migration is still poorly understood. The dynein-adaptor protein BICD2 is associated with a spectrum of human neurological diseases, including malformations of cortical development. Previous studies have shown that knockdown of BICD2 interferes with interkinetic nuclear migration in radial glial progenitor cells, and that Bicd2-deficient mice display an altered laminar organization of the cerebellum and the neocortex. However, the precise in vivo role of BICD2 in neocortical development remains unclear. By comparing cell-type specific conditional Bicd2 knock-out mice, we found that radial migration in the cortex predominantly depends on BICD2 function in post-mitotic neurons. Neuron-specific Bicd2 cKO mice showed severely impaired radial migration of late-born upper-layer neurons. BICD2 depletion in cortical neurons interfered with proper Golgi organization, and neuronal maturation and survival of cortical plate neurons. Single-neuron labeling revealed a specific role of BICD2 in bipolar locomotion. Rescue experiments with wildtype and disease-related mutant BICD2 constructs revealed that a point-mutation in the RAB6/RANBP2-binding-domain, associated with cortical malformation in patients, fails to restore proper cortical neuron migration. Together, these findings demonstrate a novel, cell-intrinsic role of BICD2 in cortical neuron migration in vivo and provide new insights into BICD2-dependent dynein-mediated functions during cortical development.
Collapse
|
29
|
Pinson A, Namba T, Huttner WB. Malformations of Human Neocortex in Development - Their Progenitor Cell Basis and Experimental Model Systems. Front Cell Neurosci 2019; 13:305. [PMID: 31338027 PMCID: PMC6629864 DOI: 10.3389/fncel.2019.00305] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Malformations of the human neocortex in development constitute a heterogeneous group of complex disorders, resulting in pathologies such as intellectual disability and abnormal neurological/psychiatric conditions such as epilepsy or autism. Advances in genomic sequencing and genetic techniques have allowed major breakthroughs in the field, revealing the molecular basis of several of these malformations. Here, we focus on those malformations of the human neocortex, notably microcephaly, and macrocephaly, where an underlying basis has been established at the level of the neural stem/progenitor cells (NPCs) from which neurons are directly or indirectly derived. Particular emphasis is placed on NPC cell biology and NPC markers. A second focus of this review is on experimental model systems used to dissect the underlying mechanisms of malformations of the human neocortex in development at the cellular and molecular level. The most commonly used model system have been genetically modified mice. However, although basic features of neocortical development are conserved across the various mammalian species, some important differences between mouse and human exist. These pertain to the abundance of specific NPC types and/or their proliferative capacity, as exemplified in the case of basal radial glia. These differences limit the ability of mouse models to fully recapitulate the phenotypes of malformations of the human neocortex. For this reason, additional experimental model systems, notably the ferret, non-human primates and cerebral organoids, have recently emerged as alternatives and shown to be of increasing relevance. It is therefore important to consider the benefits and limitations of each of these model systems for studying malformations of the human neocortex in development.
Collapse
Affiliation(s)
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
30
|
Abstract
For over a century, the centrosome has been an organelle more easily tracked than understood, and the study of its peregrinations within the cell remains a chief underpinning of its functional investigation. Increasing attention and new approaches have been brought to bear on mechanisms that control centrosome localization in the context of cleavage plane determination, ciliogenesis, directional migration, and immunological synapse formation, among other cellular and developmental processes. The Golgi complex, often linked with the centrosome, presents a contrasting case of a pleiomorphic organelle for which functional studies advanced somewhat more rapidly than positional tracking. However, Golgi orientation and distribution has emerged as an area of considerable interest with respect to polarized cellular function. This chapter will review our current understanding of the mechanism and significance of the positioning of these organelles.
Collapse
|
31
|
Liu J, He J, Huang Y, Xiao H, Jiang Z, Hu Z. The Golgi apparatus in neurorestoration. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The central role of the Golgi apparatus in critical cellular processes such as the transport, processing, and sorting of proteins and lipids has placed it at the forefront of cell science. Golgi apparatus dysfunction caused by primary defects within the Golgi or pharmacological and oxidative stress has been implicated in a wide range of neurodegenerative diseases. In addition to participating in disease progression, the Golgi apparatus plays pivotal roles in angiogenesis, neurogenesis, and synaptogenesis, thereby promoting neurological recovery. In this review, we focus on the functions of the Golgi apparatus and its mediated events during neurorestoration.
Collapse
|
32
|
The Golgi Apparatus in Polarized Neuroepithelial Stem Cells and Their Progeny: Canonical and Noncanonical Features. Results Probl Cell Differ 2019; 67:359-375. [PMID: 31435803 DOI: 10.1007/978-3-030-23173-6_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurons forming the central nervous system are generated by neural stem and progenitor cells, via a process called neurogenesis (Götz and Huttner, Nat Rev Mol Cell Biol, 6:777-788, 2005). In this book chapter, we focus on neurogenesis in the dorsolateral telencephalon, the rostral-most region of the neural tube, which contains the part of the central nervous system that is most expanded in mammals (Borrell and Reillo, Dev Neurobiol, 72:955-971, 2012; Wilsch-Bräuninger et al., Curr Opin Neurobiol 39:122-132, 2016). We will discuss recent advances in the dissection of the cell biological mechanisms of neurogenesis, with particular attention to the organization and function of the Golgi apparatus and its relationship to the centrosome.
Collapse
|
33
|
Uzquiano A, Gladwyn-Ng I, Nguyen L, Reiner O, Götz M, Matsuzaki F, Francis F. Cortical progenitor biology: key features mediating proliferation versus differentiation. J Neurochem 2018; 146:500-525. [PMID: 29570795 DOI: 10.1111/jnc.14338] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
The cerebral cortex is a highly organized structure whose development depends on diverse progenitor cell types, namely apical radial glia, intermediate progenitors, and basal radial glia cells, which are responsible for the production of the correct neuronal output. In recent years, these progenitor cell types have been deeply studied, particularly basal radial glia and their role in cortical expansion and gyrification. We review here a broad series of factors that regulate progenitor behavior and daughter cell fate. We first describe the different neuronal progenitor types, emphasizing the differences between lissencephalic and gyrencephalic species. We then review key factors shown to influence progenitor proliferation versus differentiation, discussing their roles in progenitor dynamics, neuronal production, and potentially brain size and complexity. Although spindle orientation has been considered a critical factor for mode of division and daughter cell output, we discuss other features that are emerging as crucial for these processes such as organelle and cell cycle dynamics. Additionally, we highlight the importance of adhesion molecules and the polarity complex for correct cortical development. Finally, we briefly discuss studies assessing progenitor multipotency and its possible contribution to the production of specific neuronal populations. This review hence summarizes recent aspects of cortical progenitor cell biology, and pinpoints emerging features critical for their behavior.
Collapse
Affiliation(s)
- Ana Uzquiano
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Ivan Gladwyn-Ng
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilian University Munich, Planegg/Munich, Germany
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN Kobe Institute, Kobe, Hyogo, Japan
| | - Fiona Francis
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
34
|
A Golgi Lipid Signaling Pathway Controls Apical Golgi Distribution and Cell Polarity during Neurogenesis. Dev Cell 2018; 44:725-740.e4. [PMID: 29587143 DOI: 10.1016/j.devcel.2018.02.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 01/03/2018] [Accepted: 02/26/2018] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol (PtdIns) transfer proteins (PITPs) stimulate PtdIns-4-P synthesis and signaling in eukaryotic cells, but to what biological outcomes such signaling circuits are coupled remains unclear. Herein, we show that two highly related StART-like PITPs, PITPNA and PITPNB, act in a redundant fashion to support development of the embryonic mammalian neocortex. PITPNA/PITPNB do so by driving PtdIns-4-P-dependent recruitment of GOLPH3, and likely ceramide transfer protein (CERT), to Golgi membranes with GOLPH3 recruitment serving to promote MYO18A- and F-actin-directed loading of the Golgi network to apical processes of neural stem cells (NSCs). We propose the primary role for PITP/PtdIns-4-P/GOLPH3/CERT signaling in NSC Golgi is not in regulating bulk membrane trafficking but in optimizing apically directed membrane trafficking and/or apical membrane signaling during neurogenesis.
Collapse
|
35
|
Tavano S, Taverna E, Kalebic N, Haffner C, Namba T, Dahl A, Wilsch-Bräuninger M, Paridaen JT, Huttner WB. Insm1 Induces Neural Progenitor Delamination in Developing Neocortex via Downregulation of the Adherens Junction Belt-Specific Protein Plekha7. Neuron 2018; 97:1299-1314.e8. [DOI: 10.1016/j.neuron.2018.01.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/28/2017] [Accepted: 01/30/2018] [Indexed: 01/24/2023]
|
36
|
Arai Y, Taverna E. Neural Progenitor Cell Polarity and Cortical Development. Front Cell Neurosci 2017; 11:384. [PMID: 29259543 PMCID: PMC5723293 DOI: 10.3389/fncel.2017.00384] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Neurons populating the cerebral cortex are generated during embryonic development from neural stem and progenitor cells in a process called neurogenesis. Neural stem and progenitor cells are classified into several classes based on the different location of mitosis (apical or basal) and polarity features (bipolar, monopolar and non-polar). The polarized architecture of stem cells is linked to the asymmetric localization of proteins, mRNAs and organelles, such as the centrosome and the Golgi apparatus (GA). Polarity affects stem cell function and allows stem cells to integrate environmental cues from distinct niches in the developing cerebral cortex. The crucial role of polarity in neural stem and progenitor cells is highlighted by the fact that impairment of cell polarity is linked to neurodevelopmental disorders such as Down syndrome, Fragile X syndrome, autism spectrum disorders (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Yoko Arai
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris, France
| | - Elena Taverna
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology (MPG), Leipzig, Germany
| |
Collapse
|
37
|
Govindan S, Jabaudon D. Coupling progenitor and neuronal diversity in the developing neocortex. FEBS Lett 2017; 591:3960-3977. [PMID: 28895133 DOI: 10.1002/1873-3468.12846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022]
Abstract
The adult neocortex is composed of several types of glutamatergic neurons, which are sequentially born from progenitors during development. The extent and nature of progenitor diversity, and how it relates to neuronal diversity, is still poorly understood. In this review, we discuss key features of neocortical progenitors across several species, including their morphological properties, cell cycling behaviour and molecular signatures, and how these features relate to the competence of these cells to generate distinct types of progenies.
Collapse
Affiliation(s)
| | - Denis Jabaudon
- Department of Basic Neuroscience, University of Geneva, Switzerland
| |
Collapse
|
38
|
Icha J, Kunath C, Rocha-Martins M, Norden C. Independent modes of ganglion cell translocation ensure correct lamination of the zebrafish retina. J Cell Biol 2017; 215:259-275. [PMID: 27810916 PMCID: PMC5084647 DOI: 10.1083/jcb.201604095] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022] Open
Abstract
Icha et al. show that retinal ganglion cells (RGCs) can move by two different modes across the embryonic zebrafish retina and that correct RGC translocation is crucial for neuronal lamination and retinal development. The arrangement of neurons into distinct layers is critical for neuronal connectivity and function. During development, most neurons move from their birthplace to the appropriate layer, where they polarize. However, kinetics and modes of many neuronal translocation events still await exploration. In this study, we investigate retinal ganglion cell (RGC) translocation across the embryonic zebrafish retina. After completing their translocation, RGCs establish the most basal retinal layer where they form the optic nerve. Using in toto light sheet microscopy, we show that somal translocation of RGCs is a fast and directed event. It depends on basal process attachment and stabilized microtubules. Interestingly, interference with somal translocation induces a switch to multipolar migration. This multipolar mode is less efficient but still leads to successful RGC layer formation. When both modes are inhibited though, RGCs fail to translocate and induce lamination defects. This indicates that correct RGC translocation is crucial for subsequent retinal lamination.
Collapse
Affiliation(s)
- Jaroslav Icha
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Christiane Kunath
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Mauricio Rocha-Martins
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Instituto de Biofísica Carlos Chagas Filho, 21941-902 Rio de Janeiro, Brazil
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
39
|
Norden C. Pseudostratified epithelia - cell biology, diversity and roles in organ formation at a glance. J Cell Sci 2017; 130:1859-1863. [PMID: 28455413 DOI: 10.1242/jcs.192997] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pseudostratified epithelia (PSE) are widespread and diverse tissue arrangements, and many PSE are organ precursors in a variety of organisms. While cells in PSE, like other epithelial cells, feature apico-basal polarity, they generally are more elongated and their nuclei are more densely packed within the tissue. In addition, nuclei in PSE undergo interkinetic nuclear migration (IKNM, also referred to as INM), whereby all mitotic events occur at the apical surface of the elongated epithelium. Previous reviews have focused on the links between IKNM and the cell cycle, as well as the relationship between IKNM and neurogenesis, which will not be elaborated on here. Instead, in this Cell Science at a Glance article and the accompanying poster, I will discuss the cell biology of PSEs, highlighting how differences in PSE architecture could influence cellular behaviour, especially IKNM. Furthermore, I will summarize what we know about the links between apical mitosis in PSE and tissue integrity and maturation.
Collapse
Affiliation(s)
- Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| |
Collapse
|
40
|
Pilaz LJ, Silver DL. Moving messages in the developing brain-emerging roles for mRNA transport and local translation in neural stem cells. FEBS Lett 2017; 591:1526-1539. [PMID: 28304078 DOI: 10.1002/1873-3468.12626] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/06/2017] [Accepted: 03/11/2017] [Indexed: 11/10/2022]
Abstract
The mammalian cerebral cortex is a complex brain structure integral to our higher cognition. During embryonic cortical development, radial glial progenitors (RGCs) produce neurons and serve as physical structures for migrating neurons. Recent discoveries highlight new roles for RNA localization and local translation in RGCs, both at the cell body and at distal structures called basal endfeet. By implementing technologies from the field of RNA research to brain development, investigators can manipulate RNA-binding proteins as well as visualize single-molecule RNAs, live movement of mRNAs and their binding proteins, and translation. Going forward, these studies establish a framework for investigating how post-transcriptional RNA regulation helps shape RGC function and triggers neurodevelopmental diseases.
Collapse
Affiliation(s)
- Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Regeneration Next, Duke University Medical Center, Durham, NC, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Regeneration Next, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.,Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
41
|
Tozer S, Baek C, Fischer E, Goiame R, Morin X. Differential Routing of Mindbomb1 via Centriolar Satellites Regulates Asymmetric Divisions of Neural Progenitors. Neuron 2017; 93:542-551.e4. [PMID: 28132826 DOI: 10.1016/j.neuron.2016.12.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 11/08/2016] [Accepted: 12/29/2016] [Indexed: 01/12/2023]
Abstract
Unequal centrosome maturation correlates with asymmetric division in multiple cell types. Nevertheless, centrosomal fate determinants have yet to be identified. Here, we show that the Notch pathway regulator Mindbomb1 co-localizes asymmetrically with centriolar satellite proteins PCM1 and AZI1 at the daughter centriole in interphase. Remarkably, while PCM1 and AZI1 remain asymmetric during mitosis, Mindbomb1 is associated with either one or both spindle poles. Asymmetric Mindbomb1 correlates with neurogenic divisions and Mindbomb1 is inherited by the prospective neuron. By contrast, in proliferative divisions, a supplementary pool of Mindbomb1 associated with the Golgi apparatus in interphase is released during mitosis and compensates for Mindbomb1 centrosomal asymmetry. Finally, we show that preventing Mindbomb1 centrosomal association induces reciprocal Notch activation between sister cells and promotes symmetric divisions. Thus, we uncover a link between differential centrosome maturation and Notch signaling and reveal an unexpected compensatory mechanism involving the Golgi apparatus in restoring symmetry in proliferative divisions.
Collapse
Affiliation(s)
- Samuel Tozer
- Cell Division and Neurogenesis, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, Inserm, Ecole Normale Supérieure, PSL Research University, 75005 Paris, France.
| | - Chooyoung Baek
- Cell Division and Neurogenesis, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, Inserm, Ecole Normale Supérieure, PSL Research University, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, 75252 Paris, France
| | - Evelyne Fischer
- Cell Division and Neurogenesis, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, Inserm, Ecole Normale Supérieure, PSL Research University, 75005 Paris, France
| | - Rosette Goiame
- Cell Division and Neurogenesis, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, Inserm, Ecole Normale Supérieure, PSL Research University, 75005 Paris, France
| | - Xavier Morin
- Cell Division and Neurogenesis, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, Inserm, Ecole Normale Supérieure, PSL Research University, 75005 Paris, France.
| |
Collapse
|
42
|
Namba T, Huttner WB. Neural progenitor cells and their role in the development and evolutionary expansion of the neocortex. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 6. [PMID: 27865053 DOI: 10.1002/wdev.256] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/16/2023]
Abstract
The evolutionary expansion of the mammalian brain, notably the neocortex, provides a platform for the higher cognitive abilities that characterize humans. Cortical expansion is accompanied by increased folding of the pial surface, which gives rise to a gyrencephalic (folded) rather than lissencephalic (unfolded) neocortex. This expansion reflects the prolonged and increased proliferation of neural stem and progenitor cells (NPCs). Distinct classes of NPCs can be distinguished based on either cell biological criteria (apical progenitors [APs], basal progenitors [BPs]) or lineage (primary progenitors and secondary progenitors). Cortical expansion in development and evolution is linked to an increased abundance and proliferative capacity of BPs, notably basal radial glial cells, a recently characterized type of secondary progenitor derived from apical radial glial cells, the primary progenitors. To gain insight into the molecular basis underlying the prolonged and increased proliferation of NPCs and in particular BPs, comparative genomic and transcriptomic approaches, mostly for human versus mouse, have been employed and applied to specific NPC types and subpopulations. These have revealed two principal sets of molecular changes. One concerns differences in the expression of common genes between species with different degrees of cortical expansion. The other comprises human-specific genes or genomic regulatory sequences. Various systems that allow functional testing of these genomic and gene expression differences between species have emerged, including transient and stable transgenesis, genome editing, cerebral organoids, and organotypic slice cultures. These provide future avenues for uncovering the molecular basis of cortical expansion. WIREs Dev Biol 2017, 6:e256. doi: 10.1002/wdev.256 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
43
|
Wilsch-Bräuninger M, Florio M, Huttner WB. Neocortex expansion in development and evolution — from cell biology to single genes. Curr Opin Neurobiol 2016; 39:122-32. [DOI: 10.1016/j.conb.2016.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/15/2016] [Indexed: 02/06/2023]
|